KR20220147634A - 금속 산화물, 금속 산화물의 성막 방법, 및 금속 산화물의 성막 장치 - Google Patents
금속 산화물, 금속 산화물의 성막 방법, 및 금속 산화물의 성막 장치 Download PDFInfo
- Publication number
- KR20220147634A KR20220147634A KR1020227033278A KR20227033278A KR20220147634A KR 20220147634 A KR20220147634 A KR 20220147634A KR 1020227033278 A KR1020227033278 A KR 1020227033278A KR 20227033278 A KR20227033278 A KR 20227033278A KR 20220147634 A KR20220147634 A KR 20220147634A
- Authority
- KR
- South Korea
- Prior art keywords
- oxide
- insulator
- precursor
- chamber
- film
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 347
- 229910044991 metal oxide Inorganic materials 0.000 title claims abstract description 271
- 150000004706 metal oxides Chemical class 0.000 title claims abstract description 271
- 239000002243 precursor Substances 0.000 claims abstract description 238
- 239000000758 substrate Substances 0.000 claims abstract description 186
- 230000008569 process Effects 0.000 claims abstract description 85
- 239000007800 oxidant agent Substances 0.000 claims abstract description 47
- 238000000354 decomposition reaction Methods 0.000 claims abstract description 36
- 229910052739 hydrogen Inorganic materials 0.000 claims description 162
- 239000001257 hydrogen Substances 0.000 claims description 162
- 239000011701 zinc Substances 0.000 claims description 147
- 238000010438 heat treatment Methods 0.000 claims description 146
- 239000002994 raw material Substances 0.000 claims description 145
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 143
- 229910052738 indium Inorganic materials 0.000 claims description 65
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 64
- 238000012545 processing Methods 0.000 claims description 61
- 229910052725 zinc Inorganic materials 0.000 claims description 55
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 54
- 229910052782 aluminium Inorganic materials 0.000 claims description 50
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 50
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 45
- 229910052733 gallium Inorganic materials 0.000 claims description 44
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 43
- 229910052799 carbon Inorganic materials 0.000 claims description 43
- 238000012546 transfer Methods 0.000 claims description 42
- 150000002431 hydrogen Chemical class 0.000 claims description 18
- 229910052727 yttrium Inorganic materials 0.000 claims description 17
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims description 17
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 12
- 229910052718 tin Inorganic materials 0.000 claims description 12
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 11
- 229910052801 chlorine Inorganic materials 0.000 claims description 11
- 239000000460 chlorine Substances 0.000 claims description 11
- 238000000151 deposition Methods 0.000 abstract description 20
- 239000012212 insulator Substances 0.000 description 581
- 239000010408 film Substances 0.000 description 463
- 239000004020 conductor Substances 0.000 description 325
- 239000007789 gas Substances 0.000 description 243
- 239000010410 layer Substances 0.000 description 236
- 229910052760 oxygen Inorganic materials 0.000 description 215
- 239000001301 oxygen Substances 0.000 description 213
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 209
- 239000004065 semiconductor Substances 0.000 description 186
- 230000015572 biosynthetic process Effects 0.000 description 144
- 238000000231 atomic layer deposition Methods 0.000 description 136
- 239000012535 impurity Substances 0.000 description 112
- 239000013078 crystal Substances 0.000 description 102
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 100
- 210000002381 plasma Anatomy 0.000 description 100
- 230000006870 function Effects 0.000 description 89
- 230000002829 reductive effect Effects 0.000 description 78
- 229910052751 metal Inorganic materials 0.000 description 75
- 238000004544 sputter deposition Methods 0.000 description 73
- 239000002184 metal Substances 0.000 description 66
- 239000012298 atmosphere Substances 0.000 description 62
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 58
- 229910001868 water Inorganic materials 0.000 description 58
- 238000009792 diffusion process Methods 0.000 description 49
- 125000004429 atom Chemical group 0.000 description 47
- 239000000376 reactant Substances 0.000 description 47
- 239000000463 material Substances 0.000 description 44
- 229910052581 Si3N4 Inorganic materials 0.000 description 43
- 238000005229 chemical vapour deposition Methods 0.000 description 43
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 43
- 238000004519 manufacturing process Methods 0.000 description 42
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 39
- 229910052710 silicon Inorganic materials 0.000 description 39
- 239000010703 silicon Substances 0.000 description 39
- 229910052757 nitrogen Inorganic materials 0.000 description 36
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 35
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 35
- 230000007547 defect Effects 0.000 description 32
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 30
- -1 element M Chemical compound 0.000 description 30
- 239000011261 inert gas Substances 0.000 description 30
- 229910052814 silicon oxide Inorganic materials 0.000 description 30
- 239000000203 mixture Substances 0.000 description 29
- 229910052735 hafnium Inorganic materials 0.000 description 27
- 150000004767 nitrides Chemical class 0.000 description 25
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 24
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 24
- 238000001451 molecular beam epitaxy Methods 0.000 description 24
- 238000004549 pulsed laser deposition Methods 0.000 description 24
- 229910001873 dinitrogen Inorganic materials 0.000 description 23
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 22
- 229910052719 titanium Inorganic materials 0.000 description 22
- 239000010936 titanium Substances 0.000 description 22
- 230000004888 barrier function Effects 0.000 description 21
- 238000006243 chemical reaction Methods 0.000 description 21
- 229910052715 tantalum Inorganic materials 0.000 description 20
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 20
- 229910052721 tungsten Inorganic materials 0.000 description 20
- 239000010937 tungsten Substances 0.000 description 20
- 230000008021 deposition Effects 0.000 description 19
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 19
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 18
- 238000010586 diagram Methods 0.000 description 18
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 17
- 229910001882 dioxygen Inorganic materials 0.000 description 17
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 17
- 230000001590 oxidative effect Effects 0.000 description 16
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical group [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 15
- 238000001312 dry etching Methods 0.000 description 15
- 238000005530 etching Methods 0.000 description 15
- 229910052759 nickel Inorganic materials 0.000 description 15
- 239000012159 carrier gas Substances 0.000 description 14
- 230000007246 mechanism Effects 0.000 description 14
- 239000002356 single layer Substances 0.000 description 14
- 229910000449 hafnium oxide Inorganic materials 0.000 description 13
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 13
- 125000004430 oxygen atom Chemical group O* 0.000 description 13
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 12
- 229910052786 argon Inorganic materials 0.000 description 12
- 229910052802 copper Inorganic materials 0.000 description 12
- 239000010949 copper Chemical group 0.000 description 12
- PSCMQHVBLHHWTO-UHFFFAOYSA-K indium(iii) chloride Chemical compound Cl[In](Cl)Cl PSCMQHVBLHHWTO-UHFFFAOYSA-K 0.000 description 12
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 12
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 11
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 11
- 239000007795 chemical reaction product Substances 0.000 description 11
- 229910052750 molybdenum Inorganic materials 0.000 description 11
- 239000011733 molybdenum Substances 0.000 description 11
- 238000005406 washing Methods 0.000 description 11
- 239000000969 carrier Substances 0.000 description 10
- 238000004140 cleaning Methods 0.000 description 10
- 229910052746 lanthanum Inorganic materials 0.000 description 10
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 10
- 229910052707 ruthenium Inorganic materials 0.000 description 10
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 10
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 9
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 9
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 9
- 238000002441 X-ray diffraction Methods 0.000 description 9
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 9
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 229910001195 gallium oxide Inorganic materials 0.000 description 9
- 229910052734 helium Inorganic materials 0.000 description 9
- 239000001307 helium Substances 0.000 description 9
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 9
- 229910003437 indium oxide Inorganic materials 0.000 description 9
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 9
- 229910052749 magnesium Inorganic materials 0.000 description 9
- 239000011777 magnesium Substances 0.000 description 9
- 230000003647 oxidation Effects 0.000 description 9
- 238000007254 oxidation reaction Methods 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 9
- 239000011787 zinc oxide Substances 0.000 description 9
- 229910052726 zirconium Inorganic materials 0.000 description 9
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 8
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 8
- 229910052742 iron Inorganic materials 0.000 description 8
- 238000002156 mixing Methods 0.000 description 8
- 150000003254 radicals Chemical class 0.000 description 8
- 238000004151 rapid thermal annealing Methods 0.000 description 8
- 238000009751 slip forming Methods 0.000 description 8
- 238000001039 wet etching Methods 0.000 description 8
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 7
- 229910052732 germanium Inorganic materials 0.000 description 7
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 7
- 239000011229 interlayer Substances 0.000 description 7
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 7
- 230000008707 rearrangement Effects 0.000 description 7
- 238000001228 spectrum Methods 0.000 description 7
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 6
- 229910052779 Neodymium Inorganic materials 0.000 description 6
- 235000011114 ammonium hydroxide Nutrition 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 230000005684 electric field Effects 0.000 description 6
- 238000010894 electron beam technology Methods 0.000 description 6
- UPWPDUACHOATKO-UHFFFAOYSA-K gallium trichloride Chemical compound Cl[Ga](Cl)Cl UPWPDUACHOATKO-UHFFFAOYSA-K 0.000 description 6
- 238000009616 inductively coupled plasma Methods 0.000 description 6
- 239000011810 insulating material Substances 0.000 description 6
- 239000000395 magnesium oxide Substances 0.000 description 6
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 6
- 238000005121 nitriding Methods 0.000 description 6
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 6
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 6
- 238000001004 secondary ion mass spectrometry Methods 0.000 description 6
- 239000010409 thin film Substances 0.000 description 6
- 239000011592 zinc chloride Substances 0.000 description 6
- 235000005074 zinc chloride Nutrition 0.000 description 6
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 5
- 229910052684 Cerium Inorganic materials 0.000 description 5
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 5
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- 229910052796 boron Inorganic materials 0.000 description 5
- 239000003990 capacitor Substances 0.000 description 5
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 5
- 229910000423 chromium oxide Inorganic materials 0.000 description 5
- 229910052731 fluorine Inorganic materials 0.000 description 5
- 239000011737 fluorine Substances 0.000 description 5
- 229910052736 halogen Inorganic materials 0.000 description 5
- 150000002367 halogens Chemical class 0.000 description 5
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 5
- 239000012299 nitrogen atmosphere Substances 0.000 description 5
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 5
- 230000036961 partial effect Effects 0.000 description 5
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 5
- 239000013589 supplement Substances 0.000 description 5
- 229910001928 zirconium oxide Inorganic materials 0.000 description 5
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 229910052783 alkali metal Inorganic materials 0.000 description 4
- 150000001340 alkali metals Chemical class 0.000 description 4
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 4
- 150000001342 alkaline earth metals Chemical class 0.000 description 4
- 238000000137 annealing Methods 0.000 description 4
- 150000004770 chalcogenides Chemical class 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 239000011651 chromium Substances 0.000 description 4
- 229910017052 cobalt Inorganic materials 0.000 description 4
- 239000010941 cobalt Substances 0.000 description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 230000005669 field effect Effects 0.000 description 4
- 238000001341 grazing-angle X-ray diffraction Methods 0.000 description 4
- 230000010354 integration Effects 0.000 description 4
- SHXXPRJOPFJRHA-UHFFFAOYSA-K iron(iii) fluoride Chemical compound F[Fe](F)F SHXXPRJOPFJRHA-UHFFFAOYSA-K 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000010926 purge Methods 0.000 description 4
- 238000006722 reduction reaction Methods 0.000 description 4
- 229910052712 strontium Inorganic materials 0.000 description 4
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 4
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 4
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 4
- 229910052723 transition metal Inorganic materials 0.000 description 4
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- 239000007983 Tris buffer Substances 0.000 description 3
- 239000003463 adsorbent Substances 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- 238000007865 diluting Methods 0.000 description 3
- 238000007667 floating Methods 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 238000003475 lamination Methods 0.000 description 3
- 238000001459 lithography Methods 0.000 description 3
- 125000004433 nitrogen atom Chemical group N* 0.000 description 3
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 3
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 3
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 3
- 230000003071 parasitic effect Effects 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000012466 permeate Substances 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 239000011029 spinel Substances 0.000 description 3
- 229910052596 spinel Inorganic materials 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 229910001936 tantalum oxide Inorganic materials 0.000 description 3
- 229910052714 tellurium Inorganic materials 0.000 description 3
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 3
- 229910001930 tungsten oxide Inorganic materials 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical group [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 229910001080 W alloy Inorganic materials 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 229910052790 beryllium Inorganic materials 0.000 description 2
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical group [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052800 carbon group element Inorganic materials 0.000 description 2
- 229910052798 chalcogen Inorganic materials 0.000 description 2
- 150000001787 chalcogens Chemical class 0.000 description 2
- 238000002003 electron diffraction Methods 0.000 description 2
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium oxide Inorganic materials O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 2
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 2
- 239000013081 microcrystal Substances 0.000 description 2
- PLDDOISOJJCEMH-UHFFFAOYSA-N neodymium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Nd+3].[Nd+3] PLDDOISOJJCEMH-UHFFFAOYSA-N 0.000 description 2
- 229910052756 noble gas Inorganic materials 0.000 description 2
- 230000001151 other effect Effects 0.000 description 2
- PVADDRMAFCOOPC-UHFFFAOYSA-N oxogermanium Chemical compound [Ge]=O PVADDRMAFCOOPC-UHFFFAOYSA-N 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000009832 plasma treatment Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- 238000001552 radio frequency sputter deposition Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 238000004506 ultrasonic cleaning Methods 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- VNDYJBBGRKZCSX-UHFFFAOYSA-L zinc bromide Chemical compound Br[Zn]Br VNDYJBBGRKZCSX-UHFFFAOYSA-L 0.000 description 2
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 2
- UAYWVJHJZHQCIE-UHFFFAOYSA-L zinc iodide Chemical compound I[Zn]I UAYWVJHJZHQCIE-UHFFFAOYSA-L 0.000 description 2
- 229910019311 (Ba,Sr)TiO Inorganic materials 0.000 description 1
- ZVYYAYJIGYODSD-LNTINUHCSA-K (z)-4-bis[[(z)-4-oxopent-2-en-2-yl]oxy]gallanyloxypent-3-en-2-one Chemical compound [Ga+3].C\C([O-])=C\C(C)=O.C\C([O-])=C\C(C)=O.C\C([O-])=C\C(C)=O ZVYYAYJIGYODSD-LNTINUHCSA-K 0.000 description 1
- SKWCWFYBFZIXHE-LNTINUHCSA-K (z)-4-bis[[(z)-4-oxopent-2-en-2-yl]oxy]indiganyloxypent-3-en-2-one Chemical compound [In+3].C\C([O-])=C\C(C)=O.C\C([O-])=C\C(C)=O.C\C([O-])=C\C(C)=O SKWCWFYBFZIXHE-LNTINUHCSA-K 0.000 description 1
- HZVMDZFIUJZIOT-UHFFFAOYSA-N 3-dimethylindiganyl-n,n-dimethylpropan-1-amine Chemical compound CN(C)CCC[In](C)C HZVMDZFIUJZIOT-UHFFFAOYSA-N 0.000 description 1
- SDDGNMXIOGQCCH-UHFFFAOYSA-N 3-fluoro-n,n-dimethylaniline Chemical compound CN(C)C1=CC=CC(F)=C1 SDDGNMXIOGQCCH-UHFFFAOYSA-N 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 1
- 108010083687 Ion Pumps Proteins 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229910016001 MoSe Inorganic materials 0.000 description 1
- 241000209094 Oryza Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- GPWHDDKQSYOYBF-UHFFFAOYSA-N ac1l2u0q Chemical compound Br[Br-]Br GPWHDDKQSYOYBF-UHFFFAOYSA-N 0.000 description 1
- ZOIORXHNWRGPMV-UHFFFAOYSA-N acetic acid;zinc Chemical compound [Zn].CC(O)=O.CC(O)=O ZOIORXHNWRGPMV-UHFFFAOYSA-N 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000004380 ashing Methods 0.000 description 1
- LNMGXZOOXVAITI-UHFFFAOYSA-N bis(selanylidene)hafnium Chemical compound [Se]=[Hf]=[Se] LNMGXZOOXVAITI-UHFFFAOYSA-N 0.000 description 1
- WVMYSOZCZHQCSG-UHFFFAOYSA-N bis(sulfanylidene)zirconium Chemical compound S=[Zr]=S WVMYSOZCZHQCSG-UHFFFAOYSA-N 0.000 description 1
- 229910000416 bismuth oxide Inorganic materials 0.000 description 1
- 229910052795 boron group element Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- JZPXQBRKWFVPAE-UHFFFAOYSA-N cyclopentane;indium Chemical compound [In].[CH]1[CH][CH][CH][CH]1 JZPXQBRKWFVPAE-UHFFFAOYSA-N 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- TYIXMATWDRGMPF-UHFFFAOYSA-N dibismuth;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Bi+3].[Bi+3] TYIXMATWDRGMPF-UHFFFAOYSA-N 0.000 description 1
- HQWPLXHWEZZGKY-UHFFFAOYSA-N diethylzinc Chemical compound CC[Zn]CC HQWPLXHWEZZGKY-UHFFFAOYSA-N 0.000 description 1
- QKIUAMUSENSFQQ-UHFFFAOYSA-N dimethylazanide Chemical compound C[N-]C QKIUAMUSENSFQQ-UHFFFAOYSA-N 0.000 description 1
- IGOGAEYHSPSTHS-UHFFFAOYSA-N dimethylgallium Chemical compound C[Ga]C IGOGAEYHSPSTHS-UHFFFAOYSA-N 0.000 description 1
- AXAZMDOAUQTMOW-UHFFFAOYSA-N dimethylzinc Chemical compound C[Zn]C AXAZMDOAUQTMOW-UHFFFAOYSA-N 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 238000002524 electron diffraction data Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 150000002259 gallium compounds Chemical class 0.000 description 1
- DWRNSCDYNYYYHT-UHFFFAOYSA-K gallium(iii) iodide Chemical compound I[Ga](I)I DWRNSCDYNYYYHT-UHFFFAOYSA-K 0.000 description 1
- 239000010795 gaseous waste Substances 0.000 description 1
- 238000005247 gettering Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- NRJVMVHUISHHQB-UHFFFAOYSA-N hafnium(4+);disulfide Chemical compound [S-2].[S-2].[Hf+4] NRJVMVHUISHHQB-UHFFFAOYSA-N 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 238000002173 high-resolution transmission electron microscopy Methods 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 150000002472 indium compounds Chemical class 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- MHWZQNGIEIYAQJ-UHFFFAOYSA-N molybdenum diselenide Chemical compound [Se]=[Mo]=[Se] MHWZQNGIEIYAQJ-UHFFFAOYSA-N 0.000 description 1
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 1
- MGRWKWACZDFZJT-UHFFFAOYSA-N molybdenum tungsten Chemical compound [Mo].[W] MGRWKWACZDFZJT-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- RUFLMLWJRZAWLJ-UHFFFAOYSA-N nickel silicide Chemical compound [Ni]=[Si]=[Ni] RUFLMLWJRZAWLJ-UHFFFAOYSA-N 0.000 description 1
- 229910021334 nickel silicide Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229910000484 niobium oxide Inorganic materials 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 238000006213 oxygenation reaction Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 235000011007 phosphoric acid Nutrition 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910052696 pnictogen Inorganic materials 0.000 description 1
- 229910052699 polonium Inorganic materials 0.000 description 1
- HZEBHPIOVYHPMT-UHFFFAOYSA-N polonium atom Chemical compound [Po] HZEBHPIOVYHPMT-UHFFFAOYSA-N 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- OGHBATFHNDZKSO-UHFFFAOYSA-N propan-2-olate Chemical compound CC(C)[O-] OGHBATFHNDZKSO-UHFFFAOYSA-N 0.000 description 1
- 238000005546 reactive sputtering Methods 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- HVEIXSLGUCQTMP-UHFFFAOYSA-N selenium(2-);zirconium(4+) Chemical compound [Se-2].[Se-2].[Zr+4] HVEIXSLGUCQTMP-UHFFFAOYSA-N 0.000 description 1
- 229910021428 silicene Inorganic materials 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229910002076 stabilized zirconia Inorganic materials 0.000 description 1
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 1
- 238000012916 structural analysis Methods 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- JKNHZOAONLKYQL-UHFFFAOYSA-K tribromoindigane Chemical compound Br[In](Br)Br JKNHZOAONLKYQL-UHFFFAOYSA-K 0.000 description 1
- RGGPNXQUMRMPRA-UHFFFAOYSA-N triethylgallium Chemical compound CC[Ga](CC)CC RGGPNXQUMRMPRA-UHFFFAOYSA-N 0.000 description 1
- OTRPZROOJRIMKW-UHFFFAOYSA-N triethylindigane Chemical compound CC[In](CC)CC OTRPZROOJRIMKW-UHFFFAOYSA-N 0.000 description 1
- RMUKCGUDVKEQPL-UHFFFAOYSA-K triiodoindigane Chemical compound I[In](I)I RMUKCGUDVKEQPL-UHFFFAOYSA-K 0.000 description 1
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 1
- IBEFSUTVZWZJEL-UHFFFAOYSA-N trimethylindium Chemical compound C[In](C)C IBEFSUTVZWZJEL-UHFFFAOYSA-N 0.000 description 1
- ITRNXVSDJBHYNJ-UHFFFAOYSA-N tungsten disulfide Chemical compound S=[W]=S ITRNXVSDJBHYNJ-UHFFFAOYSA-N 0.000 description 1
- 239000006200 vaporizer Substances 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
- 229910001233 yttria-stabilized zirconia Inorganic materials 0.000 description 1
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 1
- 239000004246 zinc acetate Substances 0.000 description 1
- 150000003752 zinc compounds Chemical class 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
- C23C16/401—Oxides containing silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
- C23C16/405—Oxides of refractory metals or yttrium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
- C23C16/407—Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45527—Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
- C23C16/45529—Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations specially adapted for making a layer stack of alternating different compositions or gradient compositions
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45527—Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
- C23C16/45531—Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations specially adapted for making ternary or higher compositions
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45527—Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
- C23C16/45536—Use of plasma, radiation or electromagnetic fields
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45527—Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
- C23C16/45536—Use of plasma, radiation or electromagnetic fields
- C23C16/45542—Plasma being used non-continuously during the ALD reactions
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45544—Atomic layer deposition [ALD] characterized by the apparatus
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45553—Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/46—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/10—Heating of the reaction chamber or the substrate
- C30B25/105—Heating of the reaction chamber or the substrate by irradiation or electric discharge
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/16—Controlling or regulating
- C30B25/165—Controlling or regulating the flow of the reactive gases
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/16—Oxides
- C30B29/22—Complex oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
- H01J37/32091—Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
- H01J37/321—Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32192—Microwave generated discharge
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32357—Generation remote from the workpiece, e.g. down-stream
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/02433—Crystal orientation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02551—Group 12/16 materials
- H01L21/02554—Oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02565—Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67017—Apparatus for fluid treatment
- H01L21/67063—Apparatus for fluid treatment for etching
- H01L21/67069—Apparatus for fluid treatment for etching for drying etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67098—Apparatus for thermal treatment
- H01L21/67103—Apparatus for thermal treatment mainly by conduction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67098—Apparatus for thermal treatment
- H01L21/67115—Apparatus for thermal treatment mainly by radiation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67155—Apparatus for manufacturing or treating in a plurality of work-stations
- H01L21/67161—Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
- H01L21/67167—Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers surrounding a central transfer chamber
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67155—Apparatus for manufacturing or treating in a plurality of work-stations
- H01L21/67184—Apparatus for manufacturing or treating in a plurality of work-stations characterized by the presence of more than one transfer chamber
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67155—Apparatus for manufacturing or treating in a plurality of work-stations
- H01L21/67201—Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the load-lock chamber
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67155—Apparatus for manufacturing or treating in a plurality of work-stations
- H01L21/67207—Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process
- H01L21/67213—Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process comprising at least one ion or electron beam chamber
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67155—Apparatus for manufacturing or treating in a plurality of work-stations
- H01L21/67207—Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process
- H01L21/6723—Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process comprising at least one plating chamber
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/673—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
- H01L21/67303—Vertical boat type carrier whereby the substrates are horizontally supported, e.g. comprising rod-shaped elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66969—Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/7869—Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32715—Workpiece holder
- H01J37/32724—Temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02172—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
- H01L21/02175—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
- H01L21/02274—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
- H01L21/0228—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B41/00—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
- H10B41/70—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates the floating gate being an electrode shared by two or more components
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Plasma & Fusion (AREA)
- Inorganic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Electromagnetism (AREA)
- Ceramic Engineering (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Thin Film Transistor (AREA)
Abstract
신규 금속 산화물의 성막 방법을 제공한다. 제 1 전구체를 체임버에 공급하는 제 1 공정과, 제 2 전구체를 체임버에 공급하는 제 2 공정과, 제 3 전구체를 체임버에 공급하는 제 3 공정과, 제 1 공정 후, 제 2 공정 후, 및 제 3 공정 후 각각에 산화제를 체임버에 도입하는 제 4 공정을 가지고, 제 1 전구체 내지 제 3 전구체는 각각 종료가 다른 전구체이고, 제 1 공정 내지 제 4 공정에서, 체임버 내에 배치된 기판은 300℃ 이상 제 1 전구체 내지 제 3 전구체의 분해 온도 이하의 온도로 가열된다.
Description
본 발명의 일 형태는 금속 산화물의 성막 방법 및 금속 산화물의 성막 장치에 관한 것이다. 또한, 본 발명의 일 형태는 상기 금속 산화물을 사용한 반도체 장치 및 반도체 장치의 제작 방법에 관한 것이다. 또한 본 발명의 일 형태는 반도체 웨이퍼, 모듈, 및 전자 기기에 관한 것이다.
또한 본 명세서 등에서 반도체 장치란, 반도체 특성을 이용함으로써 기능할 수 있는 장치 전반을 가리킨다. 트랜지스터 등의 반도체 소자를 비롯하여, 반도체 회로, 연산 장치, 기억 장치는 반도체 장치의 일 형태이다. 표시 장치(액정 표시 장치, 발광 표시 장치 등), 투영 장치, 조명 장치, 전기 광학 장치, 축전 장치, 기억 장치, 반도체 회로, 촬상 장치, 전자 기기 등은 반도체 장치를 가진다고 할 수 있는 경우가 있다.
또한 본 발명의 일 형태는 상기 기술분야에 한정되지 않는다. 본 명세서 등에서 개시(開示)하는 발명의 일 형태는 물건, 방법, 또는 제조 방법에 관한 것이다. 또한 본 발명의 일 형태는 공정(process), 기계(machine), 제품(manufacture), 또는 조성물(composition of matter)에 관한 것이다.
절연 표면을 가지는 기판 위에 형성된 반도체 박막을 사용하여 트랜지스터를 구성하는 기술이 주목받고 있다. 상기 트랜지스터는 집적 회로(IC)나 화상 표시 장치(단순히 표시 장치라고도 표기함)와 같은 전자 디바이스에 널리 응용되고 있다. 트랜지스터에 적용할 수 있는 반도체 박막으로서 실리콘계 반도체 재료가 널리 알려져 있지만, 그 외의 재료로서 산화물 반도체가 주목받고 있다.
산화물 반도체에서 단결정도 비정질도 아닌 CAAC(c-axis aligned crystalline) 구조 및 nc(nanocrystalline) 구조가 발견되었다(비특허문헌 1 및 비특허문헌 2 참조).
비특허문헌 1 및 비특허문헌 2에는, CAAC 구조를 가지는 산화물 반도체를 사용하여 트랜지스터를 제작하는 기술이 개시되어 있다.
S. Yamazaki et al., "SID Symposium Digest of Technical Papers", 2012, volume 43, issue 1, p.183-186
S. Yamazaki et al., "Japanese Journal of Applied Physics", 2014, volume 53, Number 4S, p.04ED18-1-04ED18-10
본 발명의 일 형태는 신규 금속 산화물 및 그 성막 방법을 제공하는 것을 과제 중 하나로 한다. 또는, 본 발명의 일 형태는 신규 금속 산화물의 성막 장치를 제공하는 것을 과제 중 하나로 한다. 또는 본 발명의 일 형태는 온 전류가 큰 반도체 장치를 제공하는 것을 과제 중 하나로 한다. 또는 본 발명의 일 형태는 전계 효과 이동도가 높은 반도체 장치를 제공하는 것을 과제 중 하나로 한다. 또는 본 발명의 일 형태는 신뢰성이 양호한 반도체 장치를 제공하는 것을 과제 중 하나로 한다. 또는 본 발명의 일 형태는 전기 특성이 양호한 반도체 장치를 제공하는 것을 과제 중 하나로 한다. 또는 본 발명의 일 형태는 미세화 또는 고집적화가 가능한 반도체 장치를 제공하는 것을 과제 중 하나로 한다. 또는, 본 발명의 일 형태에서는, 상기 반도체 장치의 제작 방법을 제공하는 것을 과제 중 하나로 한다.
또한 이들 과제의 기재는 다른 과제의 존재를 방해하는 것이 아니다. 또한 본 발명의 일 형태는 이들 과제 모두를 해결할 필요는 없는 것으로 한다. 또한 이들 외의 과제는 명세서, 도면, 청구항 등의 기재에서 저절로 명백해지는 것이며 명세서, 도면, 청구항 등의 기재에서 이들 외의 과제를 추출할 수 있다.
본 발명의 일 형태는 제 1 전구체를 체임버에 공급하는 제 1 공정과, 제 2 전구체를 체임버에 공급하는 제 2 공정과, 제 3 전구체를 체임버에 공급하는 제 3 공정과, 제 1 공정 후, 제 2 공정 후, 및 제 3 공정 후 각각에 산화제를 체임버에 도입하는 제 4 공정을 가지고, 제 1 전구체 내지 제 3 전구체는 각각 종류가 다른 전구체이고, 제 1 공정 내지 제 4 공정에서 체임버 내에 배치된 기판은 300℃ 이상 제 1 전구체 내지 제 3 전구체의 분해 온도 중 가장 낮은 온도 이하의 온도로 가열되는, 금속 산화물의 성막 방법이다.
또한, 본 발명의 일 형태는 제 1 전구체를 체임버에 공급하는 제 1 공정과, 제 2 전구체를 체임버에 공급하는 제 2 공정과, 제 3 전구체를 체임버에 공급하는 제 3 공정과, 제 1 공정 후, 제 2 공정 후, 및 제 3 공정 후 각각에 산화제를 플라스마화하여 체임버에 도입하는 제 4 공정을 가지고, 제 1 전구체 내지 제 3 전구체는 각각 종류가 다른 전구체이고, 제 1 공정 내지 제 4 공정에서 체임버 내에 배치된 기판은 300℃ 이상 제 1 전구체 내지 제 3 전구체의 분해 온도 중 가장 낮은 온도 이하의 온도로 가열되는, 금속 산화물의 성막 방법이다.
상기에서, 제 1 전구체는 인듐을 가지고, 제 2 전구체는 원소 M(M은 갈륨, 알루미늄, 이트륨, 및 주석 중 어느 하나 또는 복수)을 가지고, 제 3 전구체는 아연을 가지는 것이 바람직하다.
상기에서, 제 1 전구체 내지 제 3 전구체는 탄소 및 수소를 가지지 않는 것이 바람직하다. 또한, 상기에서 제 1 전구체 내지 제 3 전구체는 염소를 가져도 좋다.
상기에서, 제 1 공정 내지 제 4 공정을 각각 한 번 이상 수행하는 것을 1사이클로 하고, 1사이클을 여러 번 반복하는 것이 바람직하다.
상기에서, 인듐, 원소 M(M은 갈륨, 알루미늄, 이트륨, 및 주석 중 어느 하나 또는 복수), 및 아연을 가지는 금속 산화물의 성막 방법에서, 제 1 전구체는 인듐을 가지고, 제 2 전구체는 원소 M(M은 갈륨, 알루미늄, 이트륨, 및 주석 중 어느 하나 또는 복수)을 가지고, 제 3 전구체는 아연을 가지고, 1사이클에서의 제 1 공정의 횟수와, 제 2 공정의 횟수와, 제 3 공정의 횟수의 비율은 금속 산화물이 가지는 인듐과, 원소 M과, 갈륨의 비율과 같은 것이 바람직하다.
상기에서 1사이클을 여러 번 반복한 후에 가열 처리를 수행하는 것이 바람직하다.
또한, 본 발명의 일 형태는 체임버와, 제 1 원료 공급부 내지 제 4 원료 공급부와, 히터를 가지고, 제 1 원료 공급부 내지 제 4 원료 공급부는 각각 밸브를 통하여 체임버와 접속되고, 제 1 원료 공급부 내지 제 3 원료 공급부는 각각 종류가 다른 전구체를 공급하는 수단을 가지고, 제 4 원료 공급부는 산화제를 공급하는 수단을 가지고, 히터는 체임버 내에 배치된 기판을 300℃ 이상 전구체의 분해 온도 중 가장 낮은 온도 이하의 온도로 가열하는 수단을 가지는 금속 산화물의 성막 장치이다.
또한, 본 발명의 일 형태는 체임버와, 제 1 원료 공급부 내지 제 4 원료 공급부와, 히터와, 플라스마 발생 장치를 가지고, 제 1 원료 공급부 내지 제 3 원료 공급부는 각각 밸브를 통하여 체임버와 접속되고, 제 4 원료 공급부는 플라스마 발생 장치를 통하여 체임버와 접속되고, 제 1 원료 공급부 내지 제 3 원료 공급부는 각각 종류가 다른 전구체를 공급하는 수단을 가지고, 제 4 원료 공급부는 산화제를 공급하는 수단을 가지고, 히터는 체임버 내에 배치된 기판을 300℃ 이상 전구체의 분해 온도 중 가장 낮은 온도 이하의 온도로 가열하는 수단을 가지는 금속 산화물의 성막 장치이다.
상기에서, 플라스마 발생 장치는 고주파 전원에 접속된 코일을 가지는 것이 바람직하다.
상기에서, 제 1 원료 공급부는 인듐을 포함하는 전구체를 공급하는 수단을 가지고, 제 2 원료 공급부는 원소 M(M은 갈륨, 알루미늄, 이트륨, 및 주석 중 어느 하나 또는 복수)을 포함하는 전구체를 공급하는 수단을 가지고, 제 3 원료 공급부는 아연을 포함하는 전구체를 공급하는 수단을 가지는 것이 바람직하다.
상기에서, 인듐을 포함하는 전구체, 원소 M을 포함하는 전구체, 및 아연을 포함하는 전구체는 탄소 및 수소를 가지지 않는 것이 바람직하다. 또한, 상기에서 인듐을 포함하는 전구체, 원소 M을 포함하는 전구체, 및 아연을 포함하는 전구체는 염소를 가져도 좋다.
상기에서, 제 1 원료 공급부 내지 제 4 원료 공급부와 체임버 사이에 제공된 배관을 덮는 배관 히터를 가지는 것이 바람직하다.
상기에서, 반송실과, 처리실을 가지고, 체임버는 반송실을 통하여 처리실과 접속되고, 반송실은 체임버에서 처리실에 기판을 반송하는 수단을 가지고, 처리실은 가열 장치를 가지는 것이 바람직하다.
본 발명의 일 형태에 의하여 신규 금속 산화물 및 그 성막 방법을 제공할 수 있다. 또는, 본 발명의 일 형태에 의하여 신규 금속 산화물의 성막 장치를 제공할 수 있다. 또는 본 발명의 일 형태에 의하여 온 전류가 큰 반도체 장치를 제공할 수 있다. 또는 본 발명의 일 형태에 의하여, 전계 효과 이동도가 높은 반도체 장치를 제공할 수 있다. 또는 본 발명의 일 형태에 의하여 신뢰성이 양호한 반도체 장치를 제공할 수 있다. 또는 본 발명의 일 형태에 의하여 전기 특성이 양호한 반도체 장치를 제공할 수 있다. 또는 본 발명의 일 형태에 의하여 미세화 또는 고집적화가 가능한 반도체 장치를 제공할 수 있다. 또는, 본 발명의 일 형태에 의하여, 신규 반도체 장치의 제작 방법을 제공할 수 있다.
또한 이들 효과의 기재는 다른 효과의 존재를 방해하는 것이 아니다. 또한 본 발명의 일 형태는 이들 효과 모두를 가질 필요는 없다. 또한 이들 외의 효과는 명세서, 도면, 청구항 등의 기재에서 저절로 명백해지는 것이며 명세서, 도면, 청구항 등의 기재에서 이들 외의 효과를 추출할 수 있다.
도 1의 (A) 내지 (E)는 본 발명의 일 형태에 따른 금속 산화물의 성막 방법을 설명하는 단면도이다.
도 2의 (A) 내지 (D)는 본 발명의 일 형태에 따른 금속 산화물의 단면도이다.
도 3의 (A) 내지 (D)는 본 발명의 일 형태에 따른 금속 산화물의 단면도이다.
도 4의 (A) 내지 (C)는 본 발명의 일 형태에 따른 금속 산화물의 원자수비의 범위를 설명하는 도면이다.
도 5의 (A) 내지 (D)는 본 발명의 일 형태에 따른 금속 산화물의 성막 방법을 설명하는 단면도이다.
도 6의 (A) 내지 (C)는 본 발명의 일 형태에 따른 금속 산화물의 성막 방법을 설명하는 단면도이다.
도 7은 성막 장치를 설명하는 상면도 및 단면도이다.
도 8의 (A) 및 (B)는 성막 장치를 설명하는 단면도이다.
도 9의 (A) 내지 (C)는 성막 장치를 설명하는 단면도이다.
도 10의 (A) 및 (B)는 본 발명의 일 형태에 따른 금속 산화물의 성막 방법을 설명하는 도면이다.
도 11의 (A) 및 (B)는 본 발명의 일 형태에 따른 금속 산화물의 성막 방법을 설명하는 도면이다.
도 12는 본 발명의 일 형태에 따른 금속 산화물의 성막 방법을 설명하는 도면이다,
도 13의 (A)는 IGZO의 결정 구조의 분류를 설명하는 도면이다. 도 13의 (B)는 CAAC-IGZO막의 XRD 스펙트럼을 설명하는 도면이다. 도 13의 (C)는 CAAC-IGZO막의 극미 전자선 회절 패턴을 설명하는 도면이다.
도 14의 (A)는 본 발명의 일 형태인 반도체 장치의 상면도이다. 도 14의 (B) 내지 (D)는 본 발명의 일 형태인 반도체 장치의 단면도이다.
도 15의 (A) 및 (B)는 본 발명의 일 형태인 반도체 장치의 단면도이다.
도 16의 (A)는 본 발명의 일 형태인 반도체 장치의 제작 방법을 나타낸 상면도이다. 도 16의 (B) 내지 (D)는 본 발명의 일 형태인 반도체 장치의 제작 방법을 나타낸 단면도이다.
도 17의 (A)는 본 발명의 일 형태인 반도체 장치의 제작 방법을 나타낸 상면도이다. 도 17의 (B) 내지 (D)는 본 발명의 일 형태인 반도체 장치의 제작 방법을 나타낸 단면도이다.
도 18의 (A)는 본 발명의 일 형태인 반도체 장치의 제작 방법을 나타낸 상면도이다. 도 18의 (B) 내지 (D)는 본 발명의 일 형태인 반도체 장치의 제작 방법을 나타낸 단면도이다.
도 19의 (A)는 본 발명의 일 형태인 반도체 장치의 제작 방법을 나타낸 상면도이다. 도 19의 (B) 내지 (D)는 본 발명의 일 형태인 반도체 장치의 제작 방법을 나타낸 단면도이다.
도 20의 (A)는 본 발명의 일 형태인 반도체 장치의 제작 방법을 나타낸 상면도이다. 도 20의 (B) 내지 (D)는 본 발명의 일 형태인 반도체 장치의 제작 방법을 나타낸 단면도이다.
도 21의 (A)는 본 발명의 일 형태인 반도체 장치의 제작 방법을 나타낸 상면도이다. 도 21의 (B) 내지 (D)는 본 발명의 일 형태인 반도체 장치의 제작 방법을 나타낸 단면도이다.
도 22의 (A)는 본 발명의 일 형태인 반도체 장치의 제작 방법을 나타낸 상면도이다. 도 22의 (B) 내지 (D)는 본 발명의 일 형태인 반도체 장치의 제작 방법을 나타낸 단면도이다.
도 23의 (A)는 본 발명의 일 형태인 반도체 장치의 제작 방법을 나타낸 상면도이다. 도 23의 (B) 내지 (D)는 본 발명의 일 형태인 반도체 장치의 제작 방법을 나타낸 단면도이다.
도 24의 (A)는 본 발명의 일 형태인 반도체 장치의 제작 방법을 나타낸 상면도이다. 도 24의 (B) 내지 (D)는 본 발명의 일 형태인 반도체 장치의 제작 방법을 나타낸 단면도이다.
도 25의 (A)는 본 발명의 일 형태인 반도체 장치의 제작 방법을 나타낸 상면도이다. 도 25의 (B) 내지 (D)는 본 발명의 일 형태인 반도체 장치의 제작 방법을 나타낸 단면도이다.
도 26은 본 발명의 일 형태인 마이크로파 처리 장치를 설명하는 상면도이다.
도 27은 본 발명의 일 형태인 마이크로파 처리 장치를 설명하는 단면도이다.
도 28은 본 발명의 일 형태인 마이크로파 처리 장치를 설명하는 단면도이다.
도 29는 본 발명의 일 형태인 마이크로파 처리 장치를 설명하는 단면도이다.
도 30의 (A)는 본 발명의 일 형태인 반도체 장치의 상면도이다. 도 30의 (B) 및 (C)는 본 발명의 일 형태인 반도체 장치의 단면도이다.
도 31은 본 발명의 일 형태인 기억 장치의 구성을 나타낸 단면도이다.
도 32는 본 발명의 일 형태인 기억 장치의 구성을 나타낸 단면도이다.
도 33은 본 발명의 일 형태인 반도체 장치의 단면도이다.
도 34의 (A) 및 (B)는 본 발명의 일 형태인 반도체 장치의 단면도이다.
도 35는 본 발명의 일 형태인 반도체 장치의 단면도이다.
도 36의 (A) 및 (B)는 본 발명의 일 형태인 기억 장치의 구성예를 나타낸 블록도이다.
도 37의 (A) 내지 (H)는 본 발명의 일 형태인 기억 장치의 구성예를 나타낸 회로도이다.
도 38의 (A) 및 (B)는 본 발명의 일 형태인 반도체 장치의 모식도이다.
도 39의 (A) 및 (B)는 전자 부품의 일례를 설명하는 도면이다.
도 40의 (A) 내지 (E)는 본 발명의 일 형태에 따른 기억 장치의 모식도이다.
도 41의 (A) 내지 (H)는 본 발명의 일 형태에 따른 전자 기기를 나타낸 도면이다.
도 2의 (A) 내지 (D)는 본 발명의 일 형태에 따른 금속 산화물의 단면도이다.
도 3의 (A) 내지 (D)는 본 발명의 일 형태에 따른 금속 산화물의 단면도이다.
도 4의 (A) 내지 (C)는 본 발명의 일 형태에 따른 금속 산화물의 원자수비의 범위를 설명하는 도면이다.
도 5의 (A) 내지 (D)는 본 발명의 일 형태에 따른 금속 산화물의 성막 방법을 설명하는 단면도이다.
도 6의 (A) 내지 (C)는 본 발명의 일 형태에 따른 금속 산화물의 성막 방법을 설명하는 단면도이다.
도 7은 성막 장치를 설명하는 상면도 및 단면도이다.
도 8의 (A) 및 (B)는 성막 장치를 설명하는 단면도이다.
도 9의 (A) 내지 (C)는 성막 장치를 설명하는 단면도이다.
도 10의 (A) 및 (B)는 본 발명의 일 형태에 따른 금속 산화물의 성막 방법을 설명하는 도면이다.
도 11의 (A) 및 (B)는 본 발명의 일 형태에 따른 금속 산화물의 성막 방법을 설명하는 도면이다.
도 12는 본 발명의 일 형태에 따른 금속 산화물의 성막 방법을 설명하는 도면이다,
도 13의 (A)는 IGZO의 결정 구조의 분류를 설명하는 도면이다. 도 13의 (B)는 CAAC-IGZO막의 XRD 스펙트럼을 설명하는 도면이다. 도 13의 (C)는 CAAC-IGZO막의 극미 전자선 회절 패턴을 설명하는 도면이다.
도 14의 (A)는 본 발명의 일 형태인 반도체 장치의 상면도이다. 도 14의 (B) 내지 (D)는 본 발명의 일 형태인 반도체 장치의 단면도이다.
도 15의 (A) 및 (B)는 본 발명의 일 형태인 반도체 장치의 단면도이다.
도 16의 (A)는 본 발명의 일 형태인 반도체 장치의 제작 방법을 나타낸 상면도이다. 도 16의 (B) 내지 (D)는 본 발명의 일 형태인 반도체 장치의 제작 방법을 나타낸 단면도이다.
도 17의 (A)는 본 발명의 일 형태인 반도체 장치의 제작 방법을 나타낸 상면도이다. 도 17의 (B) 내지 (D)는 본 발명의 일 형태인 반도체 장치의 제작 방법을 나타낸 단면도이다.
도 18의 (A)는 본 발명의 일 형태인 반도체 장치의 제작 방법을 나타낸 상면도이다. 도 18의 (B) 내지 (D)는 본 발명의 일 형태인 반도체 장치의 제작 방법을 나타낸 단면도이다.
도 19의 (A)는 본 발명의 일 형태인 반도체 장치의 제작 방법을 나타낸 상면도이다. 도 19의 (B) 내지 (D)는 본 발명의 일 형태인 반도체 장치의 제작 방법을 나타낸 단면도이다.
도 20의 (A)는 본 발명의 일 형태인 반도체 장치의 제작 방법을 나타낸 상면도이다. 도 20의 (B) 내지 (D)는 본 발명의 일 형태인 반도체 장치의 제작 방법을 나타낸 단면도이다.
도 21의 (A)는 본 발명의 일 형태인 반도체 장치의 제작 방법을 나타낸 상면도이다. 도 21의 (B) 내지 (D)는 본 발명의 일 형태인 반도체 장치의 제작 방법을 나타낸 단면도이다.
도 22의 (A)는 본 발명의 일 형태인 반도체 장치의 제작 방법을 나타낸 상면도이다. 도 22의 (B) 내지 (D)는 본 발명의 일 형태인 반도체 장치의 제작 방법을 나타낸 단면도이다.
도 23의 (A)는 본 발명의 일 형태인 반도체 장치의 제작 방법을 나타낸 상면도이다. 도 23의 (B) 내지 (D)는 본 발명의 일 형태인 반도체 장치의 제작 방법을 나타낸 단면도이다.
도 24의 (A)는 본 발명의 일 형태인 반도체 장치의 제작 방법을 나타낸 상면도이다. 도 24의 (B) 내지 (D)는 본 발명의 일 형태인 반도체 장치의 제작 방법을 나타낸 단면도이다.
도 25의 (A)는 본 발명의 일 형태인 반도체 장치의 제작 방법을 나타낸 상면도이다. 도 25의 (B) 내지 (D)는 본 발명의 일 형태인 반도체 장치의 제작 방법을 나타낸 단면도이다.
도 26은 본 발명의 일 형태인 마이크로파 처리 장치를 설명하는 상면도이다.
도 27은 본 발명의 일 형태인 마이크로파 처리 장치를 설명하는 단면도이다.
도 28은 본 발명의 일 형태인 마이크로파 처리 장치를 설명하는 단면도이다.
도 29는 본 발명의 일 형태인 마이크로파 처리 장치를 설명하는 단면도이다.
도 30의 (A)는 본 발명의 일 형태인 반도체 장치의 상면도이다. 도 30의 (B) 및 (C)는 본 발명의 일 형태인 반도체 장치의 단면도이다.
도 31은 본 발명의 일 형태인 기억 장치의 구성을 나타낸 단면도이다.
도 32는 본 발명의 일 형태인 기억 장치의 구성을 나타낸 단면도이다.
도 33은 본 발명의 일 형태인 반도체 장치의 단면도이다.
도 34의 (A) 및 (B)는 본 발명의 일 형태인 반도체 장치의 단면도이다.
도 35는 본 발명의 일 형태인 반도체 장치의 단면도이다.
도 36의 (A) 및 (B)는 본 발명의 일 형태인 기억 장치의 구성예를 나타낸 블록도이다.
도 37의 (A) 내지 (H)는 본 발명의 일 형태인 기억 장치의 구성예를 나타낸 회로도이다.
도 38의 (A) 및 (B)는 본 발명의 일 형태인 반도체 장치의 모식도이다.
도 39의 (A) 및 (B)는 전자 부품의 일례를 설명하는 도면이다.
도 40의 (A) 내지 (E)는 본 발명의 일 형태에 따른 기억 장치의 모식도이다.
도 41의 (A) 내지 (H)는 본 발명의 일 형태에 따른 전자 기기를 나타낸 도면이다.
이하에서 실시형태에 대하여 도면을 참조하면서 설명한다. 다만 실시형태는 많은 상이한 형태로 실시할 수 있고, 취지 및 그 범위에서 벗어남이 없이 그 형태 및 자세한 사항을 다양하게 변경할 수 있다는 것은 통상의 기술자라면 용이하게 이해할 수 있다. 따라서 본 발명은 이하의 실시형태의 기재 내용에 한정하여 해석되는 것은 아니다.
또한 도면에서 크기, 층의 두께, 또는 영역은 명료화를 위하여 과장되어 있는 경우가 있다. 따라서 반드시 그 스케일에 한정되지는 않는다. 또한 도면은 이상적인 예를 모식적으로 나타낸 것이고, 도면에 나타낸 형상 또는 값 등에 한정되지 않는다. 예를 들어 실제의 제조 공정에서, 에칭 등의 처리에 의하여 층 또는 레지스트 마스크 등이 의도하지 않게 감소되는 경우가 있지만, 이해를 용이하게 하기 위하여 도면에 반영하지 않은 경우가 있다. 또한 도면에서 동일한 부분 또는 같은 기능을 가지는 부분에는 동일한 부호를 상이한 도면 사이에서 공통적으로 사용하고, 이에 대한 반복적인 설명은 생략하는 경우가 있다. 또한 같은 기능을 가지는 부분을 가리키는 경우에는, 해치 패턴을 동일하게 하고, 특별히 부호를 붙이지 않는 경우가 있다.
또한 특히 상면도("평면도"라고도 함) 또는 사시도 등에서, 발명의 이해를 용이하게 하기 위하여 일부의 구성 요소의 기재를 생략하는 경우가 있다. 또한 일부의 숨은선 등의 기재를 생략하는 경우가 있다.
또한 본 명세서 등에서 제 1, 제 2 등으로 붙여지는 서수사는 편의상 사용되는 것이며, 공정 순서 또는 적층 순서를 나타내는 것이 아니다. 그러므로 예를 들어 "제 1"을 "제 2" 또는 "제 3" 등으로 적절히 바꿔 설명할 수 있다. 또한 본 명세서 등에 기재되는 서수사와, 본 발명의 일 형태를 특정하기 위하여 사용되는 서수사는 일치하지 않는 경우가 있다.
또한 본 명세서 등에서 "위에", "아래에" 등의 배치를 나타내는 어구는 구성끼리의 위치 관계를 도면을 참조하여 설명하기 위하여 편의상 사용하고 있다. 또한 구성끼리의 위치 관계는 각 구성을 묘사하는 방향에 따라 적절히 변화된다. 그러므로 명세서에서 설명한 어구에 한정되지 않고, 상황에 따라 적절히 바꿔 말할 수 있다.
예를 들어 본 명세서 등에서 X와 Y가 접속된다고 명시적으로 기재되는 경우에는, X와 Y가 전기적으로 접속되는 경우와, X와 Y가 기능적으로 접속되는 경우와, X와 Y가 직접 접속되는 경우가 본 명세서 등에 개시되어 있는 것으로 한다. 따라서 소정의 접속 관계, 예를 들어 도면 또는 문장에 나타낸 접속 관계에 한정되지 않고, 도면 또는 문장에 나타낸 접속 관계 이외의 것도 도면 또는 문장에 개시되어 있는 것으로 한다. 여기서 X, Y는 대상물(예를 들어 장치, 소자, 회로, 배선, 전극, 단자, 도전막, 층 등)인 것으로 한다.
또한 본 명세서 등에서 트랜지스터란 게이트와 드레인과 소스를 포함하는 적어도 3개의 단자를 가지는 소자이다. 그리고 드레인(드레인 단자, 드레인 영역, 또는 드레인 전극)과 소스(소스 단자, 소스 영역, 또는 소스 전극) 사이에 채널이 형성되는 영역(이하에서는 채널 형성 영역이라고도 함)을 가지고, 채널 형성 영역을 통하여 소스와 드레인 사이에 전류를 흘릴 수 있는 것이다. 또한 본 명세서 등에서 채널 형성 영역이란 전류가 주로 흐르는 영역을 말한다.
또한 소스와 드레인의 기능은 상이한 극성의 트랜지스터를 채용하는 경우, 또는 회로 동작에서 전류의 방향이 변화되는 경우 등에는 서로 바뀌는 경우가 있다. 그러므로 본 명세서 등에서는 소스와 드레인이라는 용어는 서로 바꿔 사용할 수 있는 경우가 있다.
또한 채널 길이란, 예를 들어 트랜지스터의 상면도에서, 반도체(또는 트랜지스터가 온 상태일 때 반도체 내에서 전류가 흐르는 부분)와 게이트 전극이 서로 중첩되는 영역, 또는 채널 형성 영역에서의 소스(소스 영역 또는 소스 전극)와 드레인(드레인 영역 또는 드레인 전극) 사이의 거리를 말한다. 또한 하나의 트랜지스터에서, 채널 길이가 모든 영역에서 같은 값을 취한다고 할 수는 없다. 즉, 하나의 트랜지스터의 채널 길이는 하나의 값으로 정해지지 않는 경우가 있다. 따라서 본 명세서에서 채널 길이는 채널 형성 영역에서의 어느 하나의 값, 최댓값, 최솟값, 또는 평균값으로 한다.
채널 폭이란, 예를 들어 트랜지스터의 상면도에서, 반도체(또는 트랜지스터가 온 상태일 때 반도체 내에서 전류가 흐르는 부분)와 게이트 전극이 서로 중첩되는 영역, 또는 채널 형성 영역에서 채널 길이 방향에 수직인 방향의 채널 형성 영역의 길이를 말한다. 또한 하나의 트랜지스터에서, 채널 폭이 모든 영역에서 같은 값을 취한다고 할 수는 없다. 즉, 하나의 트랜지스터의 채널 폭은 하나의 값으로 정해지지 않는 경우가 있다. 따라서 본 명세서에서 채널 폭은 채널 형성 영역에서의 어느 하나의 값, 최댓값, 최솟값, 또는 평균값으로 한다.
또한 본 명세서 등에서 트랜지스터의 구조에 따라서는, 실제로 채널이 형성되는 영역에서의 채널 폭(이하 "실효적인 채널 폭"이라고도 함)과 트랜지스터의 상면도에서 나타내는 채널 폭(이하 "외관상 채널 폭"이라고도 함)이 상이한 경우가 있다. 예를 들어 게이트 전극이 반도체의 측면을 덮는 경우, 실효적인 채널 폭이 외관상 채널 폭보다 커져, 그 영향을 무시할 수 없는 경우가 있다. 예를 들어 미세하고 게이트 전극이 반도체의 측면을 덮는 트랜지스터에서는, 반도체의 측면에 형성되는 채널 형성 영역의 비율이 커지는 경우가 있다. 이 경우에는 외관상 채널 폭보다 실효적인 채널 폭이 더 크다.
이러한 경우, 실효적인 채널 폭을 실측에 의하여 추정하기 어려운 경우가 있다. 예를 들어 설곗값으로부터 실효적인 채널 폭을 추정하기 위해서는, 반도체의 형상이 이미 알려져 있다는 가정이 필요하다. 따라서 반도체의 형상을 정확하게 알 수 없는 경우에는 실효적인 채널 폭을 정확하게 측정하기 어렵다.
본 명세서에서 단순히 채널 폭이라고 기재한 경우에는 외관상 채널 폭을 가리키는 경우가 있다. 또는 본 명세서에서 단순히 채널 폭이라고 기재한 경우에는 실효적인 채널 폭을 가리키는 경우가 있다. 또한 채널 길이, 채널 폭, 실효적인 채널 폭, 외관상 채널 폭 등의 값은 단면 TEM 이미지 등을 해석하는 것 등에 의하여 결정할 수 있다.
또한 반도체의 불순물이란, 예를 들어 반도체를 구성하는 주성분 외의 것을 말한다. 예를 들어 농도가 0.1atomic% 미만인 원소는 불순물이라고 할 수 있다. 불순물이 포함됨으로써, 예를 들어 반도체의 결함 준위 밀도가 높아지거나, 결정성의 저하 등이 일어나는 경우가 있다. 반도체가 산화물 반도체인 경우, 반도체의 특성을 변화시키는 불순물로서는, 예를 들어 1족 원소, 2족 원소, 13족 원소, 14족 원소, 15족 원소, 산화물 반도체의 주성분 외의 전이 금속(transition metal) 등이 있고, 예를 들어 수소, 리튬, 소듐, 실리콘, 붕소, 인, 탄소, 질소 등이 있다. 또한 물도 불순물로서 기능하는 경우가 있다. 또한 예를 들어 불순물의 혼입으로 인하여 산화물 반도체에 산소 결손(VO라고 표기하는 경우가 있음)이 형성되는 경우가 있다.
또한 본 명세서 등에서 산화질화물이란 그 조성으로서 질소보다 산소의 함유량이 많은 것을 말한다. 예를 들어, 산화질화 실리콘은 그 조성으로서 질소보다 산소의 함유량이 많다. 또한 질화산화물이란 그 조성으로서 산소보다 질소의 함유량이 많은 것을 말한다. 예를 들어 질화산화 실리콘은 그 조성으로서 산소보다 질소의 함유량이 많다.
또한 본 명세서 등에서 "절연체"라는 용어를 절연막 또는 절연층이라고 바꿔 말할 수 있다. 또한 "도전체"라는 용어를 도전막 또는 도전층이라고 바꿔 말할 수 있다. 또한 "반도체"라는 용어를 반도체막 또는 반도체층이라고 바꿔 말할 수 있다.
또한 본 명세서 등에서 "평행"이란, 2개의 직선이 -10° 이상 10° 이하의 각도로 배치되어 있는 상태를 말한다. 따라서 -5° 이상 5° 이하의 경우도 포함된다. 또한 "실질적으로 평행"이란, 2개의 직선이 -30° 이상 30° 이하의 각도로 배치되어 있는 상태를 말한다. 또한 "수직"이란, 2개의 직선이 80° 이상 100° 이하의 각도로 배치되어 있는 상태를 말한다. 따라서 85° 이상 95° 이하의 경우도 포함된다. 또한 "실질적으로 수직"이란, 2개의 직선이 60° 이상 120° 이하의 각도로 배치되어 있는 상태를 말한다.
본 명세서 등에서 금속 산화물(metal oxide)이란, 넓은 의미로의 금속의 산화물이다. 금속 산화물은 산화물 절연체, 산화물 도전체(투명 산화물 도전체를 포함함), 산화물 반도체(Oxide Semiconductor 또는 단순히 OS라고도 함) 등으로 분류된다. 예를 들어 트랜지스터의 반도체층에 금속 산화물을 사용한 경우, 상기 금속 산화물을 산화물 반도체라고 하는 경우가 있다. 즉, OS 트랜지스터라고 기재하는 경우에는, 금속 산화물 또는 산화물 반도체를 가지는 트랜지스터라고 바꿔 말할 수 있다.
또한 본 명세서 등에서는, 질소를 포함한 금속 산화물도 금속 산화물(metal oxide)이라고 총칭하는 경우가 있다. 또한 질소를 포함한 금속 산화물을 금속 산화질화물(metal oxynitride)이라고 불러도 좋다.
또한 본 명세서 등에서 노멀리 오프란 게이트에 전위를 인가하지 않거나, 또는 게이트에 접지 전위를 인가하였을 때, 트랜지스터를 흐르는 채널 폭 1μm당 드레인 전류가 실온에서 1×10-20A 이하, 85℃에서 1×10-18A 이하, 또는 125℃에서 1×10-16A 이하인 것을 말한다.
또한, 본 명세서에서 상한과 하한의 수치가 규정되어 있는 경우에는 자유로이 조합하는 구성도 개시되어 있는 것으로 한다.
(실시형태 1)
본 실시형태에서는 도 1 내지 도 12를 사용하여 트랜지스터의 반도체층에 적용할 수 있는 금속 산화물(이하, 산화물 반도체 또는 산화물이라고 부르는 경우도 있음) 및 그 성막 방법에 대하여 설명한다. 또한, 본 발명의 일 형태에 따른 금속 산화물은 금속 산화물을 구성하는 원소의 종류, 조합, 조성 등에 따라서는, 트랜지스터의 반도체층으로서 사용되는 것에 한정되지 않고, 절연성 재료로서 사용하여도 좋고, 도전성 재료로서 사용하여도 좋다.
금속 산화물은 격자 결함을 가지는 경우가 있다. 격자 결함으로서는, 원자 공공, 이종 원자 등의 점결함, 전위(轉位) 등의 선결함, 결정립계 등의 면결함, 공극 등의 체적 결함이 있다. 또한, 격자 결함이 생성되는 요인으로서는 구성 원소의 원자수의 비율의 차이(구성 원자의 과부족) 및 불순물 등이 있다.
금속 산화물을 트랜지스터의 반도체층에 사용하는 경우, 금속 산화물 내의 격자 결함은 캐리어가 생성되거나 포획되는 요인이 될 수 있다. 따라서, 격자 결함이 많은 금속 산화물을 트랜지스터의 반도체층에 사용하면, 상기 트랜지스터의 전기 특성이 불안정해질 우려가 있다. 따라서, 트랜지스터의 반도체층에 사용하는 금속 산화물은 격자 결함이 적은 것이 바람직하다.
금속 산화물을 사용한 트랜지스터는 특히 금속 산화물 내의 채널 형성 영역에 산소 결손(VO) 및 불순물이 존재하면, 전기 특성이 변동되기 쉬우므로 신뢰성이 저하하는 경우가 있다. 또한 산소 결손 근방의 수소가, 산소 결손에 수소가 들어간 결함(이하, VOH 결함이라고 하는 경우가 있음)을 형성하고, 캐리어가 되는 전자를 생성하는 경우가 있다. 이로써 금속 산화물 내의 채널 형성 영역에 산소 결손이 포함되면, 트랜지스터는 노멀리 온 특성(게이트 전극에 전압을 인가하지 않아도 채널이 존재하고 트랜지스터에 전류가 흐르는 특성)을 가지기 쉽다. 따라서, 금속 산화물 내의 채널 형성 영역에서는 산소 결손 및 불순물은 가능한 한 저감되어 있는 것이 바람직하다. 바꿔 말하면, 금속 산화물 내의 채널 형성 영역은 캐리어 농도가 저감되고 i형화(진성화) 또는 실질적으로 i형화되어 있는 것이 바람직하다.
금속 산화물 내에 존재하기 쉬운 격자 결함의 종류 및 존재량은 금속 산화물의 구조 또는 성막 방법 등에 따라 다르다.
금속 산화물의 구조는 단결정 구조와, 그 외의 구조(비단결정 구조)로 나누어진다. 비단결정의 구조로서는, 예를 들어 CAAC 구조, 다결정(polycrystalline) 구조, nc 구조, a-like(amorphous-like) 구조, 및 비정질 구조 등이 있다. a-like 구조는 nc 구조와 비정질 구조의 중간의 구조를 가진다. 또한, 결정 구조의 분류에 대해서는 후술한다.
또한 a-like 구조를 가지는 금속 산화물, 및 비정질 구조를 가지는 금속 산화물은 공동 또는 저밀도 영역을 가진다. 즉, a-like 구조를 가지는 금속 산화물, 및 비정질 구조를 가지는 금속 산화물은 nc 구조를 가지는 금속 산화물 및 CAAC 구조를 가지는 금속 산화물보다 결정성이 낮다. 또한, a-like 구조를 가지는 금속 산화물은 nc 구조를 가지는 금속 산화물 및 CAAC 구조를 가지는 금속 산화물보다 금속 산화물 내의 수소 농도가 높다. 따라서, a-like 구조를 가지는 금속 산화물, 및 비정질 구조를 가지는 금속 산화물에서는 격자 결함이 생성되기 쉽다.
따라서, 트랜지스터의 반도체층에는 결정성이 높은 금속 산화물을 사용하는 것이 바람직하다. 예를 들어, CAAC 구조를 가지는 금속 산화물 또는 단결정 구조의 금속 산화물을 사용하는 것이 바람직하다. 상기 금속 산화물을 트랜지스터에 사용함으로써, 전기 특성이 양호한 트랜지스터를 실현할 수 있다. 또한 신뢰성이 높은 트랜지스터를 실현할 수 있다.
또한, 상기 결정성이 높은 금속 산화물에는 다결정 구조의 금속 산화물은 포함되지 않는다. 다결정 구조란 명확한 결정립계가 확인되는 결정 구조이다. 다결정 구조의 금속 산화물을 트랜지스터의 반도체층에 사용하는 경우, 결정립계는 재결합 중심이 되고, 캐리어가 포획되어 트랜지스터의 온 전류의 저하, 전계 효과 이동도의 저하 등을 일으킬 가능성이 높다.
또한, 트랜지스터의 채널 형성 영역에는, 상기 트랜지스터의 온 전류가 커지는 금속 산화물을 사용하는 것이 바람직하다. 상기 트랜지스터의 온 전류를 크게 하기 위해서는, 상기 트랜지스터에 사용하는 금속 산화물의 이동도를 높이는 것이 좋다. 금속 산화물의 이동도를 높이기 위해서는 캐리어(n 채널형 트랜지스터의 경우에는 전자)의 전송(傳送)을 향상시키거나, 또는 캐리어의 전송에 기여하는 산란 인자를 저감시킬 필요가 있다. 또한 캐리어는 채널 형성 영역을 통하여 소스로부터 드레인으로 흐른다. 따라서, 캐리어가 채널 길이 방향으로 흐르기 쉬운 채널 형성 영역을 제공함으로써, 트랜지스터의 온 전류를 크게 할 수 있다.
여기서, 채널 형성 영역을 포함하는 금속 산화물에, 결정성이 높은 금속 산화물을 사용하는 것이 바람직하다. 또한, 상기 결정은 복수의 층(예를 들어 제 1 층과, 제 2 층과, 제 3 층)이 적층된 결정 구조를 가지는 것이 바람직하다. 즉, 상기 결정은 층상의 결정 구조(층상 결정, 층상 구조라고도 함)를 가진다. 이때 상기 결정의 c축의 방향은 복수의 층이 적층되는 방향이 된다. 상기 결정을 가지는 금속 산화물에는, 예를 들어 단결정 산화물 반도체, 후술하는 CAAC-OS 등이 포함된다.
또한, 상기 결정의 c축을 금속 산화물의 피형성면 또는 막 표면에 대한 법선 방향으로 배향하는 것이 바람직하다. 이에 의하여, 복수의 층은 금속 산화물의 피형성면 또는 막 표면에 실질적으로 평행하게 배치된다. 즉, 복수의 층은 채널 길이 방향으로 전개된다.
예를 들어 상기와 같은 3층의 층상의 결정 구조는 이하와 같은 구조가 된다. 제 1 층은 상기 제 1 층이 가지는 금속이 중심에 존재하는 산소의 팔면체형의, 원자의 배위 구조를 가진다. 또한, 제 2 층은 상기 제 2 층이 가지는 금속이 중심에 존재하는 산소의 삼각 쌍뿔형 또는 사면체형의, 원자의 배위 구조를 가진다. 또한, 제 3 층은 상기 제 3 층이 가지는 금속이 중심에 존재하는 산소의 삼각 쌍뿔형 또는 사면체형의, 원자의 배위 구조를 가진다.
상기 결정의 결정 구조로서, 예를 들어 YbFe2O4형 구조, Yb2Fe3O7형 구조, 이들의 변형 구조 등이 있다.
또한, 제 1 층 내지 제 3 층은 각각 하나의 금속 원소 또는 가수가 같은 복수의 금속 원소와, 산소로 구성되는 것이 바람직하다. 또한, 제 1 층을 구성하는 하나 또는 복수의 금속 원소의 가수와, 제 2 층을 구성하는 하나 또는 복수의 금속 원소의 가수는 같은 것이 바람직하다. 또한, 제 1 층과 제 2 층은 같은 금속 원소를 가져도 좋다. 또한, 제 1 층을 구성하는 하나 또는 복수의 금속 원소의 가수와, 제 3 층을 구성하는 하나 또는 복수의 금속 원소의 가수는 상이한 것이 바람직하다.
상기 구성으로 함으로써, 금속 산화물의 결정성이 향상되고, 상기 금속 산화물의 이동도를 높일 수 있다. 따라서, 상기 금속 산화물을 트랜지스터의 채널 형성 영역에 사용함으로써, 트랜지스터의 온 전류가 커지고, 상기 트랜지스터의 전기 특성을 향상시킬 수 있다.
상기 금속 산화물은 적어도 인듐 또는 아연을 포함하는 것이 바람직하다. 특히 인듐 및 아연을 포함하는 것이 바람직하다. 또한, 이들에 더하여 인듐 또는 아연의 가수와 같은 가수를 가지는 금속 원소가 포함되는 것이 바람직하다. 상기 금속 원소로서, 예를 들어 알루미늄, 갈륨, 이트륨 등이 있다. 또한, 철, 코발트, 니켈, 란타넘, 세륨, 네오디뮴, 마그네슘, 칼슘 등에서 선택된 한 종류 또는 복수 종류가 포함되어도 좋다.
여기서는, 산화물 반도체가 인듐(In), 원소 M, 및 아연(Zn)을 가지는 In-M-Zn 산화물인 경우를 생각한다. 또한, 원소 M은 알루미늄, 갈륨, 이트륨 등으로 한다. 원소 M에 적용할 수 있는 이 외의 원소로서는, 철, 코발트, 니켈, 란타넘, 세륨, 네오디뮴, 마그네슘, 칼슘 등이 있다. 다만 원소 M으로서 상술한 원소를 복수 조합하여도 되는 경우가 있다.
상기 층상의 결정 구조를 가지는 금속 산화물을 형성하기 위해서는 한 층씩 원자를 퇴적하는 것이 바람직하다. 예를 들어 금속 산화물의 형성 방법으로서 ALD(Atomic Layer Deposition)법을 사용할 수 있다.
ALD법에서는 전구체 분자 또는 전구체에 포함되는 원자의 자기 제어성을 이용하여 한 층씩 원자를 퇴적할 수 있기 때문에, 매우 얇게 성막할 수 있고, 종횡비가 높은 구조에 대한 성막이 가능하고, 핀홀 등의 결함이 적은 성막이 가능하고, 피복성이 우수한 성막이 가능하고, 저온에서의 성막이 가능하다는 등의 효과가 있다. 또한 ALD법에는, 플라스마를 이용한 성막 방법인 플라스마 ALD(PEALD: Plasma Enhanced ALD)법도 포함된다. 플라스마를 이용하면, 더 낮은 온도에서 성막할 수 있기 때문에 바람직한 경우가 있다. 또한 ALD법에서 사용하는 전구체에는 탄소 또는 염소 등의 원소가 포함되는 경우가 있다. 그러므로 ALD법에 의하여 제공된 막은, 다른 성막법에 의하여 제공된 막과 비교하여 탄소 또는 염소 등의 원소를 많이 포함하는 경우가 있다. 또한 이들 원소의 정량은 X선 광전자 분광법(XPS: X-ray Photoelectron Spectroscopy)을 사용하여 수행할 수 있다.
ALD법은 타깃 등으로부터 방출되는 입자가 퇴적되는 성막 방법과는 달리, 피처리물의 표면에서의 반응에 의하여 막이 형성되는 성막 방법이다. 따라서 피처리물의 형상의 영향을 받기 어렵고, 단차 피복성이 양호한 성막 방법이다. 특히, ALD법은 우수한 단차 피복성과 우수한 두께 균일성을 가지기 때문에, 종횡비가 높은 개구부의 표면을 피복하는 경우 등에 적합하다. 다만 ALD법은 성막 속도가 비교적 느리기 때문에, 성막 속도가 빠른 CVD법 등의 다른 성막 방법과 조합하여 사용되는 것이 바람직한 경우도 있다.
ALD법은 원료 가스의 도입량을 변화시킴으로써, 얻어지는 막의 조성을 제어할 수 있다. 예를 들어 ALD법은 원료 가스의 도입량, 도입 횟수(펄스 횟수라고도 함) 1 펄스에 필요한 시간(펄스 시간이라고도 함) 등을 조절함으로써, 임의의 조성의 막을 성막할 수 있다. 또한 예를 들어 ALD법은 성막하면서 원료 가스를 변화시킴으로써, 조성이 연속적으로 변화된 막을 성막할 수 있다. 원료 가스를 변화시키면서 성막하는 경우, 복수의 성막실을 사용하여 성막하는 경우보다, 반송 및 압력 조정에 걸리는 시간이 불필요하기 때문에, 성막에 걸리는 시간을 단축할 수 있다. 따라서 반도체 장치의 생산성을 높일 수 있는 경우가 있다.
<ALD 장치 및 ALD법을 사용한 성막 방법>
여기서, 본 발명의 일 형태의 금속 산화물의 형성에 사용할 수 있는 ALD법을 이용한 성막 장치(이하, ALD 장치라고도 함), 및 ALD법을 사용한 성막 방법에 대하여 설명한다.
ALD법을 이용한 성막 장치에서는, 반응을 위한 제 1 원료 가스(전구체, 금속 전구체라고 부르는 경우도 있음)와 제 2 원료 가스(반응제, 산화제, 비금속 전구체라고 부르는 경우도 있음)를 번갈아 체임버에 도입하고, 이들 원료 가스의 도입을 반복함으로써 성막을 수행한다. 또한 원료 가스의 도입의 전환은, 예를 들어 각각의 스위칭 밸브(고속 밸브라고 부르는 경우도 있음)를 전환하여 수행할 수 있다. 또한 원료 가스를 도입할 때, 질소(N2), 아르곤(Ar), 또는 헬륨(He) 등의 불활성 가스를 캐리어 가스로서 원료 가스와 함께 체임버에 도입하여도 좋다. 캐리어 가스를 사용함으로써, 원료 가스의 휘발성이 낮거나, 또는 증기압이 낮은 경우에도, 원료 가스가 배관 내부 및 밸브 내부에 흡착되는 것을 억제하고, 원료 가스를 체임버에 도입할 수 있다. 또한 형성되는 막의 균일성도 향상되어 바람직하다.
상술한 3층의 층상의 결정 구조를 가지는 금속 산화물을 ALD법을 사용하여 성막하는 방법의 일례에 대하여, 도 1의 (A) 내지 (E)를 사용하여 설명한다. 먼저, 전구체(11a)를 체임버에 도입하고, 기판(10)의 표면에 전구체(11a)를 흡착시킨다(도 1의 (A) 참조. 이하에서 상기 공정을 제 1 단계라고 부르는 경우가 있음). 여기서, 도 1의 (A)에 나타낸 바와 같이, 전구체(11a)가 기판(10)의 표면에 흡착됨으로써, 표면 화학 반응의 자기 정지 기구가 작용하므로, 기판(10) 위의 전구체(11a)의 층 위에 전구체(11a)가 더 흡착되지는 않는다. 또한 표면 화학 반응의 자기 정지 기구가 작용하는 기판 온도의 적정 범위를 ALD Window라고도 한다. ALD Window는 전구체의 온도 특성, 증기압, 분해 온도 등에 따라 결정되지만, 예를 들어 100℃ 이상 600℃ 이하, 바람직하게는 200℃ 이상 400℃ 이하가 되는 경우가 있다.
다음으로, 불활성 가스(아르곤, 헬륨, 또는 질소 등) 등을 체임버에 도입하고, 과잉한 전구체(11a) 및 반응 생성물 등을 체임버로부터 배출한다(이하에서 상기 공정을 제 2 단계라고 부르는 경우가 있음). 또한, 불활성 가스를 체임버에 도입하는 대신에 진공 배기에 의하여 과잉한 전구체 및 반응 생성물 등을 체임버로부터 배출하여도 좋다. 제 2 단계는 퍼지(purge)라고도 불린다.
다음으로, 반응제(12a)(예를 들어 산화제(오존(O3), 산소(O2), 물(H2O), 및 이들의 플라스마, 라디칼, 이온 등))를 체임버에 도입하여, 기판(10)의 표면에 흡착된 전구체(11a)와 반응시킴으로써, 전구체(11a)의 구성 분자를 기판(10)에 흡착시킨 채로, 전구체(11a)에 포함되는 성분의 일부를 이탈시킨다(도 1의 (B) 참조. 이하에서 상기 공정을 제 3 단계라고 부르는 경우가 있음). 이에 의하여, 전구체(11a)의 일부가 산화되어 형성된 산화물(13a)의 층이 기판(10)의 표면에 형성된다.
또한, 플라스마 ALD법을 수행하는 경우에는, 산화제로서 산소를 상시 계속 공급하고, 제 3 단계에서 플라스마를 발생시켜도 좋다. 이에 의하여, 제 3 단계에서 산소 플라스마가 형성되어 반응제(12a)로서 기능한다. 이 경우, 제 3 단계 이외에서 상기 온도로 가열된 산소와 반응하지 않는 전구체(11a)를 사용하면 좋다.
다음으로, 불활성 가스의 도입 또는 진공 배기에 의하여, 과잉한 반응제(12a) 및 반응 생성물 등을 체임버로부터 배출한다(이하에서 상기 공정을 제 4 단계라고 부르는 경우가 있음).
다음으로, 전구체(11a)와 다른 금속 원소를 포함하는 전구체(11b)를 도입하고 제 1 단계와 같은 공정을 수행하고, 산화물(13a)의 층의 표면에 전구체(11b)를 흡착시킨다(도 1의 (C) 참조). 여기서, 도 1의 (C)에 나타낸 바와 같이, 전구체(11b)가 산화물(13a)의 층에 흡착됨으로써, 표면 화학 반응의 자기 정지 기구가 작용하므로, 기판(10) 위의 전구체(11b)의 층 위에 전구체(11b)가 더 흡착되지는 않는다.
다음으로, 제 2 단계와 마찬가지로, 불활성 가스의 도입 또는 진공 배기에 의하여, 과잉한 전구체(11b) 및 반응 생성물 등을 체임버로부터 배출한다.
다음으로, 제 3 단계와 마찬가지로, 반응제(12b)를 체임버에 도입한다. 여기서, 반응제(12b)로서는 반응제(12a)와 같은 것을 사용하여도 좋고, 다른 것을 사용하여도 좋다(도 1의 (D) 참조). 이에 의하여, 전구체(11b)의 일부가 산화되어 형성된 산화물(13b)의 층이 산화물(13a)의 층 위에 형성된다.
다음으로, 제 4 단계와 마찬가지로, 불활성 가스의 도입 또는 진공 배기에 의하여, 과잉한 반응제(12b) 및 반응 생성물 등을 체임버로부터 배출한다.
또한, 마찬가지로 제 1 단계 내지 제 4 단계를 수행하고, 산화물(13c)의 층을 산화물(13b)의 층 위에 형성할 수 있다. 이와 같이, 산화물(13a) 내지 산화물(13c)을 형성하는 공정을 반복적으로 수행함으로써, 산화물(13a) 내지 산화물(13c)의 적층 구조가 반복되는, 층상의 결정 구조의 금속 산화물을 형성할 수 있다(도 1의 (E) 참조). 즉, 제 1 단계 내지 제 4 단계를 한 세트로 하고 산화물의 층을 형성할 수 있고, 상기 세트를 반복함으로써 복수의 산화물의 층이 적층된 층상의 결정 구조를 형성할 수 있다.
층상의 결정 구조의 금속 산화물, 특히 상기 CAAC 구조의 금속 산화물을 형성하는 데에 있어서, 도 1에 나타낸 공정을 기판을 가열하면서 수행하는 것이 바람직하다. 예를 들어 기판 온도를 200℃ 이상 600℃ 이하, 바람직하게는 300℃ 이상 전구체의 분해 온도 이하로 하면 좋다. 또한 종류가 다른 복수의 전구체를 사용하여 ALD법에 의한 성막을 수행하는 경우에는, 기판 온도를 복수의 전구체의 분해 온도 중 가장 낮은 분해 온도 이하로 하는 것이 바람직하다. 이에 의하여, ALD법에 의한 성막 중에 사용하는 복수의 전구체를 각각 분해시키지 않고, 대상물(예를 들어 기판 등)에 흡착시킬 수 있다.
이와 같은 온도 범위에서 기판을 가열하면서 상기 성막을 수행함으로써, 단계 1 내지 단계 4의 각 과정에서, 전구체 또는 반응제 등에 포함되는 수소 또는 탄소 등의 불순물을 금속 산화물 내에서 제거할 수 있다. 예를 들어 금속 산화물 내의 탄소를 CO2 및 CO로서 방출시키고, 금속 산화물 내의 수소를 H2O로서 방출시킬 수 있다. 또한, 상기 불순물의 제거와 동시에 금속 원자 및 산소 원자의 재배열이 수행되고, 각 산화물의 층을 높은 질서성으로 배열할 수 있다. 따라서, 결정성이 높은 층상의 결정 구조의 금속 산화물, 특히 상기 CAAC 구조의 금속 산화물을 형성할 수 있다. 또한, 도 1의 (A)에서는 기판(10) 위에 전구체(11a)를 형성하는 구성을 예시하였지만, 이에 한정되지 않는다. 예를 들어, 기판(10) 위에 절연막(산소, 질소, 실리콘, 알루미늄, 하프늄 등을 가지는 절연막), 또는 도전막(텅스텐, 탄탈럼, 몰리브데넘, 지르코늄, 알루미늄, 타이타늄 등을 가지는 도전막) 등을 제공하고, 그 위에 전구체(11a)를 형성하여도 좋다. 또는, 기판(10) 위에 절연막 및 도전막 등으로 형성된 구조물 위에 전구체(11a)를 형성하여도 좋다.
상기 온도 범위에서 기판을 가열하면서 성막을 수행하기 위하여, 상기 성막에 사용하는 전구체는 분해 온도가 높은 것이 바람직하다. 예를 들어, 전구체의 분해 온도가 200℃ 이상 700℃ 이하인 것이 바람직하고, 300℃ 이상 600℃ 이하인 것이 더 바람직하다. 이와 같이 분해 온도가 높은 전구체로서는, 무기물로 형성되는 전구체(이하에서 무기 전구체라고 부름)를 사용하는 것이 바람직하다. 일반적으로 무기 전구체는 유기물로 형성되는 전구체(이하에서 유기 전구체라고 부름)보다 분해 온도가 높은 경향이 있기 때문에, 상기와 같은 온도 범위에 ALD Window를 가지는 경우가 있다. 또한, 무기 전구체에는 수소 또는 탄소 등의 불순물이 포함되지 않기 때문에, 성막되는 금속 산화물 내의 수소 또는 탄소 등의 불순물 농도가 높아지는 것을 방지할 수 있다.
또한, 상기 금속 산화물의 성막 후에, 가열 처리를 수행하는 것이 바람직하다. 특히 상기 ALD법에 의한 성막 후에 외기에 노출시키지 않고 연속하여 가열 처리를 수행하는 것이 바람직하다. 상기 가열 처리는 100℃ 이상 1200℃ 이하, 바람직하게는 200℃ 이상 1000℃ 이하, 더 바람직하게는 250℃ 이상 650℃ 이하, 더욱 바람직하게는 300℃ 이상 600℃ 이하, 더욱더 바람직하게는 400℃ 이상 550℃ 이하, 나아가 더욱더 바람직하게는 420℃ 이상 480℃ 이하에서 수행하면 좋다. 또한 가열 처리는 질소 가스 또는 불활성 가스 분위기, 혹은 산화성 가스를 10ppm 이상, 1% 이상, 또는 10% 이상 포함하는 분위기에서 수행한다. 또한 가열 처리는 감압 상태에서 수행하여도 좋다. 또는 가열 처리는 질소 가스 또는 불활성 가스 분위기에서 가열 처리를 수행한 후에, 이탈된 산소를 보충하기 위하여 산화성 가스를 10ppm 이상, 1% 이상, 또는 10% 이상 포함하는 분위기에서 수행하여도 좋다. 또한, 가열 처리의 온도를 높게 한 경우, 금속 산화물이 다결정 구조가 되는 경우가 있기 때문에, 금속 산화물이 다결정 구조가 되지 않는 범위에서 가열 처리 온도를 적절히 설정하면 좋다.
이와 같이 가열 처리를 수행함으로써, 금속 산화물에 포함되는 수소 또는 탄소 등의 불순물을 제거할 수 있다. 예를 들어 금속 산화물 내의 탄소를 CO2 및 CO로서 방출시키고, 금속 산화물 내의 수소를 H2O로서 방출시킬 수 있다. 또한, 상기 불순물의 제거와 동시에 금속 원자 및 산소 원자의 재배열이 수행되고, 결정성을 향상시킬 수 있다. 따라서, 결정성이 높은 층상의 결정 구조의 금속 산화물, 특히 상기 CAAC 구조의 금속 산화물을 형성할 수 있다.
또한, 도 1에서는 산화물(13a) 내지 산화물(13c)의 적층 구조가 반복되는 구조에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니다. 예를 들어 단층, 2층, 또는 4층 이상의 산화물의 층이 반복적으로 형성되는 금속 산화물로 하여도 좋다. 또한, 도 1에서는 산화물(13a), 산화물(13b), 산화물(13c)의 순서를 바꾸지 않고 반복적으로 적층되어 있었지만, 이에 한정되는 것이 아니다. 예를 들어 산화물(13a), 산화물(13b), 산화물(13c)의 순서를 바꿔도 좋다. 또한, 막의 도중에서 산화물(13a), 산화물(13b), 산화물(13c)의 조성을 변경하여도 좋다. 또한, 도 1에서는 산화물(13a), 산화물(13b), 산화물(13c)과 같이 상이한 산화물의 층이 인접되도록 제공되어 있지만, 이에 한정되는 것이 아니다. 예를 들어 산화물(13a), 산화물(13a), 산화물(13b), 산화물(13b), 산화물(13c), 산화물(13c)과 같이, 같은 산화물의 층을 연속적으로 제공하는 구성으로 하여도 좋다.
또한 본 명세서에서 이하에 특별히 기재되어 있지 않으면, 반응제 또는 산화제로서 오존, 산소, 물을 사용하는 경우, 이들은 가스 상태 및 분자 상태에 한정되지 않고, 플라스마 상태, 라디칼 상태, 및 이온 상태의 것도 포함하는 것으로 한다. 플라스마 상태, 라디칼 상태, 또는 이온 상태의 산화제를 사용하여 성막하는 경우, 후술하는 라디칼 ALD 장치 또는 플라스마 ALD 장치를 사용하면 좋다.
전구체에 포함되는 탄소 또는 수소 등의 불순물을 제거하기 위해서는, 상기 전구체에 산화제를 충분히 반응시키는 것이 바람직하다. 예를 들어 산화제를 도입하는 펄스 시간을 길게 하면 좋다. 또는, 산화제를 여러 번 도입하면 좋다. 산화제를 여러 번 도입하는 경우, 같은 종류의 산화제를 도입하여도 좋고, 다른 종류의 산화제를 도입하여도 좋다. 예를 들어 제 1 산화제로서 물을 체임버에 도입한 후, 진공 배기를 수행하고, 제 2 산화제로서 수소를 포함하지 않는 오존 또는 산소를 체임버에 도입한 후에 진공 배기를 수행하여도 좋다.
또한 앞의 설명에서는, 제 1 원료 가스를 체임버에 도입한 후에 제 2 원료 가스를 체임버에 도입하는 예를 설명하였지만, 본 발명은 이에 한정되지 않는다. 제 2 원료 가스를 체임버에 도입한 후에 제 1 원료 가스를 체임버에 도입하여도 좋다. 즉, 먼저 상기 제 3 단계 및 제 4 단계를 수행한 후에, 제 1 단계, 제 2 단계, 제 3 단계, 및 제 4 단계를 수행하고, 이후 제 1 단계 내지 제 4 단계를 반복 수행함으로써 성막을 수행하여도 좋다. 또한 상기 제 3 단계 및 제 4 단계를 여러 번 반복한 후에 제 1 단계 내지 제 4 단계를 반복적으로 수행함으로써 성막을 하여도 좋다.
이러한 식으로, 제 1 단계 전에 제 3 단계 및 제 4 단계를 한 번씩 또는 여러 번 수행하면 체임버 내의 성막 분위기를 제어할 수 있기 때문에 바람직하다. 예를 들어 제 3 단계에서 산화제로서 O3 및 O2를 도입함으로써, 체임버 내를 산소 분위기로 할 수 있다. 체임버 내를 산소 분위기로 하여 성막을 하면, 형성되는 막 내의 산소 농도를 높일 수 있어 바람직하다. 또한 상기 막의 하지가 되는 절연체 및 산화물에도 산소를 공급할 수 있다. 이와 같은 방법을 사용하여 형성된 반도체 장치는, 양호한 특성을 가지고, 높은 신뢰성을 얻을 수 있다. 또한 예를 들어 제 3 단계에서 산화제로서 물을 도입함으로써, 피형성면에 친수기를 형성할 수 있다. 이에 의하여, 전구체의 흡착성을 더 향상시킬 수 있다.
또한 제 1 단계 및 제 2 단계 후에, 제 3 단계에서의 제 2 원료 가스의 도입과, 제 4 단계에서의 진공 배기 또는 불활성 가스의 도입을 여러 번 반복하여 수행하여도 좋다. 즉, 제 1 단계, 제 2 단계, 제 3 단계, 제 4 단계, 제 3 단계, 제 4 단계와 같이, 제 3 단계와 제 4 단계를 반복하여 수행한 후에 제 1 단계 및 제 2 단계를 수행하여도 좋다.
예를 들어 제 3 단계에서 산화제로서 O3 및 O2를 도입하고, 제 4 단계에서 불활성 가스의 도입을 수행하고, 이 공정을 여러 번 반복하여도 좋다. 또한 제 3 단계와 제 4 단계를 반복하는 경우, 반드시 같은 종류의 원료 가스의 도입을 반복할 필요는 없다. 예를 들어 첫 번째 제 3 단계에서 산화제로서 H2O를 사용하고, 두 번째 이후의 제 3 단계에서 산화제로서 O3을 사용하여도 좋다.
이러한 식으로, 체임버 내에서 산화제의 도입과 불활성 가스의 도입(또는 진공 배기)을 단시간에 여러 번 반복함으로써, 기판 표면에 흡착된 전구체로부터, 불필요한 수소 원자, 탄소 원자, 염소 원자 등을 더 확실하게 제거하고, 체임버 외에 배제할 수 있다. 또한 산화제의 종류를 2종류로 늘림으로써, 기판 표면에 흡착된 전구체로부터 불필요한 수소 원자 등을 더 많이 제거할 수 있다. 이와 같이, 성막 중에 수소 원자가 막 내로 들어가지 않도록 함으로써, 형성된 막에 포함되는 물, 수소 등을 저감할 수 있다.
이와 같은 방법을 사용함으로써, TDS 분석에서 100℃ 이상 700℃ 이하 또는 100℃ 이상 500℃ 이하의 표면 온도의 범위에서, 물 분자의 이탈량이 1.0×1013molecule/cm2 이상 1.0×1016molecule/cm2 이하, 더 바람직하게는 1.0×1013molecule/cm2 이상 3.0×1015molecule/cm2 이하인 막을 형성할 수 있다.
ALD법은 열 에너지를 사용하여 전구체와 반응제를 반응시켜 수행하는 성막 방법이다. 전구체 및 반응제의 반응에 필요한 온도는 이들의 온도 특성, 증기압, 분해 온도 등에 따라 결정되지만, 100℃ 이상 600℃ 이하, 바람직하게는 200℃ 이상 600℃ 이하, 더 바람직하게는 300℃ 이상 600℃ 이하이다.
또한 상기 전구체 및 반응제의 반응에 더하여, 제 3 원료 가스로서 플라스마 여기된 반응제도 체임버에 도입함으로써 처리를 수행하는 ALD법을 플라스마 ALD법이라고 부르는 경우가 있다. 이 경우, 제 3 원료 가스의 도입부에는 플라스마 생성 장치가 제공된다. 플라스마의 생성에는 유도 결합 플라스마(Inductively Coupled Plasma: ICP)를 사용할 수 있다. 또한 이에 대하여 전구체 및 반응제의 반응을 열 에너지로 수행하는 ALD법을 열 ALD법이라고 부르는 경우가 있다.
플라스마 ALD법에서는, 제 3 단계에서 플라스마 여기된 반응제를 도입함으로써 성막을 수행한다. 또는 제 1 단계 내지 제 4 단계를 반복하여 수행하는 것과 동시에, 플라스마 여기된 반응제(제 2 반응제)를 도입함으로써 성막을 수행한다. 이 경우, 제 3 단계에서 도입되는 반응제를 제 1 반응제라고 부른다. 플라스마 ALD법에서 제 3 원료 가스로서 사용하는 제 2 반응제에는 상기 산화제와 같은 재료를 사용할 수 있다. 즉, 제 2 반응제로서, 플라스마 여기된 오존, 산소, 및 물을 사용할 수 있다. 또한 제 2 반응제로서는, 산화제 외에 질화제를 사용하여도 좋다. 질화제로서는 질소(N2) 또는 암모니아(NH3)를 사용할 수 있다. 또한 질소(N2)와 수소(H2)의 혼합 가스를 질화제로서 사용할 수 있다. 예를 들어 질소(N2) 5%, 수소(H2) 95%의 혼합 가스를 질화제로서 사용할 수 있다. 플라스마 여기된 질소 또는 암모니아를 도입하면서 성막을 수행함으로써, 금속 질화막 등의 질화막을 형성할 수 있다.
또한 제 2 반응제의 캐리어 가스로서, 아르곤(Ar), 헬륨(He), 또는 질소(N2)를 사용하여도 좋다. 아르곤, 헬륨, 또는 질소 등의 캐리어 가스를 사용함으로써, 플라스마의 방전이 용이해지고, 플라스마 여기된 제 2 반응제가 용이하게 생성되기 때문에 바람직하다. 또한 플라스마 ALD법을 사용하여 금속 산화막 등의 산화막을 형성하는 경우, 캐리어 가스로서 질소를 사용하면, 막 내에 질소가 혼입되어 원하는 막질을 얻을 수 없는 경우가 있다. 이 경우, 캐리어 가스로서 아르곤 또는 헬륨을 사용하는 것이 바람직하다.
ALD법은 매우 얇은 막을 균일한 막 두께로 성막할 수 있다. 또한 요철을 가지는 면에 대해서도 표면 피복률이 높다.
또한 플라스마 ALD법에 의하여 성막함으로써, 열 ALD법에 비하여 더 낮은 온도에서의 성막이 가능하다. 플라스마 ALD법은, 예를 들어 100℃ 이하에서도 성막 속도를 저하시키지 않고 성막할 수 있는 경우가 있다. 또한 플라스마 ALD법에서는, 산화제뿐만 아니라, 질화제 등 다양한 반응제를 사용할 수 있기 때문에, 산화물뿐만 아니라, 질화물, 플루오린화물, 금속 등 많은 종류의 막을 성막할 수 있다.
또한, 플라스마 ALD법을 수행하는 경우에는, 유도 결합형 플라스마(ICP) 또는 전자 사이클로트론 공명 플라스마(ECR) 등의 플라스마원과 기판의 사이를 띄우고 플라스마를 발생시킴으로써, 플라스마 대미지를 억제할 수 있다.
여기서, 층상의 결정 구조의 금속 산화물이 In-M-Zn 산화물인 경우의, 결정 내의 원자 배열에 대하여 도 2의 (A) 내지 도 3의 (D)를 사용하여 설명한다. 또한, 도 2의 (B), (D), 도 3의 (B), 및 (D)에서는 원자를 공(원형)으로 나타내고, 금속 원자와 산소 원자의 결합을 선으로 나타내었다. 도 2의 (B), (D), 도 3의 (B), 및 (D)에서, In-M-Zn 산화물의 결정 구조에서의 c축 방향은 도면 중의 화살표로 나타내었다. 또한, In-M-Zn 산화물의 결정 구조에서의 a-b면 방향은 도 2의 (B), (D), 도 3의 (B), 및 (D)에서 화살표로 나타낸 c축 방향에 대하여 수직인 방향이다.
도 2의 (A)는 구조체(50)에 형성된 In-M-Zn 산화물을 포함하는 산화물(60)을 나타낸 도면이다. 여기서 구조체란, 트랜지스터 등의 반도체 장치를 구성하는 요소를 가리킨다. 구조체(50)에는 기판, 게이트 전극, 소스 전극, 및 드레인 전극 등의 도전체, 게이트 절연막, 층간 절연막, 하지 절연막 등의 절연체, 금속 산화물 또는 실리콘 등의 반도체 등이 포함된다. 도 2의 (A)에서는 구조체(50)의 피성막면이 기판(또는 기체, 도시하지 않았음)에 평행하게 배치되는 경우를 나타내었다.
도 2의 (B)는 도 2의 (A)에서의 산화물(60)의 일부인 영역(53)에서의 결정 내의 원자 배열을 나타낸 확대도이다. 여기서, 도 2의 (A) 및 (B)에 나타낸 산화물(60)의 조성은 In:M:Zn=1:1:1[원자수비]이고, 결정 구조는 YbFe2O4형 구조로 한다. 또한, 원소 M은 +3가의 금속 원소로 한다.
도 2의 (B)에 나타낸 바와 같이, 산화물(60)이 가지는 결정은 인듐(In)과 산소를 가지는 층(21), 원소 M과 산소를 가지는 층(31), 아연(Zn)과 산소를 가지는 층(41)이 순차적으로 반복적으로 적층되어 있다. 층(21), 층(31), 및 층(41)은 구조체(50)의 피성막면에 실질적으로 평행하게 배치되어 있다. 즉, 산화물(60)의 a-b면은 구조체(50)의 피성막면에 실질적으로 평행하고, 산화물(60)의 c축은 구조체(50)의 피성막면의 법선 방향에 실질적으로 평행하다.
도 2의 (B)에 나타낸 바와 같이, 상기 결정이 가지는 층(21), 층(31), 층(41)의 각각이 하나의 금속 원소와 산소로 구성됨으로써 결정성 좋게 배열되고, 상기 금속 산화물의 이동도를 높일 수 있다.
또한, In:M:Zn=1:1:1[원자수비]의 In-M-Zn 산화물은 도 2의 (B)에 나타낸 구조에 한정되는 것이 아니다. 층(21), 층(31), 층(41)의 적층 순서가 변경되어도 좋다. 예를 들어 층(21), 층(41), 층(31)의 순서로 반복적으로 적층되어도 좋다. 또는, 층(21), 층(31), 층(41), 층(21), 층(41), 층(31)의 순서로 반복적으로 적층되어도 좋다. 또한, 층(31)의 원소 M의 일부가 아연으로 치환되고, 층(41)의 아연의 일부가 원소 M으로 치환되어도 좋다.
상기에서는 조성이 In:M:Zn=1:1:1[원자수비]의 In-M-Zn 산화물을 형성하는 예를 나타내었지만, 조성식이 In(1+α)M(1-α)O3(ZnO)m(α는 0보다 크고 1보다 작은 실수, m은 양의 수)으로 나타내어지는 결정성의 In-M-Zn 산화물은 마찬가지로 층상의 결정 구조를 가질 수 있다. 이 예로서, 도 2의 (C) 및 (D)를 사용하여 조성이 In:M:Zn=1:3:4[원자수비]의 In-M-Zn 산화물에 대하여 설명한다.
도 2의 (C)는 구조체(50)에 형성된 In-M-Zn 산화물을 포함하는 산화물(62)을 나타낸 도면이다. 도 2의 (D)는 도 2의 (C)에서의 산화물(62)의 일부인 영역(54)에서의 결정 내의 원자 배열을 나타낸 확대도이다.
도 2의 (D)에 나타낸 바와 같이, 산화물(62)이 가지는 결정은 인듐(In)과 원소 M과 산소를 가지는 층(22), 아연(Zn)과 산소를 가지는 층(41), 및 원소 M과 산소를 가지는 층(31)을 가진다. 산화물(62)에서, 복수의 층은 층(22), 층(41), 층(31), 층(41)의 순서로 반복적으로 적층되어 있다. 층(22), 층(31), 및 층(41)은 구조체(50)의 피성막면에 실질적으로 평행하게 배치되어 있다. 즉, 산화물(62)의 a-b면은 구조체(50)의 피성막면에 실질적으로 평행하고, 산화물(62)의 c축은 구조체(50)의 피성막면의 법선 방향에 실질적으로 평행하다.
또한, In:M:Zn=1:3:4[원자수비]의 In-M-Zn 산화물은 도 2의 (D)에 나타낸 구조에 한정되는 것이 아니고, In:M:Zn=1:3:4[원자수비]의 범위 내에서 구조가 변화되어도 좋다. 예를 들어, 층(22), 층(31), 층(41)의 적층 순서가 변경되어도 좋다. 또한, 층(31)의 원소 M의 일부가 아연으로 치환되고, 층(41)의 아연의 일부가 원소 M으로 치환되어도 좋다. 또한, 층(22) 대신에 층(21) 또는 층(31)이 형성되어도 좋다.
또한, 도 3의 (A)에 나타낸 바와 같이, 구조체(50) 위에 산화물(62)을 형성하고 그 위에 산화물(60)을 형성하는 적층 구조로 하여도 좋다. 여기서 도 3의 (B)는 도 3의 (A)에서의 산화물(62) 및 산화물(60)의 일부인 영역(56)에서의 결정 내의 원자 배열을 나타낸 확대도이다.
상술한 바와 같이, 산화물(62)은 In:M:Zn=1:3:4[원자수비]의 In-M-Zn 산화물이고, 산화물(60)은 In:M:Zn=1:1:1[원자수비]의 In-M-Zn 산화물이다. 즉, 도 3의 (A)에 나타낸 산화물은 막의 도중에서 원자수비가 변화된 산화막이다. 또한, 도 3의 (B)에 나타낸 바와 같이, 산화물(62)을 층상의 결정 구조로 함으로써, 산화물(62) 위의 산화물(60)의 결정성을 양호하게 할 수 있다.
또한, 산화물(62) 및 산화물(60)은 도 3의 (B)에 나타낸 구조에 한정되는 것이 아니고, 상술한 바와 같이, 산화물(62) 및 산화물(60)의 구조를 변화시켜도 좋다. 또한, 도 3의 (B)에서, 산화물(62)과 산화물(60)의 경계에 층(21)을 배치하였지만, 이에 한정되는 것이 아니다. 예를 들어, 산화물(62)과 산화물(60)의 경계에 층(22)이 형성되어 있어도 좋다.
상술한 바와 같이, ALD법에서는 종횡비가 높은 구조에 대한 성막이 가능하고, 구조체의 측면에 대해서도 피복성 좋게 성막할 수 있다. ALD법을 사용함으로써, 피성막면의 방향에 상관없이 CAAC 구조 등의 결정성의 금속 산화물을 용이하게 형성할 수 있다. 예를 들어 구조체가 볼록 형상 또는 오목 형상을 가지는 경우에도, 구조체의 상면, 밑면, 측면, 및 경사를 가지는 면에 대하여 피복성 좋게 금속 산화물을 형성할 수 있다. 즉, 각 피성막면에서 법선 방향으로 실질적으로 일정한 막 두께를 가지는 금속 산화물을 형성할 수 있다. 구조체의 상면, 밑면, 측면, 및 경사를 가지는 면 각각에 형성된 금속 산화물에서, 최대 막 두께에 대한 최소 막 두께의 비율을 0.5 이상 1 이하, 바람직하게는 0.7 이상 1 이하, 더 바람직하게는 0.9 이상 1 이하로 할 수 있다. 이때 금속 산화물이 결정 구조를 가지는 경우, 그 c축은 각 피성막면의 법선 방향에 실질적으로 평행한 방향으로 배향된다. 즉, c축은 각 피성막면에 수직으로 배향된다.
여기서, 도 3의 (C)에서는 구조체(50)의 피성막면이 기판(또는 기체, 도시하지 않았음)에 수직으로 배치되고, 구조체(50)의 표면에 산화물(64)이 형성되는 경우를 나타내었다. 도 3의 (D)는 도 3의 (C)에서의 산화물(64)의 일부인 영역(58)의 확대도이다. 도 3의 (D)에서는 구조체(50)의 측면에 인듐(In)을 포함하는 층(21)과, 원소 M을 포함하는 층(31)과, 아연(Zn)을 포함하는 층(41)이 피성막면에 대하여 적층되어 있는 모습을 나타내었다. 인듐을 포함하는 층(21)은 구조체(50)의 피성막면에 평행하게 배치되고, 그 위에 원소 M을 포함하는 층(31)이 구조체(50)의 피성막면에 평행하게 배치되고, 또한 그 위에 아연을 포함하는 층(41)이 구조체(50)의 피성막면에 평행하게 배치되어 있다. 즉, 산화물(60)의 a-b면은 구조체(50)의 피성막면에 실질적으로 평행하고, 산화물(60)의 c축은 구조체(50)의 피성막면의 법선 방향에 실질적으로 평행하다. 또한, 도 3의 (C) 및 (D)에서는, In:M:Zn=1:1:1[원자수비]의 In-M-Zn 산화물의 예를 나타내었지만, 다른 원자수비의 산화물도 마찬가지로, 피성막면이 기판에 대하여 수직으로 배치된 구조체(50)의 표면에 형성될 수 있다.
또한, 상기에서 In:M:Zn=1:1:1[원자수비] 및 In:M:Zn=1:3:4[원자수비]의 금속 산화물의 예를 나타내었지만, 본 발명은 이에 한정되는 것이 아니다.
이하에서 도 4의 (A), (B), 및 (C)를 사용하여, 본 발명의 일 형태에서 설명하는 산화물에 사용할 수 있는 금속 산화물에 포함되는 인듐, 원소 M, 및 아연의 원자수비의 바람직한 범위에 대하여 설명한다. 또한 도 4의 (A), (B), 및 (C)에는 산소의 원자수비를 기재하지 않았다. 또한 금속 산화물에 포함되는 인듐, 원소 M, 및 아연의 원자수비의 각각의 항을 [In], [M], 및 [Zn]으로 한다.
도 4의 (A), (B), 및 (C)에서 파선은 원자수비가 [In]:[M]:[Zn]=(1+α):(1-α):1(-1≤α≤1)인 라인, 원자수비가 [In]:[M]:[Zn]=(1+α):(1-α):2인 라인, 원자수비가 [In]:[M]:[Zn]=(1+α):(1-α):3인 라인, 원자수비가 [In]:[M]:[Zn]=(1+α):(1-α):4인 라인, 및 원자수비가 [In]:[M]:[Zn]=(1+α):(1-α):5인 라인을 나타낸다.
또한 일점쇄선은 원자수비가 [In]:[M]:[Zn]=5:1:β(β≥0)인 라인, 원자수비가 [In]:[M]:[Zn]=2:1:β인 라인, 원자수비가 [In]:[M]:[Zn]=1:1:β인 라인, 원자수비가 [In]:[M]:[Zn]=1:2:β인 라인, 원자수비가 [In]:[M]:[Zn]=1:3:β인 라인, 및 원자수비가 [In]:[M]:[Zn]=1:4:β인 라인을 나타낸다.
또한 도 4의 (A), (B), 및 (C)에 나타낸, 원자수비가 [In]:[M]:[Zn]=0:2:1 및 그 근방값의 금속 산화물은 스피넬형 결정 구조를 가지기 쉽다.
또한 금속 산화물 내에서 복수의 상이 공존하는 경우가 있다(2상 공존, 3상 공존 등). 예를 들어, 원자수비가 [In]:[M]:[Zn]=0:2:1의 근방값인 경우, 스피넬형 결정 구조와 층상 결정 구조의 2상이 공존하기 쉽다. 또한 원자수비가 [In]:[M]:[Zn]=1:0:0의 근방값인 경우, 빅스비아이트(bixbyite)형 결정 구조와 층상 결정 구조의 2상이 공존하기 쉽다. 금속 산화물 내에서 복수의 상이 공존하는 경우, 상이한 결정 구조들 사이에서 결정립계가 형성되는 경우가 있다.
도 4의 (A)에 나타낸 영역 A는, 금속 산화물이 가지는 인듐, 원소 M, 및 아연의 원자수비의 바람직한 범위의 일례에 대하여 나타낸 것이다.
금속 산화물은 인듐의 함유율을 높임으로써 캐리어 이동도(전자 이동도)를 높일 수 있다. 따라서 인듐의 함유율이 높은 금속 산화물은 인듐의 함유율이 낮은 금속 산화물과 비교하여 캐리어 이동도가 높다.
한편, 금속 산화물 내의 인듐 및 아연의 함유율이 낮아지면, 캐리어 이동도는 낮아진다. 따라서 원자수비가 [In]:[M]:[Zn]=0:1:0 및 그 근방값인 경우(예를 들어, 도 4의 (C)에 나타낸 영역 C)에는 절연성이 높아진다. 또한, 영역(C)은 상술한 스피넬형 결정 구조를 가지기 쉬운 영역을 포함하기 때문에, 스피넬형 결정 구조를 가지기 쉬운 영역을 피하는 조성으로 하는 것이 바람직하다.
예를 들어 채널 형성 영역 및 저저항 영역에 사용되는 금속 산화물은, 캐리어 이동도가 높은, 도 4의 (A)의 영역 A로 나타내어지는 원자수비를 가지는 것이 바람직하다. 채널 형성 영역 및 저저항 영역에 사용되는 금속 산화물은, 예를 들어 In:Ga:Zn=4:2:3 내지 4.1 및 그 근방값 정도가 되도록 하면 좋다. 또한, 예를 들어 In:Ga:Zn=1:1:1 및 그 근방값 정도가 되면 좋다. 한편, 채널 형성 영역 및 저저항 영역을 둘러싸도록 금속 산화물을 제공하는 경우, 절연성이 비교적 높은, 도 4의 (C)의 영역 C로 나타내어지는 원자수비를 가지는 것이 바람직하다. 채널 형성 영역 및 저저항 영역을 둘러싸도록 제공되는 금속 산화물은, 예를 들어 In:Ga:Zn=1:3:4 및 그 근방값 정도, 또는 In:Ga:Zn=1:3:2 및 그 근방값 정도가 되도록 하면 좋다. 또는 채널 형성 영역 및 저저항 영역을 둘러싸도록 제공되는 금속 산화물로서는, 채널 형성 영역 및 저저항 영역에 사용되는 금속 산화물과 동등한 금속 산화물을 사용하여도 좋다.
특히, 도 4의 (B)에 나타낸 영역 B에서는, 영역 A 중에서도 캐리어 이동도가 높고 신뢰성이 높은, 우수한 금속 산화물이 얻어진다.
또한 영역 B는 [In]:[M]:[Zn]=4:2:3 내지 4.1 및 그 근방값을 포함한다. 근방값에는 예를 들어 [In]:[M]:[Zn]=5:3:4가 포함된다. 또한 영역 B는 [In]:[M]:[Zn]=5:1:6 및 그 근방값, 및 [In]:[M]:[Zn]=5:1:7 및 그 근방값을 포함한다. 또한 영역 B는 [In]:[M]:[Zn]=1:1:1 및 그 근방값을 포함한다.
이상과 같이, 상기 금속 산화물의 전기 전도 특성은 원자수비에 따라 크게 다르다. 상술한 바와 같이 ALD법을 사용하여 금속 산화물을 성막함으로써, 각 원자수비에 따른 층상의 결정 구조를 가지는 금속 산화물을 성막할 수 있다. 따라서, ALD법을 사용함으로써 요구되는 특성에 맞추어 금속 산화물을 성막할 수 있다.
다음으로 도 2의 (A) 및 (B)에 나타낸 In-M-Zn 산화물을 가지는 산화물(60)의 자세한 형성 방법을 도 5의 (A) 내지 도 6의 (C)를 사용하여 나타낸다.
먼저, 인듐을 포함하는 전구체를 포함하는 원료 가스를 체임버에 도입하여, 구조체(50)의 표면에 상기 전구체를 흡착시킨다(도 5의 (A) 참조). 여기서, 원료 가스에는 전구체 외에, 아르곤, 헬륨, 또는 질소 등의 캐리어 가스가 포함된다. 인듐을 포함하는 전구체로서 트라이메틸인듐, 트라이에틸인듐, 트리스(2,2,6,6-테트라메틸-3,5-헵테인다이온산)인듐, 사이클로펜타다이엔일인듐, 인듐(III)아세틸아세토네이트, (3-(다이메틸아미노)프로필)다이메틸인듐 등을 사용할 수 있다.
또한, 인듐을 포함하는 전구체로서 탄화수소를 가지지 않는 무기 전구체를 사용하여도 좋다. 인듐을 가지는 무기 전구체로서 삼염화 인듐, 삼브로민화 인듐, 삼아이오딘화 인듐 등의 할로젠계 인듐 화합물을 사용할 수 있다. 삼염화 인듐은 분해 온도가 500℃ 이상 700℃ 이하 정도이다. 따라서, 삼염화 인듐을 사용함으로써 400℃ 이상 600℃ 이하 정도, 예를 들어 500℃에서 기판을 가열하면서 ALD법에 의하여 성막할 수 있다.
다음으로, 상기 원료 가스의 도입을 멈추고, 체임버 내를 퍼지하여, 불필요한 전구체나 반응 생성물 등을 체임버로부터 배출한다.
그리고 반응제로서 산화제를 체임버에 도입하여, 흡착된 전구체와 반응시키고, 인듐을 기판에 흡착시킨 채로 인듐 이외의 성분을 이탈시킴으로써, 인듐과 산소가 결합된 층(21)을 형성한다(도 5의 (B) 참조). 산화제로서는 오존, 산소, 물 등을 사용할 수 있다. 다음으로, 상기 산화제의 도입을 멈추고, 체임버 내를 퍼지하여, 불필요한 반응제 및 반응 생성물 등을 체임버로부터 배출한다.
다음으로, 원소 M을 포함하는 전구체를 포함하는 원료 가스를 체임버에 도입하여, 층(21) 위에 상기 전구체를 흡착시킨다(도 5의 (C) 참조). 원료 가스에는 전구체 외에, 아르곤, 헬륨, 또는 질소 등의 캐리어 가스가 포함된다. 원소 M으로서 갈륨을 사용하는 경우, 갈륨을 포함하는 전구체로서 트라이메틸갈륨, 트라이에틸갈륨, 트리스(다이메틸아마이드)갈륨, 갈륨(III)아세틸아세토네이트, 트리스(2,2,6,6-테트라메틸-3,5-헵테인다이온산)갈륨, 다이메틸클로로갈륨, 다이에틸클로로갈륨, 다이메틸갈륨아이소프로폭사이드 등을 사용할 수 있다.
또한, 갈륨을 포함하는 전구체로서 탄화수소를 가지지 않는 무기 전구체를 사용하여도 좋다. 갈륨을 가지는 무기 전구체로서 삼염화 갈륨, 삼브로민화 갈륨, 삼아이오딘화 갈륨 등의 할로젠계 갈륨 화합물을 사용할 수 있다. 삼염화 갈륨은 분해 온도가 550℃ 이상 700℃ 이하 정도이다. 따라서, 삼염화 갈륨을 사용함으로써 450℃ 이상 650℃ 이하 정도, 예를 들어 550℃에서 기판을 가열하면서 ALD법에 의하여 성막할 수 있다.
다음으로, 상기 원료 가스의 도입을 멈추고 체임버 내를 퍼지하여, 불필요한 전구체 및 반응 생성물 등을 체임버로부터 배출한다.
다음으로, 반응제로서 산화제를 체임버에 도입하고, 흡착된 전구체와 반응시켜 원소 M을 기판에 흡착시킨 채로 원소 M 이외의 성분을 이탈시킴으로써, 원소 M과 산소가 결합된 층(31)을 형성한다(도 5의 (D) 참조). 이때, 층(31) 위에 흡착된 산소의 일부가 후술하는 층(41)을 구성하는 경우가 있다. 다음으로, 상기 산화제의 도입을 멈추고, 체임버 내를 퍼지하여, 불필요한 반응제 및 반응 생성물 등을 체임버로부터 배출한다.
다음으로, 아연을 포함하는 전구체를 포함하는 원료 가스를 체임버에 도입하고, 층(31) 위에 전구체를 흡착시킨다(도 6의 (A) 참조). 이때, 아연과 산소가 결합된 층(41)의 일부가 형성되는 경우가 있다. 원료 가스에는 전구체 외에, 아르곤, 헬륨, 또는 질소 등의 캐리어 가스가 포함된다. 아연을 포함하는 전구체로서 다이메틸아연, 다이에틸아연, 비스(2,2,6,6-테트라메틸-3,5-헵테인다이온산)아연, 아세트산 아연 등을 사용할 수 있다.
또한, 아연을 포함하는 전구체로서 탄화수소를 가지지 않는 무기 전구체를 사용하여도 좋다. 아연을 가지는 무기 전구체로서 이염화 아연, 이브로민화 아연, 이아이오딘화 아연 등의 할로젠계 아연 화합물을 사용할 수 있다. 이염화 아연은 분해 온도가 450℃ 이상 700℃ 이하 정도이다. 따라서, 이염화 아연을 사용함으로써 350℃ 이상 550℃ 이하 정도, 예를 들어 450℃에서 기판을 가열하면서 ALD법에 의하여 성막할 수 있다.
다음으로, 상기 원료 가스의 도입을 멈추고 체임버 내를 퍼지하여, 불필요한 전구체 및 반응 생성물 등을 체임버로부터 배출한다.
다음으로, 반응제로서 산화제를 체임버에 도입하고, 흡착된 전구체와 반응시켜 아연을 기판에 흡착시킨 채로 아연 이외의 성분을 이탈시킴으로써, 아연과 산소가 결합된 층(41)을 형성한다(도 6의 (B) 참조). 다음으로, 상기 산화제의 도입을 멈추고, 체임버 내를 퍼지하여, 불필요한 반응제 및 반응 생성물 등을 체임버로부터 배출한다.
다음으로, 층(41) 위에 다시 상술한 방법으로 층(21)을 형성한다(도 6의 (C) 참조). 이상의 방법을 반복함으로써, 기판 또는 구조체 위에 산화물(60)을 형성할 수 있다.
또한 상기 전구체 중에는 금속 원소 외에, 탄소 및 염소 중 한쪽 또는 양쪽을 포함하는 것이 있다. 탄소를 포함하는 전구체를 사용하여 형성된 막에는 탄소가 포함되는 경우가 있다. 또한 염소 등의 할로젠을 포함하는 전구체를 사용하여 형성된 막에는 염소 등의 할로젠이 포함되는 경우가 있다.
상술한 바와 같이, ALD법을 사용하여 산화물(60)을 형성함으로써, 피성막면의 법선 방향에 실질적으로 평행하게 c축이 배향된 CAAC 구조의 금속 산화물을 형성할 수 있다.
도 5의 (A) 내지 도 6의 (C)에 나타낸 공정을 기판을 가열하면서 수행하는 것이 바람직하다. 예를 들어 기판 온도를 200℃ 이상 600℃ 이하, 바람직하게는 300℃ 이상 전구체의 분해 온도 이하로 하면 좋다. 이와 같은 온도 범위에서 기판을 가열하면서 상기 성막을 수행함으로써, 도 5의 (A) 내지 도 6의 (C)의 각 과정에서, 전구체 또는 반응제 등에 포함되는 수소 또는 탄소 등의 불순물을 금속 산화물 내에서 제거할 수 있다. 예를 들어 금속 산화물 내의 탄소를 CO2 및 CO로서 방출시키고, 금속 산화물 내의 수소를 H2O로서 방출시킬 수 있다. 또한, 상기 불순물의 제거와 동시에 금속 원자 및 산소 원자의 재배열이 수행되고, 각 산화물의 층을 높은 질서성으로 배열할 수 있다. 따라서, 결정성이 높은 층상의 결정 구조의 금속 산화물, 예를 들어 CAAC 구조의 금속 산화물을 형성할 수 있다.
상기 온도 범위에서 기판을 가열하면서 성막을 수행하기 위하여, 상기 성막에 사용하는 전구체는 분해 온도가 높은 것이 바람직하다. 예를 들어, 전구체의 분해 온도가 200℃ 이상 700℃ 이하인 것이 바람직하고, 300℃ 이상 600℃ 이하인 것이 더 바람직하다. 이와 같이 분해 온도가 높은 전구체로서는, 무기 전구체를 사용하는 것이 바람직하다. 무기 전구체는 일반적으로 유기 전구체보다 분해 온도가 높은 경향이 있기 때문에, 상기와 같이 기판 거열을 하면서 성막을 하여도 전구체가 분해되기 어렵다.
무기 전구체로서는, 예를 들어 상술한 삼염화 인듐, 삼염화 갈륨, 이염화 아연을 사용할 수 있다. 상술한 바와 같이, 이들 전구체는 분해 온도가 350℃ 이상 700℃ 이하 정도이고, 일반적인 유기 전구체의 분해 온도보다 상당히 높다. 다만, 상술한 바와 같이 삼염화 인듐, 삼염화 갈륨, 이염화 아연의 분해 온도는 서로 다르다. 이와 같이, 종류가 다른 복수의 전구체를 사용하여 ALD법에 의한 성막을 수행하는 경우에는, 기판 온도를 복수의 전구체의 분해 온도 중 가장 낮은 온도 이하로 하는 것이 바람직하다. 상기 예에서는 전구체의 분해 온도가 가장 낮은 이염화 아연이 분해되지 않는 범위에서 기판 온도를 설정하면 좋다. 이에 의하여, 다른 삼염화 인듐, 삼염화 갈륨도 분해시키지 않고, 대상물(예를 들어 기판 등)에 흡착시킬 수 있다.
또한, 상기에서는 무기 전구체에 대하여 예시하였지만, 이에 한정되지 않는다. 예를 들어 유기 전구체를 사용하는 ALD법에도 적용할 수 있다. 예를 들어 유기 전구체를 사용하여 금속 산화물(예를 들어 In-M-Zn 금속 산화물 등)을 성막하는 경우, 기판 온도를 복수의 유기 전구체의 분해 온도 중 가장 낮은 온도 이하로 하는 것이 바람직하다. 이에 의하여, ALD 성막 중에, 사용하는 복수의 전구체를 각각 분해시키지 않고 대상물(예를 들어 기판 등)에 흡착시킬 수 있다. 이 경우, 기판 온도를 100℃ 이상, 전구체의 분해 온도 중 가장 낮은 온도 이하(대표적으로는 200℃ 이상 300℃ 이하)의 범위에도 적용할 수 있다.
또한, 상기 금속 산화물의 성막 후에, 가열 처리를 수행하는 것이 바람직하다. 특히 상기 ALD법에 의한 성막 후에 외기에 노출시키지 않고 연속하여 가열 처리를 수행하는 것이 바람직하다. 상기 가열 처리는 바람직하게는 250℃ 이상 650℃ 이하, 더 바람직하게는 300℃ 이상 600℃ 이하, 더욱 바람직하게는 400℃ 이상 550℃ 이하, 더욱더 바람직하게는 420℃ 이상 480℃ 이하에서 수행하면 좋다. 이와 같이 가열 처리를 수행함으로써, 금속 산화물에 포함되는 수소 또는 탄소 등의 불순물을 제거할 수 있다. 예를 들어 금속 산화물 내의 탄소를 CO2 및 CO로서 방출시키고, 금속 산화물 내의 수소를 H2O로서 방출시킬 수 있다. 또한, 상기 불순물의 제거와 동시에 금속 원자 및 산소 원자의 재배열이 수행되고, 결정성을 향상시킬 수 있다. 따라서, 결정성이 높은 층상의 결정 구조의 금속 산화물, 특히 상기 CAAC 구조의 금속 산화물을 형성할 수 있다.
또한, 도 5의 (A) 내지 도 6의 (C)에서는 인듐을 포함하는 층으로서 층(21)을 형성하고, 그 위에 원소 M을 포함하는 층으로서 층(31)을 형성하고, 또한 그 위에 아연을 포함하는 층으로서 층(41)을 형성하는 예를 나타내었지만, 본 실시형태는 이에 한정되지 않는다. 층(31) 및 층(41) 중 한쪽을 형성하고, 그 위에 층(21)을 형성하고, 또한 그 위에 층(31) 및 층(41) 중 다른 쪽을 형성하여도 좋다. 또는, 층(31) 및 층(41) 중 한쪽을 형성하고, 그 위에 층(31) 및 층(41) 중 다른 쪽을 형성하고, 또한 그 위에 층(21)을 형성하여도 좋다.
또한, In:M:Zn=1:1:1[원자수비]과 다른 원자수비의 금속 산화물을 형성하는 경우에는 원자수비에 따라 상기 층(21), 상기 층(31), 상기 층(41)을 적절히 형성하면 좋다. 예를 들어 도 6의 (A)에 나타낸 층(31)의 형성 전후에 층(41)의 형성을 여러 번 반복함으로써, 2개의 층(21) 사이에 원하는 원자수, 층수, 및 두께를 가지는 층(31)과 층(41)의 적층을 형성하면 좋다.
<성막 장치의 구성예>
ALD법을 사용하여 성막할 수 있는 장치의 일례로서, 성막 장치(4000)의 구성에 대하여 도 7, 도 8의 (A) 및 (B)를 사용하여 설명한다. 도 7은 멀티 체임버형 성막 장치(4000)의 모식도이고, 도 8의 (A) 및 (B)는 성막 장치(4000)로서 사용할 수 있는 ALD 장치의 단면도이다.
성막 장치(4000)는 반입 반출실(4002)과, 반입 반출실(4004)과, 반송실(4006)과, 성막실(4008)과, 성막실(4009)과, 처리실(4011)과, 반송 암(4014)을 가진다. 여기서, 반입 반출실(4002), 반입 반출실(4004), 성막실(4008), 성막실(4009), 및 처리실(4011)은 반송실(4006)에 각각 게이트 밸브를 통하여 독립적으로 접속되어 있다. 이에 의하여, 성막실(4008), 성막실(4009), 및 처리실(4011)에서 대기에 노출시키지 않고 연속하여 처리를 수행할 수 있기 때문에, 막 내에 불순물이 혼입되는 것을 방지할 수 있다. 또한, 기판과 막의 계면, 및 각 막의 계면의 오염이 저감되기 때문에, 청정한 계면을 얻을 수 있다.
또한 반입 반출실(4002), 반입 반출실(4004), 반송실(4006), 성막실(4008), 성막실(4009), 및 처리실(4011)은 수분의 부착 등을 방지하기 위하여, 이슬점이 관리된 불활성 가스(질소 가스 등)가 충전되는 것이 바람직하고, 감압이 유지되는 것이 바람직하다.
또한 성막실(4008) 및 성막실(4009)에는 ALD 장치를 사용할 수 있다. 또한 성막실(4008) 및 성막실(4009) 중 어느 것에 ALD 장치 이외의 성막 장치를 사용하는 구성으로 하여도 좋다. 성막실(4008) 및 성막실(4009)에 사용할 수 있는 성막 장치로서는, 예를 들어 스퍼터링 장치, 플라스마 CVD(PECVD: Plasma Enhanced CVD) 장치, 열 CVD(TCVD: Thermal CVD) 장치, 광 CVD(Photo CVD) 장치, 금속 CVD(MCVD: Metal CVD) 장치, 유기 금속 CVD(MOCVD: Metal Organic CVD) 장치 등이 있다.
또한, 처리실(4011)에는 가열 장치(대표적으로는 진공 가열 장치), 플라스마 발생 장치(대표적으로는 마이크로파 처리 장치) 등 성막 장치 이외의 기능을 가지는 장치를 제공하면 좋다.
예를 들어, 성막실(4008)을 ALD 장치로 하고, 성막실(4009)을 스퍼터링 장치로 하고, 처리실(4011)을 가열 장치로 한 경우, 성막실(4009)에서 하지 절연막을 성막하고, 성막실(4008)에서 활성층으로서 기능하는 산화물 반도체막을 성막하고, 처리실(4011)에서 산화물 반도체막 성막 후의 가열 처리를 수행할 수 있다. 이때, 하지 절연막의 성막, 산화물 반도체막의 성막, 및 가열 처리를 대기에 노출시키지 않고 연속하여 수행할 수 있다.
또한, 성막 장치(4000)는 반입 반출실(4002), 반입 반출실(4004), 성막실(4008), 성막실(4009), 및 처리실(4011)을 가지는 구성으로 하였지만, 본 발명은 이에 한정되는 것이 아니다. 성막 장치(4000)의 성막실을 하나 또는 3개 이상으로 하는 구성으로 하여도 좋다. 또한, 성막 장치(4000)의 처리실을 2개 이상으로 하는 구성으로 하여도 좋다. 또한, 성막 장치(4000)는 매엽식(枚葉式)으로 하여도 좋고, 복수의 기판을 일괄적으로 성막하는 배치식으로 하여도 좋다.
<가열 장치>
다음으로, 처리실(4011)로서 사용할 수 있는 가열 장치에 대하여 설명한다. 가열 장치에 사용되는 가열 기구는 예를 들어 저항 발열체 등을 사용하여 가열하는 기구로 하여도 좋다. 또는, 가열된 가스 등의 매체로부터의 열전도 또는 열복사에 의하여 가열하는 기구로 하여도 좋다. 예를 들어, GRTA(Gas Rapid Thermal Anneal), LRTA(Lamp Rapid Thermal Anneal) 등의 RTA(Rapid Thermal Anneal)를 사용할 수 있다. LRTA는, 할로젠 램프, 메탈 할라이드 램프, 제논 아크 램프, 카본 아크 램프, 고압 소듐 램프, 고압 수은 램프 등의 램프로부터 발하는 광(전자기파)의 복사에 의하여, 피처리물을 가열한다. GRTA에서는 고온 가스를 사용하여 열처리를 수행한다.
상기 가열 장치에 의한 가열 처리는 100℃ 이상 1200℃ 이하, 바람직하게는 200℃ 이상 1000℃ 이하, 더 바람직하게는 250℃ 이상 650℃ 이하, 더욱 바람직하게는 300℃ 이상 600℃ 이하, 더욱더 바람직하게는 400℃ 이상 550℃ 이하, 나아가 더욱더 바람직하게는 420℃ 이상 480℃ 이하에서 수행하면 좋다. 또한 가열 처리는 질소 가스 또는 불활성 가스 분위기, 혹은 산화성 가스를 10ppm 이상, 1% 이상, 또는 10% 이상 포함하는 분위기에서 수행한다. 예를 들어 질소 가스와 산소 가스의 혼합 분위기에서 가열 처리를 수행하는 경우, 산소 가스를 20% 정도로 하면 좋다. 또한 가열 처리는 감압 상태에서 수행하여도 좋다. 또는 가열 처리는 질소 가스 또는 불활성 가스 분위기에서 가열 처리를 수행한 후에, 이탈된 산소를 보충하기 위하여 산화성 가스를 10ppm 이상, 1% 이상, 또는 10% 이상 포함하는 분위기에서 수행하여도 좋다. 또한, 가열 처리의 온도를 높게 한 경우, 금속 산화물이 다결정 구조가 되는 경우가 있기 때문에, 금속 산화물이 다결정 구조가 되지 않는 범위에서 가열 처리 온도를 적절히 설정하면 좋다. 다만, 본 발명의 일 형태에서는 금속 산화물이 다결정 구조를 가져도 좋다.
또한 상기 가열 처리에서 사용하는 가스는 고순도화되어 있는 것이 바람직하다. 예를 들어 상기 가열 처리에서 사용하는 가스에 포함되는 수분량을 1ppb 이하, 바람직하게는 0.1ppb 이하, 더 바람직하게는 0.05ppb 이하로 하면 좋다. 고순도화된 가스를 사용하여 가열 처리를 수행함으로써, 금속 산화물에 수분 등이 들어가는 것을 가능한 한 방지할 수 있다.
예를 들어 상기 가열 처리로서, 금속 산화물을 성막한 후에 질소 가스와 산소 가스의 유량비를 4slm:1slm으로 하여 400℃ 이상 550℃ 이하, 바람직하게는 420℃ 이상 480℃ 이하의 온도에서 1시간의 처리를 수행한다. 상기 가열 처리에 의하여, 금속 산화물에 포함되는 물, 수소 등의 불순물을 저감하는 것 등이 가능하다.
이와 같이 가열 처리를 수행함으로써, 금속 산화물에 포함되는 수소 또는 탄소 등의 불순물을 제거할 수 있다. 예를 들어 금속 산화물 내의 탄소를 CO2 및 CO로서 방출시키고, 금속 산화물 내의 수소를 H2O로서 방출시킬 수 있다. 상술한 바와 같이, 처리실(4011)은 반송실(4006)을 통하여 성막실(4008) 및 성막실(4009)과 접속되어 있기 때문에, 금속 산화물의 성막부터 가열 처리까지 외기에 노출시키지 않고 연속하여 수행할 수 있다. 따라서, 금속 산화물의 성막 후에 막 내의 수소 또는 탄소 등의 불순물을 증가시키지 않고 가열 처리를 수행할 수 있다. 또한, 상기 불순물의 제거와 동시에 금속 원자 및 산소 원자의 재배열이 수행되고, 결정성을 향상시킬 수 있다. 따라서, 결정성이 높은 층상의 결정 구조의 금속 산화물, 특히 상기 CAAC 구조의 금속 산화물을 형성할 수 있다.
또한, 앞에서는 처리실(4011)에 열처리 장치를 사용하는 예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니다. 예를 들어, 처리실(4011)에 마이크로파 처리 장치를 사용하는 구성으로 하여도 좋다. 마이크로파 처리를 수행함으로써, 금속 산화물에 포함되는 수소 또는 탄소 등의 불순물을 제거할 수 있다. 마이크로파 처리 및 마이크로파 처리 장치의 자세한 내용에 대해서는 추후의 실시형태의 기재를 참조할 수 있다.
<ALD 장치>
다음으로, 성막 장치(4000)로서 사용할 수 있는 열 ALD 장치의 구성에 대하여 도 8의 (A)를 사용하여 설명한다. 열 ALD 장치는 성막실(체임버(4520))과, 원료 공급부(4521)(원료 공급부(4521a) 내지 원료 공급부(4521c))와, 원료 공급부(4531)와, 도입량 제어기인 고속 밸브(4522a) 내지 고속 밸브(4522d)와, 가스 공급부(4532)와, 원료 도입구(4523)와, 원료 배출구(4524)와, 배기 장치(4525)를 가진다. 체임버(4520) 내에 설치되는 원료 도입구(4523)는 공급관 및 밸브를 통하여 원료 공급부(4521a), 원료 공급부(4521b), 원료 공급부(4521c), 원료 공급부(4531), 및 가스 공급부(4532)와 각각 접속되어 있고, 원료 배출구(4524)는 배출관이나 밸브나 압력 조정기를 통하여 배기 장치(4525)와 접속되어 있다.
체임버(4520) 내부에는 기판 홀더(4526)가 있고, 그 기판 홀더(4526) 위에 기판(4530)을 배치한다. 기판 홀더(4526)는 회전 기구를 가져도 좋다. 또한, 체임버(4520) 외벽에는 히터(4527)가 제공되어 있고, 체임버(4520) 내부, 기판 홀더(4526), 및 기판(4530)의 표면 등의 온도를 제어할 수 있다. 히터(4527)는 기판(4530)의 표면의 온도를 100℃ 이상 600℃ 이하, 바람직하게는 200℃ 이상 600℃ 이하, 더 바람직하게는 300℃ 이상 전구체의 분해 온도 이하로 제어할 수 있는 것이 바람직하고, 히터(4527) 자체의 온도는 100℃ 이상 600℃ 이하로 설정할 수 있는 것이 바람직하다. 이와 같은 온도 범위에서 기판을 가열하면서 성막을 수행함으로써, 전구체 또는 반응제 등에 포함되는 수소 또는 탄소 등의 불순물을 금속 산화물 내에서 적합하게 제거할 수 있다. 또한, 상기 불순물의 제거와 동시에 금속 원자 및 산소 원자의 재배열이 수행되고, 각 산화물의 층을 높은 질서성으로 배열할 수 있다. 따라서, 결정성이 높은 층상의 결정 구조의 금속 산화물을 형성할 수 있다. 또한, 히터(4527)를 사용하여 금속 산화물 성막 후의 열처리를 수행하여도 좋다.
원료 공급부(4521a), 원료 공급부(4521b), 원료 공급부(4521c), 및 원료 공급부(4531)에서는 기화기 또는 가열 수단 등에 의하여 고체의 원료 또는 액체의 원료로 원료 가스를 형성한다. 또는, 원료 공급부(4521a), 원료 공급부(4521b), 원료 공급부(4521c), 및 원료 공급부(4531)는 기체의 워료 가스를 공급하는 구성으로 하여도 좋다.
도 8의 (A)에 나타낸 성막 장치에서는, 원료 공급부(4521) 및 원료 공급부(4531)에서 사용하는 원료(휘발성 유기 금속 화합물 등)를 적절히 선택하여 체임버(4520)에 도입함으로써, 금속 산화물을 형성할 수 있다. 상술한 바와 같이, 금속 산화물로서 인듐, 갈륨, 아연을 포함하는 In-Ga-Zn 산화물을 형성하는 경우, 도 8의 (A)에 나타낸 바와 같이, 적어도 3개의 원료 공급부(4521a) 내지 원료 공급부(4521c)와, 적어도 하나의 원료 공급부(4531)가 제공된 성막 장치를 사용하는 것이 바람직하다.
예를 들어 원료 공급부(4521a)로부터 인듐을 포함하는 전구체가 공급되고, 원료 공급부(4521b)로부터 갈륨을 포함하는 전구체가 공급되고, 원료 공급부(4521c)로부터 아연을 포함하는 전구체가 공급되는 구성으로 하면 좋다. 인듐을 포함하는 전구체, 갈륨을 포함하는 전구체, 및 아연을 포함하는 전구체로서 각각 상술한 전구체를 사용할 수 있다. 인듐을 포함하는 전구체, 갈륨을 포함하는 전구체, 및 아연을 포함하는 전구체는 분해 온도가 높은 것이 바람직하고, 예를 들어 무기 전구체를 사용하는 것이 바람직하다. 또한, 할로젠계 화합물 등을 무기 전구체로서 사용하는 경우, 가스의 부식성이 높은 경우가 있다. 따라서, 체임버, 배관, 각종 가스의 공급부 등 가스가 접촉하는 부재에 타이타늄 등의 내부식성이 높은 재료를 사용하는 것이 바람직하다.
또한, 원료 공급부(4531)로부터는 반응제가 공급된다. 반응제로서는 오존, 산소, 물 중 적어도 하나를 포함하는 산화제를 사용할 수 있다.
또한, 가스 공급부(4532)로부터는 캐리어 가스가 공급된다. 캐리어 가스로서, 아르곤(Ar), 헬륨(He), 또는 질소(N2) 등의 불활성 가스를 사용할 수 있다. 원료 공급부(4521)의 전구체 및 원료 공급부(4531)의 반응제는 상기 캐리어 가스와 혼합되어 체임버(4520)에 도입된다.
또한, 원료 공급부(4521a), 원료 공급부(4521b), 원료 공급부(4521c), 원료 공급부(4531), 및 가스 공급부(4532)와, 체임버(4520) 사이의 배관 또는 밸브 등을 덮어 배관 히터(4534a)가 제공된다. 또한, 배기 장치(4525)와 체임버(4520) 사이의 배관 또는 밸브 등을 덮어 배관 히터(4534b)가 제공된다. 배관 히터(4534a) 및 배관 히터(4534b)의 온도는 예를 들어 실온 이상 300℃ 이하의 범위에서 적절히 설정하면 좋다. 이와 같은 배관 히터를 제공함으로써, 원료 공급부(4521)로부터 공급된 전구체 등이 가스 도입계 및 가스 배기계의 배관 등의 내벽에서 응고되는 것을 방지할 수 있다. 특히 무기 전구체 등 분해 온도가 높은 전구체는 응고되기 쉬운 경향이 있기 때문에, 이와 같은 전구체를 사용하는 경우, 가스 도입계 및 가스 배기계의 배관을 덮어 배관 히터를 제공하는 구성으로 하는 것이 바람직하다. 또한, 배관 히터(4534a), 배관 히터(4534b), 및 히터(4527)의 온도는 각각 독립적으로 제어하는 구성으로 하면 좋다. 배관 히터(4534a), 배관 히터(4534b), 및 히터(4527)를 각각 독립적으로 제어함으로써, 각 히터의 온도를 개별적으로 제어할 수 있다. 다만, 이에 한정되지 않고, 배관 히터(4534a), 배관 히터(4534b), 및 히터(4527)의 온도 제어가 각각 연동되는 구성으로 하여도 좋다. 이 경우, 온도 제어를 일괄적으로 조정할 수 있기 때문에, 장치 부재 등을 저렴하게 할 수 있다.
고속 밸브(4522a) 내지 고속 밸브(4522d)는 시간에 따라 정밀하게 제어할 수 있다. 이에 의하여, 원료 공급부(4521a), 원료 공급부(4521b), 원료 공급부(4521c), 및 원료 공급부(4531)로부터 공급되는 원료 가스를 제어하여 체임버(4520)에 도입할 수 있는 구성이 되어 있다.
예를 들어, 원료 공급부(4521a), 원료 공급부(4521b), 및 원료 공급부(4521c)에 포함되는 전구체를 공급하는 경우에는, 고속 밸브(4522a) 내지 고속 밸브(4522c) 중 대응하는 고속 밸브를 열면 좋다. 또한, 원료 공급부(4531)에 포함되는 반응제를 공급하는 경우에는, 고속 밸브(4522d)를 열면 좋다. 또한, 체임버(4520)를 퍼지하는 경우에는 고속 밸브(4522a) 내지 고속 밸브(4522d)를 닫고 가스 공급부(4532)에 포함되는 캐리어 가스만을 체임버(4520)에 도입하면 좋다.
또한 도 8의 (A)에서는 원료 공급부(4521)를 3개, 원료 공급부(4531)를 하나 제공하는 예를 나타내었지만, 본 실시형태는 이에 한정되지 않는다. 원료 공급부(4521)를 하나, 2개, 또는 4개 이상 제공하여도 좋다. 또한, 원료 공급부(4531)를 2개 이상 제공하여도 좋다.
또한, 도 8의 (A)에서, 히터(4527), 원료 도입구(4523), 및 원료 배출구(4524)가 체임버(4520) 하부에 배치되어 있지만, 이에 한정되지 않고, 이들의 배치를 적절히 설정할 수 있다. 또한, 도 8의 (A)에서 원료 공급부(4521a), 원료 공급부(4521b), 원료 공급부(4521c), 원료 공급부(4531), 및 가스 공급부(4532)의 도입구는 원료 도입구(4523)에 모여 있지만, 이에 한정되지 않고, 각각 다른 도입구를 제공하는 구성으로 하여도 좋다.
다음으로, 성막 장치(4000)로서 사용할 수 있는 플라스마 ALD 장치의 구성에 대하여 도 8의 (B)를 사용하여 설명한다. 플라스마 ALD 장치는 성막실(체임버(4020))과, 원료 공급부(4021)(원료 공급부(4021a) 내지 원료 공급부(4021c))와, 원료 공급부(4031)와, 도입량 제어기인 고속 밸브(4022a) 내지 고속 밸브(4022d)와, 가스 공급부(4032)와, 원료 도입구(4023)와, 원료 도입구(4033)와, 원료 배출구(4024)와, 배기 장치(4025)를 가진다. 체임버(4020) 내에 설치되는 원료 도입구(4023) 및 원료 도입구(4033)는 공급관 및 밸브를 통하여 원료 공급부(4021a), 원료 공급부(4021b), 원료 공급부(4021c), 원료 공급부(4031), 및 가스 공급부(4032)와 각각 접속되어 있고, 원료 배출구(4024)는 배출관, 밸브, 및 압력 조정기를 통하여 배기 장치(4025)에 접속되어 있다. 또한, 체임버(4020) 내부에는 기판 홀더(4026)가 있고, 그 기판 홀더(4026) 위에 기판(4030)을 배치한다. 또한, 체임버 외벽에는 히터(4027)가 제공되어 있고, 체임버에 접속되는 배관 등을 덮어 배관 히터(4034a) 및 배관 히터(4034b)가 제공되어 있다.
여기서, 체임버(4020)는 체임버(4520)와, 원료 공급부(4021)는 원료 공급부(4521)와, 원료 공급부(4031)는 원료 공급부(4531)와, 고속 밸브(4022a) 내지 고속 밸브(4022d)는 고속 밸브(4522a) 내지 고속 밸브(4522d)와, 가스 공급부(4032)는 가스 공급부(4532)와, 원료 도입구(4023)는 원료 도입구(4523)와, 원료 배출구(4024)는 원료 배출구(4524)와, 배기 장치(4025)는 배기 장치(4525)와, 기판 홀더(4026)는 기판 홀더(4526)와, 기판(4030)은 기판(4530)과, 히터(4027)는 히터(4527)와, 배관 히터(4034a)는 배관 히터(4534a)와, 배관 히터(4034b)는 배관 히터(4534b)와 대응하고, 자세한 구성에 대해서는 상술한 것을 참조할 수 있다.
플라스마 ALD 장치는 도 8의 (B)에 나타낸 바와 같이 체임버(4020)에 플라스마 발생 장치(4028)를 접속시킴으로써, 열 ALD법뿐만 아니라 플라스마 ALD법에 의해서도 성막을 할 수 있다. 플라스마 발생 장치(4028)는 고주파 전원과 접속된 코일(4029)을 사용하는 ICP형 플라스마 발생 장치로 하는 것이 바람직하다. 고주파 전원은 10kHz 이상 100MHz 이하, 바람직하게는 1MHz 이상 60MHz 이하, 더 바람직하게는 2MHz 이상 60MHz 이하의 주파수를 가지는 전력을 출력할 수 있다. 예를 들어 13.56MHz의 주파수를 가지는 전력을 출력할 수 있다. 플라스마 ALD법은 저온에서도 성막 레이트를 저하시키지 않고 성막을 수행할 수 있기 때문에, 성막 효율이 낮은 매엽식 성막 장치에 사용되면 좋다.
원료 공급부(4031)로부터 배출된 반응제는 플라스마 발생 장치(4028)를 통과하여 플라스마 상태가 된다. 플라스마 상태가 된 반응제는 원료 도입구(4033)로부터 체임버(4020)에 도입된다. 또한, 도 8의 (B)에서는 도시하지 않았지만, 원료 공급부(4031)로부터 배출된 반응제가 캐리어 가스와 혼합되는 구성으로 하여도 좋다.
또한, 기판 홀더(4526)에는 일정한 전위 또는 고주파가 인가되는 기구가 제공되어 있어도 좋다. 또는 기판 홀더(4526)는 플로팅이어도 좋고 접지되어도 좋다.
또한, 도 8의 (B)에서 원료 도입구(4033)가 체임버(4520) 상부에 배치되고, 히터(4027) 및 원료 도입구(4023)가 체임버(4520) 측면에 배치되고, 원료 배출구(4524)가 체임버(4520) 하부에 배치되어 있지만, 이에 한정되지 않고, 이들의 배치를 적절히 설정할 수 있다.
도 9의 (A) 내지 (C)는, 성막 장치(4000)에 사용할 수 있는 ALD 장치의 다른 구성에 대하여 설명하기 위한 것이다. 또한 도 8의 (B)에 나타낸 ALD 장치와 같은 구성, 및 그 기능에 대해서는 자세한 설명을 생략하는 경우가 있다.
도 9의 (A)는 플라스마 ALD 장치의 일 형태를 나타낸 모식도이다. 플라스마 ALD 장치(4100)에서는 반응실(4120)과 반응실(4120) 상부에 플라스마 생성실(4111)이 제공되어 있다. 반응실(4120)은 체임버라고 부를 수 있다. 또는, 반응실(4120)과 플라스마 생성실(4111)을 통틀어 체임버라고 부를 수 있다. 반응실(4120)은 원료 도입구(4123)와 원료 배출구(4124)를 가지고, 플라스마 생성실(4111)은 원료 도입구(4133)를 가진다. 또한, RF 등의 고주파 또는 마이크로파를 플라스마 생성 장치(4128)에 의하여 플라스마 생성실(4111)에 도입된 가스에 인가하여, 플라스마 생성실(4111) 내에 플라스마(4131)를 생성할 수 있다. 마이크로파를 사용하여 플라스마(4131)를 생성하는 경우, 대표적으로는 주파수 2.45GHz의 마이크로파가 사용된다. 이와 같은 마이크로파와 자기장을 인가하여 생성된 플라스마를 ECR(Electron Cyclotron Resonance) 플라스마라고 부르는 경우가 있다.
또한, 반응실(4120)은 기판 홀더(4126)를 가지고, 그 위에 기판(4130)이 배치된다. 원료 도입구(4123)로부터 도입된 원료 가스는 반응실(4120)에 제공된 히터로부터의 열에 의하여 분해되고, 기판(4130) 위에 퇴적된다. 또한, 원료 도입구(4133)로부터 도입된 원료 가스는 플라스마 생성 장치(4128)에 의하여 플라스마 상태가 된다. 플라스마 상태가 된 원료 가스는, 기판(4130)의 표면에 도달되기 전까지에 전자 또는 다른 분자와 재결합하여 라디칼 상태가 되고, 기판(4130)에 도달된다. 이와 같이, 라디칼을 이용하여 성막을 수행하는 ALD 장치를 라디칼 ALD(Radical-Enhanced ALD) 장치라고 부르는 경우도 있다. 또한, 플라스마 ALD 장치(4100)에서 플라스마 생성실(4111)을 반응실(4120) 상부에 제공하는 구성을 나타내었지만, 본 실시형태는 이에 한정되지 않는다. 플라스마 생성실(4111)을 반응실(4120)의 측면과 인접하여 제공하여도 좋다.
도 9의 (B)는 플라스마 ALD 장치의 일 형태를 나타낸 모식도이다. 플라스마 ALD 장치(4200)는 체임버(4220)를 가진다. 체임버(4220)는 전극(4213), 원료 배출구(4224), 및 기판 홀더(4226)를 가지고, 기판 홀더(4226) 위에 기판(4230)이 배치된다. 전극(4213)은 원료 도입구(4223)와, 도입된 원료 가스를 체임버(4220) 내에 공급하는 샤워 헤드(4214)를 가진다. 또한, 전극(4213)에는 콘덴서(4217)를 통하여 고주파를 인가할 수 있는 전원(4215)이 접속되어 있다. 기판 홀더(4226)에는 일정한 전위 또는 고주파가 인가되는 기구가 제공되어 있어도 좋다. 또는 기판 홀더(4226)는 플로팅이어도 좋고 접지되어도 좋다. 전극(4213) 및 기판 홀더(4226)는 각각 플라스마(4231)를 생성하기 위한 상부 전극 및 하부 전극으로서 기능한다. 원료 도입구(4223)로부터 도입된 원료 가스는 체임버(4220)에 제공된 히터로부터의 열에 의하여 분해되고, 기판(4230) 위에 퇴적된다. 또는, 원료 도입구(4223)로부터 도입된 원료 가스는 전극(4213)과 기판 홀더(4226) 사이에서 플라스마 상태가 된다. 플라스마 상태가 된 원료 가스는, 플라스마(4231)와 기판(4230) 사이에 생기는 전위차(이온 시스(ion sheath)라고도 함)에 의하여 기판(4230)에 입사한다.
도 9의 (C)는 도 9의 (B)와는 다른 플라스마 ALD 장치의 일 형태를 나타낸 모식도이다. 플라스마 ALD 장치(4300)는 체임버(4320)를 가진다. 체임버(4320)는 전극(4313), 원료 배출구(4324), 및 기판 홀더(4326)를 가지고, 기판 홀더(4326) 위에 기판(4330)이 배치된다. 전극(4313)은 원료 도입구(4323)와, 도입된 원료 가스를 체임버(4320) 내에 공급하는 샤워 헤드(4314)를 가진다. 또한, 전극(4313)에는 콘덴서(4317)를 통하여 고주파를 인가할 수 있는 전원(4315)이 접속되어 있다. 기판 홀더(4326)에는 일정한 전위 또는 고주파가 인가되는 기구가 제공되어 있어도 좋다. 또는 기판 홀더(4326)는 플로팅이어도 좋고 접지되어도 좋다. 전극(4313) 및 기판 홀더(4326)는 각각 플라스마(4331)를 생성하기 위한 상부 전극 및 하부 전극으로서 기능한다. 플라스마 ALD 장치(4300)는 전극(4313)과 기판 홀더(4326) 사이에, 콘덴서(4322)를 통하여 고주파를 인가할 수 있는 전원(4321)이 접속된 메시(4319)를 가지는 점에서 플라스마 ALD 장치(4200)와 다르다. 메시(4319)를 제공함으로써, 기판(4130)으로부터 플라스마(4231)를 멀어지게 할 수 있다. 원료 도입구(4323)로부터 도입된 원료 가스는 체임버(4320)에 제공된 히터로부터의 열에 의하여 분해되고, 기판(4330) 위에 퇴적된다. 또는, 원료 도입구(4323)로부터 도입된 원료 가스는 전극(4313)과 기판 홀더(4326) 사이에서 플라스마 상태가 된다. 플라스마 상태가 된 원료 가스는, 메시(4319)에 의하여 전하가 제거되고, 라디칼 등의 전기적으로 중성인 상태로 기판(4130)에 도달된다. 그러므로, 이온의 입사 및 플라스마로 인한 손상이 억제된 성막을 수행할 수 있다.
또한, 도 8의 (B), 도 9의 (A) 내지 (C)에 나타낸 플라스마 ALD 장치를 사용하여 금속 산화물 성막 후의 마이크로파 처리를 수행하는 구성으로 하여도 좋다.
<성막 시퀀스>
다음으로, 도 10의 (A) 내지 도 12를 사용하여 도 8의 (A)에 나타낸 ALD 장치를 사용한 금속 산화물의 성막 시퀀스에 대하여 설명한다. 도 10의 (A) 내지 도 12에서, 제 1 원료 가스 내지 제 4 원료 가스의 도입을 각각 ON으로 나타내고, 원료 가스가 도입되지 않는 기간을 OFF로 나타내었다.
도 10의 (A)에, 도 8의 (A)에 나타낸 ALD 장치를 사용한 성막 시퀀스를 나타내었다. 먼저, 체임버(4520) 내의 기판 홀더(4526)에 기판(4530)을 설치한다(단계 S101). 다음으로, 히터(4527)의 온도 조절을 수행한다(단계 S102). 이때, 배관 히터(4534a) 및 배관 히터(4534b)의 온도 조절도 하면 좋다. 다음으로, 기판(4530)의 온도가 기판면 내에서 같게 되도록 기판(4530)을 기판 홀더(4526) 위에서 유지한다(단계 S103). 다음으로, 상술한 제 1 단계 내지 제 4 단계에 따라 금속 산화물의 성막을 수행한다(단계 S104). 또한, 기판(4530)을 세트한(단계 S101) 후에 히터(4527)의 온도 조절이 불필요한 경우에는 단계 S102를 생략하여도 좋다.
단계 S104에서는, 체임버(4520)에 제 1 원료 가스(전구체를 가지는 원료 가스) 및 제 2 원료 가스(반응제를 가지는 원료 가스)를 번갈아 도입하고, 기판(4530) 위에 성막을 한다. 제 1 원료 가스 및 제 2 원료 가스의 도입은 각각 펄스상으로 수행된다. 제 1 원료 가스 및 제 2 원료 가스가 모두 도입되지 않는 기간에는, 체임버(4520) 내가 퍼지되어 있다. ALD법에 의한 성막은 제 1 원료 가스의 도입(상기 제 1 단계), 제 1 원료 가스의 퍼지(상기 제 2 단계), 제 2 원료 가스의 도입(상기 제 3 단계), 제 2 원료 가스의 퍼지(상기 제 4 단계)를 1사이클(1 cycle)로 하고, 이를 반복함으로써 원하는 막 두께를 가지는 막이 형성된다.
또한, 단계 S103과 단계 S104 사이에, 반응제를 가지는 제 2 원료 가스를 체임버(4020) 내부에 도입하여도 좋다. 제 2 원료 가스로서는, 산화제로서 기능하는 오존(O3), 산소(O2), 및 물(H2O) 중에서 선택된 하나 또는 복수를 도입하는 것이 바람직하다. 제 2 원료 가스로서 물을 도입함으로써, 기판(4530) 위에 친수기를 형성할 수 있기 때문에, 전구체의 흡착성을 더 향상시킬 수 있다. 제 2 원료 가스로서 오존 및 산소를 도입함으로써, 체임버 내를 산소 분위기로 하고, 기판(4530)에 형성된 하지 절연막 등에 산소를 공급할 수 있다. 이에 의하여, 상기 하지 절연막 위에 형성되는 금속 산화물막에 산소를 공급하고, 막 내의 산소 농도를 높일 수 있다. 이때, 제 2 원료 가스는 단계 S104에서 나타낸 방법과 같은 식으로 펄스상으로 도입되는 것이 바람직하지만, 본 발명의 일 형태는 이에 한정되지 않는다. 제 2 원료 가스는 연속적으로 도입되어도 좋다. 제 2 원료 가스가 도입되지 않는 기간에는, 체임버(4520) 내를 배기한다.
상기 제 1 원료 가스를 사용한 1사이클에서 제 1 산화물층을 형성하고, 제 1 원료 가스와 다른 제 3 원료 가스를 사용한 1사이클에서 제 2 산화물층을 형성하고, 제 1 원료 가스와 다른 제 4 원료 가스를 사용한 1사이클에서 제 3 산화물층을 형성함으로써, 복수의 상이한 산화물층을 가지는 층상의 결정성 산화물을 성막할 수 있다. 이하에서는 일례로서 도 5의 (A) 내지 도 6의 (C)에 나타낸 In-Ga-Zn 산화물의 성막 과정에 대응시킨 성막 시퀀스에 대하여 도 10의 (B)를 사용하여 설명한다.
도 10의 (B)는 전구체를 가지는 제 1 원료 가스 내지 제 3 원료 가스를 사용하여 성막하는 예에 대하여, 성막 시퀀스의 단계 S104를 나타내기 위한 것이다. 또한, 단계 S101 내지 단계 S103에 대해서는 상기와 같이 수행하면 좋다. 여기서, 제 1 원료 가스는 인듐을 포함하는 전구체를 포함하고, 제 3 원료 가스는 갈륨을 포함하는 전구체를 포함하고, 제 4 원료 가스는 아연을 포함하는 전구체를 포함하는 것으로 한다.
도 10의 (B)에 나타낸 바와 같이, 먼저 제 1 원료 가스를 도입하고, 인듐을 포함하는 전구체를 기판(4530) 위에 흡착시킨다(도 5의 (A)에 대응함). 그 후에 제 1 원료 가스의 도입을 정지하고 체임버 내의 과잉한 제 1 원료 가스를 퍼지한다.
다음으로, 제 2 원료 가스를 도입하고, 흡착된 인듐을 포함하는 전구체와 산화제를 반응시켜 인듐 산화물의 층을 형성한다(도 5의 (B)에 대응함). 그 후에 제 2 원료 가스의 도입을 정지하고 체임버 내의 과잉한 제 2 원료 가스를 퍼지한다.
다음으로, 제 3 원료 가스를 도입하고, 갈륨을 포함하는 전구체를 인듐 산화물의 층 위에 흡착시킨다(도 5의 (C)에 대응함). 그 후에 제 3 원료 가스의 도입을 정지하고, 체임버 내의 과잉한 제 3 원료 가스를 퍼지한다.
다음으로, 제 2 원료 가스를 도입하고, 흡착된 인듐을 포함하는 전구체와 산화제를 반응시켜 갈륨 산화물의 층을 형성한다(도 5의 (D)에 대응함). 그 후에 제 2 원료 가스의 도입을 정지하고 체임버 내의 과잉한 제 2 원료 가스를 퍼지한다.
다음으로, 제 4 원료 가스를 도입하고, 아연을 포함하는 전구체를 갈륨 산화물의 층 위에 흡착시킨다(도 6의 (A)에 대응함). 그 후에 제 4 원료 가스의 도입을 정지하고 체임버 내의 과잉한 제 4 원료 가스를 퍼지한다.
다음으로, 제 2 원료 가스를 도입하고, 흡착된 아연을 포함하는 전구체와 산화제를 반응시켜 아연 산화물의 층을 형성한다(도 6의 (B)에 대응함). 그 후에 제 2 원료 가스의 도입을 정지하고 체임버 내의 과잉한 제 2 원료 가스를 퍼지한다. 또한, 상기 방법을 사용하여 아연 산화물 위에 인듐을 포함하는 전구체를 흡착시킨다(도 6의 (C)에 대응함).
상기와 같이 산화 인듐, 산화 갈륨, 및 산화 아연을 형성하는 공정을 1사이클로 하고 사이클을 반복함으로써, 원하는 막 두께의 In:Ga:Zn=1:1:1[원자수비]의 In-Ga-Zn 산화물을 형성할 수 있다.
또한, 제 1 원료 가스 내지 제 4 원료 가스의 도입은 각각 펄스상으로 수행된다. 체임버(4520)에 제 1 원료 가스, 제 3 원료 가스, 및 제 4 원료 가스를 도입하는 펄스 시간은 0.05초 이상 1초 이하, 바람직하게는 0.1초 이상 0.5초 이하로 하는 것이 바람직하다. 또한 제 1 원료 가스, 제 3 원료 가스, 및 제 4 원료 가스를 체임버(4520)로부터 배기하는 시간은 0.1초 이상 15초 이하, 바람직하게는 0.5초 이상 10초 이하로 한다. 체임버(4520)에 제 2 원료 가스를 도입하는 펄스 시간은 0.05초 이상 30초 이하, 바람직하게는 0.1초 이상 15초 이하로 하는 것이 바람직하다. 또한 제 2 원료 가스를 체임버(4520)로부터 배기하는 시간은 0.1초 이상 15초 이하, 바람직하게는 0.1초 이상 5초 이하로 한다.
또한 도 10의 (B)에 나타낸 시퀀스에서, 제 1 원료 가스, 제 3 원료 가스, 및 제 4 원료 가스의 도입 순서는 이에 한정되지 않는다. 예를 들어 아연을 포함하는 전구체를 포함하는 제 4 가스를 먼저 도입하여도 좋다. 산화 아연은 산화 인듐 및 산화 갈륨보다 결정 구조를 형성하기 쉽기 때문에, 최하층에 안정된 산화 아연의 결정을 형성할 수 있다. 이에 의하여, 산화 아연 위에 산화 인듐 및 산화 갈륨의 층을 비교적 쉽게 형성할 수 있다.
앞에서는 In:Ga:Zn=1:1:1[원자수비]의 In-Ga-Zn 산화물의 성막에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니다. 같은 방법을 사용하여 원자수비가 다른 In-Ga-Zn 산화물을 형성할 수 있다. 요구되는 In-Ga-Zn 산화물의 원자수비에 맞추어, 1사이클에서의 전구체를 포함하는 원료 가스의 펄스 횟수, 또는 펄스 시간을 설정하는 것이 바람직하다.
예를 들어, 도 10의 (B)에 나타낸 시퀀스에서는 In:Ga:Zn=1:1:1[원자수비]의 In-Ga-Zn 산화물을 성막하기 위하여 1사이클 중의 인듐을 포함하는 제 1 원료 가스와, 갈륨을 포함하는 제 3 원료 가스와, 아연을 포함하는 제 4 원료 가스의 펄스 횟수를 한 번씩으로 하였다. 이때, 각각의 전구체의 펄스 시간은 같은 것으로 한다.
도 11의 (A)에 In:Ga:Zn=1:3:4[원자수비]의 In-Ga-Zn 산화물의 성막 시퀀스의 예를 나타내었다. 도 11의 (A)에서는 1사이클 중의 인듐을 포함하는 제 1 원료 가스의 펄스 횟수가 한 번, 갈륨을 포함하는 제 3 원료 가스의 펄스 횟수가 세 번, 아연을 포함하는 제 4 원료 가스의 펄스 횟수가 네 번이다. 즉, 전구체를 포함하는 원료 가스의 펄스 횟수가 In:Ga:Zn=1:3:4[원자수비]에 대응한다. 이와 같이 성막을 함으로써, 도 2의 (D)에 따른 층상의 결정 구조의 금속 산화물을 형성할 수 있다.
또한, 상술한 바와 같이, 기판을 가열하면서 ALD법에 의한 성막을 수행함으로써, 각 산화물층의 재배열을 촉진할 수 있다. 이에 의하여, 도 11의 (A)에 나타낸 시퀀스에 따라 성막하여도 도 2의 (D)에 나타낸 층(22)과 같이 하나의 산화물층에 2종류의 금속 원소(인듐 및 갈륨)를 가지는 층을 형성할 수 있다.
또한, 상기에서는 상이한 종류의 전구체의 도입 사이에 반응제를 포함하는 원료 가스의 도입을 두었지만, 본 발명은 이에 한정되는 것이 아니다. 예를 들어 반응제를 포함하는 원료 가스의 도입을 사이에 두면서 연석하여 같은 종류의 전구체를 포함하는 원료 가스를 도입하여도 좋다. 이때, 1사이클에서의 전구체를 포함하는 원료 가스의 펄스 횟수는 요구되는 In-Ga-Zn 산화물의 원자수비와 같은 것이 바람직하다.
또한, 상기에서는 제 2 원료 가스로 산화를 하는 인터벌 사이에 1종류의 전구체를 포함하는 원료 가스만을 도입하는 구성을 나타내었지만, 본 발명은 이에 한정되는 것이 아니다. 제 2 원료 가스로 산화를 하는 인터벌 사이에 전구체를 포함하는 원료 가스를 2종류 이상 도입하는 구성으로 하여도 좋다. 이때, 전구체를 포함하는 원료 가스를 2종류 이상 동시에 도입하는 구성으로 하여도 좋다. 또한, 제 2 원료 가스로 산화를 하는 인터벌 사이에 같은 종류의 전구체를 2번 연속으로 도입하는 구성으로 하여도 좋다.
예를 들어, In:Ga:Zn=1:3:4[원자수비]의 In-Ga-Zn 산화물을 성막할 때, 도 11의 (B)에 나타낸 바와 같은 시퀀스로 성막하여도 좋다. 도 11의 (B)에서는 도 2의 (D)에 나타낸 층(22), 층(41), 층(31), 층(41)의 순서로 적층되는 결정 구조에 맞추어 제 1 원료 가스, 제 3 원료 가스, 제 4 원료 가스, 제 3 원료 가스, 제 4 원료 가스의 순서로 도입하였다. 다만, 최초의 제 1 원료 가스의 도입과 제 3 원료 가스의 도입은 사이에 제 2 원료 가스의 도입을 두지 않고 수행하였다. 즉, 제 1 원료 가스에 포함되는 인듐을 포함하는 전구체와, 제 3 원료 가스에 포함되는 갈륨을 포함하는 전구체가 흡착된 후에 산화제롤 도입하였다. 이에 의하여, 도 2의 (D)에 나타낸 층(22)과 같이 하나의 산화물층에 2종류의 금속 원소(인듐 및 갈륨)를 가지는 층을 형성할 수 있다. 이때, 제 1 원료 가스와 제 3 원료 가스의 펄스 시간은 제 4 원료 가스의 펄스 시간의 절반 정도로 하는 것이 바람직하다. 이에 의하여, 도 11의 (B)에 나타낸 바와 같이, 1사이클 중의 인듐을 포함하는 제 1 원료 가스의 펄스 시간과, 갈륨을 포함하는 제 3 원료 가스의 펄스 시간과, 아연을 포함하는 제 4 원료 가스의 펄스 시간의 비율을 원자수비와 같은 1:3:4로 할 수 있다.
앞에서는, 원자수비가 일정한 산화물의 성막에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니다. 같은 방법을 사용하여 원자수비가 다른 2종류 이상의 산화물을 연속적으로 성막할 수 있다. 이 경우, 원자수비가 다른 적층 산화물에서, 각각의 산화물의 원자수비에 맞추어 1사이클에서의 전구체를 포함하는 원료 가스의 펄스 횟수, 또는 펄스 시간을 설정하는 것이 바람직하다. 이와 같이 성막함으로써, 원자수비가 다른 적층 산화물을 단일의 체임버에서 성막할 수 있다. 따라서, 각각의 산화물을 성막하는 인터벌에서, 수소 또는 탄소 등의 불순물이 들어가는 것을 방지할 수 있다.
도 12에, In:Ga:Zn=1:3:4[원자수비]의 산화물 위에 In:Ga:Zn=1:1:1[원자수비]의 산화물을 적층할 때의 성막 시퀀스의 예를 나타내었다. 단계 104a는 In:Ga:Zn=1:3:4[원자수비]의 산화물에 대응하고, 도 11의 (A)에 나타낸 시퀀스와 같다. 또한, 단계 104b는 In:Ga:Zn=1:1:1[원자수비]의 산화물에 대응하고, 도 10의 (B)에 나타낸 시퀀스와 같다. 이와 같이, 전반에는 1사이클의 펄스 횟수를 제 1 원료 가스:제 3 원료 가스:제 4 원료 가스=1:3:4로 수행하고, 후반에는 1사이클의 펄스 횟수를 제 1 원료 가스:제 3 원료 가스:제 4 원료 가스=1:1:1로 수행함으로써, 도 3의 (B)에 나타낸 산화물(62)과 산화물(60)의 적층 구조의 금속 산화물을 성막할 수 있다. 즉, 전반은 In:Ga:Zn=1:3:4[원자수비]에 대응한 펄스 횟수로 성막하고, 후반은 In:Ga:Zn=1:1:1[원자수비]에 대응한 펄스 횟수로 성막하였다.
또한, 앞에서는 In-Ga-Zn 산화물을 예로 들어 성막 방법에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니다. 요구되는 금속 산화물에 포함되는 금속 원소에 맞추어 적절히 전구체를 설정하면 좋다. 또한, 앞에서는 전구체의 수를 1종류 또는 3종류로 하였지만, 이에 한정되지 않고 2종류 또는 4종류 이상으로 하여도 좋다.
또한, 앞에서 1종류의 금속 원소를 포함하는 전구체를 사용하여 성막을 하는 예를 나타내었지만, 본 발명은 이에 한정되는 것이 아니다. 2종류 이상의 금속 원소를 포함하는 전구체를 사용하여도 좋다. 예를 들어 인듐과 갈륨을 포함하는 전구체, 또는 갈륨과 아연을 포함하는 전구체 등을 사용하여도 좋다. 이 경우, 도 8의 (A) 등에 나타낸 원료 공급부(4521)의 수를 줄일 수 있다.
<결정 구조의 분류>
이하에서는 상기 금속 산화물(산화물 반도체)에서의 결정 구조의 분류에 대하여 설명한다.
먼저, 산화물 반도체에서의 결정 구조의 분류에 대하여 도 13의 (A)를 사용하여 설명한다. 도 13의 (A)는 산화물 반도체, 대표적으로는 IGZO(In과, Ga와, Zn을 포함하는 금속 산화물)의 결정 구조의 분류를 설명하는 도면이다.
도 13의 (A)에 나타낸 바와 같이, 산화물 반도체는 크게 나누어 "Amorphous(무정형)", "Crystalline(결정성)", "Crystal(결정)"로 분류된다. 또한 "Amorphous"에는 completely amorphous가 포함된다. 또한, "Crystalline"의 범주에는 CAAC(c-axis-aligned crystalline), nc(nanocrystalline), 및 CAC(cloud-aligned composite)가 포함된다(excluding single crystal and poly crystal). 또한, "Crystalline"의 분류에서는 single crystal, poly crystal, 및 completely amorphous는 제외된다. 또한, "Crystal"의 범주에는 single crystal 및 poly crystal이 포함된다.
또한 도 13의 (A)에 나타낸 굵은 테두리 내의 구조는 "Amorphous(무정형)"와 "Crystal(결정)"의 중간 상태이고, 새로운 경계 영역(New crystalline phase)에 속하는 구조이다. 즉 상기 구조는 에너지적으로 불안정한 "Amorphous(무정형)", 또는 "Crystal(결정)"과는 전혀 다른 구조라고 할 수 있다.
또한 막 또는 기판의 결정 구조는 X선 회절(XRD: X-Ray Diffraction) 스펙트럼을 사용하여 평가할 수 있다. 여기서, "Crystalline"으로 분류되는 CAAC-IGZO막의 GIXD(Grazing-Incidence XRD) 측정으로 얻어지는 XRD 스펙트럼을 도 13의 (B)에 나타내었다. 또한 GIXD법은 박막법 또는 Seemann-Bohlin법이라고도 한다. 이하에서는, 도 13의 (B)에 나타낸 GIXD 측정으로 얻어지는 XRD 스펙트럼을 단순히 XRD 스펙트럼이라고 나타낸다. 또한, 도 13의 (B)에 나타낸 CAAC-IGZO막의 조성은 In:Ga:Zn=4:2:3[원자수비] 근방이다. 또한, 도 13의 (B)에 나타낸 CAAC-IGZO막의 두께는 500nm이다.
도 13의 (B)에 나타낸 바와 같이, CAAC-IGZO막의 XRD 스펙트럼에서는 명확한 결정성을 나타내는 피크가 검출된다. 구체적으로는, CAAC-IGZO막의 XRD 스펙트럼에서는 2θ=31° 근방에 c축 배향을 나타내는 피크가 검출된다. 또한, 도 13의 (B)에 나타낸 바와 같이, 2θ=31° 근방의 피크는 피크 강도가 검출된 각도를 축으로 하여 좌우 비대칭이다.
또한 막 또는 기판의 결정 구조는, 나노빔 전자 회절법(NBED: Nano Beam Electron Diffraction)에 의하여 관찰되는 회절 패턴(나노빔 전자 회절 패턴이라고도 함)으로 평가할 수 있다. CAAC-IGZO막의 회절 패턴을 도 13의 (C)에 나타내었다. 도 13의 (C)는 전자선을 기판에 대하여 평행하게 입사하는 NBED에 의하여 관찰되는 회절 패턴이다. 또한, 도 13의 (C)에 나타낸 CAAC-IGZO막의 조성은 In:Ga:Zn=4:2:3[원자수비] 근방이다. 또한 나노빔 전자 회절법에서는 프로브 직경을 1nm로 하여 전자선 회절이 수행된다.
도 13의 (C)에 나타낸 바와 같이, CAAC-IGZO막의 회절 패턴에서는, c축 배향을 나타내는 복수의 스폿이 관찰된다.
<CAAC 구조를 가지는 금속 산화물>
이하에서는 CAAC 구조를 가지는 금속 산화물의 자세한 사항에 대하여 설명한다.
CAAC 구조는 복수의 결정을 가지고, 상기 복수의 결정은 c축이 특정 방향으로 배향된다. 또한, 특정 방향이란 CAAC 구조를 가지는 금속 산화물의 두께 방향, CAAC 구조를 가지는 금속 산화물의 피형성면의 법선 방향, 또는 CAAC 구조를 가지는 금속 산화물의 표면의 법선 방향이다. 또한, 결정 영역이라고 표기하는 경우, 상기 결정 영역은 CAAC 구조가 가지는 결정 그 자체, 또는 CAAC 구조가 가지는 결정 및 그 근방의 영역을 가리킨다. 따라서, CAAC 구조가 가지는 결정을 CAAC 구조가 가지는 결정 영역이라고 표기하는 경우가 있다.
결정 영역이란, 원자 배열에 주기성을 가지는 영역이다. 또한 원자 배열을 격자 배열로 간주하면, 결정 영역은 격자 배열이 정렬된 영역이기도 하다. 또한 CAAC 구조는 a-b면 방향에서 복수의 결정 영역이 연결되는 영역을 가지고, 상기 영역은 변형을 가지는 경우가 있다. 또한 변형이란, 복수의 결정 영역이 연결되는 영역에서, 격자 배열이 정렬된 영역과, 격자 배열이 정렬된 다른 영역 사이에서 격자 배열의 방향이 변화되는 부분을 가리킨다. 즉 CAAC 구조를 가지는 금속 산화물은 c축 배향을 가지고, a-b면 방향으로는 명확한 배향을 가지지 않는 금속 산화물이다.
또한 상기 복수의 결정 영역의 각각은, 하나 또는 복수의 미소한 결정(최대 직경이 10nm 미만인 결정)으로 구성된다. 결정 영역이 하나의 미소한 결정으로 구성되는 경우, 상기 결정 영역의 최대 직경은 10nm 미만이 된다. 또한 결정 영역이 다수의 미소한 결정으로 구성되는 경우, 상기 결정 영역의 크기는 수십nm 정도가 되는 경우가 있다.
또한, In-M-Zn 산화물(원소 M은 알루미늄, 갈륨, 이트륨, 주석, 타이타늄 등 중에서 선택된 1종류 또는 복수 종류)에서, CAAC 구조는 인듐(In) 및 산소를 가지는 층과, 원소 M, 아연(Zn), 및 산소를 가지는 층이 적층된 층상 결정 구조(층상 구조라고도 함)를 가지는 경향이 있다. 또한, 인듐 및 산소를 가지는 층에는 원소 M 또는 아연이 포함되는 경우가 있다. 또한, 원소 M, 아연, 및 산소를 가지는 층에는 인듐이 포함되는 경우가 있다. 상기 층상 구조는 예를 들어 고분해능 TEM 이미지에서, 격자상(格子像)으로 관찰된다.
예를 들어 XRD 장치를 사용하여 CAAC 구조를 가지는 금속 산화물의 구조 해석을 수행할 때, θ/2θ 스캔을 사용한 Out-of-plane XRD 측정에서는, c축 배향을 나타내는 피크가 2θ=31° 또는 그 근방에서 검출된다. 또한 c축 배향을 나타내는 피크의 위치(2θ의 값)는 금속 산화물을 구성하는 금속 원소의 종류, 조성 등에 따라 변동되는 경우가 있다.
또한 예를 들어 CAAC 구조를 가지는 금속 산화물의 전자선 회절 패턴에서, 복수의 휘점(스폿)이 관측된다. 또한 어떤 스폿과 다른 스폿은 시료를 투과한 입사 전자선의 스폿(다이렉트 스폿이라고도 함)을 대칭 중심으로 하여 점대칭의 위치에서 관측된다.
상기 특정 방향에서 결정 영역을 관찰한 경우, 상기 결정 영역 내의 격자 배열은 기본적으로 육방 격자이지만, 단위 격자는 정육각형에 한정되지 않고, 비정육각형인 경우가 있다. 또한 오각형, 칠각형 등의 격자 배열이 상기 변형에 포함되는 경우가 있다. 또한, CAAC 구조를 가지는 금속 산화물에서, 변형 근방에서도 명확한 결정립계(Grain Boundary)를 확인할 수 없다. 즉 격자 배열의 변형에 의하여 결정립계의 형성이 억제되는 것을 알 수 있다. 이는 CAAC 구조를 가지는 금속 산화물이 a-b면 방향에서 산소 원자의 배열이 조밀하지 않거나, 또는 금속 원자가 치환됨으로써 원자간의 결합 거리가 변화되는 것 등에 의하여 변형을 허용할 수 있기 때문이라고 생각된다.
CAAC 구조를 가지는 금속 산화물은 결정성이 높고 명확한 결정립계가 확인되지 않는 금속 산화물이다. 즉, CAAC를 가지는 금속 산화물은 결정립계에 기인하는 전자 이동도의 저하가 일어나기 어렵다고 할 수 있다. 따라서, CAAC 구조를 가지는 금속 산화물은 물리적 성질이 안정된다. 그러므로 CAAC 구조를 가지는 금속 산화물은 열에 강하고 신뢰성이 높다. 따라서, CAAC 구조를 가지는 금속 산화물은 트랜지스터의 반도체층에 적합한 결정 구조를 가지는 결정성 산화물 중 하나이다.
<금속 산화물을 가지는 트랜지스터>
이어서, 금속 산화물(산화물 반도체)을 트랜지스터에 사용하는 경우에 대하여 설명한다.
본 발명의 일 형태의 금속 산화물(산화물 반도체)을 트랜지스터에 사용함으로써, 전계 효과 이동도가 높은 트랜지스터를 실현할 수 있다. 또한 신뢰성이 높은 트랜지스터를 실현할 수 있다. 또한, 미세화 또는 고집적화된 트랜지스터를 실현할 수 있다. 예를 들어 채널 길이가 2nm 이상 30nm 이하의 트랜지스터를 제작할 수 있다.
트랜지스터의 채널 형성 영역에는 캐리어 농도가 낮은 산화물 반도체를 사용하는 것이 바람직하다. 예를 들어 산화물 반도체의 채널 형성 영역의 캐리어 농도는 1×1017cm-3 이하, 바람직하게는 1×1015cm-3 이하, 더 바람직하게는 1×1013cm-3 이하, 더욱 바람직하게는 1×1011cm-3 이하, 더욱더 바람직하게는 1×1010cm-3 미만이고, 1×10-9cm-3 이상이다. 또한 산화물 반도체막의 캐리어 농도를 낮추는 경우에는, 산화물 반도체막 내의 불순물 농도를 낮추고, 결함 준위 밀도를 낮추면 좋다. 본 명세서 등에서 불순물 농도가 낮고 결함 준위 밀도가 낮은 것을 고순도 진성 또는 실질적으로 고순도 진성이라고 한다. 또한, 캐리어 농도가 낮은 산화물 반도체를 고순도 진성 또는 실질적으로 고순도 진성인 산화물 반도체라고 부르는 경우가 있다.
또한, 고순도 진성 또는 실질적으로 고순도 진성인 산화물 반도체막은 결함 준위 밀도가 낮기 때문에 트랩 준위 밀도도 낮아지는 경우가 있다.
또한 산화물 반도체의 트랩 준위에 포획된 전하는, 소실되는 데 걸리는 시간이 길고, 마치 고정 전하처럼 작용하는 경우가 있다. 그러므로 트랩 준위 밀도가 높은 산화물 반도체에 채널 형성 영역이 형성되는 트랜지스터는 전기 특성이 불안정해지는 경우가 있다.
따라서 트랜지스터의 전기 특성을 안정적으로 하기 위해서는, 산화물 반도체 내의 불순물 농도를 저감하는 것이 유효하다. 또한 산화물 반도체 내의 불순물 농도를 저감하기 위해서는, 근접한 막 내의 불순물 농도도 저감하는 것이 바람직하다. 불순물로서는 수소, 질소, 알칼리 금속, 알칼리 토금속, 철, 니켈, 실리콘 등이 있다.
<금속 산화물 내의 불순물>
여기서, 금속 산화물(산화물 반도체) 내에서의 각 불순물의 영향에 대하여 설명한다.
산화물 반도체에 14족 원소 중 하나인 실리콘 또는 탄소가 포함되면, 산화물 반도체에서 결함 준위가 형성된다. 그러므로 산화물 반도체의 채널 형성 영역에서의 실리콘 또는 탄소의 농도와, 산화물 반도체의 채널 형성 영역과의 계면 근방의 실리콘 또는 탄소의 농도(이차 이온 질량 분석법(SIMS: Secondary Ion Mass Spectrometry)에 의하여 얻어지는 농도)를 2×1018atoms/cm3 이하, 바람직하게는 2×1017atoms/cm3 이하로 한다.
또한, 산화물 반도체에 알칼리 금속 또는 알칼리 토금속이 포함되면, 결함 준위를 형성하고 캐리어를 생성하는 경우가 있다. 따라서, 알칼리 금속 또는 알칼리 토금속이 포함되는 산화물 반도체를 사용한 트랜지스터는 노멀리 온 특성을 가지기 쉽다. 그러므로, SIMS에 의하여 얻어지는 산화물 반도체의 채널 형성 영역 내의 알칼리 금속 또는 알칼리 토금속의 농도를 1×1018atoms/cm3 이하로, 바람직하게는 2×1016atoms/cm3 이하로 한다.
또한 산화물 반도체에 질소가 포함되면, 캐리어인 전자가 발생하고 캐리어 농도가 증가되어 n형화되기 쉽다. 그러므로 질소가 포함되는 산화물 반도체를 반도체로서 사용한 트랜지스터는 노멀리 온 특성을 가지기 쉽다. 또는 산화물 반도체에 질소가 포함되면, 트랩 준위가 형성되는 경우가 있다. 이 결과, 트랜지스터의 전기 특성이 불안정해지는 경우가 있다. 그러므로 SIMS에 의하여 얻어지는 산화물 반도체의 채널 형성 영역 내의 질소 농도를 5×1019atoms/cm3 미만, 바람직하게는 5×1018atoms/cm3 이하, 더 바람직하게는 1×1018atoms/cm3 이하, 더욱 바람직하게는 5×1017atoms/cm3 이하로 한다.
또한 산화물 반도체에 포함되는 수소는 금속 원자와 결합하는 산소와 반응하여 물이 되기 때문에, 산소 결손을 형성하는 경우가 있다. 상기 산소 결손에 수소가 들어감으로써, 캐리어인 전자가 생성되는 경우가 있다. 또한 수소의 일부가 금속 원자와 결합하는 산소와 결합하여, 캐리어인 전자를 생성하는 경우가 있다. 따라서 수소가 포함되는 산화물 반도체를 사용한 트랜지스터는 노멀리 온 특성을 가지기 쉽다. 그러므로 산화물 반도체의 채널 형성 영역 내의 수소는 가능한 한 저감되어 있는 것이 바람직하다. 구체적으로는, 산화물 반도체의 채널 형성 영역에서 SIMS에 의하여 얻어지는 수소 농도를 1×1020atoms/cm3 미만, 바람직하게는 5×1019atoms/cm3 미만, 더 바람직하게는 1×1019atoms/cm3 미만, 더욱 바람직하게는 5×1018atoms/cm3 미만, 더더욱 바람직하게는 1×1018atoms/cm3 미만으로 한다.
불순물이 충분히 저감된 산화물 반도체를 트랜지스터의 채널 형성 영역에 사용함으로써, 안정된 전기 특성을 부여할 수 있다.
<트랜지스터의 반도체층에 적용할 수 있는 그 외의 재료>
본 발명의 일 형태는 상술한 금속 산화물에 한정되지 않는다. 예를 들어 층상 물질이어도 좋다. 층상 물질은 단위 층(monolayer) 내에서의 전기 전도성이 높고, 즉 2차원 전기 전도성이 높다. 반도체로서 기능하고, 2차원 전기 전도성이 높은 재료를 채널 형성 영역에 사용함으로써, 온 전류가 높은 트랜지스터를 제공할 수 있다.
층상 물질로서는 그래핀, 실리센, 칼코제나이드 등이 있다. 칼코제나이드는 칼코젠을 포함한 화합물이다. 또한 칼코젠은 16족에 속하는 원소의 총칭이고, 산소, 황, 셀레늄, 텔루륨, 폴로늄, 리버모륨이 포함된다. 또한 칼코제나이드로서는 전이 금속 칼코제나이드, 13족 칼코제나이드 등을 들 수 있다.
트랜지스터의 반도체층으로서, 예를 들어 반도체로서 기능하는 전이 금속 칼코제나이드를 사용하는 것이 바람직하다. 트랜지스터의 반도체층에 적용할 수 있는 전이 금속 칼코제나이드로서, 구체적으로는, 황화 몰리브데넘(대표적으로는 MoS2), 셀레늄화 몰리브데넘(대표적으로는 MoSe2), 몰리브데넘 텔루륨(대표적으로는 MoTe2), 황화 텅스텐(대표적으로는 WS2), 셀레늄화 텅스텐(대표적으로는 WSe2), 텅스텐 텔루륨(대표적으로는 WTe2), 황화 하프늄(대표적으로는 HfS2), 셀레늄화 하프늄(대표적으로는 HfSe2), 황화 지르코늄(대표적으로는 ZrS2), 셀레늄화 지르코늄(대표적으로는 ZrSe2) 등을 들 수 있다.
이상, 본 실시형태에 나타낸 구성, 방법 등은 본 실시형태에 나타낸 다른 구성, 방법, 또는 다른 실시형태에 나타내는 구성, 방법 등과 적절히 조합하여 사용할 수 있다.
(실시형태 2)
본 실시형태에서는 도 14 내지 도 30을 사용하여 앞의 실시형태에 나타낸 금속 산화물을 사용한 트랜지스터(200)를 가지는 반도체 장치의 일례 및 이의 제작 방법에 대하여 설명한다.
<반도체 장치의 구성예>
도 14를 사용하여 트랜지스터(200)를 가지는 반도체 장치의 구성에 대하여 설명한다. 도 14의 (A) 내지 (D)는 트랜지스터(200)를 가지는 반도체 장치의 상면도 및 단면도이다. 도 14의 (A)는 상기 반도체 장치의 상면도이다. 또한 도 14의 (B) 내지 (D)는 상기 반도체 장치의 단면도이다. 여기서, 도 14의 (B)는 도 14의 (A)에서 일점쇄선 A1-A2로 나타낸 부분의 단면도이고, 트랜지스터(200)의 채널 길이 방향의 단면도이기도 하다. 또한 도 14의 (C)는 도 14의 (A)에서 일점쇄선 A3-A4로 나타낸 부분의 단면도이고, 트랜지스터(200)의 채널 폭 방향의 단면도이기도 하다. 또한, 도 14의 (D)는 도 14의 (A)에서 A5-A6의 일점쇄선으로 나타낸 부분의 단면도이다. 또한 도 14의 (A)의 상면도에서는, 도면의 명료화를 위하여 일부의 요소를 생략하였다.
본 발명의 일 형태의 반도체 장치는 기판(도시하지 않았음) 위의 절연체(212)와, 절연체(212) 위의 절연체(214)와, 절연체(214) 위의 트랜지스터(200)와, 트랜지스터(200) 위의 절연체(280)와, 절연체(280) 위의 절연체(282)와, 절연체(282) 위의 절연체(283)와, 절연체(283) 위의 절연체(285)를 가진다. 절연체(212), 절연체(214), 절연체(280), 절연체(282), 절연체(283), 및 절연체(285)는 층간 절연막으로서 기능한다. 또한 트랜지스터(200)에 전기적으로 접속되고 플러그로서 기능하는 도전체(240)(도전체(240a) 및 도전체(240b))를 가진다. 또한 플러그로서 기능하는 도전체(240)의 측면에 접하여 절연체(241)(절연체(241a) 및 절연체(241b))가 제공된다. 또한 절연체(285) 위 및 도전체(240) 위에는 도전체(240)와 전기적으로 접속되고 배선으로서 기능하는 도전체(246)(도전체(246a) 및 도전체(246b))가 제공된다.
절연체(280), 절연체(282), 절연체(283), 및 절연체(285)의 개구의 내벽에 접하여 절연체(241a)가 제공되고, 절연체(241a)의 측면에 접하여 도전체(240a)가 제공되어 있다. 또한 절연체(280), 절연체(282), 절연체(283), 및 절연체(285)의 개구의 내벽에 접하여 절연체(241b)가 제공되고, 절연체(241b)의 측면에 접하여 도전체(240b)가 제공되어 있다. 또한, 절연체(241)는 제 1 절연체가 상기 개구의 내벽에 접하여 제공되고, 더 내측에 제 2 절연체가 제공되는 구조를 가진다. 또한, 도전체(240)는 제 1 도전체가 절연체(241)의 측면에 접하여 제공되고, 더 내측에 제 2 도전체가 제공되는 구조를 가진다.
또한 트랜지스터(200)에서 절연체(241)의 제 1 절연체와 절연체(241)의 제 2 절연체를 적층시키는 구성을 나타내었지만, 본 발명은 이에 한정되는 것이 아니다. 예를 들어 절연체(241)를 단층 또는 3층 이상의 적층 구조로 제공하는 구성으로 하여도 좋다. 또한 트랜지스터(200)에서 도전체(240)의 제 1 도전체와 도전체(240)의 제 2 도전체를 적층시키는 구성을 나타내었지만, 본 발명은 이에 한정되는 것이 아니다. 예를 들어 도전체(240)를 단층 또는 3층 이상의 적층 구조로 제공하는 구성으로 하여도 좋다. 구조체가 적층 구조를 가지는 경우에는, 형성 순서대로 서수를 붙여 구별하는 경우가 있다.
[트랜지스터(200)]
도 14의 (A) 내지 (D)에 나타낸 바와 같이, 트랜지스터(200)는 절연체(214) 위의 절연체(216)와, 절연체(216)에 매립되도록 배치된 도전체(205)(도전체(205a) 및 도전체(205b))와, 절연체(216) 위 및 도전체(205) 위의 절연체(222)와, 절연체(222) 위의 절연체(224)와, 절연체(224) 위의 산화물(230a)과, 산화물(230a) 위의 산화물(230b)과, 산화물(230b) 위의 도전체(242a)와, 도전체(242a) 위의 절연체(271a)와, 산화물(230b) 위의 도전체(242b)와, 도전체(242b) 위의 절연체(271b)와, 산화물(230b) 위의 절연체(250)(절연체(250a) 및 절연체(250b))와, 절연체(250) 위에 위치하고 산화물(230b)의 일부와 중첩되는 도전체(260)(도전체(260a) 및 도전체(260b))와, 절연체(222), 절연체(224), 산화물(230a), 산화물(230b), 도전체(242a), 도전체(242b), 절연체(271a), 및 절연체(271b)를 덮어 배치되는 절연체(275)를 가진다.
또한, 이하에서, 산화물(230a)과 산화물(230b)을 통틀어 산화물(230)이라고 부르는 경우가 있다. 또한, 도전체(242a)와 도전체(242b)를 통틀어 도전체(242)라고 부르는 경우가 있다. 또한, 절연체(271a)와 절연체(271b)를 통틀어 절연체(271)라고 부르는 경우가 있다.
절연체(280) 및 절연체(275)에는 산화물(230b)에 도달하는 개구가 제공된다. 상기 개구 내에 절연체(250) 및 도전체(260)가 배치되어 있다. 또한 트랜지스터(200)의 채널 길이 방향에서, 절연체(271a) 및 도전체(242a)와, 절연체(271b) 및 도전체(242b) 사이에 도전체(260) 및 절연체(250)가 제공된다. 절연체(250)는 도전체(260)의 측면과 접하는 영역과, 도전체(260)의 밑면과 접하는 영역을 가진다.
산화물(230)은 절연체(224) 위에 배치된 산화물(230a)과, 산화물(230a) 위에 배치된 산화물(230b)을 가지는 것이 바람직하다. 산화물(230b) 아래에 산화물(230a)을 가짐으로써, 산화물(230a)보다 아래쪽에 형성된 구조물로부터 산화물(230b)로의 불순물의 확산을 억제할 수 있다.
또한 트랜지스터(200)에서는 산화물(230a)과 산화물(230b)의 2층이 적층되는 구성을 가지는 산화물(230)을 나타내었지만, 본 발명은 이에 한정되는 것이 아니다. 예를 들어 산화물(230b)을 단층으로 또는 3층 이상의 적층 구조로 하여도 좋고, 산화물(230a) 및 산화물(230b) 각각이 적층 구조를 가져도 좋다.
도전체(260)는 제 1 게이트(톱 게이트라고도 함) 전극으로서 기능하고, 도전체(205)는 제 2 게이트(백 게이트라고도 함) 전극으로서 기능한다. 또한, 절연체(250)는 제 1 게이트 절연막으로서 기능하고, 절연체(224) 및 절연체(222)는 제 2 게이트 절연막으로서 기능한다. 또한 도전체(242a)는 소스 전극 및 드레인 전극 중 한쪽으로서 기능하고, 도전체(242b)는 소스 전극 및 드레인 전극 중 다른 쪽으로서 기능한다. 또한, 산화물(230)에서 도전체(260)와 중첩되는 영역의 적어도 일부는 채널 형성 영역으로서 기능한다.
트랜지스터(200)에서는, 채널 형성 영역을 포함하는 산화물(230)(산화물(230a) 및 산화물(230b))로서, 앞의 실시형태에 나타낸 금속 산화물(이하, 산화물 반도체라고도 함)을 사용하는 것이 바람직하다.
앞의 실시형태에 나타낸 금속 산화물은 반도체로서 기능할 수 있다. 이때, 상기 금속 산화물은 밴드 갭이 2eV 이상 또는 2.5eV 이상이다. 이와 같이, 밴드 갭이 큰 금속 산화물을 사용함으로써, 트랜지스터의 오프 전류를 저감할 수 있다.
산화물(230)로서 예를 들어 인듐, 원소 M, 및 아연을 포함하는 In-M-Zn 산화물(원소 M은 알루미늄, 갈륨, 이트륨, 주석, 구리, 바나듐, 베릴륨, 붕소, 타이타늄, 철, 니켈, 저마늄, 지르코늄, 몰리브데넘, 란타넘, 세륨, 네오디뮴, 하프늄, 탄탈럼, 텅스텐, 및 마그네슘 등 중에서 선택된 1종류 또는 복수 종류) 등의 금속 산화물을 사용하는 것이 좋다. 또한 산화물(230)로서 In-Ga 산화물, In-Zn 산화물, 인듐 산화물을 사용하여도 좋다.
여기서, 산화물(230b)에 사용하는 금속 산화물에서의 원소 M에 대한 In의 원자수비가 산화물(230a)에 사용하는 금속 산화물에서의 원소 M에 대한 In의 원자수비보다 큰 것이 바람직하다. 예를 들어 산화물(230a)로서 앞의 실시형태의 도 2의 (D)에 나타낸 금속 산화물을 사용할 수 있다. 또한, 예를 들어 산화물(230b)로서 앞의 실시형태의 도 2의 (B)에 나타낸 금속 산화물을 사용할 수 있다.
이와 같이, 산화물(230b) 아래에 산화물(230a)을 배치함으로써, 산화물(230a)보다 아래쪽에 형성된 구조물로부터 산화물(230b)로의 불순물 및 산소의 확산을 억제할 수 있다.
또한 산화물(230a) 및 산화물(230b)이 산소 외에 공통된 원소를 가짐으로써(주성분으로 함으로써), 산화물(230a)과 산화물(230b)의 계면에서의 결함 준위 밀도를 낮출 수 있다. 산화물(230a)과 산화물(230b) 사이의 계면에서의 결함 준위 밀도를 낮출 수 있기 때문에 계면 산란으로 인한 캐리어 전도에 대한 영향이 작아 높은 온 전류를 얻을 수 있다.
또한 산화물(230b)은 결정성을 가지는 것이 바람직하다. 특히, 산화물(230b)로서 CAAC-OS(c-axis aligned crystalline oxide semiconductor)를 사용하는 것이 바람직하다. 앞의 실시형태에 나타낸 성막 방법을 사용함으로써, 불순물이 저감되고 양호한 결정을 가지는 CAAC-OS를 형성할 수 있다.
CAAC-OS는 결정성이 높고 치밀한 구조를 가지고, 불순물 또는 결함(예를 들어, 산소 결손(VO) 등)이 적은 금속 산화물이다. 특히, 금속 산화물의 형성 후에, 금속 산화물이 다결정화되지 않을 정도의 온도(예를 들어, 400℃ 이상 600℃ 이하)에서 가열 처리함으로써, CAAC-OS를 결정성이 더 높고 치밀한 구조로 할 수 있다. 이와 같이 CAAC-OS의 밀도를 더 높임으로써, 상기 CAAC-OS 내의 불순물 또는 산소의 확산을 더 저감할 수 있다.
한편, CAAC-OS에서는 명확한 결정립계를 확인하기 어렵기 때문에, 결정립계에 기인하는 전자 이동도의 저하가 일어나기 어렵다고 할 수 있다. 따라서, CAAC-OS를 가지는 금속 산화물은 물리적 성질이 안정된다. 그러므로 CAAC-OS를 가지는 금속 산화물은 열에 강하고 신뢰성이 높다.
또한, CAAC-OS 등의 결정성을 가지는 산화물은 불순물 또는 결함(산소 결손 등)이 적고 결정성이 높고 치밀한 구조를 가지기 때문에, 소스 전극 또는 드레인 전극에 의하여 산화물(230b)로부터 산소가 추출되는 것을 억제할 수 있다. 이에 의하여, 열처리를 수행하여도 산화물(230b)로부터 산소가 추출되는 것을 저감할 수 있기 때문에, 트랜지스터(200)는 제조 공정에서의 높은 온도(소위 써멀 버짓)에 대하여 안정적이다.
여기서 트랜지스터(200)의 채널 형성 영역 근방의 확대도를 도 15의 (A)에 나타내었다. 산화물(230b)에 산소가 공급됨으로써, 도전체(242a)와 도전체(242b) 사이의 영역에 채널 형성 영역이 형성된다. 따라서, 도 15의 (A)에 나타낸 바와 같이, 산화물(230b)은 트랜지스터(200)의 채널 형성 영역으로서 기능하는 영역(230bc)과, 영역(230bc)을 사이에 두고 제공되며 소스 영역 또는 드레인 영역으로서 기능하는 영역(230ba) 및 영역(230bb)을 가진다. 영역(230bc)은 적어도 일부가 도전체(260)와 중첩된다. 바꿔 말하면, 영역(230bc)은 도전체(242a)와 도전체(242b) 사이의 영역에 제공된다. 영역(230ba)은 도전체(242a)와 중첩하여 제공되어 있고, 영역(230bb)은 도전체(242b)와 중첩하여 제공되어 있다.
채널 형성 영역으로서 기능하는 영역(230bc)은 영역(230ba) 및 영역(230bb)보다 산소 결손이 적거나, 또는 불순물 농도가 낮기 때문에 캐리어 농도가 낮은 고저항 영역이다. 따라서, 영역(230bc)은 i형(진성) 또는 실질적으로 i형이라고 할 수 있다.
또한 소스 영역 또는 드레인 영역으로서 기능하는 영역(230ba) 및 영역(230bb)은 산소 결손이 많거나 또는 수소, 질소, 또는 금속 원소 등의 불순물 농도가 높은 것에 의하여, 캐리어 농도가 증가되어 저저항화된 영역이다. 즉, 영역(230ba) 및 영역(230bb)은 영역(230bc)과 비교하여 캐리어 농도가 높고 저항이 낮은 n형 영역이다.
여기서, 채널 형성 영역으로서 기능하는 영역(230bc)의 캐리어 농도는 1×1018cm-3 이하인 것이 바람직하고, 1×1017cm-3 미만인 것이 더 바람직하고, 1×1016cm-3 미만인 것이 더욱 바람직하고, 1×1013cm-3 미만인 것이 더욱더 바람직하고, 1×1012cm-3 미만인 것이 나아가 더욱더 바람직하다. 또한 채널 형성 영역으로서 기능하는 영역(230bc)의 캐리어 농도의 하한값은 특별히 한정되지 않지만, 예를 들어 1×10-9cm-3로 할 수 있다.
또한 캐리어 농도가 영역(230ba) 및 영역(230bb)의 캐리어 농도와 동등하거나, 또는 이보다 낮으며, 영역(230bc)의 캐리어 농도와 동등하거나, 또는 이보다 높은 영역이 영역(230bc)과, 영역(230ba) 또는 영역(230bb) 사이에 형성되어도 좋다. 즉, 상기 영역은 영역(230bc)과, 영역(230ba) 또는 영역(230bb)의 접합 영역으로서 기능한다. 상기 접합 영역은 수소 농도가 영역(230ba) 및 영역(230bb)의 수소 농도와 동등하거나, 또는 이보다 낮으며, 영역(230bc)의 수소 농도와 동등하거나, 또는 이보다 높은 경우가 있다. 또한 상기 접합 영역은 산소 결손이 영역(230ba) 및 영역(230bb)의 산소 결손과 동등하거나, 또는 이보다 적으며, 영역(230bc)의 산소 결손과 동등하거나, 또는 이보다 많은 경우가 있다.
또한 도 15의 (A)에서 영역(230ba), 영역(230bb), 및 영역(230bc)이 산화물(230b)에 형성되는 예에 대하여 나타내었지만, 본 발명은 이에 한정되는 것이 아니다. 예를 들어 상기 각 영역이 산화물(230b)뿐만 아니라 산화물(230a)에도 형성되어도 좋다.
또한 산화물(230)에서, 각 영역의 경계를 명확히 검출하기가 어려운 경우가 있다. 각 영역 내에서 검출되는 금속 원소, 그리고 수소 및 질소 등의 불순물 원소의 농도는 영역마다 단계적으로 변화되는 것에 한정되지 않고, 각 영역 내에서도 연속적으로 변화되어도 좋다. 즉, 채널 형성 영역에 가까운 영역일수록 금속 원소, 그리고 수소 및 질소 등의 불순물 원소의 농도가 감소되면 좋다.
또한 도 14의 (C)에 나타낸 바와 같이, 트랜지스터(200)의 채널 폭 방향의 단면에서 보았을 때, 산화물(230b)의 측면과 산화물(230b)의 상면 사이에 만곡면을 가져도 좋다. 즉, 상기 측면의 단부와 상기 상면의 단부는 만곡되어도 좋다(라운드 형상이라고도 함).
상기 만곡면에서의 곡률 반경은 0nm보다 크고, 도전체(242)와 중첩되는 영역의 산화물(230b)의 막 두께보다 작거나, 또는 상기 만곡면을 가지지 않는 영역의 길이의 절반보다 작은 것이 바람직하다. 상기 만곡면에서의 곡률 반경은, 구체적으로는 0nm보다 크고 20nm 이하, 바람직하게는 1nm 이상 15nm 이하, 더 바람직하게는 2nm 이상 10nm 이하로 한다. 이와 같은 형상으로 함으로써, 산화물(230b)에 대한 절연체(250) 및 도전체(260)의 피복성을 높일 수 있다.
산화물(230)은 화학 조성이 상이한 복수의 산화물층의 적층 구조를 가지는 것이 바람직하다. 구체적으로는, 산화물(230a)에 사용하는 금속 산화물에서 주성분인 금속 원소에 대한 원소 M의 원자수비가 산화물(230b)에 사용하는 금속 산화물에서의 주성분인 금속 원소에 대한 원소 M의 원자수비보다 높은 것이 바람직하다. 또한 산화물(230a)에 사용하는 금속 산화물에서 In에 대한 원소 M의 원자수비가 산화물(230b)에 사용하는 금속 산화물에서의 In에 대한 원소 M의 원자수비보다 높은 것이 바람직하다. 또한 산화물(230b)에 사용하는 금속 산화물에서의 원소 M에 대한 In의 원자수비가 산화물(230a)에 사용하는 금속 산화물에서의 원소 M에 대한 In의 원자수비보다 높은 것이 바람직하다. 앞의 실시형태에 나타낸 성막 방법을 사용함으로써, 원자수비가 상이한 산화물(230a) 및 산화물(230b)을 단일의 체임버에서 연속적으로 성막할 수 있다. 이에 의하여, 산화물(230a)과 산화물(230b)의 계면 등에 수소 등의 불순물이 지나치게 혼입되는 것을 방지할 수 있다.
여기서, 산화물(230a)과 산화물(230b)의 접합부에서 전도대 하단은 완만하게 변화된다. 바꿔 말하면, 산화물(230a)과 산화물(230b)의 접합부에서의 전도대 하단은 연속적으로 변화 또는 연속 접합한다고도 할 수 있다. 이와 같이 하기 위해서는, 산화물(230a)과 산화물(230b)의 계면에 형성되는 혼합층의 결함 준위 밀도를 낮추는 것이 좋다.
구체적으로는, 산화물(230a)과 산화물(230b)이 산소 외에 공통된 원소를 주성분으로서 가짐으로써, 결함 준위 밀도가 낮은 혼합층을 형성할 수 있다. 예를 들어 산화물(230b)이 In-M-Zn 산화물인 경우, 산화물(230a)로서 In-M-Zn 산화물, M-Zn 산화물, 원소 M의 산화물, In-Zn 산화물, 인듐 산화물 등을 사용하여도 좋다.
구체적으로는, 산화물(230a)로서, In:M:Zn=1:3:4[원자수비] 또는 그 근방의 조성, 또는 In:M:Zn=1:1:0.5[원자수비] 또는 그 근방의 조성의 금속 산화물을 사용하면 좋다. 또한 산화물(230b)로서, In:M:Zn=1:1:1[원자수비] 또는 그 근방의 조성, In:M:Zn=4:2:3[원자수비] 또는 그 근방의 조성, 혹은 In:M:Zn=5:1:3[원자수비] 또는 그 근방의 조성의 금속 산화물을 사용하면 좋다. 또한 근방의 조성이란, 원하는 원자수비의 ±30%의 범위를 포함한 것이다. 또한 원소 M으로서 갈륨을 사용하는 것이 바람직하다. 앞의 실시형태에 나타낸 성막 방법을 사용함으로써, 상기와 같은 다양한 원자수비의 금속 산화물을 비교적 쉽게 형성할 수 있다.
산화물(230a) 및 산화물(230b)을 상술한 구성으로 함으로써, 산화물(230a)과 산화물(230b)의 계면에서의 결함 준위 밀도를 낮출 수 있다. 그러므로, 계면 산란으로 인한 캐리어 전도에 대한 영향이 작아지고, 트랜지스터(200)는 큰 온 전류 및 높은 주파수 특성을 얻을 수 있다.
또한 트랜지스터(200)에서는 산화물(230a)과 산화물(230b)의 2층이 적층되는 구성을 가지는 산화물(230)을 나타내었지만, 본 발명은 이에 한정되는 것이 아니다. 예를 들어 산화물(230b)의 단층 또는 3층 이상의 적층 구조를 제공하는 구성으로 하여도 좋다. 또한 산화물(230a) 및 산화물(230b)의 각각이 적층 구조를 가져도 좋다. 또한, 산화물(230)을 3층 이상의 적층 구조로 하는 경우, 절연체(250)와 마찬가지로 절연체(280) 및 절연체(275)에 형성된 개구 내에 산화물(230)의 적층 구조의 일부를 형성하여도 좋다.
절연체(212), 절연체(214), 절연체(271), 절연체(275), 절연체(282), 및 절연체(283) 중 적어도 하나는 물, 수소 등의 불순물이 기판 측으로부터, 또는 트랜지스터(200)의 위쪽으로부터 트랜지스터(200)로 확산되는 것을 억제하는 배리어 절연막으로서 기능하는 것이 바람직하다. 따라서, 절연체(212), 절연체(214), 절연체(271), 절연체(275), 절연체(282), 및 절연체(283) 중 적어도 하나는 수소 원자, 수소 분자, 물 분자, 질소 원자, 질소 분자, 산화 질소 분자(N2O, NO, NO2 등), 구리 원자 등의 불순물의 확산을 억제하는 기능을 가지는(상기 불순물이 투과하기 어려운) 절연성 재료를 사용하는 것이 바람직하다. 또는 산소(예를 들어 산소 원자, 산소 분자 등 중 적어도 하나)의 확산을 억제하는 기능을 가지는(상기 산소를 투과시키기 어려운) 절연성 재료를 사용하는 것이 바람직하다.
또한 본 명세서에서 배리어 절연막이란, 배리어성을 가지는 절연막을 가리킨다. 본 명세서에서, 배리어성이란, 대응하는 물질의 확산을 억제하는 기능(투과성이 낮다고도 함)을 말한다. 또는, 대응하는 물질을 포획 및 고착하는(게터링이라고도 함) 기능을 말한다.
절연체(212), 절연체(214), 절연체(271), 절연체(275), 절연체(282), 및 절연체(283)에는, 예를 들어 산화 알루미늄, 산화 마그네슘, 산화 하프늄, 산화 갈륨, 인듐 갈륨 아연 산화물, 질화 실리콘, 또는 질화산화 실리콘 등을 사용할 수 있다. 예를 들어, 절연체(212), 절연체(275), 및 절연체(283)로서는, 수소 배리어성이 더 높은 질화 실리콘 등을 사용하는 것이 바람직하다. 또한, 예를 들어 절연체(214), 절연체(271), 및 절연체(282)로서, 수소를 포획 및 고착하는 기능이 높은, 산화 알루미늄 또는 산화 마그네슘 등을 사용하는 것이 바람직하다. 이로써, 물, 수소 등의 불순물이 절연체(212) 및 절연체(214)를 통하여 기판 측으로부터 트랜지스터(200) 측으로 확산되는 것을 억제할 수 있다. 또는, 물, 수소 등의 불순물이 절연체(283)보다 외측에 배치되어 있는 층간 절연막 등으로부터 트랜지스터(200) 측으로 확산되는 것을 억제할 수 있다. 또는 절연체(224) 등에 포함되는 산소가 절연체(212) 및 절연체(214)를 통하여 기판 측으로 확산되는 것을 억제할 수 있다. 또는, 절연체(280) 등에 포함되는 산소가 절연체(282) 등을 통하여 트랜지스터(200)보다 위쪽으로 확산되는 것을 억제할 수 있다. 이와 같이, 트랜지스터(200)를 물, 수소 등의 불순물 및 산소의 확산을 억제하는 기능을 가지는 절연체(212), 절연체(214), 절연체(271), 절연체(275), 절연체(282), 및 절연체(283)로 둘러싸는 구조로 하는 것이 바람직하다.
여기서 절연체(212), 절연체(214), 절연체(271), 절연체(275), 절연체(282), 및 절연체(283) 중 적어도 하나로서 비정질 구조를 가지는 산화물을 사용하는 것이 바람직하다. 예를 들어, AlOx(x는 0보다 큰 임의의 수), 또는 MgOy(y는 0보다 큰 임의의 수) 등의 금속 산화물을 사용하는 것이 바람직하다. 이와 같은 비정질 구조를 가지는 금속 산화물에서는, 산소 원자가 댕글링 본드(dangling bond)를 가지고, 상기 댕글링 본드로 수소를 포획 또는 고착하는 성질을 가지는 경우가 있다. 이와 같은 비정질 구조를 가지는 금속 산화물을 트랜지스터(200)의 구성 요소로서 사용함으로써 또는 트랜지스터(200)의 주위에 제공함으로써, 트랜지스터(200)에 포함되는 수소, 또는 트랜지스터(200)의 주위에 존재하는 수소를 포획 또는 고착할 수 있다. 특히 트랜지스터(200)의 채널 형성 영역에 포함되는 수소를 포획 또는 고착하는 것이 바람직하다. 비정질 구조를 가지는 금속 산화물을 트랜지스터(200)의 구성 요소로서 사용하거나 트랜지스터(200)의 주위에 제공함으로써, 양호한 특성을 가지고 신뢰성이 높은 트랜지스터(200) 및 반도체 장치를 제작할 수 있다.
또한, 절연체(212), 절연체(214), 절연체(271), 절연체(275), 절연체(282), 및 절연체(283) 중 적어도 하나는 비정질 구조인 것이 바람직하지만, 일부에 다결정 구조의 영역이 형성되어 있어도 좋다. 또한 절연체(212), 절연체(214), 절연체(271), 절연체(275), 절연체(282), 및 절연체(283) 중 적어도 하나는 비정질 구조의 층과 다결정 구조의 층이 적층된 다층 구조이어도 좋다. 예를 들어, 비정질 구조의 층 위에 다결정 구조의 층이 형성된 적층 구조이어도 좋다.
절연체(212), 절연체(214), 절연체(271), 절연체(275), 절연체(282), 및 절연체(283)의 성막은 예를 들어 스퍼터링법을 사용하여 수행하면 좋다. 스퍼터링법은 성막 가스에 수소를 사용하지 않아도 되기 때문에, 절연체(212), 절연체(214), 절연체(271), 절연체(275), 절연체(282), 및 절연체(283)의 수소 농도를 저감할 수 있다. 또한 성막 방법은 스퍼터링법에 한정되는 것이 아니고, 화학 기상 성장(CVD: Chemical Vapor Deposition)법, 분자선 에피택시(MBE: Molecular Beam Epitaxy)법, 펄스 레이저 퇴적(PLD: Pulsed Laser Deposition)법, 원자층 퇴적(ALD: Atomic Layer Deposition)법 등을 적절히 사용하여도 좋다. 예를 들어 절연체(275)는 피복성이 비교적 양호한 ALD법을 사용하여 성막하여도 좋다. 또한, ALD법 중에서도 성막 온도를 비교적 낮게 할 수 있는 PEALD법을 사용하여도 좋다.
또한 절연체(212) 및 절연체(283)의 저항률을 낮추는 것이 바람직한 경우가 있다. 예를 들어 절연체(212) 및 절연체(283)의 저항률을 실질적으로 1×1013Ωcm로 함으로써, 반도체 장치 제작 공정의 플라스마 등을 사용하는 처리에서 절연체(212) 및 절연체(283)가 도전체(205), 도전체(242), 도전체(260), 또는 도전체(246)의 차지 업을 완화할 수 있는 경우가 있다. 절연체(212) 및 절연체(283)의 저항률은, 바람직하게는 1×1010Ωcm 이상 1×1015Ωcm 이하로 한다.
또한, 절연체(216) 및 절연체(280)는 절연체(214)보다 유전율이 낮은 것이 바람직하다. 유전율이 낮은 재료를 층간 절연막으로 함으로써, 배선 사이에 생기는 기생 용량을 저감할 수 있다. 예를 들어 절연체(216) 및 절연체(280)로서, 산화 실리콘, 산화질화 실리콘, 질화산화 실리콘, 질화 실리콘, 플루오린을 첨가한 산화 실리콘, 탄소를 첨가한 산화 실리콘, 탄소 및 질소를 첨가한 산화 실리콘, 공공(空孔)을 가지는 산화 실리콘 등을 적절히 사용하면 좋다.
도전체(205)는 산화물(230) 및 도전체(260)와 중첩되도록 배치된다. 여기서 도전체(205)는 절연체(216)에 형성된 개구에 매립되어 제공되는 것이 바람직하다. 또한, 도전체(205)의 일부가 절연체(214)에 매립되는 경우가 있다.
도전체(205)는 도전체(205a) 및 도전체(205b)를 가진다. 도전체(205a)는 상기 개구의 밑면 및 측벽과 접하여 제공된다. 도전체(205b)는 도전체(205a)에 형성된 오목부에 매립되도록 제공된다. 여기서 도전체(205b)의 상면의 높이는 도전체(205a)의 최상부의 높이 및 절연체(216)의 상면의 높이와 실질적으로 일치한다.
여기서 도전체(205a)에는 수소 원자, 수소 분자, 물 분자, 질소 원자, 질소 분자, 산화 질소 분자(N2O, NO, NO2 등), 구리 원자 등의 불순물의 확산을 억제하는 기능을 가지는 도전성 재료를 사용하는 것이 바람직하다. 또는 산소(예를 들어 산소 원자, 산소 분자 등 중 적어도 하나)의 확산을 억제하는 기능을 가지는 도전성 재료를 사용하는 것이 바람직하다.
도전체(205a)에, 수소의 확산을 저감하는 기능을 가지는 도전성 재료를 사용함으로써, 도전체(205b)에 포함되는 수소 등의 불순물이 절연체(224) 등을 통하여 산화물(230)로 확산되는 것을 방지할 수 있다. 도전체(205a)에 산소의 확산을 억제하는 기능을 가지는 도전성 재료를 사용함으로써, 도전체(205b)가 산화되어 도전율이 저하하는 것을 억제할 수 있다. 산소의 확산을 억제하는 기능을 가지는 도전성 재료로서는, 예를 들어 타이타늄, 질화 타이타늄, 탄탈럼, 질화 탄탈럼, 루테늄, 산화 루테늄 등을 사용하는 것이 바람직하다. 따라서 도전체(205a)는 상기 도전성 재료의 단층 또는 적층으로 하면 좋다. 예를 들어 도전체(205a)에는 질화 타이타늄을 사용하면 좋다.
또한 도전체(205b)에는 텅스텐, 구리, 또는 알루미늄을 주성분으로 하는 도전성 재료를 사용하는 것이 바람직하다. 예를 들어 도전체(205b)에는 텅스텐을 사용하면 좋다.
도전체(205)는 제 2 게이트 전극으로서 기능하는 경우가 있다. 이 경우 도전체(205)에 인가하는 전위를 도전체(260)에 인가하는 전위와 연동시키지 않고 독립적으로 변화시킴으로써, 트랜지스터(200)의 문턱 전압(Vth)을 제어할 수 있다. 특히 도전체(205)에 음의 전위를 인가함으로써, 도전체(205)에 전위를 인가하지 않는 경우보다 트랜지스터(200)의 Vth를 크게 하고, 오프 전류를 저감할 수 있다. 따라서, 도전체(205)에 음의 전위를 인가하면, 인가하지 않은 경우보다 도전체(260)에 인가하는 전위가 0V일 때의 드레인 전류를 더 작게 할 수 있다.
또한 도전체(205)는 도 14의 (A)에 나타낸 바와 같이, 산화물(230)에서의 도전체(242a) 및 도전체(242b)와 중첩되지 않는 영역의 크기보다 크게 제공되는 것이 좋다. 특히 도 14의 (C)에 나타낸 바와 같이, 도전체(205)는 산화물(230a) 및 산화물(230b)의 채널 폭 방향과 교차되는 단부보다 외측의 영역으로도 연장되는 것이 바람직하다. 즉, 산화물(230)의 채널 폭 방향에서의 측면의 외측에서, 도전체(205)와 도전체(260)는 절연체를 개재(介在)하여 중첩되는 것이 바람직하다. 상기 구성을 가짐으로써, 제 1 게이트 전극으로서 기능하는 도전체(260)의 전계와, 제 2 게이트 전극으로서 기능하는 도전체(205)의 전계로, 산화물(230)의 채널 형성 영역을 전기적으로 둘러쌀 수 있다. 본 명세서에서 제 1 게이트 및 제 2 게이트의 전계로 채널 형성 영역을 전기적으로 둘러싸는 트랜지스터의 구조를 surrounded channel(S-channel) 구조라고 부른다.
또한 본 명세서 등에서 S-channel 구조의 트랜지스터란, 한 쌍의 게이트 전극 중 한쪽 및 다른 쪽의 전계로 채널 형성 영역을 전기적으로 둘러싸는 트랜지스터의 구조를 말한다. 또한 본 명세서 등에서 개시하는 S-channel 구조는 Fin형 구조 및 플레이너형 구조와는 다르다. S-channel 구조를 채용함으로써, 단채널 효과에 대한 내성이 높아진, 바꿔 말하면 단채널 효과가 일어나기 어려운 트랜지스터로 할 수 있다.
또한 도 14의 (C)에 나타낸 바와 같이, 도전체(205)는 연장되어 배선으로서도 기능한다. 다만 이에 한정되지 않고, 도전체(205) 아래에 배선으로서 기능하는 도전체를 제공하는 구성으로 하여도 좋다. 또한 도전체(205)는 반드시 각 트랜지스터에 하나씩 제공될 필요는 없다. 예를 들어 도전체(205)를 복수의 트랜지스터로 공유하는 구성으로 하여도 좋다.
또한 트랜지스터(200)에서 도전체(205a)와 도전체(205b)가 적층된 구성을 가지는 도전체(205)를 나타내었지만, 본 발명은 이에 한정되는 것이 아니다. 예를 들어 도전체(205)를 단층 또는 3층 이상의 적층 구조로 제공하는 구성으로 하여도 좋다.
절연체(222) 및 절연체(224)는 게이트 절연막으로서 기능한다.
절연체(222)는 수소(예를 들어 수소 원자, 수소 분자 등 중 적어도 하나)의 확산을 억제하는 기능을 가지는 것이 바람직하다. 또한 절연체(222)는 산소(예를 들어 산소 원자, 산소 분자 등 중 적어도 하나)의 확산을 억제하는 기능을 가지는 것이 바람직하다. 예를 들어 절연체(222)는 절연체(224)보다 수소 및 산소 중 한쪽 또는 양쪽의 확산을 더 억제하는 기능을 가지는 것이 바람직하다.
절연체(222)로서는 절연성 재료인 알루미늄 및 하프늄 중 한쪽 또는 양쪽의 산화물을 포함한 절연체를 사용하는 것이 좋다. 상기 절연체로서 산화 알루미늄, 산화 하프늄, 알루미늄 및 하프늄을 포함한 산화물(하프늄 알루미네이트) 등을 사용하는 것이 바람직하다. 이와 같은 재료를 사용하여 절연체(222)를 형성한 경우, 절연체(222)는 산화물(230)로부터 기판 측으로의 산소의 방출 또는 트랜지스터(200)의 주변부로부터 산화물(230)로의 수소 등의 불순물의 확산을 억제하는 층으로서 기능한다. 따라서 절연체(222)를 제공함으로써, 수소 등의 불순물이 트랜지스터(200)의 내측으로 확산되는 것을 억제하고, 산화물(230) 내에 산소 결손이 생성되는 것을 억제할 수 있다. 또한 도전체(205)가 절연체(224) 또는 산화물(230)에 포함되는 산소와 반응하는 것을 억제할 수 있다.
또는 상기 절연체에, 예를 들어 산화 알루미늄, 산화 비스무트, 산화 저마늄, 산화 나이오븀, 산화 실리콘, 산화 타이타늄, 산화 텅스텐, 산화 이트륨, 산화 지르코늄을 첨가하여도 좋다. 또는 이들 절연체를 질화 처리하여도 좋다. 또한 절연체(222)로서는 이들 절연체에 산화 실리콘, 산화질화 실리콘, 또는 질화 실리콘을 적층시킨 것을 사용하여도 좋다.
또한 절연체(222)에는 예를 들어 산화 알루미늄, 산화 하프늄, 산화 탄탈럼, 산화 지르코늄, 타이타늄산 지르콘산 연(PZT), 타이타늄산 스트론튬(SrTiO3), (Ba,Sr)TiO3(BST) 등의 소위 high-k 재료를 포함한 절연체를 단층 또는 적층으로 사용하여도 좋다. 트랜지스터의 미세화 및 고집적화가 진행되면 게이트 절연체의 박막화로 인하여 누설 전류 등의 문제가 생기는 경우가 있다. 게이트 절연체로서 기능하는 절연체에 high-k 재료를 사용함으로써, 물리적 막 두께를 유지하면서 트랜지스터 동작 시의 게이트 전위를 저감할 수 있다.
산화물(230)과 접하는 절연체(224)에는 예를 들어 산화 실리콘, 산화질화 실리콘 등을 적절히 사용하면 좋다. 산소를 포함하는 절연체(224)를 산화물(230)과 접하여 제공함으로써, 산화물(230) 내의 산소 결손을 저감하고 트랜지스터(200)의 신뢰성을 향상시킬 수 있다. 절연체(224)는 산화물(230a)과 중첩되도록, 섬 형상으로 가공되어 있는 것이 바람직하다. 이 경우 절연체(275)가 절연체(224)의 측면 및 절연체(222)의 상면과 접촉하는 구성이 된다. 이와 같은 구성으로 함으로써, 절연체(224)의 체적을 현저히 작게 하고, 절연체(224)와 절연체(280)를 절연체(275)에 의하여 이격할 수 있다. 따라서, 절연체(280)에 포함되는 산소가 절연체(224)로 확산되고, 절연체(224) 내의 산소가 지나치게 많아지는 것을 억제할 수 있다.
또한 절연체(222) 및 절연체(224)가 2층 이상의 적층 구조를 가져도 좋다. 이 경우, 같은 재료로 이루어지는 적층 구조에 한정되지 않고, 상이한 재료로 이루어지는 적층 구조이어도 좋다. 또한, 도 14의 (B) 등에는, 절연체(224)가 산화물(230a)과 중첩되어 섬 형상으로 형성되는 구성에 대하여 나타내었지만, 본 발명은 이에 한정되는 것이 아니다. 절연체(224)에 포함되는 산소량을 적절히 조정할 수 있으면, 절연체(222)와 마찬가지로 절연체(224)를 패터닝하지 않는 구성으로 하여도 좋다.
또한 트랜지스터(200)의 제작 공정 중에서, 산화물(230)의 표면이 노출된 상태에서 가열 처리를 수행하는 것이 적합하다. 상기 가열 처리는 예를 들어 100℃ 이상 600℃ 이하, 바람직하게는 350℃ 이상 550℃ 이하에서 수행하면 좋다. 또한 가열 처리는 질소 가스 또는 불활성 가스 분위기, 혹은 산화성 가스를 10ppm 이상, 1% 이상, 또는 10% 이상 포함하는 분위기에서 수행한다. 예를 들어 가열 처리는 산소 분위기에서 수행하는 것이 바람직하다. 이로써, 산화물(230)에 산소가 공급되므로 산소 결손(VO)을 저감할 수 있다. 또한 가열 처리는 감압 상태에서 수행하여도 좋다. 또는 가열 처리는 질소 가스 또는 불활성 가스 분위기에서 가열 처리를 수행한 후에, 이탈된 산소를 보충하기 위하여 산화성 가스를 10ppm 이상, 1% 이상, 또는 10% 이상 포함하는 분위기에서 수행하여도 좋다. 또는 산화성 가스를 10ppm 이상, 1% 이상, 또는 10% 이상 포함하는 분위기에서 가열 처리를 수행한 후에, 연속하여 질소 가스 또는 불활성 가스 분위기에서 가열 처리를 수행하여도 좋다.
또한 산화물(230)에 대하여 가산소화 처리를 수행함으로써, 공급된 산소에 의하여 산화물(230) 내의 산소 결손을 수복(修復)할 수 있고, 바꿔 말하면 "VO+O→null"이라는 반응을 촉진할 수 있다. 또한 산화물(230) 내에 잔존한 수소와 공급된 산소가 반응함으로써, 상기 수소를 H2O로서 제거(탈수화)할 수 있다. 이에 의하여, 산화물(230) 내에 잔존한 수소가 산소 결손과 재결합되어 VOH가 형성되는 것을 억제할 수 있다.
도전체(242a) 및 도전체(242b)는 산화물(230b)의 상면에 접하여 제공되는 것이 바람직하다. 도전체(242a) 및 도전체(242b)는 각각 트랜지스터(200)의 소스 전극 또는 드레인 전극으로서 기능한다.
도전체(242)(도전체(242a) 및 도전체(242b))에는, 예를 들어 탄탈럼을 포함한 질화물, 타이타늄을 포함한 질화물, 몰리브데넘을 포함한 질화물, 텅스텐을 포함한 질화물, 탄탈럼 및 알루미늄을 포함한 질화물, 타이타늄 및 알루미늄을 포함한 질화물 등을 사용하는 것이 바람직하다. 본 발명의 일 형태에서는 탄탈럼을 포함한 질화물이 특히 바람직하다. 또한 예를 들어 산화 루테늄, 질화 루테늄, 스트론튬과 루테늄을 포함한 산화물, 란타넘과 니켈을 포함한 산화물 등을 사용하여도 좋다. 이들 재료는 산화되기 어려운 도전성 재료 또는 산소를 흡수하여도 도전성을 유지하는 재료이기 때문에 바람직하다.
여기서, 도전체(242)로서 압축 응력이 큰 막을 사용하는 것이 바람직하고, 예를 들어 스퍼터링법에 의하여 성막한 질화 탄탈럼을 사용하는 것이 바람직하다. 도전체(242)의 응력에 의하여 영역(230ba) 및 영역(230bb)의 결정 구조에 변형이 생김으로써, 이들 영역에 산소 결손(VO)이 형성되기 쉬워진다. 이에 의하여 영역(230ba) 및 영역(230bb)에 생기는 VOH의 양이 증가되기 때문에, 영역(230ba) 및 영역(230bb)의 캐리어 농도가 증가되어, n형으로 할 수 있다.
또한 산화물(230b) 등에 포함되는 수소가 도전체(242a) 또는 도전체(242b)로 확산되는 경우가 있다. 특히 도전체(242a) 및 도전체(242b)에 탄탈럼을 포함하는 질화물을 사용함으로써, 산화물(230b) 등에 포함되는 수소는 도전체(242a) 또는 도전체(242b)로 확산되기 쉽고, 확산된 수소는 도전체(242a) 또는 도전체(242b)가 가지는 질소와 결합되는 경우가 있다. 즉, 산화물(230b) 등에 포함되는 수소는 도전체(242a) 또는 도전체(242b)에 흡수되는 경우가 있다.
또한, 도전체(242)의 측면과 도전체(242)의 상면 사이에 만곡면이 형성되지 않는 것이 바람직하다. 상기 만곡면이 형성되지 않는 도전체(242)로 함으로써, 도 14의 (D)에 나타낸 바와 같이, 채널 폭 방향의 단면에서의, 도전체(242)의 단면적을 크게 할 수 있다. 이에 의하여, 도전체(242)의 도전율을 크게 하여, 트랜지스터(200)의 온 전류를 크게 할 수 있다.
절연체(271a)는 도전체(242a)의 상면과 접하여 제공되고, 절연체(271b)는 도전체(242b)의 상면과 접하여 제공되어 있다. 또한 절연체(271)는 수소 등의 불순물을 포획하는 기능을 가지는 것이 바람직하다. 그 경우, 절연체(271)로서는 비정질 구조를 가지는 금속 산화물, 예를 들어 산화 알루미늄 또는 산화 마그네슘 등의 절연체를 사용하면 좋다. 특히 절연체(271)에 비정질 구조를 가지는 산화 알루미늄 또는 비정질 구조의 산화 알루미늄을 사용함으로써, 더 효과적으로 수소를 포획 또는 고착할 수 있는 경우가 있기 때문에 바람직하다. 이에 의하여, 양호한 특성을 가지고 신뢰성이 높은 트랜지스터(200) 및 반도체 장치를 제작할 수 있다.
또한, 절연체(271)는 산소에 대한 배리어 절연막으로서 기능하는 것이 바람직하다. 따라서, 절연체(271)는 산소의 확산을 억제하는 기능을 가지는 것이 바람직하다. 예를 들어 절연체(271)는 절연체(280)보다 산소의 확산을 억제하는 기능을 가지는 것이 바람직하다. 이 경우, 절연체(271)에는 예를 들어 질화 실리콘 등의 실리콘을 포함하는 질화물을 사용하여도 좋다.
절연체(275)는 절연체(222)의 상면, 절연체(224)의 측면, 산화물(230a)의 측면, 산화물(230b)의 측면, 도전체(242)의 측면, 절연체(271)의 측면 및 상면과 접하여 제공된다. 절연체(275)는 절연체(250) 및 도전체(260)가 제공되는 영역에 개구가 형성되어 있다.
또한, 절연체(275)는 산소의 투과를 억제하는 배리어 절연막으로서 기능하는 것이 바람직하다. 또한, 절연체(275)는 물, 수소 등의 불순물의 확산을 억제하는 배리어 절연막으로서 기능하는 것이 바람직하고, 수소 등의 불순물을 포획하는 기능을 가지는 것이 바람직하다. 절연체(275)로서는, 예를 들어 산화 알루미늄 또는 질화 실리콘 등의 절연체를 단층으로 또는 적층하여 사용하면 좋다. 예를 들어 비정질 구조의 산화 알루미늄막을 제공하고, 그 위에 적층하여 질화 실리콘막을 제공하는 구성으로 하면 좋다. 이와 같은 적층 구조로 함으로써, 산화 알루미늄막의 단층 또는 질화 실리콘막의 단층보다 수소 및 산소에 대한 배리어성을 높일 수 있어 바람직하다.
상술한 바와 같은 절연체(271) 및 절연체(275)를 제공함으로써, 산소에 대한 배리어성을 가지는 절연체로 도전체(242)를 감쌀 수 있다. 즉, 절연체(224), 절연체(280), 및 절연체(250a)에 포함되는 산소가 도전체(242)로 확산되는 것을 방지할 수 있다. 이에 의하여, 절연체(224), 절연체(280), 및 절연체(250a)에 포함되는 산소에 의하여 도전체(242)가 직접 산화되어 저항률이 증대되고 온 전류가 저감되는 것을 억제할 수 있다.
또한, 절연체(212)와 절연체(275) 사이의 영역 내에서, 수소 등의 불순물을 포획하는 기능을 가지는 절연체(214), 절연체(271), 및 절연체(275)를 제공함으로써, 절연체(224) 또는 절연체(216) 등에 포함되는 수소 등의 불순물을 포획하고, 상기 영역 내에서의 수소의 양을 일정값으로 할 수 있다. 이 경우, 절연체(275)의 적어도 일부에 비정질 구조의 산화 알루미늄이 포함되는 것이 바람직하다.
절연체(250)는 절연체(250a)와, 절연체(250a) 위의 절연체(250b)를 가지고, 게이트 절연막으로서 기능한다. 또한, 절연체(250a)는 산화물(230b)의 상면 및 절연체(280)의 측면에 접하여 배치하는 것이 바람직하다. 또한, 절연체(250)의 막 두께는 1nm 이상 20nm 이하로 하는 것이 바람직하다.
절연체(250a)에는 산화 실리콘, 산화질화 실리콘, 질화산화 실리콘, 질화 실리콘, 플루오린을 첨가한 산화 실리콘, 공공을 가지는 산화 실리콘 등을 사용할 수 있다. 특히, 산화 실리콘 및 산화질화 실리콘은 열에 대하여 안정적이므로 바람직하다. 또한, 절연체(250a)는 막 내의 탄소 함유량이 적은 것이 바람직하다.
다만, 본 발명의 일 형태는 이에 한정되지 않고, 절연체(250a)의 막 내에 탄소를 가져도 좋다. 예를 들어, 절연체(250a)의 탄소 농도는 SIMS에 의한 분석에서, 바람직하게는 1×1018atoms/cm3 이상 5×1020atoms/cm3 이하이고, 더 바람직하게는 5×1018atoms/cm3 이상 1×1020atoms/cm3 이하이다. 또한, 절연체(250a)의 막 내의 탄소 농도는 SIMS 분석 등에 의하여 측정할 수 있다.
절연체(250a)는 절연체(224)와 마찬가지로, 절연체(250a) 내의 물, 수소 등의 불순물의 농도가 저감되어 있는 것이 바람직하다.
절연체(250a)는 가열에 의하여 산소가 확산되기 쉬워지는 절연체를 사용하여 형성하고, 절연체(250b)는 산소의 확산을 억제하는 기능을 가지는 절연체를 사용하여 형성하는 것이 바람직하다. 이와 같은 구성으로 함으로써, 절연체(250a)에 포함되는 산소를 확산시킬 때 도전체(260)로 산소가 확산되는 것을 억제할 수 있다. 즉, 산화물(230)에 공급하는 산소량의 감소를 억제할 수 있다. 또한 절연체(250a)에 포함되는 산소로 인한 도전체(260)의 산화를 억제할 수 있다. 예를 들어, 절연체(250b)는 절연체(222)와 마찬가지의 재료를 사용하여 제공할 수 있다.
또한 절연체(250a)에 산화 실리콘 또는 산화질화 실리콘 등을 사용하는 경우, 절연체(250b)에는 비유전율이 높은 high-k 재료인 절연성 재료를 사용하여도 좋다. 게이트 절연체를 절연체(250a)와 절연체(250b)의 적층 구조로 함으로써, 열에 대하여 안정적이며 비유전율이 높은 적층 구조로 할 수 있다. 따라서 게이트 절연체의 물리적 막 두께를 유지한 채, 트랜지스터 동작 시에 인가하는 게이트 전위의 저감화가 가능하게 된다. 또한 게이트 절연체로서 기능하는 절연체의 등가 산화막 두께(EOT)의 박막화가 가능하게 된다.
절연체(250b)로서 구체적으로는 하프늄, 알루미늄, 갈륨, 이트륨, 지르코늄, 텅스텐, 타이타늄, 탄탈럼, 니켈, 저마늄, 마그네슘 등 중에서 선택된 1종류 또는 2종류 이상이 포함된 금속 산화물, 또는 산화물(230)로서 사용할 수 있는 금속 산화물을 사용할 수 있다. 특히 알루미늄 및 하프늄 중 한쪽 또는 양쪽의 산화물을 포함한 절연체를 사용하는 것이 바람직하다. 상기 절연체로서 산화 알루미늄, 산화 하프늄, 알루미늄 및 하프늄을 포함한 산화물(하프늄 알루미네이트) 등을 사용하는 것이 바람직하다. 또한, 절연체(250b)로서 산화 하프늄막과, 상기 산화 하프늄막 위에 질화 실리콘막을 제공한 적층막을 사용하여도 좋다.
또한, 도 14의 (B) 및 (C)에서는, 절연체(250)를 2층의 적층 구조로 도시하였지만, 본 발명은 이에 한정되는 것이 아니다. 절연체(250)를 단층 또는 3층 이상의 적층 구조로 하여도 좋다. 예를 들어 도 15의 (B)에 나타낸 바와 같이, 절연체(250b)와 도전체(260a) 사이에 절연체(250c)를 제공하는 구성으로 하여도 좋다. 절연체(250c)에는 상술한 절연체(283)에 사용할 수 있는 절연체를 사용하면 좋다. 절연체(250c)로서는, 수소에 대한 배리어 절연막을 사용하는 것이 바람직하다. 이에 의하여, 도전체(260)에 포함되는 수소 등의 불순물이 절연체(250b), 절연체(250a), 및 산화물(230b)로 확산되는 것을 억제할 수 있다. 예를 들어 절연체(250c)로서 PEALD법으로 성막한 질화 실리콘을 사용하면 좋다.
또한 절연체(250)와 도전체(260) 사이에 금속 산화물을 제공하여도 좋다. 상기 금속 산화물은 절연체(250)로부터 도전체(260)로의 산소의 확산을 억제하는 것이 바람직하다. 산소의 확산을 억제하는 금속 산화물을 제공함으로써, 절연체(250)로부터 도전체(260)로의 산소의 확산이 억제된다. 즉, 산화물(230)에 공급하는 산소량이 감소되는 것을 억제할 수 있다. 또한 절연체(250)의 산소로 인한 도전체(260)의 산화를 억제할 수 있다.
또한 상기 금속 산화물은 제 1 게이트 전극의 일부로서의 기능을 가지는 구성으로 하여도 좋다. 예를 들어 산화물(230)로서 사용할 수 있는 금속 산화물을 상기 금속 산화물로서 사용할 수 있다. 이 경우, 도전체(260a)를 스퍼터링법에 의하여 성막함으로써, 상기 금속 산화물의 전기 저항값을 저하시켜 도전체로 할 수 있다. 이를 OC(Oxide Conductor) 전극이라고 부를 수 있다.
상기 금속 산화물을 포함함으로써, 도전체(260)로부터의 전계의 영향을 감소시키지 않고, 트랜지스터(200)의 온 전류를 향상시킬 수 있다.
도전체(260)는 절연체(250b) 위에 제공되어 있고, 트랜지스터(200)의 제 1 게이트 전극으로서 기능한다. 도전체(260)는 도전체(260a)와, 도전체(260a) 위에 배치된 도전체(260b)를 가지는 것이 바람직하다. 예를 들어 도전체(260a)는 도전체(260b)의 밑면 및 측면을 감싸도록 배치되는 것이 바람직하다. 또한 도 14의 (B) 및 (C)에 나타낸 바와 같이, 도전체(260)의 상면은 절연체(250)의 상면과 실질적으로 일치한다. 또한, 도 14의 (B) 및 (C)에서는 도전체(260)는 도전체(260a)와 도전체(260b)의 2층 구조로 나타내었지만, 단층 구조이어도 좋고, 3층 이상의 적층 구조이어도 좋다.
도전체(260a)에는 수소 원자, 수소 분자, 물 분자, 질소 원자, 질소 분자, 산화 질소 분자, 구리 원자 등의 불순물의 확산을 억제하는 기능을 가지는 도전성 재료를 사용하는 것이 바람직하다. 또는 산소(예를 들어 산소 원자, 산소 분자 등 중 적어도 하나)의 확산을 억제하는 기능을 가지는 도전성 재료를 사용하는 것이 바람직하다.
또한 도전체(260a)가 산소의 확산을 억제하는 기능을 가짐으로써, 절연체(250)에 포함되는 산소로 인하여 도전체(260b)가 산화되어 도전율이 저하되는 것을 억제할 수 있다. 산소의 확산을 억제하는 기능을 가지는 도전성 재료로서는, 예를 들어 타이타늄, 질화 타이타늄, 탄탈럼, 질화 탄탈럼, 루테늄, 산화 루테늄 등을 사용하는 것이 바람직하다.
또한 도전체(260)는 배선으로서도 기능하기 때문에, 도전성이 높은 도전체를 사용하는 것이 바람직하다. 예를 들어 도전체(260b)에는 텅스텐, 구리, 또는 알루미늄을 주성분으로 하는 도전성 재료를 사용할 수 있다. 또한 도전체(260b)를 적층 구조로 하여도 좋고, 예를 들어 타이타늄 또는 질화 타이타늄과 상기 도전성 재료의 적층 구조로 하여도 좋다.
또한 트랜지스터(200)에서는 도전체(260)가 절연체(280) 등에 형성된 개구를 매립하도록 자기 정합(self-aligned)적으로 형성된다. 도전체(260)를 이와 같이 형성함으로써, 도전체(242a)와 도전체(242b) 사이의 영역에 도전체(260)를 위치 맞춤 없이 확실하게 배치할 수 있다. 또한, 도 15의 (A) 등에 나타낸 바와 같이, 상기 개구의 상부가 상기 개구의 하부보다 넓은 형상인 경우, 도전체(260)도 마찬가지로 상부가 하부보다 넓은 형상이 된다.
또한 도 14의 (C)에 나타낸 바와 같이, 트랜지스터(200)의 채널 폭 방향에서, 절연체(222)의 밑면을 기준으로 하였을 때 도전체(260)에서 산화물(230b)과 중첩되지 않는 영역의 밑면의 높이는 산화물(230b)의 밑면의 높이보다 낮은 것이 바람직하다. 게이트 전극으로서 기능하는 도전체(260)가 절연체(250) 등을 개재하여 산화물(230b)의 채널 형성 영역의 측면 및 상면을 덮는 구성으로 함으로써, 도전체(260)의 전계를 산화물(230b)의 채널 형성 영역 전체에 작용시키기 쉬워진다. 따라서 트랜지스터(200)의 온 전류를 증대시켜 주파수 특성을 향상시킬 수 있다. 절연체(222)의 밑면을 기준으로 하였을 때, 산화물(230a) 및 산화물(230b)과 도전체(260)가 중첩되지 않는 영역에서의 도전체(260)의 밑면의 높이와 산화물(230b)의 밑면의 높이의 차이는 0nm 이상 100nm 이하, 바람직하게는 3nm 이상 50nm 이하, 더 바람직하게는 5nm 이상 20nm 이하이다.
절연체(280)는 절연체(275) 위에 제공되고, 절연체(250) 및 도전체(260)가 제공되는 영역에 개구가 형성되어 있다. 또한 절연체(280)의 상면은 평탄화되어도 좋다. 이 경우, 절연체(280)의 상면은 절연체(250)의 상면 및 도전체(260)의 상면과 실질적으로 일치하는 것이 바람직하다.
층간 절연막으로서 기능하는 절연체(280)는 유전율이 낮은 것이 바람직하다. 유전율이 낮은 재료를 층간 절연막으로 함으로써, 배선 사이에 생기는 기생 용량을 저감할 수 있다. 절연체(280)는 예를 들어 절연체(216)와 같은 재료를 사용하여 제공되는 것이 바람직하다. 특히 산화 실리콘 및 산화질화 실리콘은 열적으로 안정적이므로 바람직하다. 특히, 산화 실리콘, 산화질화 실리콘, 공공을 가지는 산화 실리콘 등의 재료는 가열에 의하여 이탈되는 산소를 포함한 영역을 용이하게 형성할 수 있기 때문에 바람직하다.
절연체(280)는 절연체(224)와 마찬가지로 과잉 산소를 가지는 경우가 있다. 또한, 절연체(280) 내의 물, 수소 등의 불순물의 농도는 저감되어 있는 것이 바람직하다. 예를 들어 절연체(280)에는 산화 실리콘, 산화질화 실리콘 등의 실리콘을 포함하는 산화물을 적절히 사용하면 좋다. 절연체(280)를 절연체(250a)에 접하여 제공함으로써, 절연체(250a)를 통하여 산화물(230)에 산소를 공급할 수 있다. 상기 산소에 의하여 산화물(230) 내의 산소 결손을 저감함으로써, 트랜지스터(200)의 신뢰성을 향상시킬 수 있다.
절연체(282)는 절연체(280)의 상면, 절연체(250)의 상면, 및 도전체(260)의 상면과 접하여 제공된다. 절연체(282)로서는, 예를 들어 산화 알루미늄 등의 절연체를 사용하면 좋다. 절연체(282)로서 스퍼터링법을 사용하여 산화 알루미늄을 성막함으로써, 절연체(280)에 과잉 산소를 포함시킬 수 있다. 절연체(282)는 물, 수소 등의 불순물이 위쪽으로부터 절연체(280)로 확산되는 것을 억제하는 배리어 절연막으로서 기능하는 것이 바람직하고, 수소 등의 불순물을 포획하는 기능을 가지는 것이 바람직하다. 또한, 절연체(282)는 산소의 투과를 억제하는 배리어 절연막으로서 기능하는 것이 바람직하다. 절연체(212)와 절연체(283) 사이의 영역 내에서, 절연체(280)와 접하여, 수소 등의 불순물을 포획하는 기능을 가지는 절연체(282)를 제공함으로써, 절연체(280) 등에 포함되는 수소 등의 불순물을 포획하고, 상기 영역 내에서의 수소의 양을 일정값으로 할 수 있다. 특히 절연체(282)에 비정질 구조를 가지는 산화 알루미늄 또는 비정질 구조의 산화 알루미늄을 사용함으로써, 더 효과적으로 수소를 포획 또는 고착할 수 있는 경우가 있기 때문에 바람직하다. 이에 의하여, 양호한 특성을 가지고 신뢰성이 높은 트랜지스터(200) 및 반도체 장치를 제작할 수 있다.
절연체(283)는 물, 수소 등의 불순물이 위쪽으로부터 절연체(280)로 확산되는 것을 억제하는 배리어 절연막으로서 기능한다. 절연체(283)는 절연체(282) 위에 배치된다. 절연체(283)에는 질화 실리콘 또는 질화산화 실리콘 등의 실리콘을 포함하는 질화물을 사용하는 것이 바람직하다. 예를 들어 절연체(283)로서 스퍼터링법으로 성막된 질화 실리콘을 사용하면 좋다. 절연체(283)를 스퍼터링법으로 성막함으로써, 밀도가 높고, 공동(void) 등이 형성되기 어려운 질화 실리콘막을 형성할 수 있다. 또한 절연체(283)로서, 스퍼터링법으로 성막된 질화 실리콘 위에 ALD법으로 성막된 질화 실리콘을 더 적층하여도 좋다. 이와 같은 구조로 하면, 스퍼터링법으로 성막되는 질화 실리콘에 결함, 예를 들어 공동이 생겨도 피복성이 양호한 ALD법으로 성막되는 질화 실리콘으로 상기 공동을 메워 밀봉 성능을 높일 수 있기 때문에 바람직하다.
절연체(285)는 절연체(283) 위에 제공된다. 절연체(285)는 예를 들어 절연체(280)와 같은 재료를 사용하여 제공하는 것이 바람직하다. 특히 산화 실리콘 및 산화질화 실리콘은 열적으로 안정적이므로 바람직하다. 또한, 도 14의 (B) 및 (C)에서는 절연체(285)를 제공하는 구조를 도시하였지만, 본 발명은 이에 한정되는 것이 아니다. 절연체(285)를 제공하지 않고, 절연체(283)에 접하여 도전체(246)를 제공하는 구성으로 하여도 좋다.
도전체(240a) 및 도전체(240b)에는 텅스텐, 구리, 또는 알루미늄을 주성분으로 하는 도전성 재료를 사용하는 것이 바람직하다. 또한 도전체(240a) 및 도전체(240b)는 적층 구조로 하여도 좋다.
또한, 도전체(240)를 적층 구조로 하는 경우, 절연체(241)와 접하는 제 1 도전체에는 물, 수소 등의 불순물의 투과를 억제하는 기능을 가지는 도전성 재료를 사용하는 것이 바람직하다. 예를 들어 탄탈럼, 질화 탄탈럼, 타이타늄, 질화 타이타늄, 루테늄, 산화 루테늄 등을 사용하는 것이 바람직하다. 또한 물, 수소 등의 불순물의 투과를 억제하는 기능을 가지는 도전성 재료를 단층 또는 적층으로 사용하여도 좋다. 또한 절연체(283)보다 위층에 포함되는 물, 수소 등의 불순물이 도전체(240a) 및 도전체(240b)를 통하여 산화물(230)에 혼입되는 것을 억제할 수 있다.
절연체(241a) 및 절연체(241b)로서는 절연체(275) 등에 사용할 수 있는 배리어 절연막을 사용하면 좋다. 예를 들어 절연체(241a) 및 절연체(241b)로서는 질화 실리콘, 산화 알루미늄, 질화산화 실리콘 등의 절연체를 사용하면 좋다. 절연체(241a) 및 절연체(241b)는 절연체(283), 절연체(282), 및 절연체(271)와 접하여 제공되기 때문에, 절연체(280) 등에 포함되는 물, 수소 등의 불순물이 도전체(240a) 및 도전체(240b)를 통하여 산화물(230)에 혼입되는 것을 억제할 수 있다. 특히, 질화 실리콘은 수소에 대한 배리어성이 높기 때문에 적합하다. 또한 절연체(280)에 포함되는 산소가 도전체(240a) 및 도전체(240b)에 흡수되는 것을 방지할 수 있다.
절연체(241a) 및 절연체(241b)를 도 14의 (A)에 나타낸 바와 같이 적층 구조로 하는 경우, 절연체(280) 등의 개구의 내벽에 접하는 제 1 절연체와, 그 내측의 제 2 절연체로서는 산소에 대한 배리어 절연막과, 수소에 대한 배리어 절연막을 조합한 것을 사용하는 것이 바람직하다.
예를 들어, 제 1 절연체로서 ALD법으로 성막된 산화 알루미늄을 사용하고, 제 2 절연체로서 PEALD법으로 성막된 질화 실리콘을 사용하면 좋다. 이와 같은 구성으로 함으로써, 도전체(240)의 산화를 억제하고, 또한 도전체(240)에 수소가 혼입되는 것을 저감할 수 있다.
또한 도전체(240a)의 상면 및 도전체(240b)의 상면과 접하여 배선으로서 기능하는 도전체(246)(도전체(246a) 및 도전체(246b))를 배치하여도 좋다. 도전체(246)는 텅스텐, 구리, 또는 알루미늄을 주성분으로 하는 도전성 재료를 사용하는 것이 바람직하다. 또한 상기 도전체는 적층 구조로 하여도 좋고, 예를 들어 타이타늄 또는 질화 타이타늄과 상기 도전성 재료의 적층 구조로 하여도 좋다. 또한, 상기 도전체는 절연체에 제공된 개구에 매립되도록 형성하여도 좋다.
<반도체 장치의 구성 재료>
이하에서는, 반도체 장치에 사용할 수 있는 구성 재료에 대하여 설명한다.
<<기판>>
트랜지스터(200)를 형성하는 기판으로서는 예를 들어 절연체 기판, 반도체 기판, 또는 도전체 기판을 사용하면 좋다. 절연체 기판으로서는 예를 들어 유리 기판, 석영 기판, 사파이어 기판, 안정화 지르코니아 기판(이트리아 안정화 지르코니아 기판 등), 수지 기판 등이 있다. 또한 반도체 기판으로서는 예를 들어 실리콘, 저마늄을 재료로 한 반도체 기판, 또는 탄소화 실리콘, 실리콘 저마늄, 비소화 갈륨, 인화 인듐, 산화 아연, 산화 갈륨으로 이루어지는 화합물 반도체 기판 등이 있다. 또한 상술한 반도체 기판 내부에 절연체 영역을 가지는 반도체 기판, 예를 들어 SOI(Silicon On Insulator) 기판 등이 있다. 도전체 기판으로서는 흑연 기판, 금속 기판, 합금 기판, 도전성 수지 기판 등이 있다. 또는 금속의 질화물을 포함하는 기판, 금속의 산화물을 포함하는 기판 등이 있다. 또한 절연체 기판에 도전체 또는 반도체가 제공된 기판, 반도체 기판에 도전체 또는 절연체가 제공된 기판, 도전체 기판에 반도체 또는 절연체가 제공된 기판 등이 있다. 또는 이들 기판에 소자가 제공된 것을 사용하여도 좋다. 기판에 제공되는 소자로서는 용량 소자, 저항 소자, 스위칭 소자, 발광 소자, 기억 소자 등이 있다.
<<절연체>>
절연체로서는, 절연성을 가지는 산화물, 질화물, 산화질화물, 질화산화물, 금속 산화물, 금속 산화질화물, 금속 질화산화물 등이 있다.
예를 들어 트랜지스터의 미세화 및 고집적화가 진행되면, 게이트 절연체가 박막화됨으로써 누설 전류 등의 문제가 발생하는 경우가 있다. 게이트 절연체로서 기능하는 절연체에 high-k 재료를 사용함으로써, 물리적 막 두께를 유지하면서 트랜지스터 동작 시의 전압을 저감할 수 있다. 한편, 층간 절연막으로서 기능하는 절연체에는 비유전율이 낮은 재료를 사용함으로써, 배선 사이에 발생하는 기생 용량을 저감할 수 있다. 따라서 절연체의 기능에 따라 재료를 선택하는 것이 좋다.
또한 비유전율이 높은 절연체로서는 산화 갈륨, 산화 하프늄, 산화 지르코늄, 알루미늄 및 하프늄을 포함한 산화물, 알루미늄 및 하프늄을 포함한 산화질화물, 실리콘 및 하프늄을 포함한 산화물, 실리콘 및 하프늄을 포함한 산화질화물, 또는 실리콘 및 하프늄을 포함한 질화물 등이 있다.
또한 비유전율이 낮은 절연체로서는 산화 실리콘, 산화질화 실리콘, 질화산화 실리콘, 질화 실리콘, 플루오린을 첨가한 산화 실리콘, 탄소를 첨가한 산화 실리콘, 탄소 및 질소를 첨가한 산화 실리콘, 공공을 가지는 산화 실리콘, 또는 수지 등이 있다.
또한 금속 산화물을 사용한 트랜지스터는, 수소 등의 불순물 및 산소의 투과를 억제하는 기능을 가지는 절연체로 둘러쌈으로써, 트랜지스터의 전기 특성을 안정적으로 할 수 있다. 수소 등의 불순물 및 산소의 투과를 억제하는 기능을 가지는 절연체로서는, 예를 들어 붕소, 탄소, 질소, 산소, 플루오린, 마그네슘, 알루미늄, 실리콘, 인, 염소, 아르곤, 갈륨, 저마늄, 이트륨, 지르코늄, 란타넘, 네오디뮴, 하프늄, 또는 탄탈럼을 포함한 절연체를 단층으로 또는 적층으로 사용하면 좋다. 구체적으로는, 수소 등의 불순물 및 산소의 투과를 억제하는 기능을 가지는 절연체로서, 산화 알루미늄, 산화 마그네슘, 산화 갈륨, 산화 저마늄, 산화 이트륨, 산화 지르코늄, 산화 란타넘, 산화 네오디뮴, 산화 하프늄, 산화 탄탈럼 등의 금속 산화물, 질화 알루미늄, 질화산화 실리콘, 질화 실리콘 등의 금속 질화물을 사용할 수 있다.
또한 게이트 절연체로서 기능하는 절연체는, 가열에 의하여 이탈되는 산소를 포함한 영역을 가지는 절연체인 것이 바람직하다. 예를 들어 가열에 의하여 이탈되는 산소를 포함한 영역을 가지는 산화 실리콘 또는 산화질화 실리콘이 산화물(230)과 접하는 구조로 함으로써, 산화물(230)이 가지는 산소 결손을 보상할 수 있다.
<<도전체>>
도전체에는 알루미늄, 크로뮴, 구리, 은, 금, 백금, 탄탈럼, 니켈, 타이타늄, 몰리브데넘, 텅스텐, 하프늄, 바나듐, 나이오븀, 망가니즈, 마그네슘, 지르코늄, 베릴륨, 인듐, 루테늄, 이리듐, 스트론튬, 란타넘 등 중에서 선택된 금속 원소, 또는 상술한 금속 원소를 성분으로 하는 합금이나, 상술한 금속 원소를 조합한 합금 등을 사용하는 것이 바람직하다. 예를 들어 질화 탄탈럼, 질화 타이타늄, 텅스텐, 타이타늄과 알루미늄을 포함한 질화물, 탄탈럼과 알루미늄을 포함한 질화물, 산화 루테늄, 질화 루테늄, 스트론튬과 루테늄을 포함한 산화물, 란타넘과 니켈을 포함한 산화물 등을 사용하는 것이 바람직하다. 또한 질화 탄탈럼, 질화 타이타늄, 타이타늄과 알루미늄을 포함한 질화물, 탄탈럼과 알루미늄을 포함한 질화물, 산화 루테늄, 질화 루테늄, 스트론튬과 루테늄을 포함한 산화물, 란타넘과 니켈을 포함한 산화물은 산화되기 어려운 도전성 재료, 또는 산소를 흡수하여도 도전성을 유지하는 재료이기 때문에 바람직하다. 또한 인 등의 불순물 원소를 함유시킨 다결정 실리콘으로 대표되는, 전기 전도도가 높은 반도체, 니켈실리사이드 등의 실리사이드를 사용하여도 좋다.
또한 상기 재료로 형성되는 도전층을 복수 적층하여 사용하여도 좋다. 예를 들어 상술한 금속 원소를 포함한 재료와 산소를 포함한 도전성 재료를 조합한 적층 구조로 하여도 좋다. 또한 상술한 금속 원소를 포함한 재료와 질소를 포함한 도전성 재료를 조합한 적층 구조로 하여도 좋다. 또한 상술한 금속 원소를 포함한 재료와, 산소를 포함한 도전성 재료와, 질소를 포함한 도전성 재료를 조합한 적층 구조로 하여도 좋다.
또한 트랜지스터의 채널 형성 영역에 산화물을 사용하는 경우, 게이트 전극으로서 기능하는 도전체에는 상술한 금속 원소를 포함한 재료와 산소를 포함한 도전성 재료를 조합한 적층 구조를 사용하는 것이 바람직하다. 이 경우에는, 산소를 포함한 도전성 재료를 채널 형성 영역 측에 제공하는 것이 좋다. 산소를 포함한 도전성 재료를 채널 형성 영역 측에 제공함으로써, 상기 도전성 재료로부터 이탈된 산소가 채널 형성 영역에 공급되기 쉬워진다.
특히, 게이트 전극으로서 기능하는 도전체에, 채널이 형성되는 금속 산화물에 포함되는 금속 원소 및 산소를 포함한 도전성 재료를 사용하는 것이 바람직하다. 또한 상술한 금속 원소 및 질소를 포함한 도전성 재료를 사용하여도 좋다. 예를 들어 질화 타이타늄, 질화 탄탈럼 등의 질소를 포함한 도전성 재료를 사용하여도 좋다. 또한 인듐 주석 산화물, 산화 텅스텐을 포함한 인듐 산화물, 산화 텅스텐을 포함한 인듐 아연 산화물, 산화 타이타늄을 포함한 인듐 산화물, 산화 타이타늄을 포함한 인듐 주석 산화물, 인듐 아연 산화물, 실리콘을 첨가한 인듐 주석 산화물을 사용하여도 좋다. 또한 질소를 포함한 인듐 갈륨 아연 산화물을 사용하여도 좋다. 이와 같은 재료를 사용함으로써, 채널이 형성되는 금속 산화물에 포함되는 수소를 포획할 수 있는 경우가 있다. 또는 외부의 절연체 등으로부터 혼입되는 수소를 포획할 수 있는 경우가 있다.
<<금속 산화물>>
산화물(230)로서는, 반도체로서 기능하는 금속 산화물(산화물 반도체)을 사용하는 것이 바람직하다. 이하에서는, 본 발명에 따른 산화물(230)에 적용할 수 있는 금속 산화물에 대하여 설명한다.
금속 산화물은 적어도 인듐 또는 아연을 포함하는 것이 바람직하다. 특히, 인듐 및 아연을 포함하는 것이 바람직하다. 또한 이들에 더하여 알루미늄, 갈륨, 이트륨, 주석 등이 포함되는 것이 바람직하다. 또한 붕소, 타이타늄, 철, 니켈, 저마늄, 지르코늄, 몰리브데넘, 란타넘, 세륨, 네오디뮴, 하프늄, 탄탈럼, 텅스텐, 마그네슘, 코발트 등 중에서 선택된 1종류 또는 복수 종류가 포함되어도 좋다.
여기서는, 금속 산화물이 인듐, 원소 M, 및 아연을 포함한 In-M-Zn 산화물인 경우를 생각한다. 또한 원소 M은 알루미늄, 갈륨, 이트륨, 또는 주석으로 한다. 그 외의 원소 M에 적용할 수 있는 원소로서는 붕소, 타이타늄, 철, 니켈, 저마늄, 지르코늄, 몰리브데넘, 란타넘, 세륨, 네오디뮴, 하프늄, 탄탈럼, 텅스텐, 마그네슘, 코발트 등이 있다. 다만 원소 M으로서 상술한 원소를 복수 조합하여도 되는 경우가 있다.
<반도체 장치의 제작 방법>
다음으로, 도 14의 (A) 내지 (D)에 나타낸 본 발명의 일 형태인 반도체 장치의 제작 방법에 대하여 도 16의 (A) 내지 도 25의 (A), 도 16의 (B) 내지 도 25의 (B), 도 16의 (C) 내지 도 25의 (C), 및 도 16의 (D) 내지 도 25의 (D)를 사용하여 설명한다.
도 16의 (A) 내지 도 25의 (A)는 상면도를 나타낸 것이다. 또한 도 16의 (B) 내지 도 25의 (B)는 도 16의 (A) 내지 도 25의 (A)에서 A1-A2의 일점쇄선으로 나타낸 부분에 대응하는 단면도이고, 트랜지스터(200)의 채널 길이 방향의 단면도이기도 하다. 또한 도 16의 (C) 내지 도 25의 (C)는 도 16의 (A) 내지 도 25의 (A)에서 A3-A4의 일점쇄선으로 나타낸 부분에 대응하는 단면도이고, 트랜지스터(200)의 채널 폭 방향의 단면도이기도 하다. 또한 도 16의 (D) 내지 도 25의 (D)는 도 16의 (A) 내지 도 25의 (A)에서 A5-A6의 일점쇄선으로 나타낸 부분의 단면도이다. 또한 도 16의 (A) 내지 도 25의 (A)의 상면도에서는 도면의 명료화를 위하여 일부 요소를 생략하였다.
이하에서, 절연체를 형성하기 위한 절연성 재료, 도전체를 형성하기 위한 도전성 재료, 또는 반도체를 형성하기 위한 반도체 재료는 스퍼터링법, CVD법, MBE법, PLD법, ALD법 등을 적절히 사용하여 성막할 수 있다.
또한 스퍼터링법으로서는, 스퍼터링용 전원에 고주파 전원을 사용하는 RF 스퍼터링법, 직류 전원을 사용하는 DC 스퍼터링법, 그리고 전극에 인가하는 전압을 펄스적으로 변화시키는 펄스 DC 스퍼터링법이 있다. RF 스퍼터링법은 주로 절연막을 성막하는 경우에 사용되고, DC 스퍼터링법은 주로 금속 도전막을 성막하는 경우에 사용된다. 또한 펄스 DC 스퍼터링법은 주로 산화물, 질화물, 탄화물 등의 화합물을 반응성 스퍼터링법으로 성막할 때 사용된다.
또한 CVD법은 플라스마를 이용하는 플라스마 CVD(PECVD)법(플라스마 화학 기상 성장법이라고 부르는 경우도 있음), 열을 이용하는 열 CVD(TCVD: Thermal CVD)법, 광을 이용하는 광 CVD(Photo CVD)법 등으로 분류할 수 있다. 또한 사용하는 원료 가스에 따라 금속 CVD(MCVD: Metal CVD)법, 유기 금속 CVD(MOCVD: Metal Organic CVD)법(유기 금속 화학 기상 성장법이라고 부르는 경우도 있음)으로 분류할 수 있다.
플라스마 CVD법에 의하여, 비교적 낮은 온도에서 고품질의 막을 얻을 수 있다. 또한 열 CVD법은 플라스마를 사용하지 않기 때문에, 피처리물에 대한 플라스마 대미지를 작게 할 수 있는 성막 방법이다. 예를 들어 반도체 장치에 포함되는 배선, 전극, 소자(트랜지스터, 용량 소자 등) 등은 플라스마로부터 전하를 받아 차지 업하는 경우가 있다. 이때, 축적된 전하로 인하여 반도체 장치에 포함되는 배선, 전극, 소자 등이 파괴되는 경우가 있다. 한편, 플라스마를 사용하지 않는 열 CVD법의 경우, 이와 같은 플라스마 대미지가 생기지 않기 때문에, 반도체 장치의 수율을 높일 수 있다. 또한 열 CVD법에서는 성막 시에 플라스마 대미지가 생기지 않기 때문에, 결함이 적은 막을 얻을 수 있다.
또한, ALD법으로서는, 전구체 및 반응제의 반응을 열 에너지만으로 수행하는 열 ALD(Thermal ALD)법, 플라스마 여기된 반응제를 사용하는 PEALD법 등을 사용할 수 있다.
또한 ALD법에서는 원자의 성질인 자기 제어성을 이용하여 한 층씩 원자를 퇴적할 수 있기 때문에, 매우 얇게 성막할 수 있고, 종횡비가 높은 구조에 대한 성막이 가능하고, 핀홀 등의 결함이 적은 성막이 가능하고, 피복성이 우수한 성막이 가능하고, 저온에서의 성막이 가능하다는 등의 효과가 있다. PEALD법에서는 플라스마를 이용하면, 더 낮은 온도에서 성막할 수 있기 때문에 바람직한 경우가 있다. 또한 ALD법에서 사용하는 전구체에는 탄소 등의 불순물이 포함되는 경우가 있다. 그러므로 ALD법에 의하여 제공된 막은, 다른 성막법에 의하여 제공된 막과 비교하여 탄소 등의 불순물을 많이 포함하는 경우가 있다. 또한 불순물의 정량은 X선 광전자 분광법(XPS: X-ray Photoelectron Spectroscopy)을 사용하여 수행할 수 있다.
CVD법 및 ALD법은 타깃 등으로부터 방출되는 입자가 퇴적되는 성막 방법과는 달리, 피처리물의 표면에서의 반응에 의하여 막이 형성되는 성막 방법이다. 따라서 피처리물의 형상의 영향을 받기 어렵고, 단차 피복성이 양호한 성막 방법이다. 특히, ALD법은 우수한 단차 피복성과 우수한 두께 균일성을 가지기 때문에, 종횡비가 높은 개구부의 표면을 피복하는 경우 등에 적합하다. 다만 ALD법은 성막 속도가 비교적 느리기 때문에, 성막 속도가 빠른 CVD법 등의 다른 성막 방법과 조합하여 사용되는 것이 바람직한 경우도 있다.
CVD법 및 ALD법은 원료 가스의 유량비를 변화시킴으로써, 얻어지는 막의 조성을 제어할 수 있다. 예를 들어 CVD법 및 ALD법은 원료 가스의 유량비를 변화시킴으로써, 임의의 조성의 막을 성막할 수 있다. 또한 예를 들어 CVD법 및 ALD법은 성막하면서 원료 가스의 유량비를 변화시킴으로써, 조성이 연속적으로 변화된 막을 성막할 수 있다. 원료 가스의 유량비를 변화시키면서 성막하는 경우, 복수의 성막실을 사용하여 성막하는 경우보다, 반송 및 압력 조정에 걸리는 시간이 불필요하기 때문에, 성막에 걸리는 시간을 단축할 수 있다. 따라서 반도체 장치의 생산성을 높일 수 있는 경우가 있다.
먼저, 기판(도시하지 않았음)을 준비하고, 상기 기판 위에 절연체(212)를 성막한다(도 16의 (A) 내지 (D) 참조). 절연체(212)의 성막은 스퍼터링법을 사용하여 수행하는 것이 바람직하다. 성막 가스에 수소를 사용하지 않아도 되는 스퍼터링법을 사용함으로써, 절연체(212) 내의 수소 농도를 저감할 수 있다. 다만, 절연체(212)의 성막은 스퍼터링법에 한정되는 것이 아니고, CVD법, MBE법, PLD법, ALD법 등을 적절히 사용하여도 좋다.
본 실시형태에서는 절연체(212)로서 질소 가스를 포함하는 분위기에서 실리콘 타깃을 사용하여, 펄스 DC 스퍼터링법으로 질화 실리콘을 성막한다. 펄스 DC 스퍼터링법을 사용함으로써 타깃 표면의 아크 방전으로 인한 파티클의 발생을 억제할 수 있기 때문에, 막 두께 분포를 더 균일하게 할 수 있다. 또한 펄스 전압을 사용함으로써 고주파 전압보다 방전의 상승, 하강을 가파르게 할 수 있다. 이에 의하여, 전극에 전력을 더 효율적으로 공급하여 스퍼터링 레이트 및 막질을 향상시킬 수 있다.
질화 실리콘과 같은 물, 수소 등의 불순물을 투과시키기 어려운 절연체를 사용함으로써 절연체(212)보다 아래층에 포함되는 물, 수소 등의 불순물의 확산을 억제할 수 있다. 또한 절연체(212)로서 질화 실리콘 등 구리를 투과시키기 어려운 절연체를 사용함으로써 절연체(212)보다 아래층(도시하지 않았음)의 도전체에 구리 등 확산되기 쉬운 금속을 사용하여도, 상기 금속이 절연체(212)를 통하여 위쪽으로 확산되는 것을 억제할 수 있다.
다음으로, 절연체(212) 위에 절연체(214)를 성막한다(도 16의 (A) 내지 (D) 참조). 절연체(214)의 성막은 스퍼터링법을 사용하여 수행하는 것이 바람직하다. 성막 가스에 수소를 사용하지 않아도 되는 스퍼터링법을 사용함으로써, 절연체(214) 내의 수소 농도를 저감할 수 있다. 다만, 절연체(214)의 성막은 스퍼터링법에 한정되는 것이 아니고, CVD법, MBE법, PLD법, ALD법 등을 적절히 사용하여도 좋다.
본 실시형태에서는 절연체(214)로서 산소 가스를 포함하는 분위기에서 알루미늄 타깃을 사용하여, 펄스 DC 스퍼터링법으로 산화 알루미늄을 성막한다. 펄스 DC 스퍼터링법을 사용함으로써, 막 두께 분포를 더 균일하게 하고 스퍼터링 레이트 및 막질을 향상시킬 수 있다. 여기서 기판에 RF(Radio Frequency) 전력을 인가하여도 좋다. 예를 들어 절연체(214)의 아래층을 성막할 때는 RF 전력을 인가하지 않고, 절연체(214)의 위층을 성막할 때 RF 전력을 인가하는 구성으로 하여도 좋다. 기판에 인가하는 RF 전력의 크기에 따라 절연체(214)보다 아래층에 주입하는 산소의 양을 제어할 수 있다. RF 전력은 0W/cm2 이상 1.86W/cm2 이하로 한다. 즉, 절연체(214)의 형성 시의 RF 전력을 바꿈으로써, 트랜지스터의 특성에 적합하게 되도록 산소량을 변화시켜 주입할 수 있다. 따라서 트랜지스터의 신뢰성을 향상시키는 데 적합한 양의 산소를 주입할 수 있다. 또한 RF의 주파수는 10MHz 이상이 바람직하다. 대표적으로는 13.56MHz이다. RF의 주파수가 높을수록 기판에 주는 대미지를 작게 할 수 있다.
절연체(214)로서, 수소를 포획 및 고착하는 기능이 높은 비정질 구조를 가지는 금속 산화물, 예를 들어 산화 알루미늄을 사용하는 것이 바람직하다. 이에 의하여, 절연체(216) 등에 포함되는 수소를 포획 또는 고착하고, 상기 수소가 산화물(230)로 확산되는 것을 방지할 수 있다. 특히 절연체(214)에 비정질 구조를 가지는 산화 알루미늄 또는 비정질 구조의 산화 알루미늄을 사용함으로써, 더 효과적으로 수소를 포획 또는 고착할 수 있는 경우가 있기 때문에 바람직하다. 이에 의하여, 양호한 특성을 가지고 신뢰성이 높은 트랜지스터(200) 및 반도체 장치를 제작할 수 있다.
다음으로, 절연체(214) 위에 절연체(216)를 성막한다. 절연체(216)의 성막은 스퍼터링법을 사용하여 수행하는 것이 바람직하다. 성막 가스에 수소를 사용하지 않아도 되는 스퍼터링법을 사용함으로써, 절연체(216) 내의 수소 농도를 저감할 수 있다. 다만, 절연체(216)의 성막은 스퍼터링법에 한정되는 것이 아니고, CVD법, MBE법, PLD법, ALD법 등을 적절히 사용하여도 좋다.
본 실시형태에서는 절연체(216)로서 산소 가스를 포함하는 분위기에서 실리콘 타깃을 사용하여, 펄스 DC 스퍼터링법으로 산화 실리콘을 성막한다. 펄스 DC 스퍼터링법을 사용함으로써, 막 두께 분포를 더 균일하게 하고 스퍼터링 레이트 및 막질을 향상시킬 수 있다.
절연체(212), 절연체(214), 및 절연체(216)는 대기에 노출시키지 않고 연속하여 성막하는 것이 바람직하다. 예를 들어 멀티 체임버 방식의 성막 장치를 사용하면 좋다. 이로써, 절연체(212), 절연체(214), 및 절연체(216)를 막 내의 수소를 저감하여 성막하고, 이에 더하여 각 성막 공정 사이에서 막 내에 수소가 혼입되는 것을 저감할 수 있다.
다음으로, 절연체(216)에, 절연체(214)에 도달하는 개구를 형성한다. 개구에는 예를 들어 홈 또는 슬릿 등도 포함된다. 또한 개구가 형성된 영역을 가리켜 개구부라고 하는 경우가 있다. 개구의 형성에는 웨트 에칭을 사용하여도 좋지만, 드라이 에칭을 사용하는 것이 미세 가공을 하기 위해서는 더 바람직하다. 또한 절연체(214)로서는, 절연체(216)를 에칭하여 홈을 형성하는 경우의 에칭 스토퍼막으로서 기능하는 절연체를 선택하는 것이 바람직하다. 예를 들어 홈을 형성하는 절연체(216)에 산화 실리콘 또는 산화질화 실리콘을 사용한 경우에는, 절연체(214)에 질화 실리콘, 산화 알루미늄, 또는 산화 하프늄을 사용하는 것이 좋다. 또한, 절연체(216)의 개구에 중첩하여 절연체(214)에 오목부가 형성되는 경우가 있다.
드라이 에칭 장치로서는 평행 평판형 전극을 가지는 용량 결합형 플라스마(CCP: Capacitively Coupled Plasma) 에칭 장치를 사용할 수 있다. 평행 평판형 전극을 가지는 용량 결합형 플라스마 에칭 장치는, 평행 평판형 전극 중 한쪽에 고주파 전압을 인가하는 구성을 가져도 좋다. 또는 평행 평판형 전극 중 한쪽에 복수의 상이한 고주파 전압을 인가하는 구성을 가져도 좋다. 또는 평행 평판형 전극의 각각에 주파수가 같은 고주파 전압을 인가하는 구성을 가져도 좋다. 또는 평행 평판형 전극의 각각에 주파수가 상이한 고주파 전압을 인가하는 구성을 가져도 좋다. 또는 고밀도 플라스마원을 가지는 드라이 에칭 장치를 사용할 수 있다. 고밀도 플라스마원을 가지는 드라이 에칭 장치로서는, 예를 들어 유도 결합형 플라스마(ICP: Inductively Coupled Plasma) 에칭 장치 등을 사용할 수 있다.
개구의 형성 후에, 도전체(205a)가 되는 도전막을 성막한다. 도전체(205a)가 되는 도전막은 산소의 투과를 억제하는 기능을 가지는 도전체를 포함하는 것이 바람직하다. 예를 들어 질화 탄탈럼, 질화 텅스텐, 질화 타이타늄 등을 사용할 수 있다. 또는 산소의 투과를 억제하는 기능을 가지는 도전체와 탄탈럼, 텅스텐, 타이타늄, 몰리브데넘, 알루미늄, 구리, 몰리브데넘 텅스텐 합금과의 적층막으로 할 수 있다. 도전체(205a)가 되는 도전막의 성막은 스퍼터링법, CVD법, MBE법, PLD법, ALD법 등을 사용하여 수행할 수 있다.
본 실시형태에서는 도전체(205a)가 되는 도전막으로서 질화 타이타늄을 성막한다. 이와 같은 금속 질화물을 도전체(205b)의 하면 및 측면에 접하여 제공함으로써, 절연체(216) 등으로 인하여 도전체(205b)가 산화되는 것을 억제할 수 있다. 또한 도전체(205b)로서 구리 등 확산되기 쉬운 금속을 사용하여도, 상기 금속이 도전체(205a)로부터 외부로 확산되는 것을 방지할 수 있다.
다음으로, 도전체(205b)가 되는 도전막을 성막한다. 도전체(205b)가 되는 도전막으로서는, 탄탈럼, 텅스텐, 타이타늄, 몰리브데넘, 알루미늄, 구리, 몰리브데넘 텅스텐 합금 등을 사용할 수 있다. 상기 도전막의 성막은 도금법, 스퍼터링법, CVD법, MBE법, PLD법, ALD법 등을 사용하여 수행할 수 있다. 본 실시형태에서는 도전체(205b)가 되는 도전막으로서 텅스텐을 성막한다.
다음으로 CMP 처리를 수행함으로써, 도전체(205a)가 되는 도전막 및 도전체(205b)가 되는 도전막의 일부를 제거하여 절연체(216)를 노출시킨다(도 16의 (A) 내지 (D) 참조). 그 결과, 개구부에만 도전체(205a) 및 도전체(205b)가 잔존한다. 따라서 상면이 평탄한 도전체(205)를 형성할 수 있다. 또한 상기 CMP 처리에 의하여 절연체(216)의 일부가 제거되는 경우가 있다.
다음으로, 절연체(216) 및 도전체(205) 위에 절연체(222)를 성막한다(도 17의 (A) 내지 (D) 참조). 절연체(222)로서 알루미늄 및 하프늄 중 한쪽 또는 양쪽의 산화물을 포함한 절연체를 성막하는 것이 좋다. 또한 알루미늄 및 하프늄 중 한쪽 또는 양쪽의 산화물을 포함하는 절연체로서, 산화 알루미늄, 산화 하프늄, 알루미늄 및 하프늄을 포함하는 산화물(하프늄 알루미네이트) 등을 사용하는 것이 바람직하다. 알루미늄 및 하프늄 중 한쪽 또는 양쪽의 산화물을 포함한 절연체는 산소, 수소, 및 물에 대한 배리어성을 가진다. 절연체(222)가 수소 및 물에 대한 배리어성을 가짐으로써, 트랜지스터(200)의 주변에 제공된 구조체에 포함되는 수소 및 물이 절연체(222)를 통하여 트랜지스터(200)의 내측으로 확산되는 것이 억제되고, 산화물(230) 내의 산소 결손의 생성을 억제할 수 있다.
절연체(222)의 성막은 스퍼터링법, CVD법, MBE법, PLD법, ALD법 등을 사용하여 수행할 수 있다. 본 실시형태에서는 절연체(222)로서 ALD법을 사용하여 산화 하프늄을 성막한다.
이어서 가열 처리를 수행하는 것이 바람직하다. 가열 처리는 250℃ 이상 650℃ 이하, 바람직하게는 300℃ 이상 500℃ 이하, 더 바람직하게는 320℃ 이상 450℃ 이하에서 수행하면 좋다. 또한 가열 처리는 질소 가스 또는 불활성 가스 분위기, 혹은 산화성 가스를 10ppm 이상, 1% 이상, 또는 10% 이상 포함하는 분위기에서 수행한다. 예를 들어 질소 가스와 산소 가스의 혼합 분위기에서 가열 처리를 수행하는 경우, 산소 가스를 20% 정도로 하면 좋다. 또한 가열 처리는 감압 상태에서 수행하여도 좋다. 또는 가열 처리는 질소 가스 또는 불활성 가스 분위기에서 가열 처리를 수행한 후에, 이탈된 산소를 보충하기 위하여 산화성 가스를 10ppm 이상, 1% 이상, 또는 10% 이상 포함하는 분위기에서 수행하여도 좋다.
또한 상기 가열 처리에서 사용하는 가스는 고순도화되어 있는 것이 바람직하다. 예를 들어 상기 가열 처리에서 사용하는 가스에 포함되는 수분량을 1ppb 이하, 바람직하게는 0.1ppb 이하, 더 바람직하게는 0.05ppb 이하로 하면 좋다. 고순도화된 가스를 사용하여 가열 처리를 수행함으로써, 절연체(222) 등에 수분 등이 들어가는 것을 가능한 한 방지할 수 있다.
본 실시형태에서는 가열 처리로서 절연체(222) 성막 후에 질소 가스와 산소 가스의 유량비를 4slm:1slm으로 하여 400℃에서 1시간의 처리를 수행한다. 상기 가열 처리에 의하여, 절연체(222)에 포함되는 물, 수소 등의 불순물을 제거하는 것 등이 가능하다. 또한 절연체(222)로서 하프늄을 포함하는 산화물을 사용하는 경우, 상기 가열 처리에 의하여 절연체(222)의 일부가 결정화되는 경우가 있다. 또한 가열 처리는 절연체(224)의 성막 후 등의 타이밍에 수행할 수도 있다.
다음으로 절연체(222) 위에 절연막(224A)을 성막한다(도 17의 (A) 내지 (D) 참조). 절연막(224A)의 성막은 스퍼터링법, CVD법, MBE법, PLD법, ALD법 등을 사용하여 수행할 수 있다. 본 실시형태에서는 절연막(224A)으로서 스퍼터링법을 사용하여 산화 실리콘을 성막한다. 성막 가스에 수소를 사용하지 않아도 되는 스퍼터링법을 사용함으로써, 절연막(224A) 내의 수소 농도를 저감할 수 있다. 절연막(224A)은 추후의 공정에서 산화물(230a)과 접하기 때문에, 이와 같이 수소 농도가 저감되어 있는 것이 적합하다.
다음으로, 절연막(224A) 위에 산화막(230A), 산화막(230B)을 이 순서대로 성막한다(도 17의 (A) 내지 (D) 참조). 또한 산화막(230A) 및 산화막(230B)은 대기 환경에 노출시키지 않고 연속하여 성막하는 것이 바람직하다. 대기에 개방하지 않고 성막함으로써, 산화막(230A) 및 산화막(230B) 위에 대기 환경으로부터의 불순물 또는 수분이 부착되는 것을 방지할 수 있어, 산화막(230A)과 산화막(230B)의 계면 근방을 청정하게 유지할 수 있다.
산화막(230A) 및 산화막(230B)의 성막은 앞의 실시형태에 나타낸 바와 같이 ALD법을 사용하여 수행하는 것이 바람직하다. 이에 의하여, 산화막(230A) 및 산화막(230B)을 층상의 결정 구조를 가지는 산화물로서 형성할 수 있다.
또한 절연막(224A), 산화막(230A), 및 산화막(230B)을 대기에 노출시키지 않고 ALD법으로 성막하는 것이 바람직하다. 예를 들어 앞의 실시형태에 나타낸 멀티 체임버 방식의 성막 장치를 사용하면 좋다. 이에 의하여, 각 성막 공정 사이에 절연막(224A), 산화막(230A), 및 산화막(230B)의 막 내에 수소가 혼입되는 것을 저감할 수 있다.
다음으로, 가열 처리를 수행하는 것이 바람직하다. 가열 처리는 산화막(230A) 및 산화막(230B)이 다결정화되지 않는 온도 범위에서 수행하면 좋고, 100℃ 이상 1200℃ 이하, 바람직하게는 200℃ 이상 1000℃ 이하, 더 바람직하게는 250℃ 이상 650℃ 이하, 더욱 바람직하게는 300℃ 이상 600℃ 이하, 더욱더 바람직하게는 400℃ 이상 550℃ 이하, 나아가 더욱더 바람직하게는 420℃ 이상 480℃ 이하에서 수행하면 좋다. 또한 가열 처리는 질소 가스 또는 불활성 가스 분위기, 혹은 산화성 가스를 10ppm 이상, 1% 이상, 또는 10% 이상 포함하는 분위기에서 수행한다. 예를 들어 질소 가스와 산소 가스의 혼합 분위기에서 가열 처리를 수행하는 경우, 산소 가스를 20% 정도로 하면 좋다. 또한 가열 처리는 감압 상태에서 수행하여도 좋다. 또는 가열 처리는 질소 가스 또는 불활성 가스 분위기에서 가열 처리를 수행한 후에, 이탈된 산소를 보충하기 위하여 산화성 가스를 10ppm 이상, 1% 이상, 또는 10% 이상 포함하는 분위기에서 수행하여도 좋다. 또한, 가열 처리의 온도를 높게 한 경우, 금속 산화물이 다결정 구조가 되는 경우가 있기 때문에, 금속 산화물이 다결정 구조가 되지 않는 범위에서 가열 처리 온도를 적절히 설정하면 좋다. 다만, 본 발명의 일 형태에서는 금속 산화물이 다결정 구조를 가져도 좋다. 또한, 상기 열처리는 앞의 실시형태의 도 7에 나타낸 처리실(4011)에서 수행하여도 좋다.
또한 상기 가열 처리에서 사용하는 가스는 고순도화되어 있는 것이 바람직하다. 예를 들어 상기 가열 처리에서 사용하는 가스에 포함되는 수분량을 1ppb 이하, 바람직하게는 0.1ppb 이하, 더 바람직하게는 0.05ppb 이하로 하면 좋다. 고순도화된 가스를 사용하여 가열 처리를 수행함으로써, 산화막(230A) 및 산화막(230B) 등에 수분 등이 들어가는 것을 가능한 한 방지할 수 있다.
본 실시형태에서는 상기 가열 처리로서 질소 가스와 산소 가스의 유량비를 4slm:1slm으로 하여 450℃에서 1시간의 처리를 수행한다. 이와 같은 산소 가스를 포함하는 가열 처리에 의하여, 산화막(230A) 및 산화막(230B) 내의 탄소, 물, 수소 등의 불순물을 저감하는 것 등을 할 수 있다. 이와 같이 막 내의 불순물을 저감함으로써, 산화막(230B)의 결정성을 향상시키고, 밀도가 더 높고 치밀한 구조로 할 수 있다. 이에 의하여, 산화막(230A) 및 산화막(230B) 내의 결정 영역을 증대시키고, 산화막(230A) 및 산화막(230B) 내에서의 결정 영역의 면내 편차를 저감할 수 있다. 따라서 트랜지스터(200)의 전기 특성의 면내 편차를 저감할 수 있다.
다음으로, 산화막(230B) 위에 도전막(242A)을 성막한다(도 17의 (A) 내지 (D) 참조). 도전막(242A)의 성막은 스퍼터링법, CVD법, MBE법, PLD법, ALD법 등을 사용하여 수행할 수 있다. 예를 들어 도전막(242A)으로서 스퍼터링법을 사용하여 질화 탄탈럼을 성막하면 좋다. 또한 도전막(242A)을 성막하기 전에 가열 처리를 수행하여도 좋다. 상기 가열 처리는 감압하에서 수행하고, 대기에 노출시키지 않고 연속하여 도전막(242A)을 성막하여도 좋다. 이러한 처리를 수행함으로써, 산화막(230B)의 표면 등에 흡착된 수분 및 수소를 제거하고, 또한 산화막(230A), 산화막(230B), 및 산화막(230B) 내의 수분 농도 및 수소 농도를 저감할 수 있다. 가열 처리의 온도는 100℃ 이상 400℃ 이하가 바람직하다. 본 실시형태에서는 가열 처리의 온도를 200℃로 한다.
다음으로, 도전막(242A) 위에 절연막(271A)을 성막한다(도 17의 (A) 내지 (D) 참조). 절연막(271A)의 성막은 스퍼터링법, CVD법, MBE법, PLD법, 또는 ALD법 등을 사용하여 수행할 수 있다. 절연막(271A)으로서는 산소의 투과를 억제하는 기능을 가지는 절연막을 사용하는 것이 바람직하다. 예를 들어, 절연막(271A)으로서 스퍼터링법에 의하여 산화 알루미늄을 성막하면 좋다.
또한 도전막(242A) 및 절연막(271A)을 대기에 노출시키지 않고, 스퍼터링법으로 성막하는 것이 바람직하다. 예를 들어 멀티 체임버 방식의 성막 장치를 사용하면 좋다. 이로써, 도전막(242A) 및 절연막(271A)을 막 내의 수소를 저감하여 성막하고, 이에 더하여 각 성막 공정 사이에서 막 내에 수소가 혼입되는 것을 저감할 수 있다. 또한 절연막(271A) 위에 하드 마스크를 제공하는 경우, 상기 하드 마스크가 되는 막도 대기에 노출시키지 않고 연속하여 성막하면 좋다.
다음으로, 리소그래피법을 사용하여 절연막(224A), 산화막(230A), 산화막(230B), 도전막(242A), 및 절연막(271A)을 섬 형상으로 가공하여, 절연체(224), 산화물(230a), 산화물(230b), 도전층(242B), 및 절연층(271B)을 형성한다(도 18의 (A) 내지 (D) 참조). 여기서, 절연체(224), 산화물(230a), 산화물(230b), 도전층(242B), 및 절연층(271B)은 적어도 일부가 도전체(205)와 중첩되도록 형성된다. 상기 가공에는 드라이 에칭법 또는 웨트 에칭법을 사용할 수 있다. 드라이 에칭법에 의한 가공은 미세 가공에 적합하다. 또한 절연막(224A), 산화막(230A), 산화막(230B), 도전막(242A), 절연막(271A), 및 절연층(271B)의 가공은 각각 다른 조건으로 수행하여도 좋다.
또한 리소그래피법에서는, 먼저 마스크를 통하여 레지스트를 노광한다. 다음으로, 노광된 영역을 현상액을 사용하여 제거 또는 잔존시켜 레지스트 마스크를 형성한다. 그리고 상기 레지스트 마스크를 통하여 에칭 처리를 함으로써, 도전체, 반도체, 또는 절연체 등을 원하는 형상으로 가공할 수 있다. 예를 들어 KrF 엑시머 레이저 광, ArF 엑시머 레이저 광, EUV(Extreme Ultraviolet) 광 등을 사용하여 레지스트를 노광함으로써 레지스트 마스크를 형성하면 좋다. 또한 기판과 투영 렌즈 사이에 액체(예를 들어 물)를 채우고 노광하는 액침 기술을 사용하여도 좋다. 또한 상술한 광 대신에 전자 빔 또는 이온 빔을 사용하여도 좋다. 또한 전자 빔 또는 이온 빔을 사용하는 경우에는 마스크는 불필요하다. 또한 레지스트 마스크는 애싱 등의 드라이 에칭 처리를 수행하거나, 웨트 에칭 처리를 수행하거나, 드라이 에칭 처리 후에 웨트 에칭 처리를 수행하거나, 또는 웨트 에칭 처리 후에 드라이 에칭 처리를 수행함으로써 제거할 수 있다.
또한 레지스트 마스크 아래에 절연체 또는 도전체로 이루어지는 하드 마스크를 사용하여도 좋다. 하드 마스크를 사용하는 경우, 도전막(242A) 위에 하드 마스크 재료가 되는 절연막 또는 도전막을 형성하고, 그 위에 레지스트 마스크를 형성하고, 하드 마스크 재료를 에칭함으로써 원하는 형상의 하드 마스크를 형성할 수 있다. 도전막(242A) 등의 에칭은 레지스트 마스크를 제거한 후에 수행하여도 좋고, 레지스트 마스크를 남긴 채 수행하여도 좋다. 후자의 경우, 에칭 중에 레지스트 마스크가 소실되는 경우가 있다. 도전막(242A) 등의 에칭 후에 하드 마스크를 에칭에 의하여 제거하여도 좋다. 한편, 하드 마스크의 재료가 후공정에 영향을 미치지 않거나, 또는 후공정에서 이용될 수 있는 경우에는 하드 마스크를 반드시 제거할 필요는 없다. 본 실시형태에서는 절연층(271B)을 하드 마스크로서 사용한다.
여기서, 절연층(271B)이 도전층(242B)의 마스크로서 기능하기 때문에, 도 18의 (B) 내지 (D)에 나타낸 바와 같이 도전층(242B)은 측면과 상면 사이에 만곡면을 가지지 않는다. 이로써, 도 14의 (B) 및 (D)에 나타낸 도전체(242a) 및 도전체(242b)는 측면과 상면이 교차되는 단부가 각(角) 형상이 된다. 도전체(242)의 측면과 상면이 교차되는 단부가 모서리 형상이 됨으로써, 상기 단부가 곡면을 가지는 경우보다 도전체(242)의 단면적이 커진다. 이로써, 도전체(242)의 저항이 저감되기 때문에, 트랜지스터(200)의 온 전류를 크게 할 수 있다.
또한, 도 18의 (B) 내지 (D)에 나타낸 바와 같이, 절연체(224), 산화물(230a), 산화물(230b), 도전층(242B), 및 절연층(271B)의 단면이 테이퍼 형상이어도 좋다. 또한, 본 명세서 등에서 테이퍼 형상이란 구조의 측면의 적어도 일부가 기판면에 대하여 경사져 제공되어 있는 형상을 가리킨다. 예를 들어 경사진 측면과 기판면이 이루는 각(이하에서 테이퍼 각이라고 부르는 경우가 있음)이 90° 미만인 것이 바람직하다. 절연체(224), 산화물(230a), 산화물(230b), 도전층(242B), 및 절연층(271B)은 예를 들어 테이퍼 각이 60° 이상 90° 미만이 되도록 하면 좋다. 이와 같이 단면을 테이퍼 형상으로 함으로써, 추후의 공정에서 절연체(275) 등의 피복성이 향상되어 공동 등의 결함을 저감할 수 있다.
다만, 상기에 한정되지 않고, 절연체(224), 산화물(230a), 산화물(230b), 도전층(242B), 및 절연층(271B)의 측면이 절연체(222)의 상면에 대하여 실질적으로 수직인 구성으로 하여도 좋다. 이와 같은 구성으로 함으로써, 복수의 트랜지스터(200)를 제공할 때, 소면적화, 고밀도화가 가능하다.
또한 상기 에칭 공정에서 발생한 부생성물이 절연체(224), 산화물(230a), 산화물(230b), 도전층(242B), 및 절연층(271B)의 측면에 층상으로 형성되는 경우가 있다. 이 경우, 상기 층상의 부생성물이 절연체(224), 산화물(230a), 산화물(230b), 도전층(242B), 및 절연층(271B)과 절연체(275) 사이에 형성된다. 따라서, 상기 층상의 부생성물은 제거되는 것이 바람직하다.
다음으로, 절연체(224) 및 절연층(271B) 등을 덮어 절연체(275)를 성막한다(도 19의 (A) 내지 (D) 참조). 여기서, 절연체(275)는 절연체(222)의 상면 및 절연체(224)의 측면과 밀접하는 것이 바람직하다. 절연체(275)의 성막은 스퍼터링법, CVD법, MBE법, PLD법, 또는 ALD법 등을 사용하여 수행할 수 있다. 절연체(275)에는 산소의 투과를 억제하는 기능을 가지는 절연막을 사용하는 것이 바람직하다. 예를 들어 절연체(275)로서 스퍼터링법을 사용하여 산화 알루미늄을 성막하고, 그 위에 PEALD법을 사용하여 질화 실리콘을 성막하면 좋다. 절연체(275)를 이와 같은 적층 구조로 함으로써, 물, 수소 등의 불순물 및 산소의 확산을 억제하는 기능이 향상되는 경우가 있다.
이와 같이 하여, 절연체(224), 산화물(230a), 산화물(230b), 및 도전층(242B)을 산소의 확산을 억제하는 기능을 가진 절연체(275) 및 절연층(271B)으로 덮을 수 있다. 이에 의하여, 추후의 공정에서 절연체(280) 등으로부터 절연체(224), 산화물(230a), 산화물(230b), 및 도전층(242B)으로 산소가 직접 확산되는 것을 저감할 수 있다.
다음으로, 절연체(275) 위에 절연체(280)가 되는 절연막을 성막한다. 상기 절연막의 성막은 스퍼터링법, CVD법, MBE법, PLD법, ALD법 등을 사용하여 수행할 수 있다. 예를 들어 상기 절연막으로서 스퍼터링법을 사용하여 산화 실리콘막을 성막하면 좋다. 절연체(280)가 되는 절연막을 산소를 포함하는 분위기에서 스퍼터링법으로 성막함으로써, 과잉 산소를 포함하는 절연체(280)를 형성할 수 있다. 또한 성막 가스에 수소를 사용하지 않아도 되는 스퍼터링법을 사용함으로써, 절연체(280) 내의 수소 농도를 저감할 수 있다. 또한 상기 절연막을 성막하기 전에 가열 처리를 수행하여도 좋다. 가열 처리는 감압하에서 수행하고, 대기에 노출시키지 않고 연속하여 상기 절연막을 성막하여도 좋다. 이러한 처리를 수행함으로써, 절연체(275)의 표면 등에 흡착된 수분 및 수소를 제거하고, 또한 산화물(230a), 산화물(230b), 및 절연체(224) 내의 수분 농도 및 수소 농도를 저감할 수 있다. 상기 가열 처리에는 상술한 가열 처리 조건을 사용할 수 있다.
다음으로, 상기 절연체(280)가 되는 절연막에 대하여 CMP 처리를 수행하여, 상면이 평탄한 절연체(280)를 형성한다(도 19의 (A) 내지 (D) 참조). 또한 절연체(280) 위에, 예를 들어 스퍼터링법으로 질화 실리콘을 성막하고, 상기 질화 실리콘에 대하여 절연체(280)에 도달할 때까지 CMP 처리를 수행하여도 좋다.
다음으로, 절연체(280)의 일부, 절연체(275)의 일부, 절연층(271B)의 일부, 도전층(242B)의 일부를 가공하여, 산화물(230b)에 도달하는 개구를 형성한다. 상기 개구는 도전체(205)와 중첩되도록 형성되는 것이 바람직하다. 상기 개구의 형성에 의하여 절연체(271a), 절연체(271b), 도전체(242a), 및 도전체(242b)를 형성한다(도 20의 (A) 내지 (D) 참조).
여기서, 도 20의 (B) 및 (C)에 나타낸 바와 같이, 절연체(280), 절연체(275), 절연체(271), 및 도전체(242)의 측면이 테이퍼 형상이 되는 경우가 있다. 또한, 절연체(280)의 테이퍼 각이 도전체(242)의 테이퍼 각보다 큰 경우가 있다. 또한, 도 20의 (A) 내지 (C)에는 도시하지 않았지만, 상기 개구를 형성할 때 산화물(230b)의 상부가 제거되는 경우가 있다.
또한 절연체(280)의 일부, 절연체(275)의 일부, 절연층(271B)의 일부, 도전층(242B)의 일부의 가공에는 드라이 에칭법 또는 웨트 에칭법을 사용할 수 있다. 드라이 에칭법에 의한 가공은 미세 가공에 적합하다. 또한 상기 가공은 각각 다른 조건으로 수행하여도 좋다. 예를 들어 절연체(280)의 일부를 드라이 에칭법으로 가공하고, 절연체(275)의 일부, 절연층(271B)의 일부를 웨트 에칭법으로 가공하고, 도전층(242B)의 일부를 드라이 에칭법으로 가공하여도 좋다.
여기서 산화물(230a)의 측면, 산화물(230b)의 상면 및 측면, 도전체(242)의 측면, 절연체(280)의 측면 등에 대한 불순물의 부착 및 이들 내부로의 상기 불순물의 확산이 일어나는 경우가 있다. 이와 같은 불순물을 제거하는 공정을 실시하여도 좋다. 또한 상기 드라이 에칭으로 인하여 산화물(230b)의 표면에 손상 영역이 형성되는 경우가 있다. 이와 같은 손상 영역을 제거하여도 좋다. 상기 불순물로서는, 절연체(280), 절연체(275), 절연층(271B)의 일부, 및 도전층(242B)에 포함되는 성분, 상기 개구의 형성 시에 사용하는 장치에 사용되는 부재에 포함되는 성분, 에칭에 사용하는 가스 또는 액체에 포함되는 성분 등에 기인한 것을 들 수 있다. 상기 불순물로서는, 예를 들어 하프늄, 알루미늄, 실리콘, 탄탈럼, 플루오린, 염소 등이 있다.
특히 알루미늄 또는 실리콘 등의 불순물은 산화물(230b)의 CAAC-OS화를 저해한다. 따라서, 알루미늄 또는 실리콘 등의 CAAC-OS화를 저해하는 불순물 원소가 저감 또는 제거되는 것이 바람직하다. 예를 들어 산화물(230b) 및 그 근방에서의 알루미늄 원자의 농도를 5.0atomic% 이하로 하면 좋고, 2.0atomic% 이하가 바람직하고, 1.5atomic% 이하가 더 바람직하고, 1.0atomic% 이하가 더욱 바람직하고, 0.3atomic% 미만이 더욱더 바람직하다.
또한 알루미늄 또는 실리콘 등의 불순물에 의하여 CAAC-OS화가 저해되어 a-like OS(amorphous-like oxide semiconductor)가 된 금속 산화물의 영역을 비CAAC 영역이라고 부르는 경우가 있다. 비CAAC 영역에서는 결정 구조의 치밀함이 저하되어 있기 때문에, VOH가 많이 형성되어 트랜지스터가 노멀리 온화되기 쉬워진다. 따라서, 산화물(230b)의 비CAAC 영역은 저감 또는 제거되어 있는 것이 바람직하다.
한편, 산화물(230b)은 층상의 CAAC 구조를 가지는 것이 바람직하다. 특히 산화물(230b)의 드레인 하단부까지 CAAC 구조를 가지는 것이 바람직하다. 여기서, 트랜지스터(200)에서 도전체(242a) 또는 도전체(242b) 및 그 근방이 드레인으로서 기능한다. 즉, 도전체(242a)(도전체(242b))의 하단부 근방의 산화물(230b)이 CAAC 구조를 가지는 것이 바람직하다. 이와 같이, 드레인 내압에 현저하게 영향을 미치는 드레인 단부에서도 산화물(230b)의 손상 영역이 제거되고 CAAC 구조를 가짐으로써, 트랜지스터(200)의 전기 특성의 변동을 더 억제할 수 있다. 또한 트랜지스터(200)의 신뢰성을 향상시킬 수 있다.
상기 에칭 공정에서 산화물(230b)의 표면에 부착된 불순물 등을 제거하기 위하여 세정 처리를 수행한다. 세정 방법으로서는, 세정액 등을 사용한 웨트 세정(웨트 에칭 처리라고 할 수도 있음), 플라스마를 사용한 플라스마 처리, 열처리에 의한 세정 등이 있고, 상기 세정을 적절히 조합하여 수행하여도 좋다. 또한 상기 세정 처리에 의하여, 상기 홈부가 깊어지는 경우가 있다.
웨트 세정으로서는, 암모니아수, 옥살산, 인산, 플루오린화 수소산 등을 탄산수 또는 순수(純水)로 희석한 수용액, 순수, 탄산수 등을 사용하여 세정 처리를 수행하여도 좋다. 또는 이들 수용액, 순수, 또는 탄산수를 사용한 초음파 세정을 수행하여도 좋다. 또는 이들 세정을 적절히 조합하여 수행하여도 좋다.
또한 본 명세서 등에서는, 시판되는 플루오린화 수소산을 순수로 희석한 수용액을 희석 플루오린화 수소산이라고 부르고, 시판되는 암모니아수를 순수로 희석한 수용액을 희석 암모니아수라고 부르는 경우가 있다. 또한 상기 수용액의 농도, 온도 등은 제거하려고 하는 불순물, 세정되는 반도체 장치의 구성 등에 따라 적절히 조정하면 좋다. 희석 암모니아수의 암모니아 농도는 0.01% 이상 5% 이하, 바람직하게는 0.1% 이상 0.5% 이하로 하면 좋다. 또한 희석 플루오린화 수소산의 플루오린화 수소 농도는 0.01ppm 이상 100ppm 이하, 바람직하게는 0.1ppm 이상 10ppm 이하로 하면 좋다.
또한 초음파 세정에는 200kHz 이상, 바람직하게는 900kHz 이상의 주파수를 사용하는 것이 바람직하다. 상기 주파수를 사용함으로써, 산화물(230b) 등에 대한 대미지를 저감할 수 있다.
또한 상기 세정 처리를 여러 번 수행하여도 좋고, 세정 처리마다 세정액을 변경하여도 좋다. 예를 들어 제 1 세정 처리로서 희석 플루오린화 수소산 또는 희석 암모니아수를 사용한 처리를 수행하고, 제 2 세정 처리로서 순수 또는 탄산수를 사용한 처리를 수행하여도 좋다.
상기 세정 처리로서, 본 실시형태에서는 희석 암모니아수를 사용하여 웨트 세정을 수행한다. 상기 세정 처리를 수행함으로써, 산화물(230a), 산화물(230b) 등의 표면에 부착되거나 또는 내부로 확산된 불순물을 제거할 수 있다.
상기 에칭 후 또는 상기 세정 후에 가열 처리를 수행하여도 좋다. 가열 처리는 100℃ 이상 500℃ 이하, 바람직하게는 300℃ 이상 500℃ 이하, 더 바람직하게는 350℃ 이상 400℃ 이하에서 수행하면 좋다. 또한 가열 처리는 질소 가스, 불활성 가스, 또는 산화성 가스의 분위기에서 수행하면 좋다. 또는 질소 가스 또는 불활성 가스에, 산화성 가스를 10ppm 이상, 1% 이상, 또는 10% 이상 포함하는 분위기에서 수행하면 좋다. 예를 들어 가열 처리는 산소 가스와 질소 가스의 혼합 분위기에서 수행하는 것이 바람직하다. 이로써, 산화물(230a) 및 산화물(230b)에 산소가 공급되므로 산소 결손(VO)을 저감할 수 있다. 또한 이러한 열처리를 수행함으로써, 산화물(230b)의 결정성을 향상시킬 수 있다. 또한 가열 처리는 감압 상태에서 수행하여도 좋다. 또는 산소 분위기에서 가열 처리를 수행한 후에, 대기에 노출시키지 않고 연속하여 질소 분위기에서 가열 처리를 수행하여도 좋다. 또한 산소 분위기에서 가열 처리를 수행한 후에, 대기에 노출시키지 않고 연속하여 질소 분위기에서 가열 처리를 수행하는 경우, 산소 분위기에서의 가열 처리를 질소 분위기에서의 가열 처리보다 장시간 수행하여도 좋다.
다음으로, 절연막(250A)을 성막한다(도 21의 (A) 내지 (D) 참조). 절연막(250A)을 성막하기 전에 가열 처리를 수행하여도 좋고, 상기 가열 처리는 감압하에서 수행하고, 대기에 노출시키지 않고 연속하여 절연막(250A)을 성막하여도 좋다. 또한 상기 가열 처리는 산소를 포함하는 분위기에서 수행하는 것이 바람직하다. 이러한 처리를 수행함으로써, 산화물(230b)의 표면 등에 흡착된 수분 및 수소를 제거하고, 산화물(230a) 및 산화물(230b) 내의 수분 농도 및 수소 농도를 저감할 수 있다. 가열 처리의 온도는 100℃ 이상 400℃ 이하가 바람직하다.
절연막(250A)의 성막은 스퍼터링법, CVD법, PECVD법, MBE법, PLD법, ALD법 등을 사용하여 수행할 수 있다. 또한 절연막(250A)을 수소 원자가 저감 또는 제거된 가스를 사용한 성막 방법으로 성막하는 것이 바람직하다. 이로써, 절연막(250A)의 수소 농도를 저감할 수 있다. 절연막(250A)은 추후의 공정에서 산화물(230b)과 접하는 절연체(250a)가 되기 때문에, 이와 같이 수소 농도가 저감되어 있는 것이 적합하다.
또한 절연막(250A)은 ALD법을 사용하여 성막하는 것이 바람직하다. 미세화된 트랜지스터(200)의 게이트 절연막으로서 기능하는 절연체(250)는, 매우 얇고(예를 들어 5nm 이상 30nm 이하 정도) 편차가 작아지는 막 두께로 할 필요가 있다. 한편, ALD법은 전구체와 반응제(예를 들어 산화제 등)를 번갈아 도입하여 수행하는 성막 방법이고, 이 사이클을 반복하는 횟수로 막 두께를 조절할 수 있기 때문에, 막 두께를 정밀하게 조절할 수 있다. 따라서, 미세화된 트랜지스터(200)에서 요구되는 게이트 절연막의 막 두께의 정밀도를 달성할 수 있다. 또한 도 21의 (B) 및 (C)에 나타낸 바와 같이, 절연막(250A)은 절연체(280) 등에 의하여 형성되는 개구의 밑면 및 측면에 피복성 좋게 성막될 필요가 있다. 상기 개구의 밑면 및 측면에서 원자의 층을 한 층씩 퇴적할 수 있기 때문에, 상기 개구에 대하여 피복성 좋게 절연막(250A)을 성막할 수 있다.
또한 예를 들어 SiH4(또는 Si2H6) 등, 수소를 포함하는 성막 가스를 사용하여 PECVD법에 의하여 절연막(250A)을 성막하는 경우, 수소를 포함하는 성막 가스가 플라스마 중에서 분해되어, 대량의 수소 라디칼이 발생한다. 수소 라디칼의 환원 반응에 의하여 산화물(230b) 내의 산소가 추출되어 VOH가 형성되면, 산화물(230b) 내의 수소 농도가 높아진다. 그러나, ALD법을 사용하여 절연막(250A)을 성막하면, 전구체를 도입할 때도 반응제를 도입할 때도 수소 라디칼의 발생을 억제할 수 있다. 따라서, ALD법을 사용하여 절연막(250A)을 성막함으로써, 산화물(230b) 내의 수소 농도가 높아지는 것을 방지할 수 있다.
본 실시형태에서는 PEALD법에 의하여 절연막(250A)으로서 산화 실리콘을 성막한다.
또한, 절연막(250A)을 성막하기 전에, 상술한 불순물을 제거하지 않는 경우, 산화물(230a), 산화물(230b), 도전체(242), 절연체(280) 등과 절연체(250a) 사이에 상기 불순물이 잔존하는 경우가 있다.
다음으로, 산소를 포함하는 분위기에서 마이크로파 처리를 수행하는 것이 바람직하다(도 21의 (A) 내지 (D) 참조). 여기서, 마이크로파 처리란, 예를 들어 마이크로파를 사용하여 고밀도 플라스마를 발생시키는 전원을 가지는 장치를 사용한 처리를 말한다. 또한 본 명세서 등에서 마이크로파란, 300MHz 이상 300GHz 이하의 주파수를 가지는 전자기파를 가리키는 것으로 한다.
도 21의 (B) 내지 (D)에 나타낸 점선은 마이크로파, RF 등의 고주파 산소 플라스마, 또는 산소 라디칼 등을 나타내는 것이다. 마이크로파 처리에서는, 예를 들어 마이크로파를 사용하여 고밀도 플라스마를 발생시키는 전원을 가지는 마이크로파 처리 장치를 사용하는 것이 바람직하다. 여기서 마이크로파 처리 장치의 주파수는 300MHz 이상 300GHz 이하로 하면 좋고, 2.4GHz 이상 2.5GHz 이하로 하는 것이 바람직하고, 예를 들어 2.45GHz로 할 수 있다. 또한 마이크로파 처리 장치의, 마이크로파를 인가하는 전원의 전력은 1000W 이상 10000W 이하로 하면 좋고, 2000W 이상 5000W 이하로 하는 것이 바람직하다. 또한 마이크로파 처리 장치는 기판 측에 RF를 인가하는 전원을 가져도 좋다. 고밀도 플라스마를 사용함으로써, 고밀도의 산소 라디칼을 생성할 수 있다. 또한 기판 측에 RF를 인가함으로써, 고밀도 플라스마에 의하여 생성된 산소 이온을 산화물(230b) 내에 효율적으로 도입할 수 있다.
또한 상기 마이크로파 처리는 감압하에서 수행하는 것이 바람직하고, 압력을 60Pa 이상, 바람직하게는 133Pa 이상, 더 바람직하게는 200Pa 이상, 더욱 바람직하게는 400Pa 이상으로 하면 좋다. 예를 들어 10Pa 이상 1000Pa 이하로 하면 좋고, 300Pa 이상 700Pa 이하로 하는 것이 바람직하다. 또한 처리 온도는 750℃ 이하, 바람직하게는 500℃ 이하, 예를 들어 400℃ 정도로 하면 좋다. 또한 산소 플라스마 처리를 수행한 후에, 외기에 노출시키지 않고 연속하여 열처리를 수행하여도 좋다. 예를 들어 100℃ 이상 750℃ 이하로 하면 좋고, 300℃ 이상 500℃ 이하로 하는 것이 바람직하다.
또한 예를 들어 상기 마이크로파 처리는 산소 가스와 아르곤 가스를 사용하여 수행하면 좋다. 여기서 산소 유량비(O2/(O2+Ar))는 0%보다 크고 100% 이하로 하면 좋다. 바람직하게는 산소 유량비(O2/(O2+Ar))를 0%보다 크고 50% 이하로 한다. 더 바람직하게는 산소 유량비(O2/(O2+Ar))를 10% 이상 40% 이하로 한다. 더 바람직하게는 산소 유량비(O2/(O2+Ar))를 10% 이상 30% 이하로 한다. 이와 같이 산소를 포함하는 분위기에서 마이크로파 처리를 수행함으로써, 영역(230bc) 중의 캐리어 농도를 저하시킬 수 있다. 또한 마이크로파 처리에서 체임버에 과잉량의 산소가 도입되지 않도록 함으로써, 영역(230ba) 및 영역(230bb)에서 캐리어 농도가 지나치게 저하되는 것을 방지할 수 있다.
도 21의 (B) 내지 (D)에 나타낸 바와 같이, 산소를 포함하는 분위기에서 마이크로파 처리를 수행함으로써, 마이크로파 또는 RF 등의 고주파를 사용하여 산소 가스를 플라스마화하고, 상기 산소 플라스마를 산화물(230b) 중 도전체(242a)와 도전체(242b) 사이의 영역에 작용시킬 수 있다. 이때, 마이크로파 또는 RF 등의 고주파를 영역(230bc)에 조사할 수도 있다. 즉 도 15의 (A)에 나타낸 영역(230bc)에, 마이크로파 또는 RF 등의 고주파 산소 플라스마 등을 작용시킬 수 있다. 플라스마, 마이크로파 등의 작용에 의하여, 영역(230bc)의 VOH를 분단하고, 수소 H를 영역(230bc)에서 제거할 수 있다. 즉 영역(230bc)에서 "VOH→H+VO"라는 반응이 일어나, 영역(230bc)에 포함되는 VOH를 저감할 수 있다. 따라서, 영역(230bc) 내의 산소 결손 및 VOH를 저감하여 캐리어 농도를 저하시킬 수 있다. 또한 영역(230bc)에서 형성된 산소 결손에, 상기 산소 플라스마에서 발생한 산소 라디칼 또는 절연체(250)에 포함되는 산소를 공급함으로써, 영역(230bc) 내의 산소 결손을 더 저감하고, 캐리어 농도를 더 저하시킬 수 있다.
한편, 도 15의 (A)에 나타낸 영역(230ba) 및 영역(230bb) 위에는 도전체(242a) 및 도전체(242b)가 제공된다. 여기서, 도전체(242)는 산소를 포함하는 분위기에서 마이크로파 처리를 수행할 때, 마이크로파, RF 등의 고주파, 산소 플라스마 등의 작용에 대한 차폐막으로서 기능하는 것이 바람직하다. 그러므로 도전체(242)는 300MHz 이상 300GHz 이하, 예를 들어 2.4GHz 이상 2.5GHz 이하의 전자기파를 차폐하는 기능을 가지는 것이 바람직하다.
도 21의 (B) 내지 (D)에 나타낸 바와 같이, 도전체(242a) 및 도전체(242b)는 마이크로파 또는 RF 등의 고주파 산소 플라스마 등의 작용을 차폐하므로, 이들 작용은 영역(230ba) 및 영역(230bb)에는 미치지 않는다. 따라서, 마이크로파 처리에 의하여 영역(230ba) 및 영역(230bb)에서 VOH의 저감 및 과잉량의 산소의 공급이 발생하지 않기 때문에, 캐리어 농도의 저하를 방지할 수 있다.
이와 같이 하여, 산화물 반도체의 영역(230bc)에서 선택적으로 산소 결손 및 VOH를 제거하여, 영역(230bc)을 i형 또는 실질적으로 i형으로 할 수 있다. 또한 소스 영역 또는 드레인 영역으로서 기능하는 영역(230ba) 및 영역(230bb)에 과잉량의 산소가 공급되는 것을 억제하고, n형화를 유지할 수 있다. 이에 의하여, 트랜지스터(200)의 전기 특성의 변동을 억제하여, 기판면 내에서 트랜지스터(200)의 전기 특성에 편차가 생기는 것을 억제할 수 있다.
또한 마이크로파 처리에서는, 마이크로파와 산화물(230b) 내의 분자의 전자기적인 상호 작용에 의하여, 산화물(230b)에 직접적으로 열 에너지가 전달되는 경우가 있다. 이 열 에너지에 의하여 산화물(230b)이 가열되는 경우가 있다. 이러한 가열 처리를 마이크로파 어닐이라고 부르는 경우가 있다. 마이크로파 처리를 산소를 포함하는 분위기에서 수행함으로써, 산소 어닐과 동등한 효과가 얻어지는 경우가 있다. 또한 산화물(230b)에 수소가 포함되는 경우, 이 열 에너지가 산화물(230b) 내의 수소에 전달되고, 이에 의하여 활성화된 수소가 산화물(230b)로부터 방출될 수 있다.
다음으로 절연막(250B)을 성막한다(도 22의 (A) 내지 (D) 참조). 절연막(250B)의 성막은 스퍼터링법, CVD법, MBE법, PLD법, ALD법 등을 사용하여 수행할 수 있다. 절연막(250B)은 산소의 확산을 억제하는 기능을 가지는 절연체를 사용하여 형성되는 것이 바람직하다. 이와 같은 구성으로 함으로써, 절연체(250a)에 포함되는 산소가 도전체(260)로 확산되는 것을 억제할 수 있다. 즉, 산화물(230)에 공급하는 산소량의 감소를 억제할 수 있다. 또한 절연체(250a)에 포함되는 산소로 인한 도전체(260)의 산화를 억제할 수 있다. 예를 들어 절연막(250A)은 상술한 절연체(250a)에 사용할 수 있는 재료를 사용하여 제공하고, 절연막(250B)은 절연체(222)와 같은 재료를 사용하여 제공할 수 있다.
절연막(250B)으로서, 구체적으로는 하프늄, 알루미늄, 갈륨, 이트륨, 지르코늄, 텅스텐, 타이타늄, 탄탈럼, 니켈, 저마늄, 마그네슘 등 중에서 선택된 1종류 또는 2종류 이상이 포함된 금속 산화물, 또는 산화물(230)로서 사용할 수 있는 금속 산화물을 사용할 수 있다. 특히 알루미늄 및 하프늄 중 한쪽 또는 양쪽의 산화물을 포함한 절연체를 사용하는 것이 바람직하다.
본 실시형태에서는 열 ALD법에 의하여 절연막(250B)으로서 산화 하프늄을 성막한다.
절연막(250B)의 성막 후에 마이크로파 처리를 수행하여도 좋다(도 22의 (A) 내지 (D) 참조). 상기 마이크로파 처리에는 상술한 절연막(250A)의 성막 후에 수행하는 마이크로파 처리의 조건을 사용하여도 좋다. 또한 절연막(250A)의 성막 후에 수행하는 마이크로파 처리는 수행하지 않고, 절연막(250B)의 성막 후에 마이크로파 처리를 수행하여도 좋다.
또한 절연막(250A)의 성막 후 및 절연막(250B)의 성막 후에 수행하는 각 마이크로파 처리 후에, 감압 상태를 유지한 채 가열 처리를 수행하여도 좋다. 이러한 처리를 수행함으로써 절연막(250A) 내, 절연막(250B) 내, 산화물(230b) 내, 및 산화물(230a) 내의 수소를 효율적으로 제거할 수 있다. 또한 수소의 일부는 도전체(242)(도전체(242a) 및 도전체(242b))에 게터링되는 경우가 있다. 또는 마이크로파 처리 후에 감압 상태를 유지한 채 가열 처리를 수행하는 단계를 여러 번 반복하여 수행하여도 좋다. 가열 처리를 반복적으로 수행함으로써, 절연막(250A) 내, 산화물(230b) 내, 및 산화물(230a) 내의 수소를 더 효율적으로 제거할 수 있다. 또한 가열 처리의 온도는 300℃ 이상 500℃ 이하로 하는 것이 바람직하다. 또한 상기 마이크로파 처리, 즉 마이크로파 어닐이 이 가열 처리를 겸하여도 좋다. 마이크로파 어닐에 의하여 산화물(230b) 등이 충분히 가열되는 경우, 이 가열 처리는 수행하지 않아도 된다.
또한 마이크로파 처리를 수행하여 절연막(250A) 및 절연막(250B)의 막질을 개량함으로써, 수소, 물, 불순물 등의 확산을 억제할 수 있다. 따라서 도전체(260)가 되는 도전막의 성막 등의 후공정 또는 열처리 등의 후처리로 인하여 절연체(250)를 통하여 수소, 물, 불순물 등이 산화물(230b), 산화물(230a) 등으로 확산되는 것을 억제할 수 있다.
다음으로 도전체(260a)가 되는 도전막, 도전체(260b)가 되는 도전막을 이 순서대로 성막한다. 도전체(260a)가 되는 도전막 및 도전체(260b)가 되는 도전막의 성막은 스퍼터링법, CVD법, MBE법, PLD법, ALD법 등을 사용하여 수행할 수 있다. 본 실시형태에서는, ALD법을 사용하여 도전체(260a)가 되는 도전막을 성막하고, CVD법을 사용하여 도전체(260b)가 되는 도전막을 성막한다.
다음으로 CMP 처리에 의하여 절연막(250A), 절연막(250B), 도전체(260a)가 되는 도전막, 및 도전체(260b)가 되는 도전막을 절연체(280)가 노출될 때까지 연마함으로써 절연체(250a), 절연체(250b), 도전체(260a), 및 도전체(260b)를 형성한다(도 23의 (A) 내지 (D) 참조). 이로써, 절연체(250)는 산화물(230b)에 도달하는 개구 및 산화물(230b)의 홈부의 내벽(측벽 및 밑면)을 덮도록 배치된다. 또한 도전체(260)는 절연체(250)를 개재하여 상기 개구 및 상기 홈부를 매립하도록 배치된다.
다음으로, 상기 가열 처리와 같은 조건으로 가열 처리를 수행하여도 좋다. 본 실시형태에서는, 질소 분위기에서 400℃에서 1시간의 처리를 수행한다. 상기 가열 처리에 의하여 절연체(250) 및 절연체(280) 내의 수분 농도 및 수소 농도를 저감할 수 있다. 또한 상기 가열 처리 후, 대기에 노출시키지 않고 연속하여 절연체(282)의 성막을 수행하여도 좋다.
다음으로 절연체(250) 위, 도전체(260) 위, 및 절연체(280) 위에 절연체(282)를 형성한다(도 24의 (A) 내지 (D) 참조). 절연체(282)의 성막은 스퍼터링법, CVD법, MBE법, PLD법, ALD법 등을 사용하여 수행할 수 있다. 절연체(282)의 성막은 스퍼터링법을 사용하여 수행하는 것이 바람직하다. 성막 가스에 수소를 사용하지 않아도 되는 스퍼터링법을 사용함으로써, 절연체(282) 내의 수소 농도를 저감할 수 있다. 또한 스퍼터링법을 사용하여 산소를 포함하는 분위기에서 절연체(282)의 성막을 수행함으로써, 성막하면서 절연체(280)에 산소를 첨가할 수 있다. 이에 의하여 절연체(280)에 과잉 산소를 포함시킬 수 있다. 이때, 기판을 가열하면서 절연체(282)를 성막하는 것이 바람직하다.
본 실시형태에서는 절연체(282)로서, 산소 가스를 포함하는 분위기에서 알루미늄 타깃을 사용하여 펄스 DC 스퍼터링법으로 산화 알루미늄을 성막한다. 펄스 DC 스퍼터링법을 사용함으로써, 막 두께 분포를 더 균일하게 하고 스퍼터링 레이트 및 막질을 향상시킬 수 있다.
다음으로, 가열 처리를 수행하는 것이 바람직하다. 상기 가열 처리는 상술한 가열 처리와 같은 조건으로 수행할 수 있다. 본 실시형태에서는, 질소 분위기에서 400℃에서 1시간의 처리를 수행한다. 상기 가열 처리에 의하여, 절연체(282)를 성막함으로써 첨가된 산소를 절연체(280), 절연체(250a)로 확산시켜 산화물(230)의 채널 형성 영역으로 선택적으로 공급할 수 있다. 이에 의하여, 전기 특성이 양호한 반도체 장치를 제공할 수 있다. 또한 신뢰성이 양호한 반도체 장치를 제공할 수 있다.
또한, 상기 가열 처리는 절연체(282)의 형성 후에 한정되지 않고, 절연체(283)의 성막 후 등에 수행하여도 좋다.
다음으로 절연체(282) 위에 절연체(283)를 형성한다(도 24의 (A) 내지 (D) 참조). 절연체(283)의 성막은 스퍼터링법, CVD법, MBE법, PLD법, 또는 ALD법 등을 사용하여 수행할 수 있다. 절연체(283)의 성막은 스퍼터링법을 사용하여 수행하는 것이 바람직하다. 성막 가스에 수소를 사용하지 않아도 되는 스퍼터링법을 사용함으로써, 절연체(283) 내의 수소 농도를 저감할 수 있다. 또한 절연체(283)는 다층으로 하여도 좋다. 예를 들어, 스퍼터링법을 사용하여 질화 실리콘을 성막하고, 상기 질화 실리콘 위에 CVD법을 사용하여 질화 실리콘을 성막하여도 좋다.
다음으로, 절연체(283) 위에 절연체(285)를 성막한다. 상기 절연막의 성막은 스퍼터링법, CVD법, MBE법, PLD법, ALD법 등을 사용하여 수행할 수 있다. 예를 들어 상기 절연막으로서 CVD법을 사용하여 산화 실리콘막을 성막하면 좋다.
다음으로 절연체(271), 절연체(275), 절연체(280), 절연체(282), 절연체(283), 및 절연체(285)에, 도전체(242)에 도달하는 개구를 형성한다(도 25의 (A) 내지 (D) 참조). 상기 개구의 형성은 리소그래피법을 사용하여 수행하면 좋다. 또한 도 25의 (A)에서 상기 개구의 형상은 상면에서 보았을 때 원형이지만, 이에 한정되는 것이 아니다. 예를 들어 상기 개구는, 상면에서 보았을 때 타원 등의 대략 원형인 형상, 사각형 등의 다각형, 사각형 등의 다각형의 모서리 부분을 둥글게 한 형상이어도 좋다.
다음으로 절연체(241)가 되는 절연막을 성막하고, 상기 절연막을 이방성 에칭하여 절연체(241)를 형성한다(도 25의 (A) 내지 (D) 참조). 절연체(241)가 되는 절연막의 성막은 스퍼터링법, CVD법, MBE법, PLD법, 또는 ALD법 등을 사용하여 수행할 수 있다. 절연체(241)가 되는 절연막으로서는, 산소의 투과를 억제하는 기능을 가지는 절연막을 사용하는 것이 바람직하다. 예를 들어 ALD법을 사용하여 산화 알루미늄을 성막하고, 그 위에 PEALD법을 사용하여 질화 실리콘을 성막하는 것이 바람직하다. 질화 실리콘은 수소에 대한 배리어성이 높기 때문에 바람직하다.
또한, 절연체(241)가 되는 절연막의 이방성 에칭으로서는, 예를 들어 드라이 에칭법 등을 사용하면 좋다. 개구의 측벽부에 절연체(241)를 제공함으로써 외부로부터의 산소의 투과를 억제하고, 다음으로 형성하는 도전체(240a) 및 도전체(240b)의 산화를 방지할 수 있다. 또한, 절연체(280) 등에 포함되는 물, 수소 등의 불순물이 도전체(240a) 및 도전체(240b)로 확산되는 것을 방지할 수 있다.
다음으로, 도전체(240a) 및 도전체(240b)가 되는 도전막을 성막한다. 도전체(240a) 및 도전체(240b)가 되는 도전막은 물, 수소 등 불순물의 투과를 억제하는 기능을 가지는 도전체를 포함하는 적층 구조로 하는 것이 바람직하다. 예를 들어, 질화 탄탈럼, 질화 타이타늄 등과, 텅스텐, 몰리브데넘, 구리 등과의 적층으로 할 수 있다. 도전체(240)가 되는 도전막의 성막은 스퍼터링법, CVD법, MBE법, PLD법, 또는 ALD법 등을 사용하여 수행할 수 있다.
다음으로, CMP 처리를 수행함으로써, 도전체(240a) 및 도전체(240b)가 되는 도전막의 일부를 제거하여 절연체(285)의 상면을 노출시킨다. 이 결과, 개구에만 상기 도전막이 잔존함으로써 상면이 평탄한 도전체(240a) 및 도전체(240b)를 형성할 수 있다(도 25의 (A) 내지 (D) 참조). 또한, 상기 CMP 처리에 의하여 절연체(285)의 상면의 일부가 제거되는 경우가 있다.
다음으로 도전체(246)가 되는 도전막을 성막한다. 도전체(246)가 되는 도전막의 성막은 스퍼터링법, CVD법, MBE법, PLD법, 또는 ALD법 등을 사용하여 수행할 수 있다.
다음으로 도전체(246)가 되는 도전막을 리소그래피법에 의하여 가공하여, 도전체(240a)의 상면과 접하는 도전체(246a) 및 도전체(240b)의 상면과 접하는 도전체(246b)를 형성한다. 이때, 도전체(246a) 및 도전체(246b)와 절연체(285)가 중첩되지 않는 영역의 절연체(285)의 일부가 제거되는 경우가 있다.
이러한 식으로, 도 14의 (A) 내지 (D)에 나타낸 트랜지스터(200)를 가지는 반도체 장치를 제작할 수 있다. 도 16의 (A) 내지 도 25의 (A), 도 16의 (B) 내지 도 25의 (B), 도 16의 (C) 내지 도 25의 (C), 및 도 16의 (D) 내지 도 25의 (D)에 나타낸 바와 같이, 본 실시형태에 나타낸 반도체 장치의 제작 방법을 사용함으로써 트랜지스터(200)를 제작할 수 있다.
<마이크로파 처리 장치>
이하에서는, 상기 반도체 장치의 제작 방법에서 사용할 수 있는 마이크로파 처리 장치에 대하여 설명한다.
먼저, 반도체 장치 등의 제조 시에 불순물의 혼입을 줄일 수 있는 제조 장치의 구성에 대하여 도 26 내지 도 29를 사용하여 설명한다.
도 26은 매엽식 멀티 체임버의 제조 장치(2700)의 상면도를 모식적으로 나타낸 것이다. 제조 장치(2700)는 기판을 수용하는 카세트 포트(2761)와, 기판의 얼라인먼트를 수행하는 얼라인먼트 포트(2762)를 가지는 대기 측 기판 공급실(2701)과, 대기 측 기판 공급실(2701)로부터 기판을 반송하는 대기 측 기판 반송실(2702)과, 기판을 반입하며 실내의 압력을 대기압으로부터 감압으로, 또는 감압으로부터 대기압으로 전환하는 로드록실(2703a)과, 기판을 반출하며 실내의 압력을 감압으로부터 대기압으로, 또는 대기압으로부터 감압으로 전환하는 언로드록실(2703b)과, 진공 중의 기판을 반송하는 반송실(2704)과, 체임버(2706a)와, 체임버(2706b)와, 체임버(2706c)와, 체임버(2706d)를 가진다.
또한, 대기 측 기판 반송실(2702)은 로드록실(2703a) 및 언로드록실(2703b)과 접속되고, 로드록실(2703a) 및 언로드록실(2703b)은 반송실(2704)과 접속되고, 반송실(2704)은 체임버(2706a), 체임버(2706b), 체임버(2706c), 및 체임버(2706d)와 접속된다.
또한, 각 실의 접속부에는 게이트 밸브(GV)가 제공되어 있고, 대기 측 기판 공급실(2701)과, 대기 측 기판 반송실(2702)을 제외하고, 각 실을 독립적으로 진공 상태로 유지할 수 있다. 또한, 대기 측 기판 반송실(2702)에는 반송 로봇(2763a)이 제공되어 있고, 반송실(2704)에는 반송 로봇(2763b)이 제공되어 있다. 반송 로봇(2763a) 및 반송 로봇(2763b)에 의하여, 제조 장치(2700) 내에서 기판을 반송할 수 있다.
반송실(2704) 및 각 체임버의 배압(전체 압력)은 예를 들어 1×10-4Pa 이하로, 바람직하게는 3×10-5Pa 이하로, 더 바람직하게는 1×10-5Pa 이하로 한다. 또한 반송실(2704) 및 각 체임버의 질량 전하비(m/z)가 18인 기체 분자(원자)의 분압은, 예를 들어 3×10-5Pa 이하, 바람직하게는 1×10-5Pa 이하, 더 바람직하게는 3×10-6Pa 이하로 한다. 또한 반송실(2704) 및 각 체임버의 m/z가 28인 기체 분자(원자)의 분압은, 예를 들어 3×10-5Pa 이하, 바람직하게는 1×10-5Pa 이하, 더 바람직하게는 3×10-6Pa 이하로 한다. 또한 반송실(2704) 및 각 체임버의 m/z가 44인 기체 분자(원자)의 분압은, 예를 들어 3×10-5Pa 이하, 바람직하게는 1×10-5Pa 이하, 더 바람직하게는 3×10-6Pa 이하로 한다.
또한, 반송실(2704) 및 각 체임버 내의 전압 및 분압은 질량 분석계를 사용하여 측정할 수 있다. 예를 들어 ULVAC, Inc. 제조의 사중극형 질량 분석계(Q-mass라고도 함) Qulee CGM-051을 사용하면 좋다.
또한, 반송실(2704) 및 각 체임버는 외부 누설 또는 내부 누설이 적은 구성으로 하는 것이 바람직하다. 예를 들어 반송실(2704) 및 각 체임버의 누설 레이트를 3×10-6Pa·m3/s 이하로, 바람직하게는 1×10-6Pa·m3/s 이하로 한다. 또한, 예를 들어 m/z가 18인 기체 분자(원자)의 누설 레이트를 1×10-7Pa·m3/s 이하로, 바람직하게는 3×10-8Pa·m3/s 이하로 한다. 또한, 예를 들어 m/z가 28인 기체 분자(원자)의 누설 레이트를 1×10-5Pa·m3/s 이하로, 바람직하게는 1×10-6Pa·m3/s 이하로 한다. 또한, 예를 들어 m/z가 44인 기체 분자(원자)의 누설 레이트를 3×10-6Pa·m3/s 이하로, 바람직하게는 1×10-6Pa·m3/s 이하로 한다.
또한, 누설 레이트는 상술한 질량 분석계를 사용하여 측정한 전압 및 분압으로부터 도출하면 좋다. 누설 레이트는 외부 누설 및 내부 누설에 의존한다. 외부 누설이란, 미소한 구멍 또는 밀봉 불량 등으로 인하여 진공계 외부로부터 기체가 유입되는 것을 말한다. 내부 누설은 진공계 내의 밸브 등의 칸막이로부터의 누설 또는 내부의 부재로부터 방출되는 가스에 기인한다. 누설 레이트를 상술한 수치 이하로 하기 위해서는, 외부 누설 및 내부 누설의 양면에서 대책을 세울 필요가 있다.
예를 들어 반송실(2704) 및 각 체임버의 개폐 부분은 메탈 개스킷으로 밀봉하면 좋다. 메탈 개스킷에는 플루오린화 철, 산화 알루미늄, 또는 산화 크로뮴으로 피복된 금속을 사용하는 것이 바람직하다. 메탈 개스킷은 O링과 비교하여 밀착성이 높고, 외부 누설을 저감할 수 있다. 또한, 플루오린화 철, 산화 알루미늄, 산화 크로뮴 등으로 피복된 금속의 부동태를 사용함으로써, 메탈 개스킷으로부터 방출되는 불순물을 포함하는 방출 가스가 억제되어, 내부 누설을 저감할 수 있다.
또한, 제조 장치(2700)를 구성하는 부재에, 불순물을 포함하는 가스의 방출이 적은 알루미늄, 크로뮴, 타이타늄, 지르코늄, 니켈, 또는 바나듐을 사용한다. 또한, 철, 크로뮴, 및 니켈 등을 포함하는 합금을 상술한 불순물을 포함하는 가스의 방출이 적은 금속으로 피복하여 사용하여도 좋다. 철, 크로뮴, 및 니켈 등을 포함하는 합금은 강성이 있고, 열에 강하고, 가공에 적합하다. 여기서 표면적을 축소하기 위하여 부재의 표면 요철을 연마 등에 의하여 저감하면 방출 가스를 저감할 수 있다.
또는, 상술한 제조 장치(2700)의 부재를 플루오린화 철, 산화 알루미늄, 산화 크로뮴 등으로 피복하여도 좋다.
제조 장치(2700)의 부재는 가능한 한 금속만으로 구성하는 것이 바람직하고, 예를 들어 석영 등으로 구성되는 관찰 창 등을 설치하는 경우에도, 가스의 방출을 억제하기 위하여 표면을 플루오린화 철, 산화 알루미늄, 산화 크로뮴 등으로 얇게 피복하면 좋다.
반송실(2704) 및 각 체임버에 존재하는 흡착물은 내벽 등에 흡착되어 있기 때문에 반송실(2704) 및 각 체임버의 압력에 영향을 미치지 않지만, 반송실(2704) 및 각 체임버를 배기한 경우에 가스 방출의 원인이 된다. 그러므로, 누설 레이트와 배기 속도에 상관성은 없지만, 배기 능력이 높은 펌프를 사용하여 반송실(2704) 및 각 체임버에 존재하는 흡착물을 가능한 한 이탈시키고, 미리 배기를 수행하는 것이 중요하다. 또한, 흡착물의 이탈을 촉진하기 위하여, 반송실(2704) 및 각 체임버에 대하여 베이킹을 실시하여도 좋다. 베이킹을 실시함으로써 흡착물의 이탈 속도를 10배 정도 높일 수 있다. 베이킹은 100℃ 이상 450℃ 이하에서 실시하면 좋다. 이때, 불활성 가스를 반송실(2704) 및 각 체임버에 도입하면서 흡착물을 제거하면, 배기만으로는 이탈되기 어려운 물 등의 이탈 속도를 더 높일 수 있다. 또한, 도입하는 불활성 가스를 베이킹의 온도와 같은 정도로 가열함으로써, 흡착물의 이탈 속도를 더 높일 수 있다. 여기서 불활성 가스로서는 희가스를 사용하는 것이 바람직하다.
또는, 가열한 희가스 등의 불활성 가스 또는 산소 등을 도입함으로써 반송실(2704) 및 각 체임버 내의 압력을 높이고, 일정한 시간이 경과한 후에 반송실(2704) 및 각 체임버를 배기하는 처리를 다시 수행하는 것이 바람직하다. 가열된 가스를 도입하면 반송실(2704) 및 각 체임버 내의 흡착물을 이탈시킬 수 있고, 반송실(2704) 및 각 체임버 내에 존재하는 불순물을 저감할 수 있다. 또한, 이 처리는 2번 이상 30번 이하, 바람직하게는 5번 이상 15번 이하의 범위에서 반복적으로 수행하는 것이 효과적이다. 구체적으로는, 온도가 40℃ 이상 400℃ 이하, 바람직하게는 50℃ 이상 200℃ 이하인 불활성 가스 또는 산소 등을 도입함으로써 반송실(2704) 및 각 체임버 내의 압력을 0.1Pa 이상 10kPa 이하로, 바람직하게는 1Pa 이상 1kPa 이하로, 더 바람직하게는 5Pa 이상 100Pa 이하로 하고, 압력을 유지하는 기간을 1분 이상 300분 이하로, 바람직하게는 5분 이상 120분 이하로 하면 좋다. 그 후, 반송실(2704) 및 각 체임버를 5분 이상 300분 이하, 바람직하게는 10분 이상 120분 이하의 기간 배기한다.
다음으로, 체임버(2706b) 및 체임버(2706c)에 대하여 도 27에 나타낸 단면 모식도를 사용하여 설명한다.
체임버(2706b) 및 체임버(2706c)는 예를 들어 피처리물에 대하여 마이크로파 처리를 수행할 수 있는 체임버이다. 또한, 체임버(2706b)와 체임버(2706c)는 마이크로파 처리를 수행할 때의 분위기만이 다르다. 그 이외의 구성은 공통되기 때문에, 이하에서는 통틀어 설명한다.
체임버(2706b) 및 체임버(2706c)는 슬롯 안테나판(2808)과, 유전체판(2809)과, 기판 홀더(2812)와, 배기구(2819)를 가진다. 또한, 체임버(2706b) 및 체임버(2706c)의 외부 등에는 가스 공급원(2801)과, 밸브(2802)와, 고주파 발생기(2803)와, 도파관(2804)과, 모드 변환기(2805)와, 가스관(2806)과, 도파관(2807)과, 매칭 박스(2815)와, 고주파 전원(2816)과, 진공 펌프(2817)와, 밸브(2818)가 제공된다.
고주파 발생기(2803)는 도파관(2804)을 통하여 모드 변환기(2805)와 접속되어 있다. 모드 변환기(2805)는 도파관(2807)을 통하여 슬롯 안테나판(2808)과 접속되어 있다. 슬롯 안테나판(2808)은 유전체판(2809)과 접촉하여 배치된다. 또한, 가스 공급원(2801)은 밸브(2802)를 통하여 모드 변환기(2805)와 접속되어 있다. 그리고, 모드 변환기(2805), 도파관(2807), 및 유전체판(2809)을 지나가는 가스관(2806)을 통하여 체임버(2706b) 및 체임버(2706c)에 가스가 공급된다. 또한, 진공 펌프(2817)는 밸브(2818) 및 배기구(2819)를 통하여 체임버(2706b) 및 체임버(2706c)로부터 가스 등을 배기하는 기능을 가진다. 또한, 고주파 전원(2816)은 매칭 박스(2815)를 통하여 기판 홀더(2812)와 접속되어 있다.
기판 홀더(2812)는 기판(2811)을 유지하는 기능을 가진다. 예를 들어 기판(2811)의 정전 척(electrostatic chuck) 또는 기계 척(mechanical chuck)으로서의 기능을 가진다. 또한, 고주파 전원(2816)으로부터 전력을 공급받는 전극으로서의 기능을 가진다. 또한, 내부에 가열 기구(2813)를 가지고, 기판(2811)을 가열하는 기능을 가진다.
진공 펌프(2817)로서는, 예를 들어 드라이 펌프, 메커니컬 부스터 펌프, 이온 펌프, 타이타늄 서블리메이션 펌프, 크라이오펌프(cryopump), 또는 터보 분자 펌프 등을 사용할 수 있다. 또한, 진공 펌프(2817)에 더하여 크라이오트랩(cryotrap)을 사용하여도 좋다. 크라이오펌프 및 크라이오트랩을 사용하면, 물을 효율적으로 배기할 수 있기 때문에 특히 바람직하다.
또한, 가열 기구(2813)는, 예를 들어 저항 발열체 등을 사용하여 가열하는 가열 기구로 하면 좋다. 또는, 가열된 가스 등의 매체로부터의 열전도 또는 열복사에 의하여 가열하는 가열 기구로 하여도 좋다. 예를 들어 GRTA(Gas Rapid Thermal Annealing) 또는 LRTA(Lamp Rapid Thermal Annealing) 등의 RTA(Rapid Thermal Annealing)를 사용할 수 있다. GRTA에서는 고온 가스를 사용하여 가열 처리를 수행한다. 가스로서는 불활성 가스가 사용된다.
또한, 가스 공급원(2801)은 질량 유량 제어기를 통하여 정제기와 접속되어 있어도 좋다. 가스로서는 이슬점이 -80℃ 이하, 바람직하게는 -100℃ 이하인 가스를 사용하는 것이 바람직하다. 예를 들어 산소 가스, 질소 가스, 및 희가스(아르곤 가스 등)를 사용하면 좋다.
유전체판(2809)으로서는, 예를 들어 산화 실리콘(석영), 산화 알루미늄(알루미나), 또는 산화 이트륨(이트리아) 등을 사용하면 좋다. 또한, 유전체판(2809)의 표면에 다른 보호층이 더 형성되어 있어도 좋다. 보호층에는 산화 마그네슘, 산화 타이타늄, 산화 크로뮴, 산화 지르코늄, 산화 하프늄, 산화 탄탈럼, 산화 실리콘, 산화 알루미늄, 또는 산화 이트륨 등을 사용하면 좋다. 유전체판(2809)은 후술하는 고밀도 플라스마(2810)에서 특히 밀도가 높은 영역에 노출되기 때문에, 보호층을 제공함으로써 손상을 완화할 수 있다. 그 결과, 처리 시의 파티클 증가 등을 억제할 수 있다.
고주파 발생기(2803)는 예를 들어 0.3GHz 이상 3.0GHz 이하, 0.7GHz 이상 1.1GHz 이하, 또는 2.2GHz 이상 2.8GHz 이하의 마이크로파를 발생시키는 기능을 가진다. 고주파 발생기(2803)에 의하여 발생시킨 마이크로파는, 도파관(2804)을 통하여 모드 변환기(2805)로 전달된다. 모드 변환기(2805)에서는, TE 모드로서 전달된 마이크로파가 TEM 모드로 변환된다. 그리고, 마이크로파는 도파관(2807)을 통하여 슬롯 안테나판(2808)에 전달된다. 슬롯 안테나판(2808)에는 복수의 슬롯 구멍이 제공되어 있고, 마이크로파는 상기 슬롯 구멍 및 유전체판(2809)을 통과한다. 그리고, 유전체판(2809)의 아래쪽에 전계를 발생시키고, 고밀도 플라스마(2810)를 생성할 수 있다. 고밀도 플라스마(2810)에는, 가스 공급원(2801)으로부터 공급된 가스 종류에 따른 이온 및 라디칼이 존재한다. 예를 들어 산소 라디칼 등이 존재한다.
이때, 고밀도 플라스마(2810)에서 생성된 이온 및 라디칼에 의하여, 기판(2811) 위의 막 등을 개질할 수 있다. 또한, 고주파 전원(2816)을 사용하여 기판(2811) 측에 바이어스를 인가하는 것이 바람직한 경우가 있다. 고주파 전원(2816)으로서는, 예를 들어 13.56MHz, 27.12MHz 등의 주파수의 RF 전원을 사용하면 좋다. 기판 측에 바이어스를 인가함으로써, 고밀도 플라스마(2810) 내의 이온을 기판(2811) 위의 막 등의 개구부의 깊은 부분까지 효율적으로 도달시킬 수 있다.
예를 들어 체임버(2706b) 또는 체임버(2706c)에서는 가스 공급원(2801)으로부터 산소를 도입함으로써, 고밀도 플라스마(2810)를 사용한 산소 라디칼 처리를 수행할 수 있다.
다음으로, 체임버(2706a) 및 체임버(2706d)에 대하여 도 28에 나타낸 단면 모식도를 사용하여 설명한다.
체임버(2706a) 및 체임버(2706d)는 예를 들어 피처리물에 대하여 전자기파의 조사를 수행할 수 있는 체임버이다. 또한, 체임버(2706a)와 체임버(2706d)는 전자기파의 종류만이 다르다. 그 이외의 구성에 대해서는 공통되는 부분이 많기 때문에, 이하에서는 통틀어 설명한다.
체임버(2706a) 및 체임버(2706d)는 하나 또는 복수의 램프(2820)와, 기판 홀더(2825)와, 가스 도입구(2823)와, 배기구(2830)를 가진다. 또한, 체임버(2706a) 및 체임버(2706d)의 외부 등에는 가스 공급원(2821)과, 밸브(2822)와, 진공 펌프(2828)와, 밸브(2829)가 제공된다.
가스 공급원(2821)은 밸브(2822)를 통하여 가스 도입구(2823)와 접속되어 있다. 진공 펌프(2828)는 밸브(2829)를 통하여 배기구(2830)와 접속되어 있다. 램프(2820)는 기판 홀더(2825)와 대향하여 배치되어 있다. 기판 홀더(2825)는 기판(2824)을 유지하는 기능을 가진다. 또한, 기판 홀더(2825)는 내부에 가열 기구(2826)를 가지고, 기판(2824)을 가열하는 기능을 가진다.
램프(2820)로서는, 예를 들어 가시광 또는 자외광 등의 전자기파를 방사하는 기능을 가지는 광원을 사용하면 좋다. 예를 들어 파장 10nm 이상 2500nm 이하, 500nm 이상 2000nm 이하, 또는 40nm 이상 340nm 이하에 피크를 가지는 전자기파를 방사하는 기능을 가지는 광원을 사용하면 좋다.
예를 들어 램프(2820)로서는 할로젠 램프, 메탈 할라이드 램프, 제논 아크 램프, 카본 아크 램프, 고압 소듐 램프, 또는 고압 수은 램프 등의 광원을 사용하면 좋다.
예를 들어 램프(2820)로부터 방사되는 전자기파는, 그 일부 또는 전부가 기판(2824)에 흡수됨으로써 기판(2824) 위의 막 등을 개질할 수 있다. 예를 들어 결함의 생성 또는 저감, 혹은 불순물의 제거 등을 수행할 수 있다. 또한, 기판(2824)을 가열하면서 수행하면, 결함의 생성 또는 저감, 혹은 불순물의 제거 등을 효율적으로 수행할 수 있다.
또는, 예를 들어 램프(2820)로부터 방사되는 전자기파에 의하여, 기판 홀더(2825)를 발열시켜 기판(2824)을 가열하여도 좋다. 그 경우, 기판 홀더(2825)의 내부에 가열 기구(2826)를 가지지 않아도 된다.
진공 펌프(2828)에 대해서는 진공 펌프(2817)에 대한 기재를 참조한다. 또한, 가열 기구(2826)에 대해서는 가열 기구(2813)에 대한 기재를 참조한다. 또한, 가스 공급원(2821)에 대해서는 가스 공급원(2801)에 대한 기재를 참조한다.
본 실시형태에서 사용할 수 있는 마이크로파 처리 장치는 상기에 한정되지 않는다. 도 29에 나타낸 마이크로파 처리 장치(2900)를 사용할 수 있다. 마이크로파 처리 장치(2900)는 석영관(2901), 가스 공급원(2801), 밸브(2802), 고주파 발생기(2803), 도파관(2804), 가스관(2806), 진공 펌프(2817), 밸브(2818), 및 배기구(2819)를 가진다. 또한, 마이크로파 처리 장치(2900)는 석영관(2901) 내에, 복수의 기판(2811)((2811_1 내지 2811_n), n은 2 이상의 정수)을 유지하는 기판 홀더(2902)를 가진다. 또한, 마이크로파 처리 장치(2900)는 석영관(2901)의 외측에 가열 수단(2903)을 가져도 좋다.
고주파 발생기(2803)로 발생시킨 마이크로파는 도파관(2804)을 통하여 석영관(2901) 내에 제공된 기판에 조사된다. 진공 펌프(2817)는 밸브(2818)를 통하여 배기구(2819)와 접속되어 있으며, 석영관(2901) 내부의 압력을 조정할 수 있다. 또한, 가스 공급원(2801)은 밸브(2802)를 통하여 가스관(2806)과 접속되어 있으며, 석영관(2901) 내에 원하는 가스를 도입할 수 있다. 또한, 가열 수단(2903)에 의하여, 석영관(2901) 내의 기판(2811)을 원하는 온도로 가열할 수 있다. 또는, 가열 수단(2903)에 의하여, 가스 공급원(2801)으로부터 공급되는 가스를 가열하여도 좋다. 마이크로파 처리 장치(2900)에 의하여, 기판(2811)에 대하여 가열 처리와 마이크로파 처리를 동시에 수행할 수 있다. 또한, 기판(2811)을 가열한 후에 마이크로파 처리를 수행할 수 있다. 또한, 기판(2811)에 대하여 마이크로파 처리를 수행한 후에 가열 처리를 수행할 수 있다.
기판(2811_1) 내지 기판(2811_n)은 모두를 반도체 장치 또는 기억 장치를 형성하는 처리 기판으로 하여도 좋고, 일부를 더미 기판으로 하여도 좋다. 예를 들어 기판(2811_1) 및 기판(2811_n)을 더미 기판으로 하고, 기판(2811_2) 내지 기판(2811_n-1)을 처리 기판으로 하여도 좋다. 또한, 기판(2811_1), 기판(2811_2), 기판(2811_n-1), 및 기판(2811_n)을 더미 기판으로 하고, 기판(2811_3) 내지 기판(2811_n-2)를 처리 기판으로 하여도 좋다. 더미 기판을 사용함으로써, 마이크로파 처리 또는 가열 처리 시에 복수의 처리 기판이 균일하게 처리되어, 처리 기판 간의 편차를 저감할 수 있기 때문에 바람직하다. 예를 들어 고주파 발생기(2803) 및 도파관(2804)에 가장 가까운 처리 기판 위에 더미 기판을 배치함으로써, 상기 처리 기판이 직접 마이크로파에 노출되는 것을 억제할 수 있기 때문에 바람직하다.
상술한 제조 장치를 사용함으로써, 피처리물로의 불순물의 혼입을 억제하면서 막의 개질 등이 가능하게 된다.
또한, 도 27 내지 도 29에 나타낸 마이크로파 처리 장치는 앞의 실시형태의 도 7에 나타낸 처리실(4011)에도 사용할 수 있다.
<반도체 장치의 변형예>
이하에서는, 도 30을 사용하여 본 발명의 일 형태의 반도체 장치의 일례에 대하여 설명한다.
도 30의 (A)에는 반도체 장치(500)의 상면도를 나타내었다. 도 30의 (A)에 나타낸 x축은 트랜지스터(200)의 채널 길이 방향에 대하여 평행하고, y축은 x축에 대하여 수직이다. 또한, 도 30의 (B)는 도 30의 (A)에 일점쇄선 A1-A2로 나타낸 부분에 대응하는 단면도이고, 트랜지스터(200)의 채널 길이 방향의 단면도이기도 하다. 도 30의 (C)는 도 30의 (A)에서 A3-A4의 일점쇄선으로 나타낸 부분에 대응하는 단면도이고, 개구 영역(400) 및 그 근방의 단면도이기도 하다. 또한 도 30의 (A)의 상면도에서는, 도면의 명료화를 위하여 일부 요소를 생략하였다.
또한 도 30의 (A) 내지 (C)에 나타낸 반도체 장치에서, <반도체 장치의 구성예>에 나타낸 반도체 장치를 구성하는 구조와 같은 기능을 가지는 구조에는 같은 부호를 부기한다. 또한 본 항목에서도 반도체 장치의 구성 재료로서는 <반도체 장치의 구성예>에서 자세히 설명한 재료를 사용할 수 있다.
도 30의 (A) 내지 (C)에 나타낸 반도체 장치(500)는 도 14의 (A) 내지 (D)에 나타낸 반도체 장치의 변형예이다. 도 30의 (A) 내지 (C)에 나타낸 반도체 장치(500)는, 절연체(282) 및 절연체(280)에 개구 영역(400)이 형성되어 있는 점이 도 14의 (A) 내지 (D)에 나타낸 반도체 장치와 다르다. 또한, 복수의 트랜지스터(200)를 둘러싸도록 밀봉부(265)가 형성되어 있는 점이 도 14의 (A) 내지 (D)에 나타낸 반도체 장치와 다르다.
반도체 장치(500)는 매트릭스상으로 배열된 복수의 트랜지스터(200) 및 복수의 개구 영역(400)을 가진다. 또한, 트랜지스터(200)의 게이트 전극으로서 기능하는 복수의 도전체(260)가 y축 방향으로 연장되어 제공되어 있다. 개구 영역(400)은 산화물(230) 및 도전체(260)와 중첩되지 않는 영역에 형성되어 있다. 또한, 복수의 트랜지스터(200), 복수의 도전체(260), 및 복수의 개구 영역(400)을 둘러싸도록 밀봉부(265)가 형성되어 있다. 또한, 트랜지스터(200), 도전체(260), 및 개구 영역(400)의 개수, 배치, 및 크기는 도 30에 나타낸 구조에 한정되지 않고, 반도체 장치(500)의 설계에 맞추어 적절히 설정하면 좋다.
도 30의 (B) 및 (C)에 나타낸 바와 같이, 밀봉부(265)는 복수의 트랜지스터(200), 절연체(216), 절연체(222), 절연체(275), 절연체(280), 및 절연체(282)를 둘러싸도록 제공되어 있다. 바꿔 말하면, 절연체(283)는 절연체(216), 절연체(222), 절연체(275), 절연체(280), 및 절연체(282)를 덮도록 제공되어 있다. 또한, 밀봉부(265)에서는 절연체(283)가 절연체(214)의 상면에 접한다. 또한, 밀봉부(265)에서는 절연체(283)와 절연체(285) 사이에 절연체(274)가 제공되어 있다. 절연체(274)의 상면은 절연체(283)의 최상면과 높이가 실질적으로 일치한다. 또한, 절연체(274)로서는 절연체(280)와 같은 절연체를 사용할 수 있다.
이와 같은 구조로 함으로써, 복수의 트랜지스터(200)를 절연체(283)와, 절연체(214)와, 절연체(212)로 감쌀 수 있다. 여기서, 절연체(283), 절연체(214), 및 절연체(212) 중 하나 또는 복수는 수소에 대한 배리어 절연막으로서 기능하는 것이 바람직하다. 이에 의하여, 밀봉부(265)의 영역 외에 포함되는 수소가 밀봉부(265)의 영역 내에 혼입되는 것을 억제할 수 있다.
도 30의 (C)에 나타낸 바와 같이, 개구 영역(400)에서 절연체(282)는 개구부를 가진다. 또한, 개구 영역(400)에서 절연체(280)는 절연체(282)의 개구부와 중첩하여 홈부를 가져도 좋다. 절연체(280)의 홈부의 깊이는 깊어도 절연체(275)의 상면이 노출될 정도까지로 하면 좋고, 예를 들어 절연체(280)의 최대 막 두께의 1/4 이상 1/2 이하 정도로 하면 좋다.
또한, 도 30의 (C)에 나타낸 바와 같이, 절연체(283)는 개구 영역(400)의 내측에서 절연체(282)의 측면, 절연체(280)의 측면, 및 절연체(280)의 상면에 접한다. 또한, 개구 영역(400) 내에서 절연체(283)에 형성된 오목부를 매립하도록 절연체(274)의 일부가 형성되는 경우가 있다. 이때, 개구 영역(400) 내에 형성된 절연체(274)의 상면과, 절연체(283)의 최상면의 높이가 실질적으로 일치하는 경우가 있다.
이와 같은 개구 영역(400)이 형성되고 절연체(282)의 개구부에서 절연체(280)가 노출된 상태에서 가열 처리를 수행함으로써, 산화물(230)에 산소를 공급하면서 절연체(280)에 포함되는 산소의 일부를 개구 영역(400)으로부터 외부로 확산시킬 수 있다. 이에 의하여, 가열에 의하여 이탈되는 산소를 포함하는 절연체(280)로부터, 산화불 반도체층 내의 채널 형성 영역으로서 기능하는 영역 및 그 근방에 충분한 산소를 공급하면서 과잉량의 산소가 공급되지 않도록 할 수 있다.
이때 절연체(280)에 포함되는 수소를 산소와 결합시켜 개구 영역(400)을 통하여 외부로 방출할 수 있다. 산소와 결합한 수소는 물로서 방출된다. 따라서, 절연체(280)에 포함되는 수소를 저감하고, 절연체(280)에 포함되는 수소가 산화물(230)에 혼입되는 것을 저감할 수 있다.
또한 도 30의 (A)에서 개구 영역(400)을 상면에서 보았을 때의 형상은 실질적으로 직사각형으로 하였지만, 본 발명은 이에 한정되는 것이 아니다. 예를 들어 개구 영역(400)을 상면에서 보았을 때의 형상은 직사각형, 타원형, 원형, 마름모형, 또는 이들을 조합한 형상으로 하여도 좋다. 또한, 개구 영역(400)의 면적 및 배치 간격은 트랜지스터(200)를 포함하는 반도체 장치의 설계에 맞추어 적절히 설정할 수 있다. 예를 들어 트랜지스터(200)의 밀도가 낮은 영역에서는 개구 영역(400)의 면적을 넓히거나 또는 개구 영역(400)의 배치 간격을 좁히면 좋다. 또한, 예를 들어 트랜지스터(200)의 밀도가 높은 영역에서는 개구 영역(400)의 면적을 좁히거나 또는 개구 영역의 배치 간격을 넓히면 좋다.
또한 본 발명의 일 형태에 의하여 신규 트랜지스터를 제공할 수 있다. 또는 본 발명의 일 형태에 의하여 온 전류가 큰 반도체 장치를 제공할 수 있다. 또는 본 발명의 일 형태에 의하여 주파수 특성이 높은 반도체 장치를 제공할 수 있다. 또는 본 발명의 일 형태에 의하여 신뢰성이 양호한 반도체 장치를 제공할 수 있다. 또는 본 발명의 일 형태에 의하여 전기 특성이 양호한 반도체 장치를 제공할 수 있다.
이상, 본 실시형태에 나타낸 구성, 방법 등은 본 실시형태에 나타낸 다른 구성, 방법, 또는 다른 실시형태에 나타내는 구성, 방법 등과 적절히 조합하여 사용할 수 있다.
(실시형태 3)
본 실시형태에서는, 반도체 장치의 일 형태에 대하여 도 31 내지 도 35를 사용하여 설명한다.
[기억 장치 1]
본 발명의 일 형태에 따른 반도체 장치(기억 장치)의 일례를 도 31에 나타내었다. 본 발명의 일 형태의 반도체 장치에서, 트랜지스터(200)는 트랜지스터(300)의 위쪽에 제공되고, 용량 소자(100)는 트랜지스터(300) 및 트랜지스터(200)의 위쪽에 제공되어 있다. 또한 트랜지스터(200)로서는, 앞의 실시형태에서 설명한 트랜지스터(200)를 사용할 수 있다.
트랜지스터(200)는 산화물 반도체를 가지는 반도체층에 채널이 형성되는 트랜지스터이다. 트랜지스터(200)는 오프 전류가 작기 때문에, 이를 기억 장치에 사용함으로써 장기간에 걸쳐 기억 내용을 유지할 수 있다. 즉, 리프레시 동작이 불필요하거나, 또는 리프레시 동작 빈도가 매우 낮기 때문에, 기억 장치의 소비 전력을 충분히 저감할 수 있다.
도 31에 나타낸 반도체 장치에서, 배선(1001)은 트랜지스터(300)의 소스에 전기적으로 접속되고, 배선(1002)은 트랜지스터(300)의 드레인에 전기적으로 접속되어 있다. 또한 배선(1003)은 트랜지스터(200)의 소스 및 드레인 중 한쪽에 전기적으로 접속되고, 배선(1004)은 트랜지스터(200)의 제 1 게이트에 전기적으로 접속되고, 배선(1006)은 트랜지스터(200)의 제 2 게이트에 전기적으로 접속되어 있다. 그리고 트랜지스터(300)의 게이트, 및 트랜지스터(200)의 소스 및 드레인 중 다른 쪽은 용량 소자(100)의 한쪽 전극에 전기적으로 접속되고, 배선(1005)은 용량 소자(100)의 다른 쪽 전극에 전기적으로 접속되어 있다.
또한 도 31에 나타낸 기억 장치를 매트릭스상으로 배치함으로써, 메모리 셀 어레이를 구성할 수 있다.
<트랜지스터(300)>
트랜지스터(300)는 기판(311) 위에 제공되고, 게이트로서 기능하는 도전체(316), 게이트 절연체로서 기능하는 절연체(315), 기판(311)의 일부로 이루어지는 반도체 영역(313), 및 소스 영역 또는 드레인 영역으로서 기능하는 저저항 영역(314a) 및 저저항 영역(314b)을 가진다. 트랜지스터(300)는 p채널형 및 n채널형 중 어느 것이어도 좋다.
여기서, 도 31에 나타낸 트랜지스터(300)에서는 채널이 형성되는 반도체 영역(313)(기판(311)의 일부)이 볼록 형상을 가진다. 또한 반도체 영역(313)의 측면 및 상면을, 절연체(315)를 개재하여 도전체(316)가 덮도록 제공되어 있다. 또한 도전체(316)에는 일함수를 조정하는 재료를 사용하여도 좋다. 이와 같은 트랜지스터(300)는 반도체 기판의 볼록부를 이용하기 때문에 FIN형 트랜지스터라고도 불린다. 또한 볼록부의 상부와 접하여, 볼록부를 형성하기 위한 마스크로서 기능하는 절연체를 가져도 좋다. 또한 여기서는 반도체 기판의 일부를 가공하여 볼록부를 형성하는 경우에 대하여 설명하였지만, SOI 기판을 가공하여 볼록 형상을 가지는 반도체막을 형성하여도 좋다.
또한 도 31에 나타낸 트랜지스터(300)는 일례이고, 그 구조에 한정되지 않고, 회로 구성 또는 구동 방법에 따라 적절한 트랜지스터를 사용하면 좋다.
<용량 소자(100)>
용량 소자(100)는 트랜지스터(200)의 위쪽에 제공된다. 용량 소자(100)는 제 1 전극으로서 기능하는 도전체(110), 제 2 전극으로서 기능하는 도전체(120), 및 유전체로서 기능하는 절연체(130)를 가진다. 여기서, 절연체(130)로서는, 앞의 실시형태에 나타낸 절연체(275)로서 사용할 수 있는 절연체를 사용하는 것이 바람직하다.
또한 예를 들어 도전체(240) 위에 제공된 도전체(112)와 도전체(110)는 동시에 형성할 수 있다. 또한, 도전체(112)는 용량 소자(100), 트랜지스터(200), 또는 트랜지스터(300)와 전기적으로 접속되는 플러그 또는 배선으로서의 기능을 가진다. 또한, 도전체(112) 및 도전체(110)는 앞의 실시형태에 나타낸 도전체(246)에 상당한다.
도 31에서는 도전체(112) 및 도전체(110)를 단층 구조로 나타내었지만, 상기 구성에 한정되지 않고, 2층 이상의 적층 구조이어도 좋다. 예를 들어, 배리어성을 가지는 도전체와 도전성이 높은 도전체 사이에 배리어성을 가지는 도전체 및 도전성이 높은 도전체에 대하여 밀착성이 높은 도전체를 형성하여도 좋다.
또한, 절연체(130)는, 예를 들어 산화 실리콘, 산화질화 실리콘, 질화산화 실리콘, 질화 실리콘, 산화 알루미늄, 산화질화 알루미늄, 질화산화 알루미늄, 질화 알루미늄, 산화 하프늄, 산화질화 하프늄, 질화산화 하프늄, 질화 하프늄 등을 사용하면 좋고, 적층 또는 단층으로 제공할 수 있다.
예를 들어, 절연체(130)에는 산화질화 실리콘 등의 절연 내력이 큰 재료와 고유전율(high-k) 재료의 적층 구조를 사용하는 것이 바람직하다. 상기 구성에 의하여, 용량 소자(100)는 고유전율(high-k)의 절연체를 가짐으로써 충분한 용량을 확보할 수 있고, 절연 내력이 큰 절연체를 가짐으로써 절연 내력이 향상되고, 용량 소자(100)의 정전 파괴를 억제할 수 있다.
또한 고유전율(high-k) 재료(비유전율이 높은 재료)의 절연체로서는 산화 갈륨, 산화 하프늄, 산화 지르코늄, 알루미늄 및 하프늄을 포함한 산화물, 알루미늄 및 하프늄을 포함한 산화질화물, 실리콘 및 하프늄을 포함한 산화물, 실리콘 및 하프늄을 포함한 산화질화물, 또는 실리콘 및 하프늄을 포함한 질화물 등이 있다.
한편, 절연 내력이 큰 재료(비유전율이 낮은 재료)로서는 산화 실리콘, 산화질화 실리콘, 질화산화 실리콘, 질화 실리콘, 플루오린을 첨가한 산화 실리콘, 탄소를 첨가한 산화 실리콘, 탄소 및 질소를 첨가한 산화 실리콘, 공공을 가지는 산화 실리콘, 또는 수지 등이 있다.
<배선층>
각 구조체 사이에는 층간막, 배선, 및 플러그 등이 제공된 배선층이 제공되어도 좋다. 또한 배선층은 설계에 따라 복수 층 제공할 수 있다. 여기서, 플러그 또는 배선으로서의 기능을 가지는 도전체에는, 복수의 구조를 합쳐서 동일한 부호를 부여하는 경우가 있다. 또한 본 명세서 등에서 배선과, 배선에 전기적으로 접속되는 플러그가 일체물이어도 좋다. 즉, 도전체의 일부가 배선으로서 기능하는 경우 및 도전체의 일부가 플러그로서 기능하는 경우도 있다.
예를 들어 트랜지스터(300) 위에는 층간막으로서 절연체(320), 절연체(322), 절연체(324), 및 절연체(326)가 순차적으로 적층되어 제공되어 있다. 또한 절연체(320), 절연체(322), 절연체(324), 및 절연체(326)에는, 용량 소자(100), 또는 트랜지스터(200)와 전기적으로 접속되는 도전체(328), 및 도전체(330) 등이 매립되어 있다. 또한 도전체(328) 및 도전체(330)는 플러그 또는 배선으로서 기능한다.
또한 층간막으로서 기능하는 절연체는 그 아래쪽의 요철 형상을 피복하는 평탄화막으로서 기능하여도 좋다. 예를 들어 절연체(322)의 상면은 평탄성을 높이기 위하여 화학 기계 연마(CMP)법 등을 사용한 평탄화 처리에 의하여 평탄화되어도 좋다.
절연체(326) 및 도전체(330) 위에 배선층을 제공하여도 좋다. 예를 들어 도 31에서는 절연체(350), 절연체(352), 및 절연체(354)가 순차적으로 적층되어 제공되어 있다. 또한 절연체(350), 절연체(352), 및 절연체(354)에는 도전체(356)가 형성되어 있다. 도전체(356)는 플러그 또는 배선으로서 기능한다.
마찬가지로, 절연체(210), 절연체(212), 절연체(214), 및 절연체(216)에는 도전체(218), 및 트랜지스터(200)를 구성하는 도전체(도전체(205)) 등이 매립되어 있다. 또한, 도전체(218)는 용량 소자(100), 또는 트랜지스터(300)와 전기적으로 접속되는 플러그 또는 배선으로서의 기능을 가진다. 또한 도전체(120) 및 절연체(130) 위에는 절연체(150)가 제공되어 있다.
여기서, 앞의 실시형태에 나타낸 절연체(241)와 마찬가지로, 플러그로서 기능하는 도전체(218)의 측면에 접하여 절연체(217)가 제공된다. 절연체(217)는, 절연체(210), 절연체(212), 절연체(214), 및 절연체(216)에 형성된 개구의 내벽에 접하여 제공되어 있다. 즉, 절연체(217)는 도전체(218)와, 절연체(210), 절연체(212), 절연체(214), 및 절연체(216) 사이에 제공되어 있다. 또한, 도전체(205)는 도전체(218)와 병행하여 형성할 수 있기 때문에, 도전체(205)의 측면에 접하여 절연체(217)가 형성되는 경우도 있다.
절연체(217)로서는, 예를 들어 질화 실리콘, 산화 알루미늄, 또는 질화산화 실리콘 등 절연체를 사용하면 좋다. 절연체(217)는 절연체(210), 절연체(212), 절연체(214), 및 절연체(222)에 접하여 제공되기 때문에, 절연체(210) 또는 절연체(216) 등으로부터 물 또는 수소 등의 불순물이 도전체(218)를 통하여 산화물(230)에 혼입되는 것을 억제할 수 있다. 특히, 질화 실리콘은 수소에 대한 배리어성이 높기 때문에 적합하다. 또한, 절연체(210) 또는 절연체(216)에 포함되는 산소가 도전체(218)에 흡수되는 것을 방지할 수 있다.
절연체(217)는 절연체(241)와 같은 방법으로 형성할 수 있다. 예를 들어, PEALD법을 사용하여 질화 실리콘을 성막하고, 이방성 에칭을 사용하여 도전체(356)에 도달하는 개구를 형성하면 좋다.
층간막으로서 사용할 수 있는 절연체로서는, 절연성을 가지는 산화물, 질화물, 산화질화물, 질화산화물, 금속 산화물, 금속 산화질화물, 금속 질화산화물 등이 있다.
예를 들어, 층간막으로서 기능하는 절연체에는 비유전율이 낮은 재료를 사용함으로써, 배선 사이에 발생하는 기생 용량을 저감할 수 있다. 따라서 절연체의 기능에 따라 재료를 선택하는 것이 좋다.
예를 들어 절연체(150), 절연체(210), 절연체(352), 및 절연체(354) 등에는 비유전율이 낮은 절연체를 가지는 것이 바람직하다. 예를 들어 상기 절연체는 질화산화 실리콘, 질화 실리콘, 플루오린을 첨가한 산화 실리콘, 탄소를 첨가한 산화 실리콘, 탄소 및 질소를 첨가한 산화 실리콘, 공공을 가지는 산화 실리콘, 또는 수지 등을 가지는 것이 바람직하다. 또는 상기 절연체는 산화 실리콘, 산화질화 실리콘, 질화산화 실리콘, 질화 실리콘, 플루오린을 첨가한 산화 실리콘, 탄소를 첨가한 산화 실리콘, 탄소 및 질소를 첨가한 산화 실리콘, 또는 공공을 가지는 산화 실리콘과, 수지의 적층 구조를 가지는 것이 바람직하다. 산화 실리콘 및 산화질화 실리콘은 열적으로 안정적이기 때문에, 수지와 조합함으로써 열적으로 안정적이며 비유전율이 낮은 적층 구조로 할 수 있다. 수지로서는, 예를 들어 폴리에스터, 폴리올레핀, 폴리아마이드(나일론, 아라미드 등), 폴리이미드, 폴리카보네이트, 또는 아크릴 등이 있다.
또한 산화물 반도체를 사용한 트랜지스터는, 수소 등의 불순물 및 산소의 투과를 억제하는 기능을 가지는 절연체로 둘러쌈으로써, 트랜지스터의 전기 특성을 안정적으로 할 수 있다. 따라서 절연체(214), 절연체(212), 및 절연체(350) 등으로서는 수소 등의 불순물 및 산소의 투과를 억제하는 기능을 가지는 절연체를 사용하면 좋다.
수소 등의 불순물 및 산소의 투과를 억제하는 기능을 가지는 절연체로서는 예를 들어 붕소, 탄소, 질소, 산소, 플루오린, 마그네슘, 알루미늄, 실리콘, 인, 염소, 아르곤, 갈륨, 저마늄, 이트륨, 지르코늄, 란타넘, 네오디뮴, 하프늄, 또는 탄탈럼을 포함한 절연체를 단층으로 또는 적층으로 사용하면 좋다. 구체적으로는, 수소 등의 불순물 및 산소의 투과를 억제하는 기능을 가지는 절연체로서 산화 알루미늄, 산화 마그네슘, 산화 갈륨, 산화 저마늄, 산화 이트륨, 산화 지르코늄, 산화 란타넘, 산화 네오디뮴, 산화 하프늄, 또는 산화 탄탈럼 등의 금속 산화물, 질화산화 실리콘, 또는 질화 실리콘 등을 사용할 수 있다.
배선, 플러그에 사용할 수 있는 도전체에는 알루미늄, 크로뮴, 구리, 은, 금, 백금, 탄탈럼, 니켈, 타이타늄, 몰리브데넘, 텅스텐, 하프늄, 바나듐, 나이오븀, 망가니즈, 마그네슘, 지르코늄, 베릴륨, 인듐, 루테늄 등 중에서 선택된 금속 원소를 1종류 이상 포함하는 재료를 사용할 수 있다. 또한 인 등의 불순물 원소를 함유시킨 다결정 실리콘으로 대표되는, 전기 전도도가 높은 반도체, 니켈실리사이드 등의 실리사이드를 사용하여도 좋다.
예를 들어 도전체(328), 도전체(330), 도전체(356), 도전체(218), 및 도전체(112) 등으로서는, 상기 재료로 형성되는 금속 재료, 합금 재료, 금속 질화물 재료, 또는 금속 산화물 재료 등의 도전성 재료를 단층으로 또는 적층으로 사용할 수 있다. 내열성과 도전성을 양립하는 텅스텐 또는 몰리브데넘 등의 고융점 재료를 사용하는 것이 바람직하고, 텅스텐을 사용하는 것이 바람직하다. 또는 알루미늄 또는 구리 등의 저저항 도전성 재료로 형성하는 것이 바람직하다. 저저항 도전성 재료를 사용함으로써, 배선 저항을 낮게 할 수 있다.
<산화물 반도체가 제공된 층의 배선 또는 플러그>
또한 트랜지스터(200)에 산화물 반도체를 사용하는 경우, 산화물 반도체 근방에 과잉 산소 영역을 가지는 절연체가 제공되는 경우가 있다. 그 경우, 상기 과잉 산소 영역을 가지는 절연체와, 상기 과잉 산소 영역을 가지는 절연체에 제공하는 도전체 사이에 배리어성을 가지는 절연체를 제공하는 것이 바람직하다.
예를 들어 도 31에서는 과잉 산소 또는 불순물을 포함하는 절연체(285) 및 절연체(280)와, 도전체(240) 사이에 절연체(241)를 제공하는 것이 좋다. 절연체(241)와, 절연체(222), 절연체(275), 절연체(282), 및 절연체(283)가 접하여 제공되면, 절연체(224) 및 트랜지스터(200)는 배리어성을 가지는 절연체로 밀봉되는 구조를 가질 수 있다.
즉, 절연체(241)를 제공함으로써, 절연체(280)에 포함되는 과잉 산소가 도전체(240)에 흡수되는 것을 억제할 수 있다. 또한 절연체(241)를 가짐으로써, 불순물인 수소가 도전체(240)를 통하여 트랜지스터(200)로 확산되는 것을 억제할 수 있다.
또한 절연체(241)로서는, 물 또는 수소 등의 불순물 및 산소의 확산을 억제하는 기능을 가지는 절연성 재료를 사용하는 것이 좋다. 예를 들어, 질화 실리콘, 질화산화 실리콘, 산화 알루미늄, 또는 산화 하프늄 등을 사용하는 것이 바람직하다. 특히 질화 실리콘은 수소에 대한 배리어성이 높기 때문에 바람직하다. 또한, 이 외에도, 예를 들어 산화 마그네슘, 산화 갈륨, 산화 저마늄, 산화 이트륨, 산화 지르코늄, 산화 란타넘, 산화 네오디뮴, 또는 산화 탄탈럼 등의 금속 산화물 등을 사용할 수 있다.
또한, 앞의 실시형태에서 나타낸 바와 같이, 트랜지스터(200)는 절연체(212), 절연체(214), 절연체(282), 및 절연체(283)로 밀봉되는 구성으로 하여도 좋다. 이와 같은 구성으로 함으로써, 절연체(285), 절연체(150) 등에 포함되는 수소가 절연체(280) 등에 혼입되는 것을 저감할 수 있다.
여기서, 절연체(283) 및 절연체(282)에는 도전체(240)가 관통되고, 절연체(214) 및 절연체(212)에는 도전체(218)가 관통되어 있지만, 상술한 바와 같이 절연체(241)가 도전체(240)와 접하여 제공되고, 절연체(217)가 도전체(218)와 접하여 제공되어 있다. 이에 의하여, 도전체(240) 및 도전체(218)를 통하여 절연체(212), 절연체(214), 절연체(282), 및 절연체(283)의 내측에 혼입되는 수소를 저감할 수 있다. 이와 같이 하여, 절연체(212), 절연체(214), 절연체(282), 절연체(283), 절연체(241), 및 절연체(217)로 트랜지스터(200)를 밀봉하여, 절연체(285) 등에 포함되는 수소 등의 불순물이 외측으로부터 혼입되는 것을 저감할 수 있다.
<다이싱 라인>
이하에서는, 대면적 기판을 반도체 소자마다 분단함으로써, 복수의 반도체 장치를 칩 형상으로 얻는 경우에 제공되는 다이싱 라인(스크라이브 라인, 분단 라인, 또는 절단 라인이라고 부르는 경우가 있음)에 대하여 설명한다. 분단 방법으로서는, 예를 들어 우선 기판에 반도체 소자를 분단하기 위한 홈(다이싱 라인)을 형성한 후, 다이싱 라인에서 절단하여, 복수의 반도체 장치로 분단(분할)하는 경우가 있다.
여기서, 예를 들어 도 31에 나타낸 바와 같이, 절연체(283)와 절연체(214)가 접하는 영역이 다이싱 라인과 중첩되도록 설계하는 것이 바람직하다. 즉, 복수의 트랜지스터(200)를 가지는 메모리 셀의 가장자리에 제공되는 다이싱 라인이 되는 영역 근방에서, 절연체(282), 절연체(280), 절연체(275), 절연체(222), 및 절연체(216)에 개구를 제공한다.
즉, 절연체(282), 절연체(280), 절연체(275), 절연체(222), 및 절연체(216)에 제공된 개구에서 절연체(214)와 절연체(283)가 접한다. 예를 들어, 이때 절연체(214)와 절연체(283)를 같은 재료 및 같은 방법을 사용하여 형성하여도 좋다. 절연체(214) 및 절연체(283)를 같은 재료 및 같은 방법으로 제공함으로써 밀착성을 높일 수 있다.
상기 구조에 의하여 절연체(212), 절연체(214), 절연체(282), 및 절연체(283)로 트랜지스터(200)를 감쌀 수 있다. 절연체(212), 절연체(214), 절연체(282), 및 절연체(283) 중 적어도 하나는 산소, 수소, 및 물의 확산을 억제하는 기능을 가지기 때문에, 본 실시형태에 나타내는 반도체 소자가 형성된 회로 영역마다 기판을 분단함으로써, 복수의 칩으로 가공하여도 분단된 기판의 측면 방향으로부터 수소 또는 물 등의 불순물이 혼입되어 트랜지스터(200)로 확산되는 것을 방지할 수 있다.
또한, 상기 구조에 의하여, 절연체(280)의 과잉 산소가 외부로 확산되는 것을 방지할 수 있다. 따라서, 절연체(280)의 과잉 산소는 트랜지스터(200)에서의 채널이 형성되는 산화물에 효율적으로 공급된다. 상기 산소에 의하여, 트랜지스터(200)에서의 채널이 형성되는 산화물의 산소 결손을 저감할 수 있다. 이로써, 트랜지스터(200)에서의 채널이 형성되는 산화물을 결함 준위 밀도가 낮고, 안정적인 특성을 가지는 산화물 반도체로 할 수 있다. 즉, 트랜지스터(200)의 전기 특성의 변동을 억제하면서, 신뢰성을 향상시킬 수 있다.
또한, 도 31에 나타낸 기억 장치에서는 용량 소자(100)의 형상을 플레이너형으로 하였지만, 본 실시형태에 나타낸 기억 장치는 이에 한정되는 것이 아니다. 예를 들어 도 32에 나타낸 바와 같이, 용량 소자(100)의 형상을 실린더형으로 하여도 좋다. 또한, 도 32에 나타낸 기억 장치는 절연체(150)보다 아래의 구성은 도 31에 나타낸 반도체 장치와 마찬가지이다.
도 32에 나타낸 용량 소자(100)는 절연체(130) 위의 절연체(150)와, 절연체(150) 위의 절연체(142)와, 절연체(150) 및 절연체(142)에 형성된 개구 내에 배치된 도전체(115)와, 도전체(115) 및 절연체(142) 위의 절연체(145)와, 절연체(145) 위의 도전체(125)와, 도전체(125) 및 절연체(145) 위의 절연체(152)를 가진다. 여기서, 절연체(150) 및 절연체(142)에 형성된 개구 내에 도전체(115), 절연체(145), 및 도전체(125)의 적어도 일부가 배치된다. 또한, 절연체(152) 위에 절연체(154)가 배치되고, 절연체(154) 위에 도전체(153)와 절연체(156)가 배치된다. 여기서, 도전체(140)는 절연체(130), 절연체(150), 절연체(142), 절연체(145), 절연체(152), 및 절연체(154)에 형성된 개구 내에 제공되어 있다.
도전체(115)는 용량 소자(100)의 하부 전극으로서 기능하고, 도전체(125)는 용량 소자(100)의 상부 전극으로서 기능하고, 절연체(145)는 용량 소자(100)의 유전체로서 기능한다. 용량 소자(100)는 절연체(150) 및 절연체(142)의 개구에서, 밑면뿐만 아니라 측면에서도 상부 전극과 하부 전극이 유전체를 사이에 두고 대향하는 구성을 가지기 때문에, 단위 면적당 정전 용량을 크게 할 수 있다. 따라서 상기 개구의 깊이를 깊게 할수록, 용량 소자(100)의 정전 용량을 크게 할 수 있다. 이와 같이 용량 소자(100)의 단위 면적당 정전 용량을 크게 함으로써, 반도체 장치의 미세화 또는 고집적화를 추진할 수 있다.
절연체(152)로서는, 절연체(280)로서 사용할 수 있는 절연체를 사용하면 좋다. 또한 절연체(142)는, 절연체(150)의 개구를 형성할 때의 에칭 스토퍼로서 기능하는 것이 바람직하고, 절연체(214)로서 사용할 수 있는 절연체를 사용하면 좋다.
절연체(150) 및 절연체(142)에 형성된 개구를 상면에서 본 형상은 사각형이어도 좋고, 사각형 이외의 다각형이어도 좋고, 다각형의 모서리 부분을 만곡시킨 형상이어도 좋고, 타원을 포함하는 원형이어도 좋다. 여기서, 상면에서 보았을 때, 상기 개구와 트랜지스터(200)가 중첩되는 면적이 큰 것이 바람직하다. 이와 같은 구성으로 함으로써, 용량 소자(100)와 트랜지스터(200)를 가지는 반도체 장치의 점유 면적을 감소시킬 수 있다.
도전체(115)는 절연체(142) 및 절연체(150)에 형성된 개구와 접하여 배치된다. 도전체(115)의 상면은, 절연체(142)의 상면과 실질적으로 일치하는 것이 바람직하다. 또한 도전체(115)의 하면에는 절연체(130)의 개구를 통하여 도전체(110)가 접한다. 도전체(115)는 ALD법 또는 CVD법 등을 사용하여 성막하는 것이 바람직하고, 예를 들어 도전체(205)로서 사용할 수 있는 도전체를 사용하면 좋다.
절연체(145)는 도전체(115) 및 절연체(142)를 덮도록 배치된다. 예를 들어 ALD법 또는 CVD법 등을 사용하여 절연체(145)를 성막하는 것이 바람직하다. 절연체(145)에는 예를 들어 산화 실리콘, 산화질화 실리콘, 질화산화 실리콘, 질화 실리콘, 산화 지르코늄, 산화 알루미늄, 산화질화 알루미늄, 질화산화 알루미늄, 질화 알루미늄, 산화 하프늄, 산화질화 하프늄, 질화산화 하프늄, 질화 하프늄 등을 사용하면 좋고, 적층 또는 단층으로 제공할 수 있다. 예를 들어 절연체(145)로서는, 산화 지르코늄, 산화 알루미늄, 산화 지르코늄이 이 순서대로 적층된 절연막을 사용할 수 있다.
또한 절연체(145)에는 산화질화 실리콘 등 절연 내력이 큰 재료 또는 고유전율(high-k) 재료를 사용하는 것이 바람직하다. 또는 절연 내력이 큰 재료와 고유전율(high-k) 재료의 적층 구조를 사용하여도 좋다.
또한 고유전율(high-k) 재료(비유전율이 높은 재료)의 절연체로서는 산화 갈륨, 산화 하프늄, 산화 지르코늄, 알루미늄 및 하프늄을 포함한 산화물, 알루미늄 및 하프늄을 포함한 산화질화물, 실리콘 및 하프늄을 포함한 산화물, 실리콘 및 하프늄을 포함한 산화질화물, 실리콘 및 하프늄을 포함한 질화물 등이 있다. 이와 같은 high-k 재료를 사용함으로써, 절연체(145)를 두껍게 하여도 용량 소자(100)의 정전 용량을 충분히 확보할 수 있다. 절연체(145)를 두껍게 함으로써, 도전체(115)와 도전체(125) 사이에 발생하는 누설 전류를 억제할 수 있다.
한편, 절연 내력이 큰 재료로서는 산화 실리콘, 산화질화 실리콘, 질화산화 실리콘, 질화 실리콘, 플루오린을 첨가한 산화 실리콘, 탄소를 첨가한 산화 실리콘, 탄소 및 질소를 첨가한 산화 실리콘, 공공을 가지는 산화 실리콘, 수지 등이 있다. 예를 들어 ALD법을 사용하여 성막한 질화 실리콘(SiNx), PEALD법을 사용하여 성막한 산화 실리콘(SiOx), ALD법을 사용하여 성막한 질화 실리콘(SiNx)이 이 순서대로 적층된 절연막을 사용할 수 있다. 이와 같은 절연 내력이 큰 절연체를 사용함으로써, 절연 내력을 향상시키고 용량 소자(100)의 정전 파괴를 억제할 수 있다.
도전체(125)는 절연체(142) 및 절연체(150)에 형성된 개구를 매립하도록 배치된다. 또한 도전체(125)는 도전체(140) 및 도전체(153)를 통하여 배선(1005)에 전기적으로 접속되어 있다. 도전체(125)는 ALD법 또는 CVD법 등을 사용하여 성막하는 것이 바람직하고, 예를 들어 도전체(205)로서 사용할 수 있는 도전체를 사용하면 좋다.
또한 도전체(153)는 절연체(154) 위에 제공되어 있고, 절연체(156)로 덮여 있다. 도전체(153)로서는 도전체(112)로서 사용할 수 있는 도전체를 사용하면 좋고, 절연체(156)로서는 절연체(152)로서 사용할 수 있는 절연체를 사용하면 좋다. 여기서, 도전체(153)는 도전체(140)의 상면과 접하고, 용량 소자(100), 트랜지스터(200), 또는 트랜지스터(300)의 단자로서 기능한다.
[기억 장치 2]
본 발명의 일 형태에 따른 반도체 장치(기억 장치)의 일례를 도 33에 나타내었다.
<메모리 디바이스의 구성예>
도 33은 메모리 디바이스(290)를 가지는 반도체 장치의 단면도이다. 도 33에 나타낸 메모리 디바이스(290)는 도 14의 (A) 내지 (D)에 나타낸 트랜지스터(200)에 더하여 용량 디바이스(292)를 가진다. 도 33은 트랜지스터(200)의 채널 길이 방향의 단면도에 상당한다.
용량 디바이스(292)는 도전체(242b)와, 도전체(242b) 위에 제공된 절연체(271b)와, 도전체(242b) 및 절연체(271b)를 덮어 제공된 절연체(275)와, 절연체(275) 위의 도전체(294)를 가진다. 즉, 용량 디바이스(292)는 MIM(Metal-Insulator-Metal) 용량 소자를 구성한다. 또한 용량 디바이스(292)가 가지는 한 쌍의 전극 중 한쪽, 즉 도전체(242b)는 트랜지스터의 소스 전극을 겸할 수 있다. 또한 용량 디바이스(292)가 가지는 유전체층은 트랜지스터에 제공되는 보호층, 즉 절연체(271) 및 절연체(275)를 겸할 수 있다. 따라서, 용량 디바이스(292)의 제작 공정에서, 트랜지스터의 제작 공정의 일부를 겸할 수 있기 때문에 생산성이 높은 반도체 장치로 할 수 있다. 또한 용량 디바이스(292)가 가지는 한 쌍의 전극 중 한쪽, 즉 도전체(242b)는 트랜지스터의 소스 전극을 겸하기 때문에, 트랜지스터와 용량 디바이스가 배치되는 면적을 축소할 수 있다.
또한, 도전체(294)로서는 예를 들어 도전체(242)에 사용할 수 있는 재료를 사용하는 것이 좋다.
<메모리 디바이스의 변형예>
이하에서는 도 34의 (A), (B), 및 도 35를 사용하여 앞의 <메모리 디바이스의 구성예>에서 나타낸 것과 다른, 본 발명의 일 형태에 따른, 트랜지스터(200) 및 용량 디바이스(292)를 가지는 반도체 장치의 일례에 대하여 설명한다. 또한 도 34의 (A), (B), 및 도 35에 나타낸 반도체 장치에서, 앞의 실시형태 및 <메모리 디바이스의 구성예>에 나타낸 반도체 장치(도 33 참조)를 구성하는 구조와 같은 기능을 가지는 구조에는 같은 부호를 부기한다. 또한 본 항목에서, 트랜지스터(200) 및 용량 디바이스(292)의 구성 재료로서는 앞의 실시형태 및 <메모리 디바이스의 구성예>에서 자세히 설명한 재료를 사용할 수 있다.
<<메모리 디바이스의 변형예 1>>
이하에서는 본 발명의 일 형태에 따른 트랜지스터(200a), 트랜지스터(200b), 용량 디바이스(292a), 및 용량 디바이스(292b)를 가지는 반도체 장치(600)의 일례에 대하여 도 34의 (A)를 사용하여 설명한다.
도 34의 (A)는 트랜지스터(200a), 트랜지스터(200b), 용량 디바이스(292a), 및 용량 디바이스(292b)를 가지는 반도체 장치(600)의 채널 길이 방향의 단면도이다. 여기서, 용량 디바이스(292a)는 도전체(242a)와, 도전체(242a) 위에 제공된 절연체(271a)와, 도전체(242a) 및 절연체(271a)를 덮어 제공된 절연체(275)와, 절연체(275) 위에 제공된 도전체(294a)를 가진다. 또한, 용량 디바이스(292b)는 도전체(242b)와, 도전체(242b) 위에 제공된 절연체(271b)와, 도전체(242b) 및 절연체(271b)를 덮어 제공된 절연체(275)와, 절연체(275) 위에 제공된 도전체(294b)를 가진다.
반도체 장치(600)는 도 34의 (A)에 나타낸 바와 같이, 일점쇄선 A3-A4를 대칭축으로 한 선대칭의 구성을 가진다. 트랜지스터(200a)의 소스 전극 및 드레인 전극 중 한쪽과, 트랜지스터(200b)의 소스 전극 및 드레인 전극 중 한쪽을 도전체(242c)가 겸하는 구성이다. 또한 도전체(242c) 위에는 절연체(271c)가 제공된다. 또한 배선으로서 기능하는 도전체(246)와, 트랜지스터(200a) 및 트랜지스터(200b)의 접속도 플러그로서 기능하는 도전체(240)가 겸하는 구성이다. 이와 같이, 2개의 트랜지스터와, 2개의 용량 디바이스와, 배선과 플러그의 접속을 상술한 구성으로 함으로써, 미세화 또는 고집적화가 가능한 반도체 장치를 제공할 수 있다.
트랜지스터(200a), 트랜지스터(200b), 용량 디바이스(292a), 및 용량 디바이스(292b)의 각각의 구성 및 효과에 대해서는 도 14의 (A) 내지 (D) 및 도 33에 나타낸 반도체 장치의 구성예를 참조할 수 있다.
<<메모리 디바이스의 변형예 2>>
상기에서는, 반도체 장치의 구성예로서 트랜지스터(200a), 트랜지스터(200b), 용량 디바이스(292a), 및 용량 디바이스(292b)를 들었지만, 본 실시형태에 나타낸 반도체 장치는 이에 한정되는 것이 아니다. 예를 들어, 도 34의 (B)에 나타낸 바와 같이 반도체 장치(600)와, 반도체 장치(600)와 같은 구성을 가지는 반도체 장치가 용량부를 통하여 접속되어 있는 구성으로 하여도 좋다. 본 명세서에서는 트랜지스터(200a), 트랜지스터(200b), 용량 디바이스(292a), 및 용량 디바이스(292b)를 가지는 반도체 장치를 셀로 부른다. 트랜지스터(200a), 트랜지스터(200b), 용량 디바이스(292a), 및 용량 디바이스(292b)의 구성에 대해서는 상술한 트랜지스터(200a), 트랜지스터(200b), 용량 디바이스(292a), 및 용량 디바이스(292b)에 관련된 기재를 참조할 수 있다.
도 34의 (B)는 트랜지스터(200a), 트랜지스터(200b), 용량 디바이스(292a), 및 용량 디바이스(292b)를 가지는 반도체 장치(600)와, 반도체 장치(600)와 같은 구성을 가지는 셀이 용량부를 통하여 접속되어 있는 단면도이다.
도 34의 (B)에 나타낸 바와 같이, 반도체 장치(600)가 가지는 용량 디바이스(292b)의 한쪽 전극으로서 기능하는 도전체(294b)는 반도체 장치(600)와 같은 구성을 가지는 반도체 장치(601)가 가지는 용량 디바이스의 한쪽 전극을 겸하는 구성이다. 또한, 도시하지 않았지만, 반도체 장치(600)가 가지는 용량 디바이스(292a)의 한쪽 전극으로서 기능하는 도전체(294a)가 반도체 장치(600)의 왼쪽, 즉 도 34의 (B)에서, A1 방향으로 인접한 반도체 장치의 용량 디바이스의 한쪽 전극을 겸한다. 또한, 반도체 장치(601)의 오른쪽, 즉 도 34의 (B)에서, A2 방향의 셀도 같은 구성이다. 즉, 셀 어레이(메모리 디바이스층이라고도 함)를 구성할 수 있다. 이와 같은 셀 어레이의 구성으로 함으로써, 인접한 셀의 간격을 작게 할 수 있기 때문에, 셀 어레이의 투영 면적을 작게 할 수 있어, 고집적화가 가능해진다. 또한, 도 34의 (B)에 나타낸 셀 어레이를 매트릭스상으로 배치함으로써, 매트릭스상의 셀 어레이를 구성할 수 있다.
상술한 바와 같이, 본 실시형태에 나타내는 구성으로 트랜지스터(200a), 트랜지스터(200b), 용량 디바이스(292a), 및 용량 디바이스(292b)를 형성함으로써, 셀의 면적을 감소시키고, 셀 어레이를 가지는 반도체 장치를 미세화 또는 고집적화할 수 있다.
또한, 상기 셀 어레이를 평면으로 제공하여도 좋고, 적층하는 구성으로 하여도 좋다. 도 35에 셀 어레이(610)를 n층 적층하는 구성의 단면도를 나타내었다. 도 35에 나타낸 바와 같이, 복수의 셀 어레이(셀 어레이(610_1) 내지 셀 어레이(610_n))를 적층함으로써, 셀 어레이의 점유 면적을 증가시키지 않고, 셀을 집적하여 배치할 수 있다. 즉, 3D 셀 어레이를 구성할 수 있다.
본 실시형태에 나타낸 구성, 방법 등은 다른 실시형태에 기재되는 구성, 구조, 방법 등과 적절히 조합하여 사용할 수 있다.
(실시형태 4)
본 실시형태에서는, 도 36의 (A), (B), 및 도 37의 (A) 내지 (H)를 사용하여 본 발명의 일 형태에 따른 산화물을 반도체에 사용한 트랜지스터(이하, OS 트랜지스터라고 부르는 경우가 있음) 및 용량 소자가 적용된 기억 장치(이하, OS 메모리 장치라고 부르는 경우가 있음)에 대하여 설명한다. OS 메모리 장치는 적어도 용량 소자와, 용량 소자의 충방전을 제어하는 OS 트랜지스터를 가지는 기억 장치이다. OS 트랜지스터의 오프 전류는 매우 작기 때문에, OS 메모리 장치는 유지 특성이 우수하고, 비휘발성 메모리로서 기능할 수 있다.
<기억 장치의 구성예>
도 36의 (A)에 OS 메모리 장치의 구성의 일례를 나타내었다. 기억 장치(1400)는 주변 회로(1411) 및 메모리 셀 어레이(1470)를 가진다. 주변 회로(1411)는 행 회로(1420), 열 회로(1430), 출력 회로(1440), 및 컨트롤 로직 회로(1460)를 가진다.
열 회로(1430)는 예를 들어 열 디코더, 프리차지 회로, 감지 증폭기, 기록 회로 등을 가진다. 프리차지 회로는 배선을 프리차지하는 기능을 가진다. 감지 증폭기는 메모리 셀로부터 판독된 데이터 신호를 증폭하는 기능을 가진다. 또한 상기 배선은 메모리 셀 어레이(1470)가 가지는 메모리 셀에 접속되는 배선이고, 자세한 내용은 후술한다. 증폭된 데이터 신호는 출력 회로(1440)를 통하여 데이터 신호(RDATA)로서 기억 장치(1400)의 외부에 출력된다. 또한 행 회로(1420)는, 예를 들어 행 디코더, 워드선 드라이버 회로 등을 가지고, 액세스하는 행을 선택할 수 있다.
기억 장치(1400)에는 외부로부터 전원 전압으로서 저전원 전압(VSS), 주변 회로(1411)용 고전원 전압(VDD), 메모리 셀 어레이(1470)용 고전원 전압(VIL)이 공급된다. 또한 기억 장치(1400)에는 제어 신호(CE, WE, RE), 어드레스 신호(ADDR), 데이터 신호(WDATA)가 외부로부터 입력된다. 어드레스 신호(ADDR)는 행 디코더 및 열 디코더에 입력되고, 데이터 신호(WDATA)는 기록 회로에 입력된다.
컨트롤 로직 회로(1460)는 외부로부터 입력되는 제어 신호(CE, WE, RE)를 처리하고, 행 디코더, 열 디코더의 제어 신호를 생성한다. 제어 신호(CE)는 칩 인에이블 신호이고, 제어 신호(WE)는 기록 인에이블 신호이고, 제어 신호(RE)는 판독 인에이블 신호이다. 컨트롤 로직 회로(1460)가 처리하는 신호는 이들에 한정되는 것이 아니고, 필요에 따라 다른 제어 신호를 입력하면 좋다.
메모리 셀 어레이(1470)는 매트릭스상으로 배치된 복수의 메모리 셀(MC)과 복수의 배선을 가진다. 또한 메모리 셀 어레이(1470)와 행 회로(1420)를 접속하는 배선의 수는 메모리 셀(MC)의 구성, 1열에 포함되는 메모리 셀(MC)의 개수 등에 따라 결정된다. 또한 메모리 셀 어레이(1470)와 열 회로(1430)를 접속하는 배선의 수는 메모리 셀(MC)의 구성, 1행에 포함되는 메모리 셀(MC)의 개수 등에 따라 결정된다.
또한 도 36의 (A)에서는 주변 회로(1411)와 메모리 셀 어레이(1470)를 동일한 평면에 형성하는 예를 나타내었지만, 본 실시형태는 이에 한정되는 것이 아니다. 예를 들어 도 36의 (B)에 나타낸 바와 같이, 주변 회로(1411)의 일부 위에 중첩되도록 메모리 셀 어레이(1470)를 제공하여도 좋다. 예를 들어 메모리 셀 어레이(1470) 아래에 중첩되도록 감지 증폭기를 제공하는 구성으로 하여도 좋다.
도 37의 (A) 내지 (H)는 상술한 메모리 셀(MC)에 적용할 수 있는 메모리 셀의 구성예를 설명하기 위한 것이다.
[DOSRAM]
도 37의 (A) 내지 (C)에 DRAM의 메모리 셀의 회로 구성예를 나타내었다. 본 명세서 등에서는, 1OS 트랜지스터 1용량 소자형 메모리 셀을 사용한 DRAM을 DOSRAM(등록 상표, Dynamic Oxide Semiconductor Random Access Memory)이라고 부르는 경우가 있다. 도 37의 (A)에 나타낸 메모리 셀(1471)은 트랜지스터(M1)와 용량 소자(CA)를 가진다. 또한 트랜지스터(M1)는 게이트(톱 게이트라고 부르는 경우가 있음) 및 백 게이트를 가진다.
트랜지스터(M1)의 제 1 단자는 용량 소자(CA)의 제 1 단자에 접속되고, 트랜지스터(M1)의 제 2 단자는 배선(BIL)에 접속되고, 트랜지스터(M1)의 게이트는 배선(WOL)에 접속되고, 트랜지스터(M1)의 백 게이트는 배선(BGL)에 접속되어 있다. 용량 소자(CA)의 제 2 단자는 배선(CAL)에 접속되어 있다.
배선(BIL)은 비트선으로서 기능하고, 배선(WOL)은 워드선으로서 기능한다. 배선(CAL)은 용량 소자(CA)의 제 2 단자에 소정의 전위를 인가하기 위한 배선으로서 기능한다. 데이터의 기록 시 및 판독 시, 배선(LL)은 접지 전위로 하여도 좋고, 저레벨 전위로 하여도 좋다. 배선(BGL)은 트랜지스터(M1)의 백 게이트에 전위를 인가하기 위한 배선으로서 기능한다. 배선(BGL)에 임의의 전위를 인가함으로써, 트랜지스터(M1)의 문턱 전압을 증감시킬 수 있다.
여기서, 도 37의 (A)에 나타낸 메모리 셀(1471)은, 도 33에 나타낸 기억 장치에 대응한다. 즉, 트랜지스터(M1)는 트랜지스터(200)에 대응하고, 용량 소자(CA)는 용량 디바이스(292)에 대응한다.
또한 메모리 셀(MC)은 메모리 셀(1471)에 한정되지 않고, 회로 구성을 변경할 수 있다. 예를 들어 메모리 셀(MC)은 도 37의 (B)에 나타낸 메모리 셀(1472)과 같이, 트랜지스터(M1)의 백 게이트가 배선(BGL)이 아니라 배선(WOL)에 접속되는 구성으로 하여도 좋다. 또한 예를 들어 메모리 셀(MC)은 도 37의 (C)에 나타낸 메모리 셀(1473)과 같이, 싱글 게이트 구조의 트랜지스터, 즉 백 게이트를 가지지 않는 트랜지스터(M1)로 구성된 메모리 셀이어도 좋다.
앞의 실시형태에서 나타낸 반도체 장치를 메모리 셀(1471) 등에 사용하는 경우, 트랜지스터(M1)로서 트랜지스터(200)를 사용하고, 용량 소자(CA)로서 용량 소자(100)를 사용할 수 있다. 트랜지스터(M1)로서 OS 트랜지스터를 사용함으로써, 트랜지스터(M1)의 누설 전류를 매우 작게 할 수 있다. 즉, 기록한 데이터가 트랜지스터(M1)에 의하여 장시간 유지될 수 있기 때문에, 메모리 셀의 리프레시 빈도를 줄일 수 있다. 또는 메모리 셀의 리프레시 동작을 불필요하게 할 수 있다. 또한 누설 전류가 매우 작기 때문에, 메모리 셀(1471), 메모리 셀(1472), 메모리 셀(1473)에서 멀티레벨 데이터 또는 아날로그 데이터를 유지할 수 있다.
또한 DOSRAM에서, 상술한 바와 같이 메모리 셀 어레이(1470) 아래에 중첩되도록 감지 증폭기를 제공하는 구성으로 하면, 비트선을 짧게 할 수 있다. 이로써, 비트선 용량이 작아지고 메모리 셀의 유지 용량을 저감할 수 있다.
[NOSRAM]
도 37의 (D) 내지 (G)에 2트랜지스터 1용량 소자의 게인 셀형 메모리 셀의 회로 구성예를 나타내었다. 도 37의 (D)에 나타낸 메모리 셀(1474)은 트랜지스터(M2)와 트랜지스터(M3)와 용량 소자(CB)를 가진다. 또한 트랜지스터(M2)는 톱 게이트(단순히 게이트라고 부르는 경우가 있음) 및 백 게이트를 가진다. 본 명세서 등에서는, 트랜지스터(M2)로서 OS 트랜지스터를 사용한 게인 셀형 메모리 셀을 가지는 기억 장치를 NOSRAM(Nonvolatile Oxide Semiconductor RAM)이라고 부르는 경우가 있다.
트랜지스터(M2)의 제 1 단자는 용량 소자(CB)의 제 1 단자에 접속되고, 트랜지스터(M2)의 제 2 단자는 배선(WBL)에 접속되고, 트랜지스터(M2)의 게이트는 배선(WOL)에 접속되고, 트랜지스터(M2)의 백 게이트는 배선(BGL)에 접속되어 있다. 용량 소자(CB)의 제 2 단자는 배선(CAL)에 접속되어 있다. 트랜지스터(M3)의 제 1 단자는 배선(RBL)에 접속되고, 트랜지스터(M3)의 제 2 단자는 배선(SL)에 접속되고, 트랜지스터(M3)의 게이트는 용량 소자(CB)의 제 1 단자에 접속되어 있다.
배선(WBL)은 기록 비트선으로서 기능하고, 배선(RBL)은 판독 비트선으로서 기능하고, 배선(WOL)은 워드선으로서 기능한다. 배선(CAL)은 용량 소자(CB)의 제 2 단자에 소정의 전위를 인가하기 위한 배선으로서 기능한다. 데이터의 기록 시 및 데이터의 판독 시, 배선(CAL)에는 고레벨 전위를 인가하는 것이 바람직하다. 또한, 데이터 유지 중에는 배선(CAL)에는 저레벨 전위를 인가하는 것이 바람직하다. 배선(BGL)은 트랜지스터(M2)의 백 게이트에 전위를 인가하기 위한 배선으로서 기능한다. 배선(BGL)에 임의의 전위를 인가함으로써, 트랜지스터(M2)의 문턱 전압을 증감시킬 수 있다.
여기서, 도 37의 (D)에 나타낸 메모리 셀(1474)은, 도 31에 나타낸 기억 장치에 대응한다. 즉, 트랜지스터(M2)는 트랜지스터(200)에, 용량 소자(CB)는 용량 소자(100)에, 트랜지스터(M3)는 트랜지스터(300)에, 배선(WBL)은 배선(1003)에, 배선(WOL)은 배선(1004)에, 배선(BGL)은 배선(1006)에, 배선(CAL)은 배선(1005)에, 배선(RBL)은 배선(1002)에, 배선(SL)은 배선(1001)에 대응한다.
또한 메모리 셀(MC)은 메모리 셀(1474)에 한정되지 않고, 회로 구성을 적절히 변경할 수 있다. 예를 들어 메모리 셀(MC)은 도 37의 (E)에 나타낸 메모리 셀(1475)과 같이, 트랜지스터(M2)의 백 게이트가 배선(BGL)이 아니라 배선(WOL)에 접속되는 구성으로 하여도 좋다. 또한 예를 들어 메모리 셀(MC)은 도 37의 (F)에 나타낸 메모리 셀(1476)과 같이, 싱글 게이트 구조의 트랜지스터, 즉 백 게이트를 가지지 않는 트랜지스터(M2)로 구성된 메모리 셀이어도 좋다. 또한 예를 들어 메모리 셀(MC)은 도 37의 (G)에 나타낸 메모리 셀(1477)과 같이, 배선(WBL)과 배선(RBL)을 하나의 배선(BIL)으로 합친 구성이어도 좋다.
앞의 실시형태에서 설명한 반도체 장치를 메모리 셀(1474) 등에 사용하는 경우, 트랜지스터(M2)로서 트랜지스터(200)를 사용하고, 트랜지스터(M3)로서 트랜지스터(300)를 사용하고, 용량 소자(CB)로서 용량 소자(100)를 사용할 수 있다. 트랜지스터(M2)로서 OS 트랜지스터를 사용함으로써, 트랜지스터(M2)의 누설 전류를 매우 작게 할 수 있다. 이에 의하여, 기록한 데이터가 트랜지스터(M2)에 의하여 장시간 유지될 수 있기 때문에, 메모리 셀의 리프레시 빈도를 줄일 수 있다. 또는 메모리 셀의 리프레시 동작을 불필요하게 할 수 있다. 또한 누설 전류가 매우 작기 때문에, 메모리 셀(1474)에서 멀티레벨 데이터 또는 아날로그 데이터를 유지할 수 있다. 메모리 셀(1475) 내지 메모리 셀(1477)도 마찬가지이다.
또한 트랜지스터(M3)는 채널 형성 영역에 실리콘을 포함하는 트랜지스터(이하, Si 트랜지스터라고 부르는 경우가 있음)이어도 좋다. Si 트랜지스터의 도전형은 n채널형이어도 좋고, p채널형이어도 좋다. Si 트랜지스터는 OS 트랜지스터보다 전계 효과 이동도가 높은 경우가 있다. 따라서 판독 트랜지스터로서 기능하는 트랜지스터(M3)로서 Si 트랜지스터를 사용하여도 좋다. 또한 트랜지스터(M3)로서 Si 트랜지스터를 사용함으로써, 트랜지스터(M3) 위에 적층하여 트랜지스터(M2)를 제공할 수 있기 때문에, 메모리 셀의 점유 면적을 축소하여, 기억 장치를 고집적화할 수 있다.
또한 트랜지스터(M3)는 OS 트랜지스터이어도 좋다. 트랜지스터(M2) 및 트랜지스터(M3)로서 OS 트랜지스터를 사용한 경우, 메모리 셀 어레이(1470)의 회로를 n형 트랜지스터만을 사용하여 구성할 수 있다.
또한 도 37의 (H)에 3트랜지스터 1용량 소자의 게인 셀형 메모리 셀의 일례를 나타내었다. 도 37의 (H)에 나타낸 메모리 셀(1478)은 트랜지스터(M4) 내지 트랜지스터(M6) 및 용량 소자(CC)를 가진다. 용량 소자(CC)는 적절히 제공된다. 메모리 셀(1478)은 배선(BIL), 배선(RWL), 배선(WWL), 배선(BGL), 및 배선(GNDL)에 전기적으로 접속되어 있다. 배선(GNDL)은 저레벨 전위를 인가하는 배선이다. 또한 메모리 셀(1478)을 배선(BIL) 대신에 배선(RBL), 배선(WBL)에 전기적으로 접속하여도 좋다.
트랜지스터(M4)는 백 게이트를 가지는 OS 트랜지스터이고, 백 게이트는 배선(BGL)에 전기적으로 접속되어 있다. 또한 트랜지스터(M4)의 백 게이트와 게이트를 서로 전기적으로 접속하여도 좋다. 또는 트랜지스터(M4)는 백 게이트를 가지지 않아도 된다.
또한 트랜지스터(M5), 트랜지스터(M6)는 각각, n채널형 Si 트랜지스터 또는 p채널형 Si 트랜지스터이어도 좋다. 또는 트랜지스터(M4) 내지 트랜지스터(M6)가 OS 트랜지스터이어도 좋다. 이 경우, 메모리 셀 어레이(1470)의 회로를 n형 트랜지스터만을 사용하여 구성할 수 있다.
앞의 실시형태에서 설명한 반도체 장치를 메모리 셀(1478)에 사용하는 경우, 트랜지스터(M4)로서 트랜지스터(200)를 사용하고, 트랜지스터(M5), 트랜지스터(M6)로서 트랜지스터(300)를 사용하고, 용량 소자(CC)로서 용량 소자(100)를 사용할 수 있다. 트랜지스터(M4)로서 OS 트랜지스터를 사용함으로써, 트랜지스터(M4)의 누설 전류를 매우 작게 할 수 있다.
또한 본 실시형태에서 설명한 주변 회로(1411), 메모리 셀 어레이(1470) 등의 구성은 상기에 한정되는 것이 아니다. 이들 회로 및 상기 회로에 접속되는 배선, 회로 소자 등의 배치 또는 기능은 필요에 따라 변경, 삭제, 또는 추가되어도 좋다.
일반적으로, 컴퓨터 등의 반도체 장치에서는 용도에 따라 다양한 기억 장치(메모리)가 사용된다. 본 발명의 일 형태의 반도체 장치는, 예를 들어 CPU 등의 연산 처리 장치에 레지스터로서 혼재되는 메모리, SRAM(Static Random Access Memory), DRAM(Dynamic Random Access Memory), 3D NAND 메모리에 적합하게 사용할 수 있다.
CPU 등 연산 처리 장치에 레지스터로서 혼재되는 메모리는 연산 결과의 일시적인 저장 등에 사용되기 때문에, 연산 처리 장치로부터의 액세스 빈도가 높다. 따라서, 기억 용량보다 빠른 동작 속도가 요구된다. 또한, 레지스터는 연산 처리 장치의 설정 정보 등을 유지하는 기능도 가진다.
SRAM은 예를 들어 캐시에 사용된다. 캐시는 메인 메모리에 유지되는 정보의 일부를 복제하여 유지하는 기능을 가진다. 사용 빈도가 높은 데이터를 캐시에 복제함으로써, 데이터에 대한 액세스 속도를 높일 수 있다.
DRAM은 예를 들어 메인 메모리에 사용된다. 메인 메모리는 스토리지로부터 판독된 프로그램 및 데이터를 유지하는 기능을 가진다. DRAM의 기록 밀도는 대략 0.1Gbit/mm2 내지 0.3Gbit/mm2이다.
3D NAND 메모리는 예를 들어 스토리지에 사용된다. 스토리지는 장기간 저장할 필요가 있는 데이터 및 연산 처리 장치에서 사용하는 각종 프로그램 등을 유지하는 기능을 가진다. 따라서, 스토리지에는 동작 속도보다, 큰 기억 용량과 높은 기록 밀도가 요구된다. 스토리지에 사용되는 기억 장치의 기록 밀도는 대략 0.6Gbit/mm2 내지 6.0Gbit/mm2이다.
본 발명의 일 형태의 기억 장치는 동작 속도가 빠르고, 장기간에 걸쳐 데이터를 유지할 수 있다. 본 발명의 일 형태의 기억 장치는 캐시가 위치하는 계층과 메인 메모리가 위치하는 계층 양쪽을 포함하는 경계 영역에 위치하는 기억 장치로서 적합하게 사용할 수 있다. 또한, 본 발명의 일 형태의 기억 장치는 메인 메모리가 위치하는 계층과 스토리지가 위치하는 계층 양쪽을 포함하는 경계 영역에 위치하는 기억 장치로서 적합하게 사용할 수 있다.
본 실시형태에 나타낸 구성은 다른 실시형태 등에 나타내는 구성과 적절히 조합하여 사용할 수 있다.
(실시형태 5)
본 실시형태에서는, 도 38의 (A) 및 (B)를 사용하여 본 발명의 반도체 장치가 실장된 칩(1200)의 일례를 설명한다. 칩(1200)에는 복수의 회로(시스템)가 실장되어 있다. 이와 같이, 복수의 회로(시스템)를 하나의 칩에 집적하는 기술을 시스템 온 칩(System on Chip: SoC)이라고 부르는 경우가 있다.
도 38의 (A)에 나타낸 바와 같이, 칩(1200)은 CPU(1211), GPU(1212), 하나 또는 복수의 아날로그 연산부(1213), 하나 또는 복수의 메모리 컨트롤러(1214), 하나 또는 복수의 인터페이스(1215), 하나 또는 복수의 네트워크 회로(1216) 등을 가진다.
칩(1200)에는 범프(도시하지 않았음)가 제공되고, 도 38의 (B)에 나타낸 바와 같이, 인쇄 회로 기판(Printed Circuit Board: PCB)(1201)의 제 1 면에 접속된다. 또한 PCB(1201)의 제 1 면의 뒷면에는 복수의 범프(1202)가 제공되고, 머더보드(1203)에 접속된다.
머더보드(1203)에는 DRAM(1221), 플래시 메모리(1222) 등의 기억 장치가 제공되어도 좋다. 예를 들어 DRAM(1221)으로서 앞의 실시형태에서 설명한 DOSRAM을 사용할 수 있다. 또한 예를 들어 플래시 메모리(1222)로서 앞의 실시형태에서 설명한 NOSRAM을 사용할 수 있다.
CPU(1211)는 복수의 CPU 코어를 가지는 것이 바람직하다. 또한 GPU(1212)는 복수의 GPU 코어를 가지는 것이 바람직하다. 또한 CPU(1211) 및 GPU(1212)는 각각 일시적으로 데이터를 저장하는 메모리를 가져도 좋다. 또는 CPU(1211) 및 GPU(1212)에 공통된 메모리가 칩(1200)에 제공되어도 좋다. 상기 메모리로서는 상술한 NOSRAM 또는 DOSRAM을 사용할 수 있다. 또한 GPU(1212)는 다수의 데이터의 병렬 계산에 적합하고, 화상 처리 및 적화 연산(product-sum operation)에 사용할 수 있다. GPU(1212)에 본 발명의 산화물 반도체를 사용한 화상 처리 회로 또는 적화 연산 회로를 제공함으로써, 화상 처리 또는 적화 연산을 저소비 전력으로 실행할 수 있다.
또한 CPU(1211) 및 GPU(1212)가 동일한 칩에 제공되면, CPU(1211)와 GPU(1212) 간의 배선을 짧게 할 수 있기 때문에, CPU(1211)로부터 GPU(1212)로의 데이터 전송(轉送), CPU(1211) 및 GPU(1212)가 가지는 메모리 간의 데이터 전송, 그리고 GPU(1212)에서의 연산 후의, GPU(1212)로부터 CPU(1211)로의 연산 결과의 전송을 고속으로 수행할 수 있다.
아날로그 연산부(1213)는 A/D(아날로그/디지털) 변환 회로 및 D/A(디지털/아날로그) 변환 회로 중 한쪽 또는 양쪽을 가진다. 또한 아날로그 연산부(1213)에 상기 적화 연산 회로를 제공하여도 좋다.
메모리 컨트롤러(1214)는 DRAM(1221)의 컨트롤러로서 기능하는 회로 및 플래시 메모리(1222)의 인터페이스로서 기능하는 회로를 가진다.
인터페이스(1215)는 표시 장치, 스피커, 마이크로폰, 카메라, 컨트롤러 등의 외부 접속 기기와의 인터페이스 회로를 가진다. 컨트롤러에는 마우스, 키보드, 게임용 컨트롤러 등이 포함된다. 이와 같은 인터페이스로서, USB(Universal Serial Bus), HDMI(등록 상표)(High-Definition Multimedia Interface) 등을 사용할 수 있다.
네트워크 회로(1216)는 LAN(Local Area Network) 등과의 접속을 제어하는 기능을 가진다. 또한, 네트워크 보안용 회로를 가져도 좋다.
칩(1200)에는 상기 회로(시스템)를 동일한 제조 공정으로 형성할 수 있다. 그러므로 칩(1200)에 필요한 회로의 개수가 증가하여도 제조 공정을 증가시킬 필요가 없어, 칩(1200)을 낮은 비용으로 제작할 수 있다.
GPU(1212)를 가지는 칩(1200)이 제공된 PCB(1201), DRAM(1221), 및 플래시 메모리(1222)가 제공된 머더보드(1203)를 GPU 모듈(1204)이라고 부를 수 있다.
GPU 모듈(1204)은 SoC 기술을 사용한 칩(1200)을 가지기 때문에, 그 크기를 작게 할 수 있다. 또한 화상 처리가 우수하기 때문에, 스마트폰, 태블릿 단말기, 랩톱 PC, 휴대용(들고 다닐 수 있는) 게임기 등의 휴대용 전자 기기에 사용하는 것이 적합하다. 또한 GPU(1212)를 사용한 적화 연산 회로에 의하여, 심층 신경망(DNN), 합성곱 신경망(CNN), 순환 신경망(RNN), 자기 부호화기, 심층 볼츠만 머신(DBM), 심층 신뢰 신경망(DBN) 등의 방법을 실행할 수 있기 때문에, 칩(1200)을 AI 칩으로서, 또는 GPU 모듈(1204)을 AI 시스템 모듈로서 사용할 수 있다.
본 실시형태에 나타낸 구성은 다른 실시형태 등에 나타내는 구성과 적절히 조합하여 사용할 수 있다.
(실시형태 6)
본 실시형태에서는, 앞의 실시형태에 나타낸 기억 장치 등이 제공된 전자 부품 및 전자 기기의 일례를 나타낸다.
<전자 부품>
먼저, 기억 장치(720)가 제공된 전자 부품의 예를 도 39의 (A) 및 (B)를 사용하여 설명한다.
도 39의 (A)에 전자 부품(700) 및 전자 부품(700)이 실장된 기판(실장 기판(704))의 사시도를 나타내었다. 도 39의 (A)에 나타낸 전자 부품(700)은 몰드(711) 내에 기억 장치(720)를 가진다. 도 39의 (A)는 전자 부품(700)의 내부를 나타내기 위하여 일부를 생략하였다. 전자 부품(700)은 몰드(711) 외측에 랜드(712)를 가진다. 랜드(712)는 전극 패드(713)와 전기적으로 접속되고, 전극 패드(713)는 기억 장치(720)와 와이어(714)에 의하여 전기적으로 접속되어 있다. 전자 부품(700)은 예를 들어 인쇄 기판(702)에 실장된다. 이와 같은 전자 부품이 복수 조합되고 각각이 인쇄 기판(702) 위에서 전기적으로 접속됨으로써, 실장 기판(704)이 완성된다.
기억 장치(720)는 구동 회로층(721)과 기억 회로층(722)을 가진다.
도 39의 (B)에 전자 부품(730)의 사시도를 나타내었다. 전자 부품(730)은 SiP(System in package) 또는 MCM(Multi Chip Module)의 일례이다. 전자 부품(730)은 패키지 기판(732)(인쇄 기판) 위에 인터포저(731)가 제공되고, 인터포저(731) 위에 반도체 장치(735) 및 복수의 기억 장치(720)가 제공되어 있다.
전자 부품(730)에서는 기억 장치(720)를 광대역 메모리(HBM: High Bandwidth Memory)로서 사용하는 예를 나타내었다. 또한 반도체 장치(735)로서는 CPU, GPU, FPGA 등의 집적 회로(반도체 장치)를 사용할 수 있다.
패키지 기판(732)으로서는 세라믹 기판, 플라스틱 기판, 유리 에폭시 기판 등을 사용할 수 있다. 인터포저(731)로서는 실리콘 인터포저, 수지 인터포저 등을 사용할 수 있다.
인터포저(731)는 복수의 배선을 가지고, 단자 피치가 상이한 복수의 집적 회로를 전기적으로 접속하는 기능을 가진다. 복수의 배선은 단층 또는 다층으로 제공된다. 또한 인터포저(731)는 인터포저(731) 위에 제공된 집적 회로를 패키지 기판(732)에 제공된 전극과 전기적으로 접속하는 기능을 가진다. 그러므로 인터포저를 "재배선 기판" 또는 "중간 기판"이라고 하는 경우가 있다. 또한 인터포저(731)에 관통 전극을 제공하고, 상기 관통 전극을 사용하여 집적 회로와 패키지 기판(732)을 전기적으로 접속하는 경우도 있다. 또한 실리콘 인터포저에서는 관통 전극으로서 TSV(Through Silicon Via)를 사용할 수도 있다.
인터포저(731)로서 실리콘 인터포저를 사용하는 것이 바람직하다. 실리콘 인터포저에서는 능동 소자를 제공할 필요가 없기 때문에, 집적 회로보다 낮은 비용으로 제작할 수 있다. 또한, 실리콘 인터포저의 배선은 반도체 프로세스로 형성할 수 있으므로, 수지 인터포저에서는 어려운 미세 배선을 형성하기 쉽다.
HBM에서는 넓은 메모리 밴드 폭을 실현하기 위하여 많은 배선을 접속할 필요가 있다. 그러므로 HBM을 실장하는 인터포저에는 미세하고 밀도가 높은 배선의 형성이 요구된다. 따라서 HBM을 실장하는 인터포저에는 실리콘 인터포저를 사용하는 것이 바람직하다.
또한 실리콘 인터포저를 사용한 SiP 또는 MCM 등에서는, 집적 회로와 인터포저 사이의 팽창 계수의 차이로 인한 신뢰성의 저하가 발생하기 어렵다. 또한 실리콘 인터포저는 표면의 평탄성이 높으므로 실리콘 인터포저 위에 제공되는 집적 회로와 실리콘 인터포저 사이의 접속 불량이 발생하기 어렵다. 특히, 인터포저 위에 복수의 집적 회로를 나란히 배치하는 2.5D 패키지(2.5차원 실장)에서는 실리콘 인터포저를 사용하는 것이 바람직하다.
또한 전자 부품(730)과 중첩시켜 히트 싱크(방열판)를 제공하여도 좋다. 히트 싱크를 제공하는 경우에는 인터포저(731) 위에 제공하는 집적 회로의 높이를 일치시키는 것이 바람직하다. 예를 들어 본 실시형태에 나타낸 전자 부품(730)에서는 기억 장치(720)와 반도체 장치(735)의 높이를 일치시키는 것이 바람직하다.
전자 부품(730)을 다른 기판에 실장하기 위하여 패키지 기판(732)의 바닥부에 전극(733)을 제공하여도 좋다. 도 39의 (B)에서는 전극(733)을 땜납 볼로 형성하는 예를 나타내었다. 패키지 기판(732)의 바닥부에 땜납 볼을 매트릭스상으로 제공함으로써, BGA(Ball Grid Array) 실장을 실현할 수 있다. 또한 전극(733)을 도전성의 핀으로 형성하여도 좋다. 패키지 기판(732)의 바닥부에 도전성의 핀을 매트릭스상으로 제공함으로써, PGA(Pin Grid Array) 실장을 실현할 수 있다.
전자 부품(730)은 BGA 및 PGA에 한정되지 않고, 다양한 실장 방법을 사용하여 다른 기판에 실장할 수 있다. 예를 들어, SPGA(Staggered Pin Grid Array), LGA(Land Grid Array), QFP(Quad Flat Package), QFJ(Quad Flat J-leaded package), 또는 QFN(Quad Flat Non-leaded package) 등의 실장 방법을 사용할 수 있다.
본 실시형태는 다른 실시형태 등에 기재된 구성과 적절히 조합하여 실시할 수 있다.
(실시형태 7)
본 실시형태에서는, 앞의 실시형태에서 설명한 반도체 장치를 사용한 기억 장치의 응용예에 대하여 설명한다. 앞의 실시형태에서 설명한 반도체 장치는, 예를 들어 각종 전자 기기(예를 들어 정보 단말기, 컴퓨터, 스마트폰, 전자책 단말기, 디지털 카메라(비디오 카메라도 포함함), 녹화 재생 장치, 내비게이션 시스템 등)의 기억 장치에 적용할 수 있다. 또한 여기서 컴퓨터에는, 태블릿형 컴퓨터, 노트북형 컴퓨터, 데스크톱형 컴퓨터뿐만 아니라, 서버 시스템과 같은 대형 컴퓨터도 포함된다. 또는 앞의 실시형태에서 설명한 반도체 장치는, 메모리 카드(예를 들어 SD 카드), USB 메모리, SSD(Solid State Drive) 등의 각종 리무버블 기억 장치에 적용된다. 도 40의 (A) 내지 (E)에 리무버블 기억 장치의 몇 가지 구성예를 모식적으로 나타내었다. 예를 들어 앞의 실시형태에서 설명한 반도체 장치는 패키징된 메모리 칩으로 가공되고, 다양한 기억 장치, 리무버블 메모리에 사용된다.
도 40의 (A)는 USB 메모리의 모식도이다. USB 메모리(1100)는 하우징(1101), 캡(1102), USB 커넥터(1103), 및 기판(1104)을 가진다. 기판(1104)은 하우징(1101)에 수납되어 있다. 예를 들어 기판(1104)에는 메모리 칩(1105), 컨트롤러 칩(1106)이 장착되어 있다. 메모리 칩(1105) 등에 앞의 실시형태에서 설명한 반도체 장치를 포함시킬 수 있다.
도 40의 (B)는 SD 카드의 외관의 모식도이고, 도 40의 (C)는 SD 카드의 내부 구조의 모식도이다. SD 카드(1110)는 하우징(1111), 커넥터(1112), 및 기판(1113)을 가진다. 기판(1113)은 하우징(1111)에 수납되어 있다. 예를 들어 기판(1113)에는 메모리 칩(1114), 컨트롤러 칩(1115)이 장착되어 있다. 기판(1113)의 뒷면 측에도 메모리 칩(1114)을 제공함으로써, SD 카드(1110)의 용량을 증가시킬 수 있다. 또한 무선 통신 기능을 가지는 무선 칩을 기판(1113)에 제공하여도 좋다. 이로써, 호스트 장치와 SD 카드(1110) 사이의 무선 통신에 의하여 메모리 칩(1114)의 데이터의 판독, 기록이 가능하게 된다. 메모리 칩(1114) 등에 앞의 실시형태에서 설명한 반도체 장치를 포함시킬 수 있다.
도 40의 (D)는 SSD의 외관의 모식도이고, 도 40의 (E)는 SSD의 내부 구조의 모식도이다. SSD(1150)는 하우징(1151), 커넥터(1152), 및 기판(1153)을 가진다. 기판(1153)은 하우징(1151)에 수납되어 있다. 예를 들어 기판(1153)에는 메모리 칩(1154), 메모리 칩(1155), 컨트롤러 칩(1156)이 장착되어 있다. 메모리 칩(1155)은 컨트롤러 칩(1156)의 작업 메모리이고, 예를 들어 DOSRAM 칩을 사용하면 좋다. 기판(1153)의 뒷면 측에도 메모리 칩(1154)을 제공함으로써, SSD(1150)의 용량을 증가시킬 수 있다. 메모리 칩(1154) 등에 앞의 실시형태에서 설명한 반도체 장치를 포함시킬 수 있다.
본 실시형태는 다른 실시형태 등에 기재된 구성과 적절히 조합하여 실시할 수 있다.
(실시형태 8)
본 발명의 일 형태에 따른 반도체 장치는 CPU 또는 GPU 등의 프로세서 또는 칩에 사용할 수 있다. 도 41의 (A) 내지 (H)에 본 발명의 일 형태에 따른 CPU 또는 GPU 등의 프로세서 또는 칩을 가지는 전자 기기의 구체적인 예를 나타내었다.
<전자 기기·시스템>
본 발명의 일 형태에 따른 GPU 또는 칩은 다양한 전자 기기에 탑재할 수 있다. 전자 기기의 예로서는 예를 들어 텔레비전 장치, 데스크톱형 또는 노트북형 정보 단말기용 등의 모니터, 디지털 사이니지(Digital Signage: 전자 간판), 파친코기 등의 대형 게임기 등 비교적 큰 화면을 가지는 전자 기기 외에, 디지털 카메라, 디지털 비디오 카메라, 디지털 액자, 전자책 단말기, 휴대 전화기, 휴대용 게임기, 휴대 정보 단말기, 음향 재생 장치 등이 있다. 또한 본 발명의 일 형태에 따른 GPU 또는 칩을 전자 기기에 제공함으로써, 전자 기기에 인공 지능을 탑재할 수 있다.
본 발명의 일 형태의 전자 기기는 안테나를 가져도 좋다. 안테나로 신호를 수신함으로써 표시부에서 영상 및 정보 등을 표시할 수 있다. 또한 전자 기기가 안테나 및 이차 전지를 가지는 경우, 안테나를 비접촉 전력 전송(傳送)에 사용하여도 좋다.
본 발명의 일 형태의 전자 기기는 센서(힘, 변위, 위치, 속도, 가속도, 각속도, 회전수, 거리, 광, 액체, 자기, 온도, 화학 물질, 음성, 시간, 경도(硬度), 전기장, 전류, 전압, 전력, 방사선, 유량, 습도, 경사도, 진동, 냄새, 또는 적외선을 측정하는 기능을 가지는 것)를 가져도 좋다.
본 발명의 일 형태의 전자 기기는 다양한 기능을 가질 수 있다. 예를 들어 다양한 정보(정지 화상, 동영상, 텍스트 화상 등)를 표시부에 표시하는 기능, 터치 패널 기능, 달력, 날짜, 또는 시각 등을 표시하는 기능, 다양한 소프트웨어(프로그램)를 실행하는 기능, 무선 통신 기능, 기록 매체에 기록된 프로그램 또는 데이터를 판독하는 기능 등을 가질 수 있다. 도 41의 (A) 내지 (H)에 전자 기기의 예를 나타내었다.
[정보 단말기]
도 41의 (A)에는 정보 단말기의 1종류인 휴대 전화기(스마트폰)를 도시하였다. 정보 단말기(5100)는 하우징(5101)과 표시부(5102)를 가지고, 입력용 인터페이스로서 터치 패널이 표시부(5102)에 제공되고, 버튼이 하우징(5101)에 제공된다.
정보 단말기(5100)는, 본 발명의 일 형태의 칩을 적용함으로써, 인공 지능을 이용한 애플리케이션을 실행할 수 있다. 인공 지능을 이용한 애플리케이션으로서는, 예를 들어 회화를 인식하고 그 회화 내용을 표시부(5102)에 표시하는 애플리케이션, 표시부(5102)에 가지는 터치 패널에 사용자가 입력한 문자, 도형 등을 인식하고 표시부(5102)에 표시하는 애플리케이션, 지문 또는 성문 등의 생체 인증을 수행하는 애플리케이션 등이 있다.
도 41의 (B)에는 노트북형 정보 단말기(5200)를 도시하였다. 노트북형 정보 단말기(5200)는 정보 단말기의 본체(5201)와, 표시부(5202)와, 키보드(5203)를 가진다.
노트북형 정보 단말기(5200)는 상술한 정보 단말기(5100)와 마찬가지로, 본 발명의 일 형태의 칩을 적용함으로써, 인공 지능을 이용한 애플리케이션을 실행할 수 있다. 인공 지능을 이용한 애플리케이션으로서는, 예를 들어 설계 지원 소프트웨어, 문장 첨삭 소프트웨어, 식단 자동 생성 소프트웨어 등이 있다. 또한 노트북형 정보 단말기(5200)를 사용함으로써 신규 인공 지능을 개발할 수 있다.
또한 앞에서는 전자 기기로서 스마트폰 및 노트북형 정보 단말기를 예로 들어 각각 도 41의 (A), (B)에 도시하였지만, 스마트폰 및 노트북형 정보 단말기 이외의 정보 단말기를 적용할 수도 있다. 스마트폰 및 노트북형 정보 단말기 이외의 정보 단말기로서는 예를 들어 PDA(Personal Digital Assistant), 데스크톱형 정보 단말기, 워크스테이션 등이 있다.
[게임기]
도 41의 (C)는 게임기의 일례인 휴대용 게임기(5300)를 나타낸 것이다. 휴대용 게임기(5300)는 하우징(5301), 하우징(5302), 하우징(5303), 표시부(5304), 접속부(5305), 조작 키(5306) 등을 가진다. 하우징(5302) 및 하우징(5303)은 하우징(5301)에서 떼어낼 수 있다. 하우징(5301)에 제공된 접속부(5305)를 다른 하우징(도시하지 않았음)에 장착함으로써, 표시부(5304)에 출력되는 영상을 다른 영상 기기(도시하지 않았음)에 출력할 수 있다. 이때 하우징(5302) 및 하우징(5303)은 각각 조작부로서 기능할 수 있다. 이에 의하여, 복수의 플레이어가 동시에 게임을 할 수 있다. 하우징(5301), 하우징(5302), 및 하우징(5303)의 기판에 제공된 칩 등에 앞의 실시형태에서 설명한 칩을 포함시킬 수 있다.
또한 도 41의 (D)는 게임기의 일례인 거치형 게임기(5400)를 나타낸 것이다. 거치형 게임기(5400)에는 무선 또는 유선으로 컨트롤러(5402)가 접속된다.
휴대용 게임기(5300), 거치형 게임기(5400) 등의 게임기에 본 발명의 일 형태의 GPU 또는 칩을 적용함으로써, 저소비 전력의 게임기를 실현할 수 있다. 또한 소비 전력이 낮으면 회로로부터의 발열을 저감할 수 있기 때문에, 발열로 인한 그 회로 자체, 주변 회로, 및 모듈에 대한 영향을 줄일 수 있다.
또한 휴대용 게임기(5300)에 본 발명의 일 형태의 GPU 또는 칩을 적용함으로써, 인공 지능을 가지는 휴대용 게임기(5300)를 실현할 수 있다.
원래, 게임의 진행, 게임에 등장하는 생물의 언동, 게임에서 발생하는 현상 등의 표현은 그 게임이 가지는 프로그램에 의하여 정해져 있지만, 휴대용 게임기(5300)에 인공 지능을 적용함으로써, 게임의 프로그램에 의하여 한정되지 않는 표현이 가능하게 된다. 예를 들어 플레이어가 질문하는 내용, 게임의 진행 상황, 시각, 게임에 등장하는 인물의 언동을 변화시켜 표현할 수 있게 된다.
또한 휴대용 게임기(5300)로 복수의 플레이어를 필요로 하는 게임을 하는 경우에는, 인공 지능이 의인적으로 게임 플레이어를 구성할 수 있기 때문에, 상대를 인공 지능에 의한 게임 플레이어로 함으로써, 혼자서도 게임을 할 수 있다.
도 41의 (C), (D)에서는, 게임기의 일례로서 휴대용 게임기 및 거치형 게임기를 도시하였지만, 본 발명의 일 형태의 GPU 또는 칩을 적용하는 게임기는 이들에 한정되지 않는다. 본 발명의 일 형태의 GPU 또는 칩을 적용하는 게임기로서는, 예를 들어 오락 시설(오락실, 놀이공원 등)에 설치되는 아케이드 게임기, 스포츠 시설에 설치되는 배팅 연습용 투구 머신 등이 있다.
[대형 컴퓨터]
본 발명의 일 형태의 GPU 또는 칩은 대형 컴퓨터에 적용될 수 있다.
도 41의 (E)는 대형 컴퓨터의 일례인 슈퍼컴퓨터(5500)를 나타낸 것이다. 도 41의 (F)는 슈퍼컴퓨터(5500)가 가지는 랙 마운트형 계산기(5502)를 나타낸 것이다.
슈퍼컴퓨터(5500)는 랙(5501)과, 복수의 랙 마운트형 계산기(5502)를 가진다. 또한 복수의 계산기(5502)는 랙(5501)에 격납되어 있다. 또한 계산기(5502)에는 복수의 기판(5504)이 제공되고, 상기 기판 위에 앞의 실시형태에서 설명한 GPU 또는 칩을 탑재할 수 있다.
슈퍼컴퓨터(5500)는 주로 과학 기술 계산에 이용되는 대형 컴퓨터이다. 과학 기술 계산에서는 방대한 연산을 고속으로 처리할 필요가 있기 때문에, 소비 전력이 높고, 칩의 발열이 크다. 슈퍼컴퓨터(5500)에 본 발명의 일 형태의 GPU 또는 칩을 적용함으로써, 저소비 전력의 슈퍼컴퓨터를 실현할 수 있다. 또한 소비 전력이 낮으면 회로로부터의 발열을 저감할 수 있기 때문에, 발열로 인한 그 회로 자체, 주변 회로, 및 모듈에 대한 영향을 줄일 수 있다.
도 41의 (E), (F)에서는 대형 컴퓨터의 일례로서 슈퍼컴퓨터를 도시하였지만, 본 발명의 일 형태의 GPU 또는 칩이 적용되는 대형 컴퓨터는 이들에 한정되지 않는다. 본 발명의 일 형태의 GPU 또는 칩이 적용되는 대형 컴퓨터로서는, 예를 들어 서비스를 제공하는 컴퓨터(서버), 대형 범용 컴퓨터(메인 프레임) 등이 있다.
[이동체]
본 발명의 일 형태의 GPU 또는 칩은 이동체인 자동차, 및 자동차의 운전석 주변에 적용할 수 있다.
도 41의 (G)는 이동체의 일례인 자동차의 실내에서의 앞유리 주변을 나타낸 것이다. 도 41의 (G)에서는 대시 보드에 장착된 표시 패널(5701), 표시 패널(5702), 표시 패널(5703) 외에, 필러에 장착된 표시 패널(5704)을 도시하였다.
표시 패널(5701) 내지 표시 패널(5703)은, 속도계, 회전 속도계, 주행 거리, 연료계, 기어 상태, 또는 에어컨디셔너의 설정 등을 표시함으로써, 다양한 정보를 제공할 수 있다. 또한 표시 패널에 표시되는 표시 항목 및 레이아웃 등은 사용자의 취향에 따라 적절히 변경할 수 있기 때문에, 디자인성을 높일 수 있다. 표시 패널(5701) 내지 표시 패널(5703)은 조명 장치로서 사용할 수도 있다.
표시 패널(5704)에는 자동차에 제공된 촬상 장치(도시하지 않았음)로부터의 영상을 표시함으로써, 필러로 가려진 시계(사각(死角))를 보완할 수 있다. 즉, 자동차의 외측에 제공된 촬상 장치로부터의 화상을 표시함으로써, 사각을 보완하여 안전성을 높일 수 있다. 또한 보이지 않는 부분을 보완하는 영상을 표시함으로써, 더 자연스럽고 위화감 없이 안전을 확인할 수 있다. 표시 패널(5704)은 조명 장치로서 사용할 수도 있다.
본 발명의 일 형태의 GPU 또는 칩은 인공 지능의 구성 요소로서 적용할 수 있기 때문에, 예를 들어 상기 칩을 자동차의 자동 운전 시스템에 사용할 수 있다. 또한 상기 칩을 도로 안내, 위험 예측 등을 하는 시스템에 사용할 수 있다. 표시 패널(5701) 내지 표시 패널(5704)은 도로 안내, 위험 예측 등의 정보를 표시하는 구성으로 하여도 좋다.
또한 앞에서는 이동체의 일례로서 자동차에 대하여 설명하였지만, 이동체는 자동차에 한정되지 않는다. 예를 들어 이동체로서는 전철, 모노레일, 선박, 비행체(헬리콥터, 무인 항공기(드론), 비행기, 로켓) 등도 있고, 이들 이동체에 본 발명의 일 형태의 칩을 적용하여 인공 지능을 이용한 시스템을 부여할 수 있다.
[전자 제품]
도 41의 (H)는 전자 제품의 일례인 전기 냉동 냉장고(5800)를 나타낸 것이다. 전기 냉동 냉장고(5800)는 하우징(5801), 냉장실용 문(5802), 냉동실용 문(5803) 등을 가진다.
전기 냉동 냉장고(5800)에 본 발명의 일 형태의 칩을 적용함으로써, 인공 지능을 가지는 전기 냉동 냉장고(5800)를 실현할 수 있다. 인공 지능을 이용함으로써, 전기 냉동 냉장고(5800)는 전기 냉동 냉장고(5800)에 저장되어 있는 식재료, 그 식재료의 소비 기한 등을 바탕으로 식단을 자동 생성하는 기능, 또는 전기 냉동 냉장고(5800)에 저장되어 있는 식재료에 적합한 온도로 자동적으로 조절하는 기능 등을 가질 수 있다.
전자 제품의 일례로서 전기 냉동 냉장고에 대하여 설명하였지만, 그 외의 전자 제품으로서는 예를 들어 청소기, 전자 레인지, 전자 오븐, 밥솥, 온수기, IH 조리기, 생수기, 에어컨디셔너를 포함한 냉난방 기구, 세탁기, 건조기, 오디오 비주얼 기기(audio visual appliance) 등이 있다.
본 실시형태에서 설명한 전자 기기, 그 전자 기기의 기능, 인공 지능의 응용예, 그 효과 등은 다른 전자 기기에 관한 기재와 적절히 조합할 수 있다.
본 실시형태는 다른 실시형태 등에 기재된 구성과 적절히 조합하여 실시할 수 있다.
BGL: 배선, BIL: 배선, CA: 용량 소자, CB: 용량 소자, CC: 용량 소자, CAL: 배선, GNDL: 배선, MC: 메모리 셀, M1: 트랜지스터, M2: 트랜지스터, M3: 트랜지스터, M4: 트랜지스터, M5: 트랜지스터, M6: 트랜지스터, RBL: 배선, RWL: 배선, SL: 배선, WBL: 배선, WOL: 배선, WWL: 배선, 10: 기판, 11a: 전구체, 11b: 전구체, 12a: 반응제, 12b: 반응제, 13a: 산화물, 13b: 산화물, 13c: 산화물, 21: 층, 22: 층, 31: 층, 41: 층, 50: 구조체, 53: 영역, 54: 영역, 56: 영역, 58: 영역, 60: 산화물, 62: 산화물, 64: 산화물, 100: 용량 소자, 110: 도전체, 112: 도전체, 115: 도전체, 120: 도전체, 125: 도전체, 130: 절연체, 140: 도전체, 142: 절연체, 145: 절연체, 150: 절연체, 152: 절연체, 153: 도전체, 154: 절연체, 156: 절연체, 200: 트랜지스터, 200a: 트랜지스터, 200b: 트랜지스터, 205: 도전체, 205a: 도전체, 205b: 도전체, 210: 절연체, 212: 절연체, 214: 절연체, 216: 절연체, 217: 절연체, 218: 도전체, 222: 절연체, 224: 절연체, 224A: 절연막, 230: 산화물, 230a: 산화물, 230A: 산화막, 230b: 산화물, 230B: 산화막, 230ba: 영역, 230bb: 영역, 230bc: 영역, 240: 도전체, 240a: 도전체, 240b: 도전체, 241: 절연체, 241a: 절연체, 241b: 절연체, 242: 도전체, 242a: 도전체, 242A: 도전막, 242b: 도전체, 242B: 도전층, 242c: 도전체, 246: 도전체, 246a: 도전체, 246b: 도전체, 250: 절연체, 250a: 절연체, 250A: 절연막, 250b: 절연체, 250B: 절연막, 250c: 절연체, 260: 도전체, 260a: 도전체, 260b: 도전체, 265: 밀봉부, 271: 절연체, 271a: 절연체, 271A: 절연막, 271b: 절연체, 271B: 절연층, 271c: 절연체, 274: 절연체, 275: 절연체, 280: 절연체, 282: 절연체, 283: 절연체, 285: 절연체, 290: 메모리 디바이스, 292: 용량 디바이스, 292a: 용량 디바이스, 292b: 용량 디바이스, 294: 도전체, 294a: 도전체, 294b: 도전체, 300: 트랜지스터, 311: 기판, 313: 반도체 영역, 314a: 저저항 영역, 314b: 저저항 영역, 315: 절연체, 316: 도전체, 320: 절연체, 322: 절연체, 324: 절연체, 326: 절연체, 328: 도전체, 330: 도전체, 350: 절연체, 352: 절연체, 354: 절연체, 356: 도전체, 400: 개구 영역, 500: 반도체 장치, 600: 반도체 장치, 601: 반도체 장치, 610: 셀 어레이, 610_n: 셀 어레이, 610_1: 셀 어레이, 700: 전자 부품, 702: 인쇄 기판, 704: 실장 기판, 711: 몰드, 712: 랜드, 713: 전극 패드, 714: 와이어, 720: 기억 장치, 721: 구동 회로층, 722: 기억 회로층, 730: 전자 부품, 731: 인터퍼저, 732: 패키지 기판, 733: 전극, 735: 반도체 장치, 1001: 배선, 1002: 배선, 1003: 배선, 1004: 배선, 1005: 배선, 1006: 배선, 1100: USB 메모리, 1101: 하우징, 1102: 캡, 1103: USB 커넥터, 1104: 기판, 1105: 메모리 칩, 1106: 컨트롤러 칩, 1110: SD 카드, 1111: 하우징, 1112: 커넥터, 1113: 기판, 1114: 메모리 칩, 1115: 컨트롤러 칩, 1150: SSD, 1151: 하우징, 1152: 커넥터, 1153: 기판, 1154: 메모리 칩, 1155: 메모리 칩, 1156: 컨트롤러 칩, 1200: 칩, 1201: PCB, 1202: 범프, 1203: 머더보드, 1204: GPU 모듈, 1211: CPU, 1212: GPU, 1213: 아날로그 연산부, 1214: 메모리 컨트롤러, 1215: 인터페이스, 1216: 네트워크 회로, 1221: DRAM, 1222: 플래시 메모리, 1400: 기억 장치, 1411: 주변 회로, 1420: 행 회로, 1430: 열 회로, 1440: 출력 회로, 1460: 컨트롤 로직 회로, 1470: 메모리 셀 어레이, 1471: 메모리 셀, 1472: 메모리 셀, 1473: 메모리 셀, 1474: 메모리 셀, 1475: 메모리 셀, 1476: 메모리 셀, 1477: 메모리 셀, 1478: 메모리 셀, 2700: 제조 장치, 2701: 대기 측 기판 공급실, 2702: 대기 측 기판 공급실, 2703a: 로드록실, 2703b: 안로드록실, 2704: 반송실, 2706a: 체임버, 2706b: 체임버, 2706c: 체임버, 2706d: 체임버, 2761: 카셋 포트, 2762: 얼라인먼트 포트, 2763a: 반송 로봇, 2763b: 반송 로봇, 2801: 가스 공급원, 2802: 밸브, 2803: 고주파 발생기, 2804: 도파관, 2805: 모드 변환기, 2806: 가스관, 2807: 도파관, 2808: 슬롯 안테나 판, 2809: 유전체판, 2810: 고밀도 플라스마, 2811: 기판, 2811_n: 기판, 2811_n-1: 기판, 2811_n-2: 기판, 2811_1: 기판, 2811_2: 기판, 2811_3: 기판, 2812: 기판 홀더, 2813: 가열 기구, 2815: 매칭 박스, 2816: 고주파 전원, 2817: 진공 팜프, 2818: 밸브, 2819: 배기구, 2820: 램프, 2821: 가스 공급원, 2822: 밸브, 2823: 가스 도입구, 2824: 기판, 2825: 기판 홀더, 2826: 가열 기구, 2828: 진공 팜프, 2829: 밸브, 2830: 배기구, 2900: 마이크로파 처리 장치, 2901: 석영광, 2902: 기판 홀더, 2903: 가열 수단, 4000: 성막 장치, 4002: 반입 반출실, 4004: 반입 반출실, 4006: 반송실, 4008: 성막실, 4009: 성막실, 4011: 처리실, 4014: 반송 암, 4020: 체임버, 4021: 원료 공급부, 4021a: 원료 공급부, 4021b: 원료 공급부, 4021c: 원료 공급부, 4022a: 고속 밸브, 4022d: 고속 밸브, 4023: 원료 도입구, 4024: 원료 배출구, 4025: 배기 장치, 4026: 기판 홀더, 4027: 히터, 4028: 플라스마 밸생 장치, 4029: 코일, 4030: 기판, 4031: 원료 공급부, 4032: 가스 공급부, 4033: 원료 도입구, 4034a: 배관 히터, 4034b: 배관 히터, 4100: 플라스마 ALD 장치, 4111: 플라스마 생성실, 4120: 반응실, 4123: 원료 도입구, 4124: 원료 배출구, 4126: 기판 홀더, 4128: 플라스마 생성 장치, 4130: 기판, 4131: 플라스마, 4133: 워료 도입구, 4200: 플라스마 ALD 장치, 4213: 전극, 4214: 샤워 헤드, 4215: 전원, 4217: 콘덴서, 4220: 체임버, 4223: 원료 도입구, 4224: 원료 배출구, 4226: 기판 홀더, 4230: 기판, 4231: 플라스마, 4300: 플라스마 ALD 장치, 4313: 전극, 4314: 샤워 헤드, 4315: 전원, 4317: 콘덴서, 4319: 메시, 4320: 체임버, 4321: 전원, 4322: 콘덴서, 4323: 원료 도입구, 4324: 원료 배출구, 4326: 기판 홀더, 4330: 기판, 4331: 플라스마, 4520: 체임버, 4521: 원료 공급부, 4521a: 원료 공급부, 4521b: 원료 공급부, 4521c: 원료 공급부, 4522a: 고속 밸브, 4522c: 고속 밸브, 4522d: 고속 밸브, 4523: 원료 도입구, 4524: 원료 배출구, 4525: 배기 장치, 4526: 기판 홀더, 4527: 히터, 4530: 기판, 4531: 원료 공급부, 4532: 가스 공급부, 4534a: 배관 히터, 4534b: 배관 히터, 5100: 정보 단말기, 5101: 하우징, 5102: 표시부, 5200: 노트북형 정보 단말기, 5201: 본체, 5202: 표시부, 5203: 키보드, 5300: 휴대용 게임기, 5301: 하우징, 5302: 하우징, 5303: 하우징, 5304: 표시부, 5305: 접속부, 5306: 조작 키, 5400: 거치형 게임기, 5402: 컨트롤러, 5500: 슈퍼 컴퓨터, 5501: 랙, 5502: 계산기, 5504: 기판, 5701: 표시 패널, 5702: 표시 패널, 5703: 표시 패널, 5704: 표시 패널, 5800: 전기 냉동 냉장고, 5801: 하우징, 5802: 냉장실용 문, 5803: 냉동실용 문
Claims (16)
- 금속 산화물의 성막 방법으로서,
제 1 전구체를 체임버에 공급하는 제 1 공정과,
제 2 전구체를 체임버에 공급하는 제 2 공정과,
제 3 전구체를 체임버에 공급하는 제 3 공정과,
상기 제 1 공정 후, 상기 제 2 공정 후, 및 상기 제 3 공정 후 각각에 산화제를 체임버에 도입하는 제 4 공정을 가지고,
상기 제 1 전구체 내지 상기 제 3 전구체는 각각 종류가 다른 전구체이고,
상기 제 1 공정 내지 상기 제 4 공정에서 상기 체임버 내에 배치된 기판은 300℃ 이상 상기 제 1 전구체 내지 상기 제 3 전구체의 분해 온도 중 가장 낮은 온도 이하의 온도로 가열되는, 금속 산화물의 성막 방법. - 금속 산화물의 성막 방법으로서,
제 1 전구체를 체임버에 공급하는 제 1 공정과,
제 2 전구체를 체임버에 공급하는 제 2 공정과,
제 3 전구체를 체임버에 공급하는 제 3 공정과,
상기 제 1 공정 후, 상기 제 2 공정 후, 및 상기 제 3 공정 후 각각에 산화제를 플라스마화하여 체임버에 도입하는 제 4 공정을 가지고,
상기 제 1 전구체 내지 상기 제 3 전구체는 각각 종류가 다른 전구체이고,
상기 제 1 공정 내지 상기 제 4 공정에서 상기 체임버 내에 배치된 기판은 300℃ 이상 상기 제 1 전구체 내지 상기 제 3 전구체의 분해 온도 중 가장 낮은 온도 이하의 온도로 가열되는, 금속 산화물의 성막 방법. - 제 1 항 또는 제 2 항에 있어서,
상기 제 1 전구체는 인듐을 가지고,
상기 제 2 전구체는 원소 M(M은 갈륨, 알루미늄, 이트륨, 및 주석 중 어느 하나 또는 복수)을 가지고,
상기 제 3 전구체는 아연을 가지는, 금속 산화물의 성막 방법. - 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,
상기 제 1 전구체 내지 상기 제 3 전구체는 탄소 및 수소를 가지지 않는, 금속 산화물의 성막 방법. - 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,
상기 제 1 전구체 내지 상기 제 3 전구체는 염소를 가지는, 금속 산화물의 성막 방법. - 제 1 항 내지 제 5 항 중 어느 한 항에 있어서,
상기 제 1 공정 내지 상기 제 4 공정을 각각 한 번 이상 수행하는 것을 1사이클로 하고, 상기 1사이클을 여러 번 반복하는, 금속 산화물의 성막 방법. - 제 6 항에 기재된, 인듐, 원소 M(M은 갈륨, 알루미늄, 이트륨, 및 주석 중 어느 하나 또는 복수), 및 아연을 가지는 금속 산화물의 성막 방법으로서,
상기 제 1 전구체는 인듐을 가지고,
상기 제 2 전구체는 원소 M(M은 갈륨, 알루미늄, 이트륨, 및 주석 중 어느 하나 또는 복수)을 가지고,
상기 제 3 전구체는 아연을 가지고,
상기 1사이클에서의 상기 제 1 공정의 횟수와, 상기 제 2 공정의 횟수와, 상기 제 3 공정의 횟수의 비율은, 상기 금속 산화물이 가지는 상기 인듐과, 상기 원소 M과, 상기 갈륨의 비율과 같은, 금속 산화물의 성막 방법. - 제 6 항 또는 제 7 항에 있어서,
상기 1사이클을 여러 번 반복한 후에 가열 처리를 수행하는, 금속 산화물의 성막 방법. - 금속 산화물의 성막 장치로서,
체임버와, 제 1 원료 공급부 내지 제 4 원료 공급부와, 히터를 가지고,
상기 제 1 원료 공급부 내지 상기 제 4 원료 공급부는 각각 밸브를 통하여 체임버와 접속되고,
상기 제 1 원료 공급부 내지 상기 제 3 원료 공급부는 각각 종류가 다른 전구체를 공급하는 수단을 가지고,
상기 제 4 원료 공급부는 산화제를 공급하는 수단을 가지고,
상기 히터는 상기 체임버 내에 배치된 기판을 300℃ 이상 상기 전구체의 분해 온도 중 가장 낮은 온도 이하의 온도로 가열하는 수단을 가지는, 금속 산화물의 성막 장치. - 금속 산화물의 성막 장치로서,
체임버와, 제 1 원료 공급부 내지 제 4 원료 공급부와, 히터와, 플라스마 발생 장치를 가지고,
상기 제 1 원료 공급부 내지 상기 제 3 원료 공급부는 각각 밸브를 통하여 체임버와 접속되고,
상기 제 4 원료 공급부는 상기 플라스마 발생 장치를 통하여 체임버와 접속되고,
상기 제 1 원료 공급부 내지 상기 제 3 원료 공급부는 각각 종류가 다른 전구체를 공급하는 수단을 가지고,
상기 제 4 원료 공급부는 산화제를 공급하는 수단을 가지고,
상기 히터는 상기 체임버 내에 배치된 기판을 300℃ 이상 상기 전구체의 분해 온도 중 가장 낮은 온도 이하의 온도로 가열하는 수단을 가지는, 금속 산화물의 성막 장치. - 제 10 항에 있어서,
상기 플라스마 발생 장치는 고주파 전원에 접속된 코일을 가지는, 금속 산화물의 성막 장치. - 제 9 항 내지 제 11 항 중 어느 한 항에 있어서,
상기 제 1 원료 공급부는 인듐을 포함하는 전구체를 공급하는 수단을 가지고,
상기 제 2 원료 공급부는 원소 M(M은 갈륨, 알루미늄, 이트륨, 및 주석 중 어느 하나 또는 복수)을 포함하는 전구체를 공급하는 수단을 가지고,
상기 제 3 원료 공급부는 아연을 포함하는 전구체를 공급하는 수단을 가지는, 금속 산화물의 성막 장치. - 제 12 항에 있어서,
상기 인듐을 포함하는 전구체, 상기 원소 M을 포함하는 전구체, 및 상기 아연을 포함하는 전구체는 탄소 및 수소를 가지지 않는, 금속 산화물의 성막 장치. - 제 12 항 또는 제 13 항에 있어서,
상기 인듐을 포함하는 전구체, 상기 원소 M을 포함하는 전구체, 및 상기 아연을 포함하는 전구체는 염소를 가지는, 금속 산화물의 성막 장치. - 제 13 항 또는 제 14 항에 있어서,
상기 제 1 원료 공급부 내지 상기 제 4 원료 공급부와, 상기 체임버 사이에 제공된 배관을 덮는 배관 히터를 가지는, 금속 산화물의 성막 장치. - 제 9 항 내지 제 15 항 중 어느 한 항에 있어서,
반송실과, 처리실을 가지고,
상기 체임버는 상기 반송실을 통하여 상기 처리실과 접속되고,
상기 반송실은 상기 체임버에서 상기 처리실에 기판을 반송하는 수단을 가지고,
상기 처리실은 가열 장치를 가지는, 금속 산화물의 성막 장치.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020034262 | 2020-02-28 | ||
JPJP-P-2020-034262 | 2020-02-28 | ||
PCT/IB2021/051306 WO2021171136A1 (ja) | 2020-02-28 | 2021-02-17 | 金属酸化物、金属酸化物の成膜方法、および金属酸化物の成膜装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20220147634A true KR20220147634A (ko) | 2022-11-03 |
Family
ID=77489963
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020227033278A KR20220147634A (ko) | 2020-02-28 | 2021-02-17 | 금속 산화물, 금속 산화물의 성막 방법, 및 금속 산화물의 성막 장치 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20230110947A1 (ko) |
KR (1) | KR20220147634A (ko) |
CN (1) | CN115152006A (ko) |
DE (1) | DE112021001315T5 (ko) |
WO (1) | WO2021171136A1 (ko) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022186941A1 (en) * | 2021-03-03 | 2022-09-09 | Applied Materials, Inc. | Selective barrier metal etching |
KR102686124B1 (ko) * | 2021-09-07 | 2024-07-17 | 한양대학교 산학협력단 | 헥사고날 구조를 갖는 준-단배향 igzo 물질막, 및 그 제조방법, 그리고 준-단배향 igzo 물질막이 사용된 반도체 소자 |
DE102023117180A1 (de) * | 2022-07-15 | 2024-01-18 | Semiconductor Energy Laboratory Co., Ltd. | Verfahren zum Ausbilden eines Metalloxids |
WO2024084366A1 (ja) * | 2022-10-21 | 2024-04-25 | 株式会社半導体エネルギー研究所 | 半導体装置、及び、記憶装置 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6240378A (ja) * | 1985-08-15 | 1987-02-21 | Semiconductor Energy Lab Co Ltd | 窒化スズの作製方法 |
JPH03112127A (ja) * | 1989-09-27 | 1991-05-13 | Nec Corp | 炭化シリコンの形成方法 |
JP4910105B2 (ja) * | 2001-09-26 | 2012-04-04 | Dowaエレクトロニクス株式会社 | 気相薄膜成長装置および気相薄膜成長方法 |
JP5215267B2 (ja) * | 2009-08-31 | 2013-06-19 | 日本電信電話株式会社 | 化合物半導体膜の製造方法 |
WO2012029596A1 (en) * | 2010-09-03 | 2012-03-08 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device |
JP6736321B2 (ja) * | 2015-03-27 | 2020-08-05 | 株式会社半導体エネルギー研究所 | 半導体装置の製造方法 |
-
2021
- 2021-02-17 CN CN202180016355.8A patent/CN115152006A/zh active Pending
- 2021-02-17 DE DE112021001315.7T patent/DE112021001315T5/de active Pending
- 2021-02-17 KR KR1020227033278A patent/KR20220147634A/ko unknown
- 2021-02-17 WO PCT/IB2021/051306 patent/WO2021171136A1/ja active Application Filing
- 2021-02-17 US US17/904,015 patent/US20230110947A1/en active Pending
Non-Patent Citations (2)
Title |
---|
S. Yamazaki et al., "Japanese Journal of Applied Physics", 2014, volume 53, Number 4S, p.04ED18-1-04ED18-10 |
S. Yamazaki et al., "SID Symposium Digest of Technical Papers", 2012, volume 43, issue 1, p.183-186 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021171136A1 (ko) | 2021-09-02 |
CN115152006A (zh) | 2022-10-04 |
US20230110947A1 (en) | 2023-04-13 |
WO2021171136A1 (ja) | 2021-09-02 |
DE112021001315T5 (de) | 2023-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20220147634A (ko) | 금속 산화물, 금속 산화물의 성막 방법, 및 금속 산화물의 성막 장치 | |
WO2021198836A1 (ja) | 半導体装置、および半導体装置の作製方法 | |
JPWO2019234561A1 (ja) | 半導体装置、および半導体装置の作製方法 | |
WO2021140407A1 (ja) | 半導体装置、および半導体装置の作製方法 | |
WO2021144666A1 (ja) | 半導体装置、および半導体装置の作製方法 | |
WO2021019334A1 (ja) | 半導体装置 | |
KR20220031020A (ko) | 반도체 장치 및 반도체 장치의 제작 방법 | |
WO2021038361A1 (ja) | 半導体装置 | |
WO2020250083A1 (ja) | 半導体装置、および半導体装置の作製方法 | |
WO2023002290A1 (ja) | 半導体装置 | |
WO2022038453A1 (ja) | 絶縁膜の改質方法、および半導体装置の作製方法 | |
WO2021165783A1 (ja) | 金属酸化物、金属酸化物の形成方法、半導体装置 | |
WO2021130600A1 (ja) | 半導体装置、半導体装置の作製方法 | |
WO2021090106A1 (ja) | トランジスタ、および電子機器 | |
WO2021090116A1 (ja) | 半導体装置およびその作製方法 | |
KR20220092517A (ko) | 반도체 장치 | |
WO2022038450A1 (ja) | 金属酸化物の製造方法 | |
WO2022038456A1 (ja) | 半導体装置の作製方法 | |
WO2021186297A1 (ja) | 半導体装置、半導体装置の作製方法 | |
WO2022043811A1 (ja) | 半導体装置の作製方法 | |
WO2022043809A1 (ja) | 半導体装置の作製方法 | |
WO2022043810A1 (ja) | 半導体装置およびその作製方法 | |
WO2021048696A1 (ja) | 半導体装置 | |
WO2021090115A1 (ja) | 半導体装置 | |
KR20220119606A (ko) | 반도체 장치 및 반도체 장치의 제작 방법 |