Nothing Special   »   [go: up one dir, main page]

KR20210083204A - 그룹 데이터에 의한 정렬 방법 - Google Patents

그룹 데이터에 의한 정렬 방법 Download PDF

Info

Publication number
KR20210083204A
KR20210083204A KR1020200184465A KR20200184465A KR20210083204A KR 20210083204 A KR20210083204 A KR 20210083204A KR 1020200184465 A KR1020200184465 A KR 1020200184465A KR 20200184465 A KR20200184465 A KR 20200184465A KR 20210083204 A KR20210083204 A KR 20210083204A
Authority
KR
South Korea
Prior art keywords
data
image data
group data
group
alignment
Prior art date
Application number
KR1020200184465A
Other languages
English (en)
Other versions
KR102530012B1 (ko
Inventor
이동훈
Original Assignee
주식회사 메디트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 메디트 filed Critical 주식회사 메디트
Publication of KR20210083204A publication Critical patent/KR20210083204A/ko
Application granted granted Critical
Publication of KR102530012B1 publication Critical patent/KR102530012B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/30Determination of transform parameters for the alignment of images, i.e. image registration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C9/00Impression cups, i.e. impression trays; Impression methods
    • A61C9/004Means or methods for taking digitized impressions
    • A61C9/0046Data acquisition means or methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C9/00Impression cups, i.e. impression trays; Impression methods
    • A61C9/004Means or methods for taking digitized impressions
    • A61C9/0046Data acquisition means or methods
    • A61C9/0053Optical means or methods, e.g. scanning the teeth by a laser or light beam
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/0003Making bridge-work, inlays, implants or the like
    • A61C13/0004Computer-assisted sizing or machining of dental prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/34Making or working of models, e.g. preliminary castings, trial dentures; Dowel pins [4]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C19/00Dental auxiliary appliances
    • A61C19/04Measuring instruments specially adapted for dentistry
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/08Volume rendering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/55Depth or shape recovery from multiple images
    • G06T7/579Depth or shape recovery from multiple images from motion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0088Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for oral or dental tissue
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • G06T2207/10021Stereoscopic video; Stereoscopic image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20212Image combination
    • G06T2207/20221Image fusion; Image merging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30036Dental; Teeth
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2210/00Indexing scheme for image generation or computer graphics
    • G06T2210/32Image data format
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2210/00Indexing scheme for image generation or computer graphics
    • G06T2210/41Medical

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computer Graphics (AREA)
  • Optics & Photonics (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

본 발명에 따른 그룹 데이터에 의한 정렬 방법은 최초 그룹 데이터를 생성하여 3차원 이미지 데이터 생성 및 얼라인 과정을 수행하다가, 일정 시간 이상 3차원 볼륨 데이터가 서로 연결되지 않는 상태가 지속되면 신규 그룹 데이터를 생성함으로써 적어도 하나 이상의 단속적인 그룹 데이터를 생성할 수 있다. 신규 그룹 데이터에 저장되는 3차원 볼륨 데이터가 이전에 생성된 그룹 데이터의 3차원 볼륨 데이터와 중첩되는 부분이 확인되면, 중첩되는 부분을 서로 연결하도록 추가 얼라인 단계가 수행됨으로써 결과적으로 데이터 공백을 보완하고 환자의 전체 구강 모델 데이터를 용이하게 획득할 수 있는 이점이 있다.

Description

그룹 데이터에 의한 정렬 방법{ALIGNING METHOD BY GROUPED DATA}
본 발명은 그룹 데이터에 의한 정렬 방법으로, 보다 상세하게는 구강 내부를 스캔하는 동안 얼라인 과정에서 3차원 볼륨 데이터들이 연결되지 않는 경우 새로운 그룹을 생성하여 계속적으로 스캔을 수행하는 정렬 방법에 관한 것이다.
종래에 알지네이트(alginate)를 이용하여 환자의 구강에 대한 인상채득을 실시하고, 획득한 틀에 석고 등을 부어 환자의 치아 모형을 제작하였다. 다만, 환자의 치아 모형을 제작할 때, 모형의 정확도가 문제될 수 있으며, 정밀한 모형을 제작하지 못할 경우 환자에게 적용할 보철 치료물 제작 등에 있어 환자 맞춤형 치료가 어려워지는 단점이 있다.
최근에는, 환자의 구강 내부를 3차원 스캐너를 이용하여 스캔을 수행하고, 스캔된 부분이 3차원 데이터로 획득되므로 정확한 치수 및 구강 내부의 형상을 얻을 수 있고, 사용자는 환자를 정밀하게 진단할 수 있고 환자에게 적합한 보철 치료를 제공할 수 있게 되었다.
3차원 스캐너 중 구강스캐너(intraoral scanner)는 사용자(치료자, 통상적으로 치과의사가 사용하게 된다)가 파지하고 스캐너의 일부를 구강 내부에 인입 또는 인출하여 환자의 환부(구강 내부의 치아, 잇몸 등을 포함할 수 있다)를 촬영한다. 구강스캐너는 촬영한 환자의 환부를 이미지 데이터로 획득하고, 각 데이터의 밝기 정보 등을 활용하여 3차원 볼륨 데이터로 변환 및 중첩되는 부분들에 대한 얼라인(align)을 수행하여 최종적으로 하나의 3차원 모델을 생성한다. 이 때, 하나의 3차원 모델은 환자의 상악, 하악, 및 교합 상태를 촬영함으로써 획득한 환자의 전체 구강 모형 데이터를 의미할 수 있다. 다만, 얼라인 과정을 수행할 때, 사용자가 면밀히 스캔을 수행하지 않으면 얼라인이 끊기는 경우가 발생할 수 있다. 얼라인이 끊기게 되면 3차원 볼륨 데이터들 간의 결합이 불완전하게 되어 환자의 전체 구강 모형 데이터의 정밀도가 저하되는 문제가 있다.
KR 10-2014-7012351 A (2012.08.24 공개)
본 발명은 촬상부로부터 획득한 이미지를 3차원 볼륨 데이터로 변환 및 얼라인을 수행함에 있어서, 일정 시간 이상 얼라인이 수행되지 않는 경우 데이터가 저장되는 그룹을 새로 생성 및 분리함으로써, 적어도 하나 이상의 데이터 그룹으로 데이터가 분류되고 데이터 그룹 데이터 사이에 발생하는 데이터 공백을 추가 얼라인 단계로 보완하는 그룹 데이터에 의한 정렬 방법을 제공하기 위한 것이다.
본 발명에 따른 그룹 데이터에 의한 정렬 방법은, 적어도 하나의 제1 이미지 데이터를 포함하는 제1 그룹 데이터를 생성하는 단계, 제2 이미지 데이터가 상기 제1 그룹 데이터에 얼라인되는지 판단하는 단계, 상기 제2 이미지 데이터가 상기 제1 그룹 데이터에 얼라인되면 상기 제2 이미지 데이터를 상기 제1 그룹 데이터에 포함하는 단계, 상기 제2 이미지 데이터가 상기 제1 그룹 데이터에 얼라인되지 않으면 상기 제2 이미지 데이터를 포함하도록 제2 그룹 데이터를 생성하는 단계, 및 상기 제1 그룹 데이터 및 상기 제2 그룹 데이터를 병합하는 단계를 포함할 수 있다.
또한, 상기 제1 이미지 데이터 및 상기 제2 이미지 데이터는 3차원 볼륨 데이터로 변환될 수 있다.
또한, 상기 얼라인을 시도하는 단계는 소정 시간 동안 상기 제2 이미지 데이터를 상기 제1 그룹 데이터에 얼라인되는지 여부를 확인하는 단계, 및 상기 얼라인되는지 여부를 확인하는 단계에서, 상기 제2 이미지 데이터가 상기 제1 그룹 데이터에 얼라인되지 않는 경우, 얼라인 시도 횟수를 갱신하는 단계를 포함할 수 있다.
또한, 상기 얼라인 시도 횟수가 상기 임계 횟수 미만인 경우, 상기 얼라인되는지 여부를 확인하는 단계로 복귀할 수 있다.
또한, 상기 얼라인 시도 횟수가 상기 임계 횟수 이상인 경우, 상기 제2 이미지 데이터를 포함하도록 상기 제2 그룹 데이터를 생성할 수 있다.
또한, 상기 제1 그룹 데이터 및 상기 제2 그룹 데이터를 결합하는 단계는, 상기 제1 그룹 데이터에 포함된 상기 제1 이미지 데이터의 적어도 일부 영역과, 상기 제2 그룹 데이터에 포함된 상기 제2 이미지 데이터의 적어도 일부 영역이 얼라인될 수 있다.
또한, 상기 제1 이미지 데이터와 상기 제2 이미지 데이터는, 상기 제1 이미지 데이터의 적어도 일부 영역 및 상기 제2 이미지 데이터의 적어도 일부 영역과 각각 중첩되는 제3 이미지 데이터를 통해 얼라인될 수 있다.
한편, 본 발명의 다른 실시예에 따른 그룹 데이터에 의한 정렬 방법은, 스캔 경로에 따라 이미지 데이터를 획득하는 이미지 생성 단계, 상기 스캔 경로에 따라 연속적으로 획득하는 상기 이미지 데이터가 서로 연결되도록 정렬되는 얼라인 단계, 상기 얼라인 단계에서, 상기 이미지 데이터가 서로 연결되지 않는 지점을 기준으로 상기 이미지 데이터를 그룹 데이터화하고 카테고리화 저장하는 그룹 데이터 저장 단계, 및 2 이상의 상기 그룹 데이터의 데이터가 서로 연결되도록 얼라인하는 재연결 판단 단계를 포함할 수 있다.
또한, 상기 그룹 데이터 저장 단계에서 상기 이미지 데이터가 서로 연결되지 않는 지점은 연속하는 상기 이미지 데이터의 중첩 범위에 따라 결정될 수 있다.
또한, 상기 스캔 경로는 복수개의 경로를 포함하고, 상기 복수개의 경로는 서로 다른 시작 지점과 종료 지점을 가지며, 복수개의 경로는 적어도 일부 구간에서 중복되는 스캔 영역을 가질 수 있다.
또한, 상기 그룹 데이터 저장 단계에 따라 저장되는 상기 그룹 데이터의 수는, 상기 복수개의 스캔 경로에 대응하는 수를 가질 수 있다.
또한, 상기 얼라인 단계에서 상기 이미지 데이터가 서로 연결되지 않는 지점은, 각각의 상기 스캔 경로의 종료 지점일 수 있다.
또한, 상기 그룹 데이터 사이에 상기 이미지 데이터가 서로 연결되지 않는 지점을 디스플레이 상에 표시하는 단계를 더 포함할 수 있다.
본 발명에 따른 그룹 데이터에 의한 정렬 방법을 사용함으로써, 모든 데이터가 연속적으로 얼라인 되지 않아도 되고 이후에 추가 얼라인 프로세스가 시행됨으로써 결과적으로 전체 구강 모델 데이터를 도출할 수 있으며, 사용자가 반드시 연속적으로 구강 내부를 스캔해야 하는 부담을 경감시키는 이점이 있다.
또한, 신규 그룹 데이터에 저장되는 이미지 데이터를 이전에 생성된 그룹 데이터들의 이미지 데이터와 비교하여 중첩시킴으로써, 데이터 공백을 보완 및 최소화하여 스캐너를 통해 획득한 데이터의 신뢰성을 향상시키는 이점이 있다.
또한, 데이터 공백이 발생한 그룹 데이터 사이만을 스캔함으로써 사용자가 추가적으로 스캔해야 할 범위를 최소화하는 이점이 있다.
도 1은 본 발명에 따른 그룹 데이터에 의한 정렬 방법에 대한 순서도이다.
도 2는 본 발명에 따른 그룹 데이터에 의한 정렬 방법에 대한 순서도이다.
도 3은 본 발명에 따른 그룹 데이터에 의한 정렬 방법에 대한 순서도이다.
도 4는 본 발명에 따른 그룹 데이터에 의한 정렬 방법에 대한 실시예를 개념적으로 도시한 도이다.
도 5는 본 발명에 따른 그룹 데이터에 의한 정렬 방법에 대한 실시예를 개념적으로 도시한 도이다.
도 6은 본 발명에 따른 그룹 데이터에 의한 정렬 방법에 대한 실시예를 개념적으로 도시한 도이다.
도 7은 본 발명의 다른 실시예에 따른 그룹 데이터에 의한 정렬 방법의 순서도이다.
도 8은 본 발명의 또다른 실시예에 따른 그룹 데이터에 의한 정렬 방법의 순서도이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세히 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
이하에서는 도면을 참조하여 본 발명의 실시예에 대해서 구체적으로 설명하기로 한다.
도 1 내지 도 3은 본 발명에 따른 그룹 데이터에 의한 정렬 방법에 대한 순서도이다.
도 1을 참조하면, 본 발명에 따른 그룹 데이터에 의한 정렬 방법은 최초 그룹 데이터가 생성되는 최초 그룹 데이터 생성 단계(S1)를 포함한다. 사용자(통상적으로 환를 치료하는 자. 치과 의사가 될 수 있다)가 스캐너를 통해 환자의 환부(본 발명에서는 통상적으로 환자의 구강 내부를 의미하며, 임플란트, 크라운, 교정과 같은 치료를 위하여 촬영되어야 하는 치아, 잇몸 등이 될 수 있다)의 스캔을 시작하면 최초 그룹 데이터가 생성된다. 최초 그룹 데이터가 생성되는 지점은 스캐너에 내장된 프로세서에서 수행될 수도 있고, 또는 스캐너와 연결된 개인용 컴퓨터 등에 내장된 프로세서에서 수행될 수도 있다. 바람직하게는, 스캐너 내부에 형성된 프로세서에서 최초 그룹 데이터가 생성됨이 바람직하다. 한편, 최초 그룹 데이터는 첫 번째 그룹 데이터의 의미를 가지는 바, 이하의 설명에서는 편의상 제1 그룹 데이터와 혼용될 수 있다.
또한, 사용자가 스캐너를 통하여 환자의 구강 내부를 스캔하면, 구강 내부의 치아 또는 잇몸에서 반사된 광이 스캐너의 일단에 형성된 개구부를 통해 스캐너 내부로 입사된다. 스캐너 내부로 입사된 광은 스캐너 내부에 형성된 적어도 하나의 촬상부에 수용된다. 이 때, 촬상부는 하나의 카메라로 구성되는 싱글 카메라를 포함할 수 있고, 또는 2 이상의 카메라인 멀티 카메라를 포함할 수 있다. 촬상부가 2 이상의 멀티 카메라를 포함하는 경우, 하나의 시점에 대하여 2 이상의 이미지를 획득할 수 있으므로, 더욱 정밀한 이미지 데이터를 획득할 수 있는 이점이 있다.
카메라로 입사된 광은 카메라와 전기적으로 연결된 이미징 센서에 의해 이미지 데이터로 생성될 수 있다(S2). 이 때, 이미지 데이터는 2차원 이미지의 형태일 수 있거나, 또는 3차원 볼륨 데이터인 복셀(voxel) 데이터일 수도 있다. 이미징 센서에 의해 생성된 이미지 데이터는 최초 그룹 데이터로 카테고리화 되어 저장될 수 있다(S3). 즉, 촬영되어 이미지 데이터가 생성되면, 생성된 이미지 데이터는 최초 그룹 데이터(또는 제1 그룹 데이터)로서 카테고리화되어 저장된다. 이미지 데이터가 저장되는 경로는 스캐너와 이격된 개인용 컴퓨터의 저장장치일 수도 있고, 또는 스캐너 자체에 내장된 저장부일 수도 있다.
한편, 최초 그룹 데이터 저장 단계(S3)는 이미지 생성 단계(S2)에서 획득한 이미지 데이터를 3차원 볼륨 데이터로 변환하는 3차원 데이터 변환 단계(S31)를 포함할 수 있다. 3차원 데이터 변환 단계(S31)는 촬상부로부터 획득한 2차원 이미지 데이터로부터 해당 부분의 밝기 정보 등을 활용하여 부피를 가지는 픽셀에 밝기 정보를 포함하고 있는 복셀(voxel) 데이터일 수 있다. 또한, 3차원 데이터 변환 단계(S31)로부터 형성된 3차원 볼륨 데이터들은 서로 중첩되는 부분이 연결되어 더욱 큰 덩어리의 데이터를 형성할 수 있도록 얼라인(align) 될 수 있다(S32). 이 때, 얼라인은 작게는 3차원 볼륨 데이터들 간의 연결에 의하여 2 이상의 3차원 볼륨 데이터가 더욱 큰 볼륨을 가지는 하나의 3차원 볼륨 데이터로 병합되는 것을 의미할 수 있다. 이러한 얼라인 과정에 따라서 하나의 하악 전체에 대한 3차원 볼륨 데이터 세트, 하나의 상악 전체에 대한 3차원 볼륨 데이터 세트, 및 교합에 대한 3차원 볼륨 데이터 세트가 형성될 수 있으며, 이러한 데이터 세트들이 합쳐서 환자의 구강 모형에 대한 하나의 완전한 데이터 세트를 이룰 수 있다. 이 때, 3차원 데이터 변환은 스캐너 외부에 형성되되, 스캐너와 전기적으로 연결되어 스캐너에서 촬영되어 생성되는 이미지 데이터들을 전송받는 외부 프로세서에 의해 수행될 수 있다.
전술한 얼라인 단계(S32)를 수행할 때, 사용자의 스캔 미숙 또는 고의적인 구분을 위하여 연속적인 얼라인 과정이 수행되지 않을 수 있다. 종래에는 얼라인 과정이 수행되지 않는 경우 사용자의 스캔에 따른 얼라인 결과가 디스플레이부에 적색의 테두리를 가지는 화면으로 표시될 수 있었다. 이와 같이 표시되는 경우, 얼라인이 가능한 기존 스캔 영역과 중첩되는 부분에 대해 스캔하여 3차원 볼륨 데이터가 생성되지 않으면 추가적으로 데이터가 획득되지 않는다.
상기와 같은 문제점을 해결하기 위해, 본 발명에 따른 그룹 데이터에 의한 정렬 방법은 얼라인 단계에서 3차원 볼륨 데이터가 서로 연결되면서 얼라인이 수행되지 않는 상태가 일정 시간 이상 지속되는지 판단하는 디스커넥트 판단 단계(S4)를 더 포함할 수 있다. 이 때, 얼라인이 수행되지 않는 상태가 일정 시간 이상 지속된다는 것은 기존에 3차원 볼륨 데이터가 형성되어 중첩되는 데이터 부분에 의하여 얼라인이 수행되다가 중첩되는 데이터 부분이 나타나지 않아 데이터 중첩 및 얼라인이 수행되지 않는 상태를 의미한다. 일정 시간은 프로그램에 기설정된 특정 시간을 의미할 수 있으나, 바람직하게는 사용자가 스캔을 수행하면서 합리적으로 얼라인 과정이 수행되지 않는다고 판단되는 간격의 시간으로 설정될 수 있다.
한편, 본 명세서에서 사용되는 디스커넥트(disconnect)라는 표현은, 스캐너 장비가 개인용 컴퓨터 또는 서버, 전원과 전기적으로 연결되지 않은 상태를 의미하는 것이 아니며, 3차원 볼륨 데이터들 간에 중첩되는 부분이 없어 데이터 간 연결이 일어나지 않는 상태를 의미하는 것으로 해석되어야 한다. 한편, 3차원 볼륨 데이터들 간에 연결은 외부 프로세서 상에서 수행되므로, 디스커넥트 판단 여부 또한 외부 프로세서에서 수행될 수 있다.
디스커넥트 판단 단계(S4)에 따라 3차원 볼륨 데이터가 서로 중첩되는 부분이 없어 연결되지 않는 상태가 일정 시간 이상 지속된다고 판단되면, 최초 그룹 데이터(제1 그룹 데이터)의 데이터 수집을 종료하고, 마지막으로 연결된 3차원 볼륨 데이터에 대하여 최후 데이터로 설정할 수 있다.
도 4 내지 도 6은 본 발명에 따른 그룹 데이터에 의한 정렬 방법에 대한 실시예를 개념적으로 도시한 도이다.
전술한 바와 같이 디스커넥트 판단 단계에서 3차원 볼륨 데이터가 서로 중첩되는 부분 없이 연결되지 않아 기존 그룹 데이터의 데이터 수집이 종료되면, 새로운(신규) 그룹 데이터가 생성될 수 있다(S5). 이 때, 최초 그룹 데이터 직후에 생성되는 신규 그룹 데이터를 제2 그룹 데이터로 명명할 수 있다. 제2 그룹 데이터는 제1 그룹 데이터와 이격되어 형성된 데이터 세트를 형성할 수 있다.
신규 그룹 데이터가 생성되면 스캐너의 촬상부에 의해 생성된 이미지 데이터는 이제 신규 그룹 데이터로 카테고리화 되고 저장된다(S6). 즉, 제2 그룹 데이터가 생성된 이후에 생성되는 이미지 데이터는 제2 그룹 데이터로 카테고리화 되어 저장될 수 있다. 이와 같이 연쇄적으로 이미지 데이터가 제2 그룹 데이터로 카테고리화 되어 저장되다가 다시 3차원 볼륨 데이터가 서로 중첩되는 부분이 없어 연결되지 않는 상태가 일정 시간 이상 지속된다고 판단되면(디스커넥트 판단 단계), 제2 그룹 데이터로 이미지 데이터가 저장되는 것을 종료하고, 제3 그룹 데이터를 생성, 그 이후에 생성되는 이미지 데이터는 제3 그룹 데이터로 카테고리화 되어 저장된다. 이러한 그룹 데이터들은 스캐너와 이격된 개인용 컴퓨터의 저장장치에 저장될 수도 있고, 또는 스캐너 자체에 내장된 저장부에 저장될 수도 있다.
한편, 전술한 바와 같이, 최초 그룹 데이터(제1 그룹 데이터)와 신규 그룹 데이터(제2 그룹 데이터, 제3 그룹 데이터 등)이 계속 생성되면서 얼라인 과정이 연속적으로 수행되지 않더라도 단속적으로 데이터가 수집된다. 이 때, 단속적은 각 그룹 데이터 간에 데이터가 중첩되지 않는다는 것을 의미하며, 각각의 그룹 데이터 내의 3차원 볼륨 데이터 간에는 얼라인 단계가 수행된 것이므로 연속성을 가진다. 그러나 사용자는 종국적으로 환자의 전체 구강 모형 데이터를 획득하여야 하므로, 이후의 스캔을 통해 각 그룹 데이터 사이의 데이터 공백(B)을 보완할 필요가 있다.
따라서, 본 발명에 따른 그룹 데이터에 의한 정렬 방법은 최초 그룹 데이터 및 신규 그룹 데이터의 데이터 중첩 여부를 검사하는 재연결 판단 단계(S7)를 더 포함할 수 있다. 도 4를 참조하면, 사용자는 도 4 기준으로 우측에서부터 좌측으로 측정을 수행한다. 이 때, 최초 제1 그룹 데이터(11)의 이미지 데이터가 볼륨 데이터로 변환 및 얼라인이 수행되며, 이후 디스커넥트 판단 단계를 거쳐 새로운 제2 그룹 데이터(21)가 생성되어 제2 그룹 데이터 저장 단계가 시작되고, 제2 그룹 데이터 저장 단계가 시작된 이후 생성되는 이미지 데이터는 제2 그룹 데이터(21)로 카테고리화 되어 저장된다. 제1 그룹 데이터(11)와 제2 그룹 데이터(21) 사이에 촬영되지 않아 데이터가 생성되지 않은 부분은 데이터 공백(B)으로 남게 된다.
동일한 방식으로 제2 그룹 데이터(21)와 제3 그룹 데이터(31) 사이에 데이터 공백(B)이 남는다. 사용자는 이러한 데이터 공백(B)을 보완하기 위해 좌측에서 우측으로 재차 스캔을 수행한다. 제4 그룹 데이터(41), 제5 그룹 데이터(51), 제6 그룹 데이터(61)가 생성되면서 각 그룹 데이터(11, 21, 31, 41, 51, 61) 사이에 존재했던 데이터 공백(B)을 보완하여 결과적으로 환자의 전체 구강 모형 데이터를 획득할 수 있게 된다.
도 5를 참조하면, 제1 그룹 데이터(12)가 생성되어 스캔이 시작되면, 제1 그룹 데이터(12)에서 최초에 생성된 데이터를 제1 그룹 최초 데이터(12I)라 한다. 한편, 디스커넥트 판단 단계에 따라 3차원 볼륨 데이터가 서로 연결되지 않는 상태가 일정 시간 이상 지속되어 제2 그룹 데이터(22)가 생성되면, 제2 그룹 데이터(22)가 생성되기 전에 마지막으로 제1 그룹 데이터(12)에 생성되어 저장된 3차원 볼륨 데이터가 제1 그룹 최종 데이터(12F)가 된다. 동일한 취지로, 제2 그룹 데이터(22)의 최초 생성 데이터는 제2 그룹 최초 데이터(22I), 제3 그룹 데이터(32)의 생성시 마지막으로 제2 그룹 데이터(22)에 생성되어 저장된 3차원 볼륨 데이터는 제2 그룹 최종 데이터(22F)가 된다.
한편, 제3 그룹 데이터(32)가 생성되어 신규데이터 저장 단계가 수행되면, 제3 그룹 최초 데이터(32I)는 기존에 촬영되어 3차원 볼륨 데이터로 생성된 제1 그룹 데이터(12)와 중첩된다. 따라서 제3 그룹 데이터(32)는 제1 그룹 데이터(12)와 그 3차원 볼륨 데이터가 서로 연결될 수 있고(추가 얼라인 단계(S8)), 기존에 존재했던 제1 그룹 데이터(12)와 제2 그룹 데이터(22) 간의 데이터 공백(B)을 보완할 수 있다.
전술한 바와 같은 데이터 공백(B)을 보완하기 위해, 신규 그룹 데이터는 이전에 생성된 그룹 데이터들의 3차원 볼륨 데이터와 중첩되는지 판단될 수 있다(S7). 바람직하게는, 신규 그룹 데이터의 최초 데이터 또는 최종 데이터는 이전에 생성된 그룹 데이터들의 3차원 볼륨 데이터와 중첩되는지 판단될 수 있다. 도 5에 도시된 바와 같이, 제3 그룹 데이터(32)의 최초 데이터(32I)는 제1 그룹 데이터(12)의 3차원 볼륨 데이터와 중첩되고, 제3 그룹 데이터(32)의 최종 데이터(32F)는 제2 그룹 데이터(22)의 3차원 볼륨 데이터와 중첩, 추가 얼라인이 수행되어 결과적으로 데이터 공백(B) 부분을 보완하게 된다(S8). 이와 같이 신규 그룹 데이터에 저장되는 데이터를 이전에 생성된 그룹 데이터들의 3차원 볼륨 데이터와 비교하여 중첩시킴으로써, 데이터 공백(B)을 보완 및 최소화하여 스캐너를 통해 획득한 데이터의 신뢰성을 향상시키는 이점이 있다. 한편, 신규 그룹 데이터 저장 단계(S6) 또는 추가 얼라인 단계(S8)가 수행되는 중에도 스캐너에 의해 획득되는 이미지 데이터를 계속적으로 3차원 볼륨 데이터로 변환하고 얼라인하는 단계를 재수행할 수 있다(S10). 한편, 재연결 판단, 추가 얼라인 수행 등은 디스커넥트를 판단하고 얼라인을 수행하는 외부 프로세서 상에서 함께 수행될 수 있다.
도 6을 참조하면, 제1 그룹 데이터(13), 제2 그룹 데이터(23), 및 제3 그룹 데이터(33)가 생성되어 스캔이 진행되었으나, 각 분류(13, 23, 33) 사이에 데이터 공백(B)이 발생하였다. 이에 사용자는 종래의 얼라인 에러 발생 부분 이후로 다시 넓은 영역을 스캔해야 했으나, 본 발명에 따른 그룹 데이터에 의한 정렬 방법으로 인하여 데이터 공백(B)이 발생한 제1 그룹 데이터와 제2 그룹 데이터 사이(13과 23 사이), 및 제2 그룹 데이터와 제3 그룹 데이터 사이(23과 33 사이)만을 스캔함으로써 스캔해야 할 범위를 최소화하는 이점이 있다.
도 7은 본 발명의 다른 실시예에 따른 그룹 데이터에 의한 정렬 방법의 순서도이다. 도 7을 참조하면, 본 발명의 다른 실시예에 따른 그룹 데이터에 의한 정렬 방법은, 스캔 경로에 따라 이미지 데이터를 획득하는 이미지 생성 단계(S110)와, 스캔 경로에 따라 연속적으로 획득하는 이미지 데이터가 서로 연결되도록 정렬되는 얼라인 단계(S120)를 포함할 수 있다. 전술한 바와 같이, 구강스캐너를 통하여 환자의 구강 내부에 대하여 스캔을 진행하면 스캔 대상 부분(구강 내부의 일부분들을 의미한다)에 대한 이미지 데이터를 생성한다. 이미지 데이터는 스캔 대상 부분에서 반사되는 광이 구강스캐너 내부로 입사되어, 구강스캐너 내부에 형성된 촬상부를 통해 디지털 데이터화된 이미지 데이터일 수 있다. 또한, 스캔 경로에 따라 연속적으로 이미지 데이터가 획득되면, 연속되는 이미지 데이터 간에 중첩되는 영역이 발생하게 되고, 이러한 중첩 영역은 서로 연결 및 정렬되어 다시 하나의 연결된 이미지 데이터로 나타날 수 있다. 결과적으로 얼라인 단계가 정상적으로 수행되면 전체적으로 하나의 하악 데이터, 하나의 상악 데이터, 그리고 하악 데이터와 상악 데이터를 결합시키는 교합 데이터가 통합되어 환자의 전체 구강 모형 데이터를 생성할 수 있는 것이다. 한편, 생성된 이미지 데이터는 스캐너 내부에 형성될 수 있는 저장부 또는 외부 저장장치에 저장될 수 있다.
한편, 본 발명의 다른 실시예에 따른 그룹 데이터에 의한 정렬 방법은 얼라인 단계에서, 이미지 데이터가 서로 연결되지 않는 지점을 기준으로 이미지 데이터를 서로 다른 그룹으로 분류하고 카테고리화 저장하는 그룹 데이터 저장 단계(S130)를 더 포함할 수 있다. 전술한 얼라인 단계를 수행하는 중에 이미지 데이터 간의 중첩 부분을 형성할 만큼 충분한 스캐닝이 수행되지 않아 이미지 데이터 간의 연결 및 정렬을 수행할 수 없는 경우가 있다. 즉, 본 발명의 다른 실시예에 따른 그룹 데이터에 의한 정렬 방법에서는 이미지 데이터의 연결 상태가 일정 시간 지속되는지와 상관없이, 이미지 데이터의 중첩 범위가 충분하게 형성되지 않아 데이터 공백(B)이 발생하는 경우를 디스커넥트로 정의할 수 있다. 한편, 생성된 그룹 데이터는 스캐너 내부에 형성될 수 있는 저장부 또는 외부 저장장치에 저장될 수 있다.
전술한 바와 같이 디스커넥트 상태가 발생한 경우, 구강스캐너는 디스커넥트 상태 이전에 연결된 이미지 데이터들을 제n 그룹 데이터로 카테고리화하여 저장하고, 디스커넥트 상태 이후의 이미지 데이터들을 제(n+1) 그룹 데이터로 카테고리화하여 저장할 수 있다. 이 때, n는 임의의 자연수가 될 수 있으며, 제1 그룹 데이터부터 최종 스캔이 수행될 때까지 복수개의 그룹 데이터를 가질 수 있다는 의미이다.
예를 들면, 도 4에 도시된 바와 같이, 제1 그룹 데이터(11), 제2 그룹 데이터(21), 및 제3 그룹 데이터(31)를 잇는 하나의 스캔 경로가 있고, 스캔 중에 2번의 디스커넥트, 즉 데이터 공백(B)이 발생하면 3개의 그룹 데이터(11, 21, 31)가 생성된다. 마찬가지로, 제4 그룹 데이터(41), 제5 그룹 데이터(51) 및 제6 그룹 데이터(61)를 잇는 하나의 스캔 경로에 대하여 스캔을 수행하는 중에 2번의 디스커넥트(데이터 공백이 발생하는 상태)가 발생하게 되면 3개의 그룹 데이터(41, 51, 61)가 발생한다. 결과적으로, 도 4의 예시로 설명하자면 총 2번의 스캔 경로에 대하여 스캔을 수행하는 중에, 각 스캔 경로 당 2회의 디스커넥트가 발생하여 총 6개의 그룹 데이터가 생성될 수 있는 것이다.
한편, 그룹 데이터 저장 단계에 따라, 디스커넥트 상태로 판단되는 시점 전후로 그룹 데이터가 나눠지게 되며, 디스커넥트 상태 판단 직전에 획득한 이미지 데이터는 해당되는 그룹 데이터의 최종 데이터가 되고, 디스커넥트 상태 판단 직후에 획득한 이미지 데이터는 해당되는 그룹 데이터의 최초 데이터가 된다. 이를 스캔 경로의 관점으로 해석하면, 디스커넥트 상태 판단 직전에 스캔된 지점이 해당 스캔 경로의 종료 지점으로 인식되며, 디스커넥트 상태 판단 직후에 스캔된 지점은 해당 스캔 경로의 시작 지점으로 인식될 수 있다. 또한, 이와 같이 디스커넥트 상태로 판단되어 서로 다른 그룹 데이터로 나눠지게 되었다면, 두 분류는 서로 다른 시작 지점과 종료지점을 가진다는 의미이다. 이는 곧, 디스커넥트 되는 지점은 각 스캔 경로의 종료 지점이 된다는 의미이다.
도 5에 도시된 바와 같이, 복수개의 그룹 데이터로 카테고리화 되는 것은, 각 그룹 데이터 간 스캔 경로를 구분하는 것이며, 따라서 그룹 데이터 저장 단계에서 저장되는 그룹 데이터의 수는 곧 스캔 경로의 수에 대응될 수 있다. 예를 들면, 제1 그룹(12)에 대응하는 스캔 경로의 종료 지점(12F)에서 디스커넥트가 발생하여 제1 그룹(12)이 생성되고, 제2 그룹(22)에 대응하는 스캔 경로의 종료 지점(22F)에서 디스커넥트가 발생하여 제2 그룹이 생성되며, 마지막으로 제3 그룹(32)에 대응하는 스캔 경로의 종료 지점(32F)에서 디스커넥트가 발생하여 제3 그룹(32)이 생성된 것이다. 이와 같이, 환자의 구강 내부를 스캔할 때 3개의 스캔 경로를 가지고 스캔을 수행하였다면, 그룹 데이터는 총 3개를 가질 수 있다.
사용자는 데이터 공백(B)을 최소화하여 환자의 완전한 구강 내부 모형 데이터를 획득하기 위해 계속적으로 스캔을 수행한다. 계속적인 스캔을 수행하게 되면 이후의 그룹 데이터에 해당하는 이미지 데이터가 이전의 그룹 데이터에 해당하는 이미지 데이터와 중첩되는 부분을 가질 수 있다. 즉, 이는 복수개의 스캔 경로가 적어도 일부 구간에서 서로 중복되는 스캔 영역을 가질 수 있다는 의미이며, 이 때 데이터 공백(B)이 채워질 수 있다.
도 5를 참조하면, 스캔 경로의 개수에 대응하는 그룹 데이터가 발생하는 경우는, 일반적으로 사용자의 편의에 따라 의도적으로 스캔 경로를 나누는 경우이므로(즉, 제1 그룹 데이터(12)에 대응하는 스캔 경로로 첫 번째 스캔 후 제2 그룹 데이터(22)에 대응하는 스캔 경로로 두 번째 스캔을 수행하며, 마지막으로 제3 그룹 데이터(32)에 대응하는 스캔 경로로 세 번째 스캔을 수행할 수 있다), 통상적으로 이 경우에는 적어도 2 이상의 스캔 경로 간에 서로 중복되는 스캔 영역을 가질 수 있으며, 이에 의해 데이터 공백(B)이 채워질 수 있다.
전술한 바와 같이 데이터 공백(B)이 채워지게 되면 서로 다른 그룹 데이터 간에 이미지 데이터가 연결될 수 있다는 의미이며, 이러한 2 이상의 그룹 데이터의 데이터가 다시 서로 연결 및 정렬의 가능성을 확인하고 서로 연결되도록 얼라인하는 재연결 판단 단계(S140)를 포함할 수 있다. 재연결 판단 단계에 따라 데이터 공백(B)이 발생한 부분에 대하여 데이터를 보완할 수 있으며, 이와 같이 계속적인 스캔을 수행함으로써 데이터 공백(B)을 최소화하고 결과적으로 환자의 완전한 구강 내부 모형 데이터를 완성할 수 있다.
한편, 전술한 이미지 데이터 또는 3차원 볼륨 데이터 간의 얼라인, 디스커넥트 판단, 재연결 판단 및 데이터 보완은 스캐너 외부에 형성된 외부 프로세서에 의해 수행될 수 있다.
한편, 본 발명의 다른 실시예에 따른 그룹 데이터에 의한 정렬 방법은 그룹 데이터 사이에 이미지 데이터가 서로 연결되지 않는 데이터 공백(B) 발생 지점에 대하여 디스플레이 상에 표시하는 단계를 더 포함할 수 있다. 도 6을 참조하면, 데이터 공백(B) 발생 지점에 대하여 화살표 모양으로 표시된 것을 확인할 수 있다. 본 발명의 다른 실시예에 따른 그룹 데이터에 의한 정렬 방법에서는 이러한 디스플레이 상에 화살표 등으로 데이터 공백(B) 지점을 사용자가 명확하게 확인할 수 있도록 표시함으로써, 사용자는 데이터 공백(B) 발생 부분에 대하여만 다시 스캔을 수행하여 데이터 공백(B)을 최소화하고 그룹 데이터 간에 서로 데이터가 연결되도록 할 수 있다. 디스플레이는 스캐너 또는 외부 프로세서와 전기적으로 연결된 디스플레이 장치를 의미할 수 있으며, 사용자에게 데이터 공백(B) 발생 여부를 알릴 수 있는 화면을 가지는 표시 장치일 수 있다.
이하에서는 본 발명의 또다른 실시예에 따른 그룹 데이터에 의한 정렬 방법을 설명하기로 한다.
도 8은 본 발명의 또다른 실시예에 따른 그룹 데이터에 의한 정렬 방법의 순서도이다.
도 8을 참조하면, 본 발명의 다른 실시예에 따른 그룹 데이터에 의한 정렬 방법은, 적어도 하나의 제1 이미지 데이터를 포함하는 제1 그룹 데이터를 생성하는 단계(S210), 제2 이미지 데이터가 제1 그룹 데이터에 얼라인되는지 판단하는 단계(S220)를 포함한다. 스캔 과정을 시작하면, 스캐너에 의해 적어도 하나의 이미지 데이터가 획득되고, 상기 이미지 데이터는 하나 이상의 그룹 데이터를 형성할 수 있다. 예시적으로, 제1 그룹 데이터의 카테고리가 생성되고, 상기 이미지 데이터는 제1 이미지 데이터로 제1 그룹 데이터에 포함된다. 이 때, 이미지 데이터(제1 이미지 데이터 및 제2 이미지 데이터)는 2차원 또는 3차원일 수 있다.
제1 그룹 데이터를 생성하는 단계(S210)에서, 적어도 하나의 제1 이미지 데이터들은 얼라인되어 하나의 3차원 볼륨 데이터를 형성할 수 있다. 2 이상의 이미지 데이터가 순차적으로 획득되면, 마지막에 획득된 이미지 데이터는 그 전에 획득된 이미지 데이터들이 얼라인 되어 형성된 3차원 볼륨 데이터에 함께 얼라인될 수 있다. 이러한 과정에 따라, 3차원 볼륨 데이터는 확장될 수 있다. 즉, 하나의 그룹 데이터는 적어도 하나의 이미지 데이터가 얼라인되어 하나의 3차원 볼륨 데이터로 생성될 수 있다. 즉, 순차적으로 획득되는 이미지 데이터들이 얼라인되어 하나의 3차원 볼륨 데이터로 생성될 수 있다.
한편, 제2 이미지 데이터가 제1 그룹 데이터에 얼라인되는지 판단하는 단계(S220)는 제1 이미지 데이터가 제1 그룹 데이터에 포함되고, 스캔 과정에서 획득된 제2 이미지 데이터는 제1 이미지 데이터 중 적어도 어느 하나와 얼라인되는지 판단될 수 있다. 예시적으로, 제2 이미지 데이터는 제1 이미지 데이터의 적어도 일부와 중첩되어 연결 및 정렬될 수 있는지 판단될 수 있다.
상기 판단을 위해, 제2 이미지 데이터는 제1 그룹 데이터에 포함된 제1 이미지 데이터의 적어도 일부 영역과 소정 횟수 또는 소정 시간 동안 얼라인을 시도할 수 있다(S230). 예시적으로, 얼라인을 시도하는 단계(S230)는 소정 시간 동안 제2 이미지 데이터를 제1 그룹 데이터에 얼라인 되는지 여부를 확인하는 단계(S231)를 포함한다. 기설정된 시간 이내에 제2 이미지 데이터가 제1 그룹 데이터에 얼라인되는 경우, 제2 이미지 데이터는 제1 그룹 데이터에 포함될 수 있다(S232). 즉, 제2 이미지 데이터는 제1 그룹 데이터에 포함된 제1 이미지 데이터의 적어도 일부와 얼라인되어, 제1 그룹 데이터의 3차원 볼륨 데이터를 확장시킬 수 있다.
한편, 스캔을 수행할 때, 스캔 영역이 중첩되지 않아 데이터 공백이 발생할 수 있다. 데이터 공백은 사용자가 면밀하게 환자의 구강을 스캔하지 않았거나, 의도적으로 스캔을 연속적으로 수행하지 않았을 때 발생할 수 있다. 이러한 경우, 데이터 공백 발생 이전에 획득된 이미지 데이터들을 어느 하나의 그룹 데이터에 포함되도록 하고, 데이터 공백 발생 이후에 획득된 이미지 데이터들은 새로운 그룹 데이터에 포함되도록 할 수 있다.
그룹 데이터가 나눠지는 과정에 대하여 보다 상세하게 설명한다. 제2 이미지 데이터가 제1 그룹 데이터에 소정 시간 동안 얼라인되지 않는 경우, 얼라인 시도 횟수를 갱신할 수 있다(S233). 예시적으로, 초기 얼라인 시도 횟수가 1로 설정될 수 있다. 이 때, 얼라인되는지 여부를 확인하는 단계(S231)에서 제2 이미지 데이터가 소정 시간 동안 제1 그룹 데이터에 얼라인되지 않는 경우, 얼라인 시도 횟수는 1 가산될 수 있다.
얼라인 시도 횟수가 갱신된 이후, 갱신된 얼라인 시도 횟수가 임계 횟수 미만인지 확인하는 단계(S234)가 수행될 수 있다. 예시적으로, 임계 횟수는 10회일 수 있으며, 갱신된 얼라인 시도 횟수가 10회 미만이면 다시 얼라인되는지 여부를 확인하는 단계(S231)로 복귀하여 제2 이미지 데이터가 제1 그룹 데이터에 얼라인되는지 확인할 수 있다.
한편, 갱신된 얼라인 시도 횟수가 10회 이상인 경우, 제1 그룹 데이터와 얼라인될 수 없고 데이터 공백이 발생한 것으로 판단될 수 있다. 이러한 경우, 더 이상 제2 이미지 데이터를 제1 그룹 데이터에 얼라인하는 시도를 중지하고, 새로운 그룹 데이터를 생성할 수 있다. 즉, 소정 횟수 또는 소정 시간 동안 제2 이미지 데이터가 제1 그룹 데이터에 얼라인되지 않으면, 제2 이미지 데이터를 포함하도록 제1 그룹 데이터와 상이한 제2 그룹 데이터를 생성할 수 있다(S235). 제2 이미지 데이터가 제2 그룹 데이터에 포함되므로써, 사용자는 반드시 제1 그룹 데이터와 얼라인되는 위치를 찾아 스캔을 수행하지 않아도 계속적으로 스캔을 진행할 수 있다.
전술한 바에 따르면, 얼라인 시도의 제한 조건은 횟수로 설명되었으나, 이에 한정하는 것은 아니며, 얼라인 시도 시간을 임계 조건으로 설정하는 것도 가능하다. 또한, 얼라인 시도 횟수를 갱신하는 단계와 갱신된 얼라인 시도 횟수가 임계 횟수 미만인지 확인하는 단계의 순서는 변경될 수 있다. 예시적으로, 얼라인되는지 여부를 확인하는 단계(S231)에서 제2 이미지 데이터가 제1 그룹 데이터에 얼라인되지 않는 경우, 얼라인 시도 횟수가 임계 횟수 미만인지 판단하고, 얼라인 시도 횟수가 임계 횟수 미만이면 얼라인 시도 횟수를 갱신할 수 있다. 얼라인 시도 횟수를 갱신한 이후에는 얼라인되는지 여부를 확인하는 단계(S231)가 다시 수행될 수 있다.
통상적으로, 사용자는 본인의 의사에 따라 그룹 데이터를 생성할 것을 원한다. 그러나 스캔 환경(조도, 이물 등), 또는 스캐너를 빠르게 움직이는 경우 순간적으로 데이터 공백이 발생하는 경우가 발생한다. 순간적으로 데이터 공백이 발생할 때마다 새로운 그룹 데이터를 생성하는 것은 사용자의 의사에 반할 뿐만 아니라 이미지 데이터를 획득, 얼라인, 및 그룹 데이터를 생성하기 위한 연산량이 증가하게 된다. 연산량의 증가에 따라, 스캐너의 스캔 속도가 저하될 수 있고, 따라서 스캔 효율이 저하될 수 있다.
따라서, 본 발명의 또다른 실시예는 제2 이미지 데이터가 제1 그룹 데이터에 얼라인되지 않을 경우 바로 새로운 그룹 데이터를 생성하지 않고, 소정의 얼라인 시도 횟수 또는 시간을 통해 사용자의 의사를 확인할 수 있다. 즉, 사용자가 원하지 않는 순간적인 얼라인 실패가 발생하더라도, 소정의 얼라인 시도 횟수 또는 시간 내에 제1 그룹 데이터와 얼라인되는 이미지 데이터가 입력되면 불필요하게 새로운 그룹 데이터가 생성되는 것을 방지할 수 있다.
만약, 사용자의 의사에 따라 제2 이미지 데이터가 제1 그룹 데이터에 얼라인되지 않을 경우에는 새로운 그룹 데이터가 생성될 수 있다. 예시적으로, 사용자가 오른쪽 어금니 부분을 스캔하다가 왼쪽 어금니 부분으로 이동하여 스캔을 수행하는 경우, 오른쪽 어금니 부분과 왼쪽 어금니 부분 사이에 데이터 공백이 발생할 수 있다. 이러한 경우, 오른쪽 어금니 부분을 나타내는 이미지 데이터와 왼쪽 어금니 부분을 나타내는 이미지 데이터가 얼라인되지 않으며, 이러한 상태가 소정의 얼라인 시도 횟수 또는 시간을 초과하게 된다. 따라서, 소정 횟수 또는 소정 시간을 이용하여 사용자의 의사에 따라 적정한 수의 그룹 데이터가 생성될 수 있다. 사용자는 얼라인 여부를 신경쓰지 않고 원하는 방식으로 스캔을 수행할 수 있으며, 최종적으로 정교한 3차원 모델을 획득할 수 있다.
또한, 제2 그룹 데이터가 생성되면, 제2 그룹 데이터와 제1 그룹 데이터를 결합(combine)하는 단계(S240)가 수행될 수 있다. 제1 그룹 데이터에 포함된 제1 이미지 데이터와 제2 그룹 데이터에 포함된 제2 이미지 데이터는 각각 3차원 볼륨 데이터를 형성할 수 있으며, 상기 3차원 볼륨 데이터들은 각각 전체적인 3차원 모델의 적어도 일부를 구성할 수 있다. 따라서, 모든 그룹 데이터들이 얼라인되어 하나의 3차원 모델을 완성할 수 있다.
한편, 제1 그룹 데이터에 포함된 제1 이미지 데이터와 제2 그룹 데이터에 포함된 제2 이미지 데이터는 중첩되지 않아 얼라인이 수행되지 않을 수 있다. 즉, 제1 그룹 데이터와 제2 그룹 데이터 사이에 데이터 공백이 존재할 수 있다. 이러한 경우, 제1 이미지 데이터의 적어도 일부 영역 및 제2 이미지 데이터의 적어도 일부 영역과 각각 중첩되는 제3 이미지 데이터를 통해 얼라인이 수행될 수 있다. 예시적으로, 제1 그룹 데이터와 제2 그룹 데이터 사이에 제3 그룹 데이터가 생성될 수 있고, 제3 그룹 데이터는 제3 이미지 데이터를 포함할 수 있다. 제3 이미지 데이터는 제1 그룹 데이터 및 제2 그룹 데이터와 모두 얼라인될 수 있다. 따라서, 제1 그룹 데이터와 제2 그룹 데이터는 제3 그룹 데이터를 매개로 얼라인될 수 있다. 다만, 이는 예시적인 것이며, 제1 그룹 데이터와 제2 그룹 데이터 사이에 복수개의 그룹 데이터가 생성되어 데이터 공백을 해소할 수도 있다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다.
따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
S1: 최초 그룹 데이터 생성 단계 S2: 이미지 생성 단계
S3: 최초 그룹 데이터 저장 단계 S31: 3차원 데이터 변환 단계
S32: 얼라인 단계 S4: 디스커넥트 판단 단계
S5: 신규 그룹 데이터 생성 단계 S6: 신규 그룹 데이터 저장 단계
S7: 재연결 판단 단계 S8: 추가 얼라인 단계
S10: 재수행 단계
11, 12, 13: 제1 그룹 데이터 12I: 제1 그룹 최초 데이터
12F: 제1 그룹 최종 데이터 21, 22, 23: 제2 그룹 데이터
22I: 제2 그룹 최초 데이터 22F: 제2 그룹 최종 데이터
31, 32, 33: 제3 그룹 데이터 32I: 제3 그룹 최초 데이터
32F: 제3 그룹 최종 데이터 41, 43: 제4 그룹 데이터
51, 53: 제5 그룹 데이터 B: 데이터 공백
S110: 이미지 데이터 획득 단계 S120: 이미지 데이터 얼라인 단계
S130: 그룹 데이터 저장 단계 S140: 재연결 판단 단계
S210: 제1 그룹 데이터를 생성하는 단계
S220: 제2 이미지 데이터가 제1 그룹 데이터에 얼라인되는지 판단하는 단계
S230: 얼라인을 시도하는 단계
S231: 얼라인되는지 여부를 확인하는 단계
S232: 제2 이미지 데이터를 제1 그룹 데이터에 포함하는 단계
S233: 얼라인 시도 횟수를 갱신하는 단계
S234: 얼라인 시도 횟수가 임계 횟수 미만인지 확인하는 단계
S235: 제2 그룹 데이터를 생성하는 단계
S240: 제1 그룹 데이터와 제2 그룹 데이터를 결합하는 단계

Claims (13)

  1. 적어도 하나의 제1 이미지 데이터를 포함하는 제1 그룹 데이터를 생성하는 단계;
    제2 이미지 데이터가 상기 제1 그룹 데이터에 얼라인되는지 판단하는 단계;
    상기 제2 이미지 데이터가 상기 제1 그룹 데이터에 얼라인되면 상기 제2 이미지 데이터를 상기 제1 그룹 데이터에 포함하는 단계:
    상기 제2 이미지 데이터가 상기 제1 그룹 데이터에 얼라인되지 않으면 소정 횟수 또는 소정 시간 동안 얼라인을 시도하는 단계;
    상기 소정 횟수 또는 소정 시간 동안 상기 제2 이미지 데이터가 상기 제1 그룹 데이터에 얼라인되지 않으면, 상기 제2 이미지 데이터를 포함하도록 제2 그룹 데이터를 생성하는 단계; 및
    상기 제1 그룹 데이터 및 상기 제2 그룹 데이터를 결합(combine)하는 단계;를 포함하는 그룹 데이터에 의한 정렬 방법.
  2. 제1 항에 있어서,
    상기 제1 이미지 데이터 및 상기 제2 이미지 데이터는 3차원 볼륨 데이터로 변환되는 것을 특징으로 하는 그룹 데이터에 의한 정렬 방법.
  3. 제1 항에 있어서,
    상기 얼라인을 시도하는 단계는 소정 시간 동안 상기 제2 이미지 데이터를 상기 제1 그룹 데이터에 얼라인되는지 여부를 확인하는 단계; 및
    상기 얼라인되는지 여부를 확인하는 단계에서, 상기 제2 이미지 데이터가 상기 제1 그룹 데이터에 얼라인되지 않는 경우, 얼라인 시도 횟수를 갱신하는 단계;를 포함하는 것을 특징으로 하는 그룹 데이터에 의한 정렬 방법.
  4. 제3 항에 있어서,
    갱신된 상기 얼라인 시도 횟수가 임계 횟수 미만인지 확인하는 단계;를 더 포함하고,
    상기 얼라인 시도 횟수가 상기 임계 횟수 미만인 경우, 상기 얼라인되는지 여부를 확인하는 단계로 복귀하는 것을 특징으로 하는 그룹 데이터에 의한 정렬 방법.
  5. 제4 항에 있어서,
    상기 얼라인 시도 횟수가 상기 임계 횟수 이상인 경우, 상기 제2 이미지 데이터를 포함하도록 상기 제2 그룹 데이터를 생성하는 것을 특징으로 하는 그룹 데이터에 의한 정렬 방법.
  6. 제1 항에 있어서,
    상기 제1 그룹 데이터 및 상기 제2 그룹 데이터를 결합하는 단계는,
    상기 제1 그룹 데이터에 포함된 상기 제1 이미지 데이터의 적어도 일부 영역과, 상기 제2 그룹 데이터에 포함된 상기 제2 이미지 데이터의 적어도 일부 영역이 얼라인되는 것을 특징으로 하는 그룹 데이터에 의한 정렬 방법.
  7. 제6 항에 있어서,
    상기 제1 이미지 데이터와 상기 제2 이미지 데이터는,
    상기 제1 이미지 데이터의 적어도 일부 영역 및 상기 제2 이미지 데이터의 적어도 일부 영역과 각각 중첩되는 제3 이미지 데이터를 통해 얼라인되는 것을 특징으로 하는 그룹 데이터에 의한 정렬 방법.
  8. 스캔 경로에 따라 이미지 데이터를 획득하는 이미지 생성 단계;
    상기 스캔 경로에 따라 연속적으로 획득하는 상기 이미지 데이터가 서로 연결되도록 정렬되는 얼라인 단계;
    상기 얼라인 단계에서, 상기 이미지 데이터가 서로 연결되지 않는 지점을 기준으로 상기 이미지 데이터를 그룹 데이터하고 카테고리화 저장하는 그룹 데이터 저장 단계; 및
    2 이상의 상기 그룹 데이터의 데이터가 서로 연결되도록 얼라인하는 재연결 판단 단계;를 포함하는 것을 특징으로 하는 그룹 데이터에 의한 정렬 방법.
  9. 제8 항에 있어서,
    상기 그룹 데이터 저장 단계에서 상기 이미지 데이터가 서로 연결되지 않는 지점은 연속하는 상기 이미지 데이터의 중첩 범위에 따라 결정되는 것을 특징으로 하는 그룹 데이터에 의한 정렬 방법.
  10. 제8 항에 있어서,
    상기 스캔 경로는 복수개의 경로를 포함하고, 상기 복수개의 경로는 서로 다른 시작 지점과 종료 지점을 가지며, 복수개의 경로는 적어도 일부 구간에서 중복되는 스캔 영역을 가지는 것을 특징으로 하는 그룹 데이터에 의한 정렬 방법.
  11. 제10 항에 있어서,
    상기 그룹 데이터 저장 단계에 따라 저장되는 상기 그룹 데이터의 수는, 상기 복수개의 스캔 경로에 대응하는 수를 가지는 것을 특징으로 하는 그룹 데이터에 의한 정렬 방법.
  12. 제10 항에 있어서,
    상기 얼라인 단계에서 상기 이미지 데이터가 서로 연결되지 않는 지점은, 각각의 상기 스캔 경로의 종료 지점인 것을 특징으로 하는 그룹 데이터에 의한 정렬 방법.
  13. 제8 항에 있어서,
    상기 그룹 데이터 사이에 상기 이미지 데이터가 서로 연결되지 않는 지점을 디스플레이 상에 표시하는 단계;를 더 포함하는 것을 특징으로 하는 그룹 데이터에 의한 정렬 방법.
KR1020200184465A 2019-12-26 2020-12-28 그룹 데이터에 의한 정렬 방법 KR102530012B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190175292 2019-12-26
KR20190175292 2019-12-26

Publications (2)

Publication Number Publication Date
KR20210083204A true KR20210083204A (ko) 2021-07-06
KR102530012B1 KR102530012B1 (ko) 2023-05-08

Family

ID=76573328

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200184465A KR102530012B1 (ko) 2019-12-26 2020-12-28 그룹 데이터에 의한 정렬 방법

Country Status (5)

Country Link
US (1) US20220335628A1 (ko)
EP (1) EP4062865A4 (ko)
KR (1) KR102530012B1 (ko)
CN (1) CN114901204A (ko)
WO (1) WO2021133099A2 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070238065A1 (en) * 2004-02-27 2007-10-11 Align Technology, Inc. Method and System for Providing Dynamic Orthodontic Assessment and Treatment Profiles
WO2012083968A1 (en) * 2010-12-21 2012-06-28 3Shape A/S Motion blur compensation
KR101954487B1 (ko) * 2012-11-01 2019-03-05 얼라인 테크널러지, 인크. 3차원 스캔에서의 움직임 보상
KR101930062B1 (ko) * 2017-12-27 2019-03-14 클리어라인 주식회사 인공지능기술을 이용한 단계별 자동 교정 시스템
KR20190118602A (ko) * 2017-02-15 2019-10-18 쓰리세이프 에이/에스 3d 스캐너의 스캔 볼륨 모니터링

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001080761A2 (en) * 2000-04-19 2001-11-01 Orametrix, Inc. Interactive orthodontic care system based on intra-oral scanning of teeth
US6763148B1 (en) * 2000-11-13 2004-07-13 Visual Key, Inc. Image recognition methods
US8209143B1 (en) * 2009-09-15 2012-06-26 Google Inc. Accurate alignment of multiple laser scans using a template surface
US20120062557A1 (en) * 2010-09-10 2012-03-15 Dimensional Photonics International, Inc. Systems and methods for processing and displaying intra-oral measurement data
US9191648B2 (en) * 2011-02-22 2015-11-17 3M Innovative Properties Company Hybrid stitching
US8542879B1 (en) * 2012-06-26 2013-09-24 Google Inc. Facial recognition
US9785818B2 (en) * 2014-08-11 2017-10-10 Synaptics Incorporated Systems and methods for image alignment
KR101767661B1 (ko) * 2016-02-22 2017-08-11 박성원 스캐닝 정밀도 향상용 표시자, 스캐닝 정밀도 향상용 조성물 및 물품의 스캐닝 정밀도 향상 방법
KR101840444B1 (ko) * 2016-05-04 2018-03-20 주식회사 메디트 치과용 3차원 데이터 처리장치 및 그 방법
US10136972B2 (en) * 2016-06-30 2018-11-27 Align Technology, Inc. Historical scan reference for intraoral scans
KR101953622B1 (ko) * 2017-08-31 2019-05-23 주식회사 디오 이종의 구강 이미지 정합방법
KR102054901B1 (ko) * 2018-12-28 2019-12-12 주식회사 디오 치아 수복물 설계를 위한 이미지 데이터 처리방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070238065A1 (en) * 2004-02-27 2007-10-11 Align Technology, Inc. Method and System for Providing Dynamic Orthodontic Assessment and Treatment Profiles
WO2012083968A1 (en) * 2010-12-21 2012-06-28 3Shape A/S Motion blur compensation
KR101954487B1 (ko) * 2012-11-01 2019-03-05 얼라인 테크널러지, 인크. 3차원 스캔에서의 움직임 보상
KR20190118602A (ko) * 2017-02-15 2019-10-18 쓰리세이프 에이/에스 3d 스캐너의 스캔 볼륨 모니터링
KR101930062B1 (ko) * 2017-12-27 2019-03-14 클리어라인 주식회사 인공지능기술을 이용한 단계별 자동 교정 시스템

Also Published As

Publication number Publication date
EP4062865A2 (en) 2022-09-28
WO2021133099A3 (ko) 2021-08-19
US20220335628A1 (en) 2022-10-20
EP4062865A4 (en) 2024-08-14
CN114901204A (zh) 2022-08-12
WO2021133099A2 (ko) 2021-07-01
KR102530012B1 (ko) 2023-05-08

Similar Documents

Publication Publication Date Title
US12076114B2 (en) Intraoral scanning and dental condition identification
US8830309B2 (en) Hierarchical processing using image deformation
KR20150128713A (ko) 교합 인기를 위한 방법 및 시스템
EP3453360B1 (en) Teeth movement tracking device and method thereof
CN115607322A (zh) 一种基于口内三维扫描的虚拟咬合检测与设计方法及系统
KR102530012B1 (ko) 그룹 데이터에 의한 정렬 방법
KR102346199B1 (ko) 파노라믹 영상 생성 방법 및 이를 위한 영상 처리장치
CN117315161B (zh) 一种用于数字化牙齿模型的图像采集处理系统
CN104603859A (zh) 牙科补缀及赝复体数字建档与制作的方法及其教学训练
KR20200144753A (ko) 디지털 교정 가이드 시 치아 삭제 방법 및 이를 수행하는 디지털 교정 가이드 장치
TWI782269B (zh) 影像數據的預處理裝置
KR102177886B1 (ko) 컴퓨터 단층촬영 영상데이터의 전처리 방법 및 장치
KR102623248B1 (ko) 데이터 처리 방법
KR102575216B1 (ko) 스캔 데이터의 후처리 시스템 및 스캔 데이터의 후처리 방법
KR102401135B1 (ko) 디지털 치과 치료 시뮬레이션 방법 및 그 장치
CN108814742B (zh) 牙颌托盘的设计方法、装置、用户终端及存储介质
KR20220115661A (ko) 디지털 의치 디자인 방법 및 그 장치

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant