KR20140044963A - Alumina-based sintered body and the preparation method thereof - Google Patents
Alumina-based sintered body and the preparation method thereof Download PDFInfo
- Publication number
- KR20140044963A KR20140044963A KR1020120099095A KR20120099095A KR20140044963A KR 20140044963 A KR20140044963 A KR 20140044963A KR 1020120099095 A KR1020120099095 A KR 1020120099095A KR 20120099095 A KR20120099095 A KR 20120099095A KR 20140044963 A KR20140044963 A KR 20140044963A
- Authority
- KR
- South Korea
- Prior art keywords
- titanium
- sintered compact
- alumina
- sintered body
- titanium oxide
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/46—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
- C04B35/462—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
- C04B35/478—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on aluminium titanates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
본 발명은 파인 세라믹스 분야, 특히 알루미나질 소결체 및 그 제조 방법에 관한 것이다.FIELD OF THE INVENTION The present invention relates to the field of fine ceramics, in particular to alumina sintered bodies and methods for producing the same.
파인 세라믹스는 다양한 특성을 가지며, 정보통신, 정밀기계, 의료등의 각종 분야에서 이용되고 있다. 그 중에서도 알루미나질 소결체는 대표적이다. 산화 알루미늄은 비교적 저가로 범용성이 높고, 기계적 강도, 내열성, 내식성등이 뛰어나기 때문에, 구조 부재로서 사용되는 일도 많다. 그러나, 알루미나질 소결체는 난가공성을 가지고, 대형 또는 복잡 형상의 구조 부재를 제작하는 때에는 많은 가공이 필요하게 되며, 제조비 중 가공비의 비율이 쉽게 높아질 수 있다. 따라서, 가공성을 향상시킬 수가 있다면, 대폭적인 제조비의 저감을 기대할 수 있다.Fine ceramics have various characteristics and are used in various fields such as information communication, precision machinery, and medical care. Among them, alumina sintered bodies are typical. Aluminum oxide is often used as a structural member because it is relatively inexpensive, has high versatility, and has excellent mechanical strength, heat resistance, corrosion resistance, and the like. However, the alumina sintered body has a hard workability, a lot of processing is required when producing a large or complex structural member, the ratio of the processing cost in the manufacturing cost can be easily increased. Therefore, if workability can be improved, a significant reduction in manufacturing cost can be expected.
산화티탄 및 산화 알루미늄을 재료로 한 제품에는 정전척과 같은 상기 특성을 이용한 것이 있다. 예를 들면, 산화 알루미늄을 주성분으로 하고 산화티탄을 첨가해 환원 분위기에서 소성해 얻어진 정전척 기반이 제안되어 있다(선행 기술 문헌 1:일본 특공평 06-97675호 공보 참조).Some products made of titanium oxide and aluminum oxide utilize such characteristics as electrostatic chucks. For example, an electrostatic chuck base obtained by adding aluminum oxide as a main component and adding titanium oxide and calcining in a reducing atmosphere has been proposed (see Japanese Patent Application Laid-Open No. 06-97675).
강도 및 파괴 인성을 향상시키기 위해서 특징적인 조직 구조를 가지는 재료도 있다. 장경 3㎛이하이며, 또한, 아스펙트비 1.5 이하의 등방성 산화 알루미늄 결정입자와 장경 10㎛이상이며, 또한 아스펙트비 3 이상의 이방성 산화 알루미늄 결정입자가 혼재한 알루미나질 소결체가 제안되어 있다 (선행 기술 문헌 2:일본 특개평 09-87008호 공보 참조).Some materials have a characteristic structure in order to improve strength and fracture toughness. An alumina sintered compact in which isotropic aluminum oxide crystal particles having a diameter of 3 µm or less, an aspect ratio of 1.5 or less, and an anisotropic aluminum oxide crystal particle having a diameter of 10 µm or more, and an aspect ratio of 3 or more is mixed (a prior art is proposed). Document 2: See Japanese Patent Application Laid-Open No. 09-87008.
용이 가공성을 추구한 것도 있다. 붕산 알루미늄을 함유하는 알루미늄기 복합재료이며, 붕산 알루미늄압분체에 용융알루미늄 합금을 부어 주조함으로서 제조되는 용이가공성 복합재료가 제안되어 있다(선행 기술 문헌 3:일본특개 2004-353049호 공보 참조).Some have pursued ease of workability. An aluminum-based composite material containing aluminum borate has been proposed, and an easy-processing composite material produced by pouring a molten aluminum alloy into an aluminum borate compact is cast (see Japanese Patent Application Laid-Open No. 2004-353049).
그러나, 선행기술 문헌 1 기재의 정전척 기반은 산화티탄 첨가량이 0.5~2. 0wt%이라는 점, 환원 분위기에서의 소성이라는 점을 고려하면, 티탄산알루미늄이 생성되고, 산화티탄의 산소가 결손하게 된다. 그 때문에, 티탄산알루미늄이 생성되어 미립자가 형성되고 입자의 불균일화에 의한 가공성의 저하를 초래하거나 산화 알루미늄 본래의 유백색의 외관을 해치거나 할 우려가 있다.However, the electrostatic chuck base described in the prior art document 1 has a titanium oxide added amount of 0.5 to 2. In consideration of the fact that it is 0wt% and that it is calcined in a reducing atmosphere, aluminum titanate is produced and oxygen in titanium oxide is depleted. Therefore, aluminum titanate may be formed to form fine particles, resulting in deterioration of workability due to non-uniformity of particles, or deteriorating the original milky appearance of aluminum oxide.
선행 기술 문헌 2 기재의 알루미나질 소결체는 등방성 산화 알루미늄 결정입자와 이방성 산화 알루미늄 결정입자가 혼재하고 있기 때문에, 소결체 조직이 불균일하게 되어, 가공하기 어려워질 우려가 있다. 선행 기술 문헌 3 기재의 용이가공성 복합재료는 주조에 의해 제조되기 때문에, 시간이 든다.Since the alumina sintered compact of prior art document 2 mixes isotropic aluminum oxide crystal grain and anisotropic aluminum oxide crystal grain, there exists a possibility that a sintered compact structure may become nonuniform and it will become difficult to process. Since the easily processable composite material of the prior art document 3 is manufactured by casting, it takes time.
본 발명은 이러한 사정을 참고로 이루어진 것이며, 소결체 조직이 균일하고 가공성이 뛰어난 알루미나질 소결체 및 그 제조 방법을 제공하는 것을 목적으로 한다.This invention is made | formed with reference to such a situation, and an object of this invention is to provide the alumina sintered compact which is uniform in structure, and excellent in workability, and its manufacturing method.
(1) 상기의 목적을 달성하기 위해, 본 발명의 알루미나질 소결체는 결정입자와 입계상으로 이루어지는 알루미나질 소결체로서, 결정입자중에 티탄 또는 티탄 화합물이 산화티탄 환산으로 0.08wt% 이상 0.30wt%이하 고용하고 있는 것을 특징으로 하고 있다.(1) In order to achieve the above object, the alumina sintered compact of the present invention is an alumina sintered compact composed of crystal grains and grain boundary phases, in which titanium or titanium compound is 0.08 wt% or more and 0.30 wt% or less in terms of titanium oxide. It is characterized by employing.
이와 같이 본 발명의 알루미나질 소결체는 결정격자중에 티탄 또는 티탄 화합물이 고용해서, 입도성장이 촉진되고 있기 때문에, 소결체 조직이 균일하게 되어, 가공성이 양호해진다. 또, 티탄산알루미늄의 생성 및 산화티탄의 산소결손이 생기기 어렵다.As described above, in the alumina sintered compact of the present invention, since titanium or a titanium compound is dissolved in the crystal lattice and particle size growth is promoted, the sintered compact structure becomes uniform and workability is improved. In addition, generation of aluminum titanate and oxygen deficiency of titanium oxide are unlikely to occur.
(2) 본 발명의 알루미나질 소결체는 상기 결정입자의 평균 장축 길이가 20㎛이상인 것을 특징으로 하고 있다. 이러한 입자 형상을 가짐으로서 가공 저항을 작게 할 수가 있다.(2) The alumina sintered compact of the present invention is characterized in that the average major axis length of the crystal grains is 20 µm or more. By having such a particle shape, processing resistance can be made small.
(3) 본 발명의 알루미나질 소결체의 제조방법은 결정입자중에 산화티탄이 고용하고 있는 알루미나질 소결체의 제조 방법으로서, 산화 알루미늄 분말과 산화티탄 분말을 질량비 99.95:0.050에서 99.5:0.50까지의 범위에서 혼합하는 공정과, 상기 혼합 분말을 성형 후 얻어진 성형체를 실온으로부터 소성온도까지 80 ℃/hr이하의 승온속도로 승온해서 소성하는 소성공정을 포함하는 것을 특징으로 하고 있다.(3) The method for producing an alumina sintered compact of the present invention is a method for producing an alumina sintered compact in which titanium oxide is dissolved in crystal grains, wherein the aluminum oxide powder and the titanium oxide powder are in a mass ratio of 99.95: 0.050 to 99.5: 0.50. And a firing step of raising the temperature of the molded product obtained by molding the mixed powder and forming the mixed powder at a temperature increase rate of 80 ° C / hr or less from the room temperature to the firing temperature and firing the same.
실온으로부터 소성온도까지를 80 ℃/hr이하의 승온속도로 승온해서 소성하기 때문에, 산화 알루미늄중에 티탄 또는 티탄 화합물이 고용해서, 입도성장을 촉진할 수 있다. 이것에 의해, 소결체 조직이 균일하고, 가공성이 양호한 알루미나질 소결체를 제조할 수 있다. 또, 대기 분위기중에서 소성하기 때문에, 티탄산알루미늄의 생성 및 산화티탄의 산소결손을 방지할 수 있다.Since the temperature is raised from the room temperature to the firing temperature at a heating rate of 80 ° C./hr or less, the titanium or titanium compound is dissolved in aluminum oxide to promote particle size growth. Thereby, an alumina sintered compact with a uniform sintered compact structure and favorable workability can be manufactured. In addition, since it is fired in an atmospheric atmosphere, it is possible to prevent the production of aluminum titanate and the oxygen deficiency of titanium oxide.
본 발명에 의하면, 결정 격자중에 티탄 또는 티탄 화합물이 들어가, 입도성장이 촉진되고 있기 때문에, 소결체 조직이 균일하고, 가공성이 양호하다. 또, 티탄산알루미늄의 생성 및 산화티탄의 산소결손이 생기기 어렵다.According to the present invention, since titanium or a titanium compound enters the crystal lattice and particle size growth is promoted, the sintered compact structure is uniform and workability is good. In addition, generation of aluminum titanate and oxygen deficiency of titanium oxide are unlikely to occur.
(알루미나질 소결체의 구성)(Configuration of Alumina Sintered Body)
본 발명의 알루미나질 소결체는 산화 알루미늄의 결정입자와 입계상으로 구성되어 있다. 결정입자중에는 티탄 또는 티탄 화합물이 산화티탄 환산으로 0. 08wt%이상 0.30wt%이하 고용되어 있다. 결정격자중에 티탄 또는 티탄 화합물이 고용해서, 입도성장이 촉진됨으로서 소결체 조직이 균일하게 되어, 가공성이 양호해진다. 또, 티탄산알루미늄의 생성 및 산화티탄의 산소결손이 생기지 않고, 알루미나질 소결체의 본래의 정색이 유지되고 있다.The alumina sintered compact of this invention is comprised from the crystal grain of aluminum oxide, and a grain boundary phase. Titanium or a titanium compound is dissolved in the crystal grains in the amount of 0.008 wt% or more and 0.30 wt% or less in terms of titanium oxide. Titanium or a titanium compound is dissolved in the crystal lattice, so that grain growth is promoted, so that the sintered structure becomes uniform and workability is improved. In addition, generation of aluminum titanate and oxygen deficiency of titanium oxide do not occur, and the original color of the alumina sintered compact is maintained.
알루미나질 소결체의 평균 장축 길이는 10㎛이상인 것이 바람직하다. 이와 같이 충분히 입도가 성장해 있기 때문에, 가공성이 높다. 다만, 입도성장이 과잉이 되면 기공이 생기기 쉬워져 치밀성이 손상될 우려가 있기 때문에, 평균 장축 길이는 50㎛이하인 것이 바람직하다.It is preferable that the average major axis length of an alumina sintered compact is 10 micrometers or more. Thus, since the particle size grows sufficiently, workability is high. However, when the grain growth becomes excessive, pores are likely to occur and the density may be impaired. Therefore, the average major axis length is preferably 50 µm or less.
또, 산화 알루미늄 결정입자의 평균 장축 길이는 20㎛이상인 것이 바람직하다. 이러한 입자 형상을 가짐으로서 가공 저항을 작게 할 수가 있다.Moreover, it is preferable that the average major axis length of aluminum oxide crystal grain is 20 micrometers or more. By having such a particle shape, processing resistance can be made small.
(알루미나질 소결체의 제조 방법)(Method for producing alumina sintered body)
다음에, 알루미나질 소결체의 제조 방법을 설명한다. 우선, 고순도의 산화 알루미늄 분말과 고순도의 산화티탄 분말을 질량비 99.95:0.050에서 99.5:0.50까지의 범위로 혼합한 산화 알루미늄 분말로서 바람직하게는 99%이상, 보다 바람직하게는 99.9%이상의 순도의 것을 이용하는 것이 바람직하다. 또, 이용하는 산화 알루미늄 분말의 입경은 1.0㎛이하인 것이 바람직하다. 또, 0.1㎛이상 0.5㎛이하이면, 더욱 바람직하다.Next, the manufacturing method of an alumina sintered compact is demonstrated. First, an aluminum oxide powder obtained by mixing a high purity aluminum oxide powder and a high purity titanium oxide powder in a mass ratio of 99.95: 0.050 to 99.5: 0.50 is preferably 99% or more, more preferably 99.9% or more. It is preferable. Moreover, it is preferable that the particle diameter of the aluminum oxide powder to be used is 1.0 micrometer or less. Moreover, it is more preferable if it is 0.1 micrometer or more and 0.5 micrometer or less.
첨가하는 산화티탄 분말의 순도는 바람직하게는 99%이상, 보다 바람직하게는 99.9%이상인 것이 바람직하다. 또, 산화티탄 분말의 입경은 0.5㎛이하인 것이 바람직하다. 0.03㎛이하이면 더 바람직하다. 또, 산화티탄 분말이 첨가되는 것이 바람직하지만, 이것으로 한정되지 않고, 대기중에서의 소결 후에 산화물을 생성하는 염화물, 유기 티탄 화합물등의 여러 가지의 형태로 첨가되어도 좋다. 산화티탄 분말을 이용함으로서, 가공성이 뛰어난 알루미나질 소결체를 얻을 수 있다.The purity of the titanium oxide powder to be added is preferably 99% or more, and more preferably 99.9% or more. Moreover, it is preferable that the particle diameter of a titanium oxide powder is 0.5 micrometer or less. It is more preferable if it is 0.03 micrometer or less. Moreover, although it is preferable to add a titanium oxide powder, it is not limited to this, You may add in various forms, such as a chloride and an organic titanium compound which produce | generate an oxide after sintering in air | atmosphere. By using titanium oxide powder, the alumina sintered compact excellent in workability can be obtained.
산화 알루미늄 분말과 산화티탄 분말의 슬러리는 볼밀을 이용해 혼합할 수 있다. 예를 들어 알루미나 볼을 넣은 수지 포트를 이용해 혼합하고 슬러리화한다. 적당한 분산제나 바인더등을 추가해서 혼합해 원료 분말을 제작한다.The slurry of aluminum oxide powder and titanium oxide powder can be mixed using a ball mill. For example, it mixes and slurries using the resin pot which put the alumina ball. Add a suitable dispersant or binder and mix to make a raw powder.
얻어진 원료 분말은 건조시켜 성형한다. 예를 들어 금형에 의한 1축 프레스 성형 및 CIP로 성형한다. 원료 분말은 1축 프레스 성형, CIP 성형, 습식 성형, 가압주조와 배출주입성형등의 다양한 방법중 어떤 방법으로 성형할 수 있다. 그 중에서 가압주조나 배출주입성형이 바람직하다. 그 경우에 이용하는 슬러리는 충분히 혼합하여 제작된 것이 바람직하다. 예를 들면, 혼합 시간 18시간 이상으로 한다. 충분히 혼합함으로서 분산이 균일한 슬러리를 얻을 수 있다. The obtained raw material powder is dried and molded. For example, it forms by uniaxial press molding by a metal mold, and CIP. The raw material powder may be molded by any of a variety of methods such as uniaxial press molding, CIP molding, wet molding, press casting and injection molding. Among them, pressurized casting or discharge injection molding is preferable. It is preferable that the slurry used in that case be prepared by fully mixing. For example, the mixing time is 18 hours or more. By mixing sufficiently, a slurry with a uniform dispersion can be obtained.
얻어진 성형체는 실온으로부터 소성온도까지 80℃/hr이하의 승온속도로 승온해 1500℃이상 1700℃이하에서 소성한다. 소성온도는 알루미나질 소결체의 평균장축길이가 20㎛이상이 되어, 충분히 치밀화하는 온도를 설정한다.The obtained molded object is heated at a temperature increase rate of 80 ° C / hr or less from room temperature to a firing temperature, and is fired at 1500 ° C or more and 1700 ° C or less. The firing temperature is set to a temperature at which the average major axis length of the alumina sintered compact becomes 20 µm or more and sufficiently densified.
소성은 대기, 진공 또는 불활성 가스등의 다양한 분위기 중, 상압으로 행하는 것이 바람직하다. 그 중에서 상압의 대기 분위기가 가장 매우 적합하다. 카본이나 CO등의 환원능을 가지는 물질이 포함되는 환원 분위기로 소성하는 경우는 소결체의 청색 얼룩이 현저하게 되는 경우가 있는데, 이것을 방지할 수 있다.It is preferable to perform baking at normal pressure in various atmospheres, such as air | atmosphere, a vacuum, or an inert gas. Among them, atmospheric pressure at atmospheric pressure is most suitable. When firing in a reducing atmosphere containing a substance having a reducing ability such as carbon or CO, the blue spots of the sintered body may become remarkable, but this can be prevented.
실온으로부터 소성온도에 이를 때까지의 승온속도는 80℃/hr이하가 바람직하다. 50℃/hr이하이면, 더 바람직하다. 승온 속도를 작게 하는 것에 의해 산화 알루미늄중에 티탄 또는 티탄 화합물이 고용하기 쉬워져, 결정입경이 균일화된다. 승온속도가 80℃/hr보다 큰 경우에는 고용이 어렵고, 얻어진 소재내에 얼룩이 생기고, 또한, 소성시에 크랙이나 깨짐이 발생하기 쉬워진다.The temperature increase rate from room temperature to the firing temperature is preferably 80 ° C / hr or less. It is more preferable if it is 50 degrees C / hr or less. By reducing the temperature increase rate, titanium or a titanium compound is easily dissolved in aluminum oxide, and the grain size is made uniform. When the temperature increase rate is higher than 80 ° C / hr, it is difficult to dissolve the solid solution, staining occurs in the obtained material, and cracks and cracks are likely to occur during firing.
(실험 결과)(Experiment result)
실험 결과를 이하에 나타낸다. 표 1은 시료 1~18의 제조 조건 및 평가를 나타내고 있다.The experimental results are shown below. Table 1 has shown the manufacturing conditions and evaluation of Samples 1-18.
(질량비)Mixed powder ratio
(Mass ratio)
Titanium or Titanium Compound
Aluminum oxide particle size (average major axis length)
Grain Residue Titanium or Titanium Compound
Firing temperature
Temperature rise
density
Open porosity
알루미늄Oxidation
aluminum
(시료 1~10)(Samples 1-10)
평균 입자경 0.5㎛, 순도 99.5%의 산화 알루미늄 분말, 평균 입자경 0.02㎛, 순도 99.9%의 산화티탄 분말을 표 1에 나타내는 혼합비로 혼합분말로 했다. 각 분말의 혼합은 임의량의 Φ10의 알루미나 볼을 넣은 수지 포트를 이용해, 18시간 혼합해서, 슬러리화하는 것으로 실시했다. 슬러리를 건조 후, 금형에 의한 1축 프레스 성형 및 CIP로 성형해, 성형체를 소성했다.An aluminum oxide powder having an average particle diameter of 0.5 µm, a purity of 99.5%, a titanium oxide powder having an average particle diameter of 0.02 µm, and a purity of 99.9% was used as a mixed powder in the mixing ratio shown in Table 1. Mixing of each powder was performed by mixing for 18 hours using the resin pot which put the alumina ball of phi 10 of arbitrary quantity, and slurrying. After drying, the slurry was molded by uniaxial press molding with a mold and CIP, and the molded body was fired.
산화 알루미늄 분말에 산화티탄을 질량비 99.95:0.050에서 99.5:0.50까지의 범위에 들어가도록 혼합하여, 혼합 분말의 성형체를 승온속도 10~80℃/hr로 1500~1700℃까지 가열해, 3시간 유지한 후, 자연 냉각함으로서 소결체를 얻었다. 얻어진 소결체의 제작 조건 및 결과를 시료 1~10으로서 표 1에 나타냈다. 모두 산화 알루미늄 입경의 평균 장축 길이가 20㎛이상이며, 가공성이 우수했다.Titanium oxide was mixed into the aluminum oxide powder so as to fall within a mass ratio of from 99.95: 0.050 to 99.5: 0.50, and the molded body of the mixed powder was heated to 1500 to 1700 ° C at a heating rate of 10 to 80 ° C / hr and held for 3 hours. Then, the sintered compact was obtained by naturally cooling. The preparation conditions and the result of the obtained sintered compact were shown in Table 1 as Samples 1-10. The average major axis length of the aluminum oxide particle diameter was 20 micrometers or more, and all were excellent in workability.
(시료 11~18)(Samples 11-18)
산화 알루미늄 분말에 산화티탄을 질량비 99.90:0.1에서 99.0:1.0까지의 범위에 들어가도록 혼합해, 승온속도 25~100 ℃/hr로 1400~1700℃까지 가열해, 3시간 유지한 후, 자연 냉각하여 소결체를 얻었다. 얻어진 소결체의 제작 조건 및 결과를 시료 11~18으로서 표 1에 나타냈다. 시료 1~10과 비교해, 산화티탄을 많이 함유한 시료에서는 소결체가 청색 얼룩을 나타냈다. 또, 그 중에서도 소성온도가 낮은 시료에서는 산화 알루미늄 입경의 평균 장축 길이가 4㎛이하이며, 가공성이 저하했다.Titanium oxide is mixed with aluminum oxide powder in a mass ratio of 99.90: 0.1 to 99.0: 1.0, heated to a temperature of 25 to 100 ° C / hr to 1400 to 1700 ° C, held for 3 hours, and then cooled naturally. A sintered compact was obtained. The preparation conditions and the result of the obtained sintered compact were shown in Table 1 as Samples 11-18. Compared with Samples 1-10, the sintered compact showed blue unevenness in the sample containing much titanium oxide. In particular, in the sample having a low firing temperature, the average major axis length of the aluminum oxide particle diameter was 4 µm or less, and workability was deteriorated.
(평가방법)(Assessment Methods)
상기의 실시예 및 비교예에 대해서 간 평가방법을 설명한다. 우선, 얻어진 알루미나질 소결체에 대해, 소결체 밀도, 티탄 또는 티탄 화합물의 산화티탄 환산고용량 및 평균 입자경을 측정했다. 소결체 밀도는 아르키메데스법에 의해 측정했다. 티탄 또는 티탄 화합물이 산화티탄 환산고용량은 유도 결합 플라스마 발광분광분석장치(SII 나노테크롤로지사제 SPS-3500형)를 이용해, 유도 결합 플라스마 발광 분광 분석 방법에 의해 정량 분석해 측정했다. The liver evaluation method is explained about the said Example and a comparative example. First, about the obtained alumina sintered compact, the sintered compact density, the titanium oxide conversion high capacity, and average particle diameter of a titanium or a titanium compound were measured. The sintered compact density was measured by the Archimedes method. Titanium or a titanium compound was converted to titanium oxide in terms of high capacity and quantitatively measured by an inductively coupled plasma luminescence spectroscopy method using an inductively coupled plasma luminescence spectrometer (type SPS-3500, manufactured by SII Nanotechnology).
알루미나질 소결체 중에 포함되는 전티탄량은 시료를 가압 용기내에서 황산으로 용해하고, 용액중에 포함되는 티탄의 정량 분석을 실시함으로서 구했다. 알루미나질 소결체 중에 포함되는 전티탄량은 산화 알루미늄 결정입자중에 고용하는 티탄 및 고용하지 않고 결정입계에 존재하는 티탄을 합계한 양이다.The total amount of titanium contained in the alumina sintered compact was obtained by dissolving a sample in sulfuric acid in a pressurized container and performing a quantitative analysis of titanium contained in the solution. The total titanium amount contained in the alumina sintered compact is the sum total of the titanium solid solution contained in the aluminum oxide crystal grains and the titanium present in the grain boundary without solid solution.
알루미나질 소결체 중의 결정입계안에 포함되는 티탄량은 별도, 시료를 상압하에서 불화 수소산-왕수 혼산에서 30분간 가열해, 불용해물을 여과분리하여, 여액에 포함되는 티탄의 정량 분석을 실시함으로서 구했다. 그리고, 상기의 전티탄량으로부터 결정입계안에 포함되는 티탄량을 공제하여 산화 알루미늄 결정입자중에 고용하는 티탄량을 구해 산화물 환산을 해 비교했다. 평균 입자경은 소결체 표면을 경면연마하고, 서멀에칭에 의해 결정입계를 석출시킨 연마면을 SEM 관찰했다. 각 입자를 사각형 근사하여, 장변을 장축으로서 길이를 측정해서, 평균치를 구했다. 덧붙여 평균치는 샘플수 15로 구했다.The amount of titanium contained in the grain boundary in the alumina sintered compact was separately obtained by heating the sample under hydrofluoric acid and aqua regia for 30 minutes under normal pressure, filtering insolubles, and performing quantitative analysis of titanium contained in the filtrate. Then, the amount of titanium to be dissolved in the aluminum oxide crystal grains was obtained by subtracting the amount of titanium contained in the grain boundaries from the total amount of titanium, and the oxide conversion was compared. The average particle diameter mirror-polished the surface of the sintered compact, and the SEM observed the polished surface which precipitated the grain boundary by thermal etching. The squares were approximated to each particle, the length was measured using the long side as the long axis, and the average value was obtained. In addition, the average value was calculated | required by the number of samples.
Claims (3)
결정입자중에 티탄 또는 티탄 화합물이 산화티탄 환산으로 0.08 wt% 이상 0.30 wt% 이하 고용하고 있는 것을 특징으로 하는 알루미나질 소결체.An alumina sintered body composed of crystal grains and grain boundaries,
Alumina-like sintered compact characterized in that a titanium or titanium compound is dissolved in a crystal grain in terms of titanium oxide in an amount of 0.08 wt% or more and 0.30 wt% or less.
산화알루미늄분말과 산화티탄분말을 질량비 99.95:0.050 에서 99.5:0.50 까지의 범위로 혼합하는 공정;
상기 혼합분말을 성형후, 얻어진 성형체를 실온에서 소성온도까지 80℃/hr 이하의 승온속도로 승온해서 소성하는 소성공정을 포함하는 것을 특징으로 하는 알루미나질 소결체의 제조방법.As a method for producing an alumina sintered compact in which titanium oxide is dissolved in crystal grains,
Mixing an aluminum oxide powder and a titanium oxide powder in a mass ratio of from 99.95: 0.050 to 99.5: 0.50;
And a firing step of heating the resulting molded article after molding the mixed powder at room temperature to a firing temperature at a heating rate of 80 ° C / hr or less, and firing the resulting alumina sintered compact.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120099095A KR20140044963A (en) | 2012-09-07 | 2012-09-07 | Alumina-based sintered body and the preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120099095A KR20140044963A (en) | 2012-09-07 | 2012-09-07 | Alumina-based sintered body and the preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20140044963A true KR20140044963A (en) | 2014-04-16 |
Family
ID=50652645
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020120099095A KR20140044963A (en) | 2012-09-07 | 2012-09-07 | Alumina-based sintered body and the preparation method thereof |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20140044963A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200071986A (en) * | 2018-12-12 | 2020-06-22 | 한국세라믹기술원 | Manufacturing method of tatanium oxide-manganese oxide composite ceramics |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09102488A (en) * | 1995-10-06 | 1997-04-15 | Sumitomo Metal Ind Ltd | Alumina microwave introduction window and its manufacture |
JPH10212157A (en) * | 1997-01-29 | 1998-08-11 | Kyocera Corp | Aluminous sintered compact and its production |
JPH11157962A (en) * | 1997-11-28 | 1999-06-15 | Kyocera Corp | Highly abrasion-resistant alumina-based sintered compact and its production |
JP2010120795A (en) * | 2008-11-18 | 2010-06-03 | Tosoh Corp | High toughness and translucent colored alumina sintered compact, method for producing the same and its use |
JP2011073905A (en) * | 2009-09-29 | 2011-04-14 | Taiheiyo Cement Corp | Free-cutting ceramics and method for manufacturing the same |
-
2012
- 2012-09-07 KR KR1020120099095A patent/KR20140044963A/en active Search and Examination
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09102488A (en) * | 1995-10-06 | 1997-04-15 | Sumitomo Metal Ind Ltd | Alumina microwave introduction window and its manufacture |
JPH10212157A (en) * | 1997-01-29 | 1998-08-11 | Kyocera Corp | Aluminous sintered compact and its production |
JPH11157962A (en) * | 1997-11-28 | 1999-06-15 | Kyocera Corp | Highly abrasion-resistant alumina-based sintered compact and its production |
JP2010120795A (en) * | 2008-11-18 | 2010-06-03 | Tosoh Corp | High toughness and translucent colored alumina sintered compact, method for producing the same and its use |
JP2011073905A (en) * | 2009-09-29 | 2011-04-14 | Taiheiyo Cement Corp | Free-cutting ceramics and method for manufacturing the same |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200071986A (en) * | 2018-12-12 | 2020-06-22 | 한국세라믹기술원 | Manufacturing method of tatanium oxide-manganese oxide composite ceramics |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101794410B1 (en) | Sintered silicon nitride having high thermal conductivity and Manufacturing method thereof | |
JPH07277814A (en) | Alumina-based ceramic sintered compact | |
JP7062229B2 (en) | Plate-shaped silicon nitride sintered body and its manufacturing method | |
WO2012153645A1 (en) | METHOD FOR PRODUCING HIGH-STRENGTH HIGH-TOUGHNESS ZrO2-Al2O3-BASED SOLID SOLUTION CERAMIC | |
JP7062230B2 (en) | Plate-shaped silicon nitride sintered body and its manufacturing method | |
JP2012046365A (en) | Alumina ceramics | |
JP7132673B2 (en) | Ceramic component and method of forming same | |
JP7201103B2 (en) | Plate-like silicon nitride sintered body and manufacturing method thereof | |
KR20140044963A (en) | Alumina-based sintered body and the preparation method thereof | |
JP6720053B2 (en) | Method for manufacturing silicon nitride sintered body | |
JP5698568B2 (en) | Aluminum oxide sintered body and method for producing the same | |
KR101961836B1 (en) | Pure monoclinic sintered zirconia material and method of manufacturing | |
KR100486121B1 (en) | A Method for Producing Aluminum titanate- Zirconium titanate Ceramics with Low Thermal Expansion Behavior | |
TWI586461B (en) | An alumina sintered body and a method for producing the same | |
CN108358628B (en) | Mullite-zirconia composite ceramic and preparation method thereof | |
JP6045117B2 (en) | Tough, electrostatic discharge-preventing black ceramics and method for producing the same | |
KR102723466B1 (en) | Highly processable ceramic composite and its manufacturing method | |
CN103664175B (en) | Preparation method for sheet AlON/TaC composite material | |
JP6366976B2 (en) | Heat treatment member made of porous ceramics | |
CN103664167B (en) | Method for preparing flaky AlON/tetragonal-phase ZrO2 composite material | |
CN103664177B (en) | Preparation method for sheet AlON/NbC composite material | |
CN103664187B (en) | A kind of sheet AlON/WB 2the preparation method of matrix material | |
CN103641479B (en) | A kind of preparation method of sheet AlON/WC matrix material | |
KR20130038687A (en) | Aluminum nitride powder sintered material and production thereof | |
Bodur et al. | Pressureless Sintering of a Magnesia Doped Gelcast Alumina Ceramic |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
N231 | Notification of change of applicant | ||
N231 | Notification of change of applicant | ||
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
AMND | Amendment |