Nothing Special   »   [go: up one dir, main page]

JPH10212157A - Aluminous sintered compact and its production - Google Patents

Aluminous sintered compact and its production

Info

Publication number
JPH10212157A
JPH10212157A JP9015680A JP1568097A JPH10212157A JP H10212157 A JPH10212157 A JP H10212157A JP 9015680 A JP9015680 A JP 9015680A JP 1568097 A JP1568097 A JP 1568097A JP H10212157 A JPH10212157 A JP H10212157A
Authority
JP
Japan
Prior art keywords
alumina
terms
crystal
weight
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9015680A
Other languages
Japanese (ja)
Other versions
JP3559413B2 (en
Inventor
Usou Ou
雨叢 王
Kenichi Tajima
健一 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP01568097A priority Critical patent/JP3559413B2/en
Publication of JPH10212157A publication Critical patent/JPH10212157A/en
Application granted granted Critical
Publication of JP3559413B2 publication Critical patent/JP3559413B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an aluminous sintered compact having high toughness and high strength well as superior strength in the temp. range from room temp. to a high temp. of 1,200 deg.C. SOLUTION: A compact based on Al2 O3 and contg. 0.1-5wt.% (expressed in terms of TiO2 ) Ti, 0.5-2wt.% (expressed in terms of MgO) Mg and 0.01-2wt.% (expressed in terms of SiO2 ) Si is subjected to solid soln. formation and deposition treatment by heating to obtain the objective sintered compact of. >=20vol% play Al2 O3 crystals having an aspect ratio of >=5 and <=20μm average major axis size with. a Ti- or Mg-contg. oxide dispersed as crystal grains having <=0.3μm average grain diameter in the grains and grain boundaries of Al2 O3 crystals.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高強度、高靭性に
優れたアルミナ質焼結体に関するもので、特に耐摩耗性
部品、エンジン部品等に使用される高温構造材料として
有用なアルミナ質焼結体とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alumina sintered body having excellent strength and toughness, and particularly to an alumina sintered body useful as a high-temperature structural material used for wear-resistant parts, engine parts and the like. The present invention relates to a binder and a method for producing the same.

【0002】[0002]

【従来の技術】従来から、アルミナ質焼結体は、構造部
材として、耐熱性、耐環境性、強度ともに優れることで
注目されてきた。また、その強度をさらに向上し、特に
その破壊靭性を改善するために、種々の複合化も試みら
れている。例えばアルミナに対して、SiC、Zr
2 、La含有系β−Al2 3 を分散した複合材料が
知られており(特開昭61−122164号、特開昭6
3−139044号、特開昭63−134551号)、
このような複合材料によれば、一般のアルミナ質焼結体
よりも強度および靭性を向上することができることが報
告されている。
2. Description of the Related Art Conventionally, alumina-based sintered bodies have attracted attention as structural members because of their excellent heat resistance, environmental resistance, and strength. Further, in order to further improve the strength, and particularly to improve the fracture toughness, various composites have been attempted. For example, for alumina, SiC, Zr
Composite materials in which O 2 and La-containing β-Al 2 O 3 are dispersed are known (JP-A-61-122164, JP-A-61-122164).
3-139044, JP-A-63-134551),
It has been reported that such a composite material can improve strength and toughness as compared with a general alumina-based sintered body.

【0003】一方、アルミナ質焼結体中に、形状異方性
を有する板状のアルミナ結晶を存在させることにより焼
結体の破壊靭性が改善する試みが提案されている。この
ような組織形成は、アルミナに対して液相を生成するこ
とのできる酸化物系助剤を添加し焼成することによって
行われている(例えば、J.Amer.Cer.Soc.,73(1990)20
77-85 およびJ.Mat.Sci., 28(1993)5953-56 )。
On the other hand, there has been proposed an attempt to improve the fracture toughness of a sintered body by making plate-like alumina crystals having shape anisotropy exist in the alumina-based sintered body. Such a structure is formed by adding an oxide-based auxiliary agent capable of forming a liquid phase to alumina and calcining (for example, J. Amer. Cer. Soc., 73 (1990) ) 20
77-85 and J. Mat. Sci., 28 (1993) 5953-56).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述の
アルミナ質焼結体の強化手法として、SiCを分散させ
た場合、高温酸化雰囲気で使用される場合は化学的安定
性に欠けるという問題があった。また、ZrO2 を分散
した焼結体は、900℃以上の温度では強度特性が急激
に低下するという問題があった。さらに、La系β−A
2 3 を分散させたアルミナ質焼結体は、強度と靭性
がともに高く、高温での強度低下も小さいが、β−Al
2 3 相はヤング率が低いために20体積%以上含まれ
ると焼結体の硬度が低下したり、耐摩耗性が低くなるな
どの問題があった。
However, as a method for strengthening the above-mentioned alumina-based sintered body, there has been a problem that, when SiC is dispersed, when it is used in a high-temperature oxidizing atmosphere, it lacks chemical stability. . Further, the sintered body in which ZrO 2 is dispersed has a problem that the strength characteristics are rapidly lowered at a temperature of 900 ° C. or higher. Furthermore, La-based β-A
The alumina sintered body in which l 2 O 3 is dispersed has high strength and toughness, and a small decrease in strength at high temperatures.
Since the 2 O 3 phase has a low Young's modulus, if it is contained at 20% by volume or more, there are problems such as a decrease in hardness of the sintered body and a decrease in wear resistance.

【0005】一方、板状アルミナを成長させて分散させ
た焼結体では、通常、液相生成助剤として、総量1モル
%以下のSiO2 −MgO、CaO−SiO2 、Na2
O−SiO2 などの添加が検討されているが、板状アル
ミナの成長過程で粒子が異常粒成長し、また、液相生成
助剤が焼結体中の粒界に残存するために、室温と高温で
の強度が著しく低下する欠点があった。
On the other hand, in a sintered body in which plate-like alumina is grown and dispersed, usually, a total of 1 mol% or less of SiO 2 —MgO, CaO—SiO 2 , Na 2
Although addition of O-SiO 2 or the like has been studied, particles grow abnormally during the growth process of plate-like alumina, and a liquid phase forming aid remains at the grain boundaries in the sintered body. And the strength at high temperatures was significantly reduced.

【0006】従って、本発明は、上記の課題を解決し、
室温から1200℃の高温において優れた強度を有する
とともに高靱性を有するアルミナ質焼結体とのその製造
方法を提供することを目的とするものである。
Therefore, the present invention solves the above-mentioned problems,
It is an object of the present invention to provide an alumina-based sintered body having excellent strength at high temperatures from room temperature to 1200 ° C. and high toughness, and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】本発明者等は、破壊靭性
を改善するためにアスペクト比が高い板状アルミナ結晶
を得ると同時に、微粒子分散により強度特性を改善する
方法について検討を重ねた結果、アルミナに対して、T
iO2 、MgOおよびSiO2 を所定比率で配合する
と、これらの成分の相互作用によって焼結過程で液相生
成促進効果が発揮され、アルミナ結晶が部分的板状に生
成されるとともに、Tiおよび/或いはMgがアルミナ
結晶中に固溶させ、当該固溶体を適当な熱処理によりT
i或いはMgを含む酸化物がアルミナ結晶から析出し、
アルミナの粒内および粒界に微細に分散した組織を形成
することにより、高強度と高靭性のアルミナ質セラミッ
クス焼結体が得られることを見いだし、本発明に至っ
た。
Means for Solving the Problems The present inventors have repeatedly studied a method of obtaining plate-like alumina crystals having a high aspect ratio and improving strength characteristics by dispersing fine particles in order to improve fracture toughness. , For alumina, T
When iO 2 , MgO and SiO 2 are blended at a predetermined ratio, the interaction of these components exerts an effect of promoting the formation of a liquid phase in the sintering process, whereby alumina crystals are partially formed into a plate shape, and Ti and / or Alternatively, Mg is dissolved in the alumina crystal and the solid solution is subjected to T
An oxide containing i or Mg precipitates from the alumina crystal,
The present inventors have found that a high-strength and high-toughness alumina-based ceramics sintered body can be obtained by forming a finely dispersed structure in alumina grains and in grain boundaries, and have accomplished the present invention.

【0008】即ち、本発明のアルミナ質焼結体は、Al
2 3 を主体とし、TiをTiO2換算で0.1〜5重
量%、MgをMgO換算で0.05〜2重量%、Siを
SiO2 換算で0.01〜2重量%の割合で含有する焼
結体であって、該焼結体中の20体積%以上をアスペク
ト比5以上、平均長径20μm以下のAl2 3 結晶に
より構成するとともに、Tiおよび/またはMgを含む
酸化物を平均粒径0.3μm以下の結晶粒子として分散
させたことを特徴とするものである。
That is, the alumina-based sintered body of the present invention is made of Al
Mainly 2 O 3 , Ti is 0.1 to 5% by weight in terms of TiO 2 , Mg is 0.05 to 2 % by weight in terms of MgO, and Si is 0.01 to 2 % by weight in terms of SiO 2. A sintered body containing 20% by volume or more of Al 2 O 3 crystals having an aspect ratio of 5 or more and an average major axis of 20 μm or less, and an oxide containing Ti and / or Mg. It is characterized by being dispersed as crystal particles having an average particle size of 0.3 μm or less.

【0009】また、本発明のアルミナ質焼結体の製造方
法によれば、Al2 3 を主体とし、TiをTiO2
算で0.1〜5重量%、MgをMgO換算で0.05〜
2重量%、SiをSiO2 換算で0.01〜2重量%の
割合で含有する成形体を、Tiおよび/またはMgのA
2 3 結晶中への固溶量が多くなる条件で熱処理して
TiおよびMgが固溶したAl2 3 固溶体を作製した
後、前記Tiおよび/またはMgのAl2 3 結晶中へ
の固溶量が少なくなる条件で熱処理して、アスペクト比
5以上、平均長径20μm以下のAl2 3 結晶を20
体積%以上の割合で生成させるとともに、Tiおよび/
またはMgを含む酸化物を平均粒径0.3μm以下の結
晶粒子として析出分散させたことを特徴とするものであ
る。
According to the method for producing an alumina-based sintered body of the present invention, Al 2 O 3 is mainly used, Ti is 0.1 to 5% by weight in terms of TiO 2 , and Mg is 0.05 to 0.05% in terms of MgO. ~
A molded body containing 2 % by weight and Si in an amount of 0.01 to 2% by weight in terms of SiO 2 was prepared by mixing A with Ti and / or Mg.
After heat-treating under the condition that the amount of solid solution in l 2 O 3 crystal becomes large to produce an Al 2 O 3 solid solution in which Ti and Mg are dissolved, the Ti and / or Mg are introduced into Al 2 O 3 crystal. Is heat-treated under the condition that the solid solution amount of the Al 2 O 3 crystal is reduced to an aspect ratio of 5 or more and an average major diameter of 20 μm or less.
Volume% or more, and Ti and / or
Alternatively, an oxide containing Mg is precipitated and dispersed as crystal particles having an average particle diameter of 0.3 μm or less.

【0010】[0010]

【発明の実施の形態】本発明のアルミナ質焼結体は、ア
ルミナを主成分とするものであり、さらに他の成分とし
て、TiをTiO2 換算で0.1〜5重量%、特に0.
5〜3重量%、MgをMgO換算で0.05〜2重量
%、特に0.3〜2重量%、さらにSiをSiO2 換算
で0.01〜2重量%、特に0.03〜1重量%の割合
で含有する。
BEST MODE FOR CARRYING OUT THE INVENTION The alumina-based sintered body of the present invention contains alumina as a main component. As another component, Ti is 0.1 to 5% by weight in terms of TiO 2 , especially 0.1 to 5% by weight.
5 to 3% by weight, Mg is 0.05 to 2 % by weight, especially 0.3 to 2 % by weight in terms of MgO, and Si is 0.01 to 2 % by weight, particularly 0.03 to 1% in terms of SiO2. %.

【0011】Tiは、還元性雰囲気ではTiO2 換算で
6重量%以下、また、酸化雰囲気では同じ原子比率のT
iとMgとはTiO2 およびMgO換算の総量で5重量
%以下の割合でアルミナ結晶の格子中に固溶できる。こ
のような固溶度が高いイオンはアルミナ結晶の 001
方向の成長を抑制する効果が大きく、結晶の高異方性
成長を促進することができる。したがって、Tiの単独
添加あるいはTiとMgの同時添加は板状アルミナ結晶
の成長促進に効果がある。しかし、Ti単独添加では結
晶粒径が粗大に成長する傾向にあるため、Mgと同時に
添加することによって粒成長抑制効果が発揮される。
Ti is less than 6% by weight in terms of TiO 2 in a reducing atmosphere, and the same atomic ratio of T
i and Mg can form a solid solution in the alumina crystal lattice at a ratio of 5% by weight or less in terms of TiO 2 and MgO. Such ions having a high solid solubility are 001 of the alumina crystal.
The effect of suppressing the growth in the direction is great, and the highly anisotropic growth of crystals can be promoted. Therefore, the addition of Ti alone or the simultaneous addition of Ti and Mg is effective in promoting the growth of plate-like alumina crystals. However, when Ti alone is added, the crystal grain size tends to grow coarsely. Therefore, when Ti is added simultaneously with Mg, an effect of suppressing grain growth is exhibited.

【0012】一方、アルミナ結晶の板状成長は、適当な
量と適当な粘度の液相の存在が不可欠である。この条件
を満足させるために、上記のTi成分およびMg成分の
配合に加え、適量のSiO2 の配合が有効である。ま
た、液相を形成するのに必要な量よりもやや多めにSi
2 を配合すると、アルミナとの反応によって少量のム
ライトが生成し、これによりアルミナの粒成長を効果的
に抑制できる。
On the other hand, plate-like growth of alumina crystals requires the presence of a liquid phase having an appropriate amount and an appropriate viscosity. In order to satisfy this condition, it is effective to mix an appropriate amount of SiO 2 in addition to the above-described Ti component and Mg component. Also, the amount of Si slightly larger than necessary to form a liquid phase
When O 2 is blended, a small amount of mullite is generated by the reaction with alumina, whereby the grain growth of alumina can be effectively suppressed.

【0013】従って、上記Ti、Mg、Siのうちのい
ずれか1つの添加量が本発明の組成範囲より少ないと上
記の効果が発揮できず、逆にいずれか1つの添加量が多
いと、板状結晶の成長を抑制したり、粗大な粒界反応相
が生成したりすることにより、焼結体の強度と靭性を低
下させてしまう。
Therefore, if the addition amount of any one of the above Ti, Mg, and Si is less than the composition range of the present invention, the above effects cannot be exerted. The strength and toughness of the sintered body are reduced by suppressing the growth of the crystallites and generating a coarse grain boundary reaction phase.

【0014】また、本発明の焼結体は、上記組成成分を
制御するのに伴い、アスペクト比5以上の板状アルミナ
結晶を全量中20体積%以上、特に30〜90体積%以
上含み、このような板状アルミナ結晶を前記所定量含む
ことにより、クラック進展の偏向により焼結体の靱性を
高めることができる。また、この板状アルミナ結晶は、
その平均長径が20μm以下、特に14μm以下である
ことも重要である。この板状アルミナ結晶の平均長径が
20μmを越えると、この板状アルミナ結晶が破壊源と
なり、焼結体の強度を低下せしめるためである。特に、
長径が30μmを越える結晶は存在しないか、存在して
も2体積%以下であることが望ましい。なお、上記板状
アルミナ結晶以外のアルミナ結晶粒子は、平均長径3μ
m以下の微細な粒子として存在することが高強度化を図
る上で望ましい。
In addition, the sintered body of the present invention contains 20% by volume or more, particularly 30 to 90% by volume or more of the total amount of plate-like alumina crystals having an aspect ratio of 5 or more, along with controlling the above compositional components. By including such a plate-like alumina crystal in the above-mentioned predetermined amount, the toughness of the sintered body can be increased by the deflection of crack propagation. Also, this plate-like alumina crystal,
It is also important that the average major axis is not more than 20 μm, especially not more than 14 μm. If the average major axis of the plate-like alumina crystal exceeds 20 μm, the plate-like alumina crystal serves as a fracture source and lowers the strength of the sintered body. Especially,
It is desirable that no crystal having a major axis exceeding 30 μm is present, or even if it is present, it is 2% by volume or less. The alumina crystal particles other than the plate-like alumina crystal had an average major axis of 3 μm.
It is desirable that the particles exist as fine particles of m or less in order to increase the strength.

【0015】さらに、本発明によれば、かかる焼結体中
には、Ti或いはMgを含む酸化物の結晶粒子が平均粒
径0.3μm以下、特に0.2μm以下の微細な結晶粒
子としてアルミナ結晶粒内或いは粒界に分散して存在す
ることが焼結体の強度改善にとって重要である。ここ
で、Ti或いはMgを含む酸化物とは、Al2 Ti
5、TiO2 、MgAl2 4 などである。このよう
な微細な結晶粒子の存在により、分散結晶粒子の周囲に
応力場を発生させて焼結体の強度向上に寄与する。上記
結晶粒子の平均粒径は特に0.1μm以下であること
が、強化機構をより大きく発揮するために特に好まし
い。
Further, according to the present invention, in such a sintered body, crystal particles of an oxide containing Ti or Mg are formed as fine crystal particles having an average particle diameter of 0.3 μm or less, particularly 0.2 μm or less. It is important to improve the strength of the sintered body if it is present in the crystal grains or dispersed in the grain boundaries. Here, the oxide containing Ti or Mg refers to Al 2 Ti
O 5 , TiO 2 , MgAl 2 O 4 and the like. Due to the presence of such fine crystal grains, a stress field is generated around the dispersed crystal grains, thereby contributing to an improvement in the strength of the sintered body. It is particularly preferable that the average particle size of the crystal particles is 0.1 μm or less, in order to exert a strengthening mechanism more greatly.

【0016】本発明のアルミナ質焼結体を作製するに
は、先ず、アルミナ粉末に、Ti含有化合物、Mg含有
化合物、およびSi含有化合物を添加する。化合物とし
ては、酸化物粉末、金属粉末、有機塩類、無機塩類およ
びその溶液のいずれであってもよい。
To produce the alumina sintered body of the present invention, first, a Ti-containing compound, a Mg-containing compound and a Si-containing compound are added to alumina powder. The compound may be any of oxide powder, metal powder, organic salts, inorganic salts and a solution thereof.

【0017】これらの添加量は、アルミナ粉末中に含ま
れる不純物も含めた総量で、TiをTiO2 換算で0.
1〜5重量%、特に0.5〜3重量%、MgをMgO換
算で0.05〜2重量%、特に0.3〜2重量%、Si
をSiO2 換算で0.01〜2重量%、特に0.03〜
1重量%の割合で含むように調製される。
The amount of these additives is the total amount including impurities contained in the alumina powder, and is equivalent to 0.1% of Ti in terms of TiO 2 .
1 to 5% by weight, especially 0.5 to 3% by weight, Mg is 0.05 to 2% by weight in terms of MgO, particularly 0.3 to 2% by weight, Si
From 0.01 to 2 % by weight, particularly from 0.03 to
It is prepared to contain 1% by weight.

【0018】上記のようにして秤量混合された混合物を
所望の成形手段、例えば、金型プレス、冷間静水圧プレ
ス、射出成形、押出し成形、鋳込成形、シート状成形等
により任意の形状に成形する。
The mixture weighed and mixed as described above is formed into an arbitrary shape by desired molding means, for example, a die press, a cold isostatic press, injection molding, extrusion molding, cast molding, sheet-like molding, or the like. Molding.

【0019】次に、この成形体を公知の焼結法、例え
ば、ホットプレス法、常圧焼成法、ガス加圧焼成法、マ
イクロ波加熱焼成法、さらにこれらの焼成後に熱間静水
圧処理(HIP)処理、およびガラスシール後(HI
P)処理する等、種々の焼結手法によって焼結して、所
定のアスペクト比と粒径のアルミナ組織を有し、かつT
i及び/或いはMgを固溶した対理論密度95%以上の
緻密体を得る。
Next, the molded body is subjected to a known sintering method, for example, a hot pressing method, a normal pressure sintering method, a gas pressure sintering method, a microwave heating sintering method, and a hot isostatic pressure treatment after sintering. HIP) treatment and after glass sealing (HI
P) by sintering by various sintering methods such as treatment to have an alumina structure of a predetermined aspect ratio and particle size, and
A dense body having a solid solution of i and / or Mg and a theoretical density of 95% or more is obtained.

【0020】本発明によれば、この焼結過程で、まず、
TiおよびMgがアルミナ結晶中に固溶したアルミナ固
溶体を作製する。この固溶体の作製は、上記成形体を水
素などの還元雰囲気で焼成することによりTiを主にア
ルミナ中に固溶させることができるが、大気などの酸化
性雰囲気で焼成すると、TiおよびMgを、ほぼ同原子
比でアルミナ結晶中に固溶させることができる。また、
この固溶体化処理時の焼成温度は、原料と添加物の量に
より適宜調整できるが、特に1350〜1650℃の範
囲が好適である。
According to the present invention, in this sintering process, first,
An alumina solid solution in which Ti and Mg are dissolved in alumina crystals is prepared. In the production of this solid solution, Ti can be mainly dissolved in alumina by sintering the molded body in a reducing atmosphere such as hydrogen, but when sintering in an oxidizing atmosphere such as air, Ti and Mg are It can be dissolved in alumina crystals at almost the same atomic ratio. Also,
The firing temperature during the solid solution treatment can be appropriately adjusted depending on the amounts of the raw materials and the additives, but a range of 1350 to 1650 ° C. is particularly preferable.

【0021】次に、上記の固溶体化処理に引き続き、T
iあるいはMgを含む酸化物の微細な結晶粒子の析出処
理を行う。この析出処理は、前記Tiおよび/またはM
gのAl2 3 結晶中への固溶量が少なくなる条件で加
熱処理する。この析出処理においては、前記固溶体化処
理時の温度より低い温度で加熱することも可能である
が、析出量を増やすためには、Tiを主に固溶した焼結
体を大気などの酸化性雰囲気で処理するとAl2 TiO
5 やTiO2 を析出させることができ、TiとMgを等
量に固溶した焼結体を還元性雰囲気で処理するとMgA
2 4 を析出させることができる。また、析出処理時
の温度は析出速度および析出粒子と母相であるアルミナ
結晶の粒成長を抑制する見地から、1000℃〜165
0℃の範囲が好適である。
Next, following the above solid solution treatment, T
A precipitation treatment of fine crystal particles of an oxide containing i or Mg is performed. This precipitation treatment is performed by using the Ti and / or M
Heat treatment is performed under the condition that the amount of g dissolved in the Al 2 O 3 crystal becomes small. In this precipitation treatment, it is possible to heat at a temperature lower than the temperature at the time of the solid solution treatment. Al 2 TiO
5 and TiO 2 can be precipitated, and when a sintered body in which Ti and Mg are dissolved in an equal amount is treated in a reducing atmosphere, MgA
l 2 O 4 can be precipitated. Further, the temperature during the precipitation treatment is 1000 ° C. to 165 ° C. from the viewpoint of suppressing the deposition rate and the grain growth of the precipitated particles and the alumina crystal which is the parent phase.
A range of 0 ° C. is preferred.

【0022】このような析出処理により、固溶していた
Ti或いはMgがアルミナ結晶から微細な酸化物の結晶
粒子として析出させ、アルミナ結晶の粒内或いは粒界に
分散させることができる。
By such a precipitation treatment, solid solution Ti or Mg can be precipitated as fine oxide crystal particles from the alumina crystal and dispersed in the alumina crystal grains or at the grain boundaries.

【0023】[0023]

【実施例】平均粒径0.5μmのアルミナ粉末、平均粒
径0.7μmの酸化チタン(TiO2 )粉末、平均粒径
が0.6μmの水酸化マグネシウム(Mg(O
H)2 )、さらにSiO2 源としてテトラエチルシリケ
ートを用い、Ti、MgおよびSi量の各総量(不純物
も含む)が表1に示す組成になるように秤量混合して混
合粉末を得た。そして、この混合粉末を1t/cm2
圧力で金型成形し、さらに3t/cm2 の圧力で静水圧
処理を加えて成形体を作製した。そして、この成形体を
1500℃、2時間で表1の雰囲気中で熱処理して固溶
体を形成した後、表1に示した温度、時間、雰囲気中で
析出処理を施した。
EXAMPLE Alumina powder having an average particle size of 0.5 μm, titanium oxide (TiO 2 ) powder having an average particle size of 0.7 μm, and magnesium hydroxide (Mg (O
H) 2 ) and further using tetraethyl silicate as a SiO 2 source, and weighed and mixed such that the total amount of Ti, Mg and Si (including impurities) had the composition shown in Table 1 to obtain a mixed powder. Then, this mixed powder was subjected to die molding at a pressure of 1 t / cm 2 , and further subjected to hydrostatic pressure treatment at a pressure of 3 t / cm 2 to produce a molded body. Then, the formed body was heat-treated at 1500 ° C. for 2 hours in the atmosphere shown in Table 1 to form a solid solution, and then subjected to a precipitation treatment in the atmosphere shown in Table 1 at the temperature, time and atmosphere shown in Table 1.

【0024】得られた各焼結体に対して、X線回折測定
を行い結晶相の同定を行い、Al23 以外の結晶相に
ついて表2に示した。また、焼結体断面を鏡面加工し、
エッチング後の電子顕微鏡写真に対して画像解析を行
い、観察されるアスペクト比5以上のアルミナ結晶の全
体に対する面積比率を求めこれを体積比率とみなした。
また、観察された板状アルミナ結晶の平均長径、および
アルミナ結晶粒内或いは粒界に析出した微細結晶粒子の
粒径を電子顕微鏡写真より求め、その結果を表2に示
す。
X-ray diffraction measurement was performed on each of the obtained sintered bodies to identify a crystal phase. Table 2 shows crystal phases other than Al 2 O 3 . Also, the sintered body section is mirror-finished,
Image analysis was performed on the electron micrograph after etching, and the area ratio with respect to the whole alumina crystal having an aspect ratio of 5 or more was determined, and this was regarded as the volume ratio.
Further, the observed average major axis of the plate-like alumina crystals and the particle diameter of the fine crystal particles precipitated in the alumina crystal grains or at the grain boundaries were obtained from electron micrographs, and the results are shown in Table 2.

【0025】また、機械的特性として、JISR160
1に基づく室温および1200℃での4点曲げ強度を測
定した。また、焼結体鏡面のビッカース硬度を測定し、
圧痕法により破壊靭性を算出した。これらの特性測定の
結果も表2に示した。
Further, as mechanical properties, JISR160
The four-point bending strength at room temperature and 1200 ° C. based on No. 1 was measured. Also, measure the Vickers hardness of the sintered body mirror surface,
The fracture toughness was calculated by the indentation method. Table 2 also shows the results of these characteristic measurements.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】表1、表2より、本発明に基づいて得られ
た焼結体は、室温曲げ強度は560MPa以上、120
0℃強度430MPa以上、破壊靱性4.7MPa・m
1/2以上、ビッカース硬度17GPa以上の優れた特性
を示した。
According to Tables 1 and 2, the sintered body obtained according to the present invention has a room temperature bending strength of 560 MPa or more,
0 ° C strength of 430 MPa or more, fracture toughness of 4.7 MPa · m
It exhibited excellent properties of 1/2 or more and Vickers hardness of 17 GPa or more.

【0029】これに対して、Ti量が少ない試料No.1
および析出処理を施していない試料No.4、15では析
出相が認められず、本発明の焼結体より機械的特性が低
いものであった。
On the other hand, Sample No. 1 having a small amount of Ti
In Samples Nos. 4 and 15 which were not subjected to the precipitation treatment, no precipitation phase was observed, and the mechanical properties were lower than those of the sintered body of the present invention.

【0030】また、析出処理温度が高い試料No.9とT
i量が5重量%よりも多い試料No.11では、平均粒径
が0.3μmを越えるチタン酸アルミニウムが多量に生
成していることによって機械的特性が低い。
In addition, Sample No. 9 and T
Sample No. 11 having an i content of more than 5% by weight has low mechanical properties due to a large amount of aluminum titanate having an average particle size exceeding 0.3 μm.

【0031】また、Mg量が0.05重量%よりも少な
い試料No.12では、粒成長がみられ板状アルミナ結晶
の平均長径が20μmを越え、強度、靱性、硬度がとも
に低かった。Mg量が2重量%を越える試料No.17で
も板状アルミナ結晶の割合が少なく靱性の低いものであ
った。
In Sample No. 12 in which the Mg content was less than 0.05% by weight, grain growth was observed, and the average major axis of the plate-like alumina crystal exceeded 20 μm, and all of the strength, toughness, and hardness were low. Even in Sample No. 17 in which the Mg content exceeded 2% by weight, the ratio of plate-like alumina crystals was small and the toughness was low.

【0032】さらに、SiO2 量が0.01重量%より
も少ない試料No.18、また、SiO2 量が2重量%を
越える試料No.22では、いずれも板状アルミナ結晶の
生成が少なく靱性が低かった。
Furthermore, SiO 2 amount is less than 0.01 wt% the sample No.18, also in Sample No.22 SiO 2 amount exceeds 2 wt%, produced less toughness of both the plate-like alumina crystals Was low.

【0033】特に、本発明品は、TiのTiO2 換算量
が0.5〜3重量%、MgのMgO換算量が0.3〜2
重量%、SiのSiO2 換算量が0.03〜1重量%で
あり、板状Al2 3 結晶の体積分率が30〜90体積
%、微細析出結晶粒子径が0.2μm以下の試料は、室
温強度570MPa以上、1200℃強度440MPa
以上、破壊靱性5.0MPa・m1/2 以上、ビッカース
硬度17.5GPa以上が達成された。
Particularly, the product of the present invention has a Ti content of 0.5 to 3% by weight in terms of TiO 2 and a Mg content of 0.3 to 2 in terms of MgO.
% By weight, the amount of Si in terms of SiO 2 is 0.03 to 1% by weight, the volume fraction of plate-like Al 2 O 3 crystals is 30 to 90% by volume, and the fine precipitated crystal particle diameter is 0.2 μm or less. Is room temperature strength of 570 MPa or more, 1200 ° C. strength of 440 MPa
As described above, fracture toughness of 5.0 MPa · m 1/2 or more and Vickers hardness of 17.5 GPa or more were achieved.

【0034】[0034]

【発明の効果】以上詳述した通り、本発明は、高アスペ
クト比の板状アルミナ結晶を生成させるとともに、アル
ミナ結晶の粒内あるいは粒界にTi或いはMgを含む微
細な酸化物の結晶粒子を分散させることにより、室温か
ら高温まで高い強度と靱性を有する焼結体を得ることが
できる。
As described above in detail, the present invention not only produces plate-like alumina crystals having a high aspect ratio but also removes fine oxide crystal particles containing Ti or Mg within the alumina crystals or at the grain boundaries. By dispersing, a sintered body having high strength and toughness from room temperature to high temperature can be obtained.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】Al2 3 を主体とし、TiをTiO2
算で0.1〜5重量%、MgをMgO換算で0.05〜
2重量%、SiをSiO2 換算で0.01〜2重量%の
割合で含有する焼結体であって、該焼結体中の20体積
%以上をアスペクト比5以上、平均長径20μm以下の
Al2 3 結晶により構成するとともに、Tiおよび/
またはMgを含む酸化物を平均粒径0.3μm以下の結
晶粒子として分散させたことを特徴とするアルミナ質焼
結体。
(1) Mainly composed of Al 2 O 3 , Ti is 0.1 to 5% by weight in terms of TiO 2 , and Mg is 0.05 to 5% in terms of MgO.
A sintered body containing 2 % by weight and Si in a ratio of 0.01 to 2% by weight in terms of SiO 2 , wherein 20% by volume or more of the sintered body has an aspect ratio of 5 or more and an average major axis of 20 μm or less. It is composed of Al 2 O 3 crystal and has Ti and / or
Alternatively, an alumina-based sintered body characterized in that an oxide containing Mg is dispersed as crystal particles having an average particle size of 0.3 μm or less.
【請求項2】Al2 3 を主体とし、TiをTiO2
算で0.1〜5重量%、MgをMgO換算で0.05〜
2重量%、SiをSiO2 換算で0.01〜2重量%の
割合で含有する成形体を、Tiおよび/またはMgのA
2 3 結晶中への固溶量が多くなる条件で熱処理して
TiおよびMgが固溶したAl2 3 固溶体を作製した
後、前記Tiおよび/またはMgのAl2 3 結晶中へ
の固溶量が少なくなる条件で熱処理して、アスペクト比
5以上、平均長径20μm以下のAl2 3 結晶を20
体積%以上の割合で生成させるとともに、Tiおよび/
またはMgを含む酸化物を平均粒径0.3μm以下の結
晶粒子として析出分散させたことを特徴とするアルミナ
質焼結体の製造方法。
2. A composition mainly comprising Al 2 O 3 , Ti being 0.1 to 5% by weight in terms of TiO 2 , and Mg being 0.05 to 5% in terms of MgO.
A molded body containing 2 % by weight and Si in an amount of 0.01 to 2% by weight in terms of SiO 2 was prepared by mixing A with Ti and / or Mg.
After heat-treating under the condition that the amount of solid solution in l 2 O 3 crystal becomes large to produce an Al 2 O 3 solid solution in which Ti and Mg are dissolved, the Ti and / or Mg are introduced into Al 2 O 3 crystal. Is heat-treated under the condition that the solid solution amount of the Al 2 O 3 crystal is reduced to an aspect ratio of 5 or more and an average major diameter of 20 μm or less.
Volume% or more, and Ti and / or
Alternatively, a method for producing an alumina-based sintered body, wherein an oxide containing Mg is precipitated and dispersed as crystal particles having an average particle size of 0.3 μm or less.
JP01568097A 1997-01-29 1997-01-29 Alumina sintered body and method for producing the same Expired - Fee Related JP3559413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01568097A JP3559413B2 (en) 1997-01-29 1997-01-29 Alumina sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01568097A JP3559413B2 (en) 1997-01-29 1997-01-29 Alumina sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH10212157A true JPH10212157A (en) 1998-08-11
JP3559413B2 JP3559413B2 (en) 2004-09-02

Family

ID=11895475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01568097A Expired - Fee Related JP3559413B2 (en) 1997-01-29 1997-01-29 Alumina sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP3559413B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140044963A (en) * 2012-09-07 2014-04-16 타이헤이요 세멘트 가부시키가이샤 Alumina-based sintered body and the preparation method thereof
JP2014169203A (en) * 2013-03-04 2014-09-18 Taiheiyo Cement Corp Alumina-based sintered compact, and production method thereof
JP2014214064A (en) * 2013-04-26 2014-11-17 京セラ株式会社 Alumina-based sintered compact and voltage endurance member using the same
CN114180980A (en) * 2021-12-28 2022-03-15 德阳三环科技有限公司 Self-toughening 99 aluminum oxide ceramic substrate and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140044963A (en) * 2012-09-07 2014-04-16 타이헤이요 세멘트 가부시키가이샤 Alumina-based sintered body and the preparation method thereof
JP2014169203A (en) * 2013-03-04 2014-09-18 Taiheiyo Cement Corp Alumina-based sintered compact, and production method thereof
JP2014214064A (en) * 2013-04-26 2014-11-17 京セラ株式会社 Alumina-based sintered compact and voltage endurance member using the same
CN114180980A (en) * 2021-12-28 2022-03-15 德阳三环科技有限公司 Self-toughening 99 aluminum oxide ceramic substrate and preparation method thereof
CN114180980B (en) * 2021-12-28 2023-06-23 德阳三环科技有限公司 Self-toughening 99 alumina ceramic substrate and preparation method thereof

Also Published As

Publication number Publication date
JP3559413B2 (en) 2004-09-02

Similar Documents

Publication Publication Date Title
EP1510509B1 (en) Alumina/zirconia ceramics and method of producing the same
JPH02503192A (en) Self-reinforced silicon nitride ceramic with high fracture toughness and its manufacturing method
JPH06100370A (en) Silicon nitride sintered compact and its production
JP2507479B2 (en) SiC-Al Lower 2 O Lower 3 Composite Sintered Body and Manufacturing Method Thereof
JP2632218B2 (en) Manufacturing method of ceramic sintered body
JP2005075659A (en) Ceramic sintered compact, method for producing the same, and biomaterial
JP3559413B2 (en) Alumina sintered body and method for producing the same
JP3777031B2 (en) High wear-resistant alumina sintered body and manufacturing method thereof
JPH0987008A (en) Aluminous sintered compact and its production
JP3488350B2 (en) Alumina sintered body and method for producing the same
JPH08733B2 (en) Heat shock resistant silicon nitride sintered body and method for producing the same
JP2981042B2 (en) Sintered material based on Si3N4 and method for producing the same
JP3145597B2 (en) Alumina sintered body and method for producing the same
US5637540A (en) Sintered silicon nitride of high toughness, strength and reliability
JPH0826815A (en) Rare earth compound oxide-based sintered compact and its production
JP3121996B2 (en) Alumina sintered body
JPH0987009A (en) Alumina-mullite combined sintered compact and its production
JPH0526749B2 (en)
JP3137405B2 (en) Manufacturing method of silicon nitride based ceramics
JPH08208317A (en) Alumina sintered body and production thereof
JP3152853B2 (en) Alumina sintered body and method for producing the same
JP3101972B2 (en) Alumina sintered body and method for producing the same
JP3340025B2 (en) Alumina sintered body and method for producing the same
JP4601303B2 (en) Alumina / zirconia ceramics and process for producing the same
JPS63277570A (en) Production of sintered aluminum nitride having high thermal conductivity

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040521

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees