KR20140034209A - 화상 복호 방법, 화상 부호화 방법, 화상 복호 장치, 화상 부호화 장치 및 화상 부호화 복호 장치 - Google Patents
화상 복호 방법, 화상 부호화 방법, 화상 복호 장치, 화상 부호화 장치 및 화상 부호화 복호 장치 Download PDFInfo
- Publication number
- KR20140034209A KR20140034209A KR1020137032467A KR20137032467A KR20140034209A KR 20140034209 A KR20140034209 A KR 20140034209A KR 1020137032467 A KR1020137032467 A KR 1020137032467A KR 20137032467 A KR20137032467 A KR 20137032467A KR 20140034209 A KR20140034209 A KR 20140034209A
- Authority
- KR
- South Korea
- Prior art keywords
- context
- flag
- type
- block
- cbf
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/20—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using video object coding
- H04N19/21—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using video object coding with binary alpha-plane coding for video objects, e.g. context-based arithmetic encoding [CAE]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/189—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding
- H04N19/196—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding being specially adapted for the computation of encoding parameters, e.g. by averaging previously computed encoding parameters
- H04N19/197—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding being specially adapted for the computation of encoding parameters, e.g. by averaging previously computed encoding parameters including determination of the initial value of an encoding parameter
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/13—Adaptive entropy coding, e.g. adaptive variable length coding [AVLC] or context adaptive binary arithmetic coding [CABAC]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/103—Selection of coding mode or of prediction mode
- H04N19/105—Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/134—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
- H04N19/157—Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/17—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
- H04N19/176—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/186—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a colour or a chrominance component
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/70—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/90—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
- H04N19/91—Entropy coding, e.g. variable length coding [VLC] or arithmetic coding
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Computing Systems (AREA)
- Theoretical Computer Science (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
Abstract
본 발명의 일 양태에 관련된 화상 복호 방법은, 복수의 컨텍스트 중, 처리 대상 블록에 사용하는 컨텍스트를 결정하는 컨텍스트 제어 단계(S204)를 포함하고, 상기 컨텍스트 제어 단계(S204)에서는, 제어 파라미터의 신호 종별이 제3 종별인 경우에, 상측 블록의 제어 파라미터를 이용하지 않고, 또한, 상기 처리 대상 블록의 제어 파라미터가 속하는 데이터 단위의 계층의 깊이를 이용하는 제3 조건을 이용하여 상기 컨텍스트를 결정하고(S213), 상기 제3 종별은, “merge_flag”와, “ref_idx_l0” 또는 “ref_idx_l1”과, “inter_pred_flag”와, “mvd_l0” 또는 “mvd_l1”과, “intra_chroma_pred_mode”와, “cbf_luma”, “cbf_cb” 또는 “cbf_cr” 중 1 이상이다.
Description
본 발명은, 화상 복호 방법, 화상 부호화 방법, 화상 복호 장치, 화상 부호화 장치 및 화상 부호화 복호 장치에 관한 것으로, 특히, 산술 부호화 또는 산술 복호를 이용하는 화상 복호 방법, 화상 부호화 방법, 화상 복호 장치, 화상 부호화 장치 및 화상 부호화 복호 장치에 관한 것이다.
자연 화상의 화상 신호는 통계적인 편향을 가지며 그 편향은 변동적인 행동을 한다. 통계의 편향의 변동성을 이용한 엔트로피 부호화 방식의 하나로 Context-Based Adaptive Binary Arithmetic Coding (CABAC)가 존재한다(비특허 문헌 1을 참조). 이 CABAC 방식은 ITU-T/ISOIEC standard for video coding, H.264/AVC 방식으로 채용되어 있다.
이하, CABAC 방식에서 이용되는 용어의 의미를 설명한다.
(1) “Context-Based Adaptive”(컨텍스트에 의거하여 적응)는, 부호화 및 복호 방법을, 통계의 편향의 변동에 적응시키는 것이다. 즉, “Context-Based Adaptive”는, 어느 심볼을 부호화 또는 복호하는 경우에, 주위의 조건의 발생 사상에 맞추어 당해 심볼의 발생 확률로서 적절한 확률을 예측하는 것으로도 말할 수 있다. 예를 들면, 부호화에 있어서는, 어느 심볼 S의 각 값의 발생 확률 p(x)를 결정하는 경우에, 실제로 일어난 사상 또는 사상의 열 F(z)를 조건으로 한 조건부 발생 확률을 이용한다.
(2) “Binary”(바이너리)는, 심볼을 바이너리 배열로 표현하는 것을 의미한다. 다치로 표시되는 심볼에 대해서는, 일단 bin string라고 불리는 2치 배열로 변형한다. 그리고 배열 요소의 개개에 대해서 예측 확률(조건부 확률)을 전환해 이용하면서, 2개의 값의 사상의 어느 쪽이 발생했는지를 비트열화한다. 이것에 의해 신호 종별의 단위보다 상세한 단위(바이너리 요소 단위)로 값의 확률을 관리(초기화 및 갱신)할 수 있다(비특허 문헌 1의 Fig.2 등을 참조).
(3) “arithmetic”(산술)이란, 상기 서술한 비트열 생성 처리가, 표에 의한 대응이 아닌 계산에 의해 출력된다는 것이다. H.263, MPEG-4 및 H.264에서의 가변길이 부호표를 이용하는 부호화 방식에서는, 발생 확률이 0.5(50%)보다 높은 발생 확률을 가지는 심볼이어도, 심볼이 취할 수 있는 값의 개개를, 1개의 바이너리열(비트열)에 대응시킬 필요가 있다. 따라서, 가장 확률이 높은 값에 대해서도 최단이어도 1개의 심볼에 1비트를 대응 짓지 않으면 안 된다. 이에 반해 산술 부호화는, 사상이 높은 확률로 발생하는 것을 정수값 1비트 이하로 표현할 수 있다. 예를 들면, 1바이너리째의 값이 「0」이 될 발생 확률이 0.9(90%)를 넘는 신호 종별이 있고, 사상으로서 1바이너리째의 값이 N회 연속해서 「0」인 경우, 개개의 값 「0」에 대해 1비트의 데이터를 N회 출력할 필요가 없어진다.
Detlev Marpe, et. al., "Context-Based Adaptive Binary Arithmetic Coding in the H.264/AVC Video Compression Standard", IEEE Transaction on circuits and systems for video technology, Vol. 13, No.7, July 2003.
Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11 5th Meeting: Geneva, CH, 16-23 March, 2011JCTVC-E603, ver.7 "WD3: Working Draft 3 of High-Efficiency Video Coding"http://phenix.int-evry.fr/jct/doc_end_user/documents/5_Geneva/wg11/JCTVC-E603-v7.zip
Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11 4th Meeting: Daegu, KR, 20-28 January, 2011, "Common test conditions and software reference configurations", JCTVC-E700
Gisle Bjontegaard, "Improvements of the BD-PSNR model", ITU-T SG16 Q.6 Document,VCEG-AI11, Berlin, July 2008
그러나, 이러한 화상 부호화 방법 및 화상 복호 방법에 있어서는, 메모리 사용량(사용하는 메모리 용량)의 저감이 요망되고 있다.
그래서, 본 발명은, 메모리 사용량을 삭감할 수 있는 화상 부호화 방법 또는 화상 복호 방법을 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위해, 본 발명의 일 양태에 관련된 화상 복호 방법은, 산술 복호를 이용하는 화상 복호 방법으로서, 복수의 컨텍스트 중, 처리 대상 블록에 사용하는 컨텍스트를 결정하는 컨텍스트 제어 단계와, 제어 파라미터가 산술 부호화됨으로써 얻어진, 상기 처리 대상 블록에 대응하는 비트열을, 결정된 상기 컨텍스트를 이용하여 산술 복호함으로써 2치 배열을 복원하는 산술 복호 단계와, 상기 2치 배열을 다치화함으로써 상기 제어 파라미터를 복원하는 다치화 단계를 포함하고, 상기 컨텍스트 제어 단계에서는, 상기 처리 대상 블록의 제어 파라미터의 신호 종별을 판정하고, 상기 신호 종별이 제1 종별인 경우에, 상기 처리 대상 블록에 인접하는 좌측 블록 및 상측 블록의 복호가 끝난 제어 파라미터를 함께 이용하는 제1 조건을 이용하여 상기 컨텍스트를 결정하고, 상기 신호 종별이, 상기 제1 종별과 상이한 제2 종별인 경우에, 상기 상측 블록의 복호가 끝난 제어 파라미터를 이용하지 않는 제2 조건을 이용하여 상기 컨텍스트를 결정하고, 상기 신호 종별이, 상기 제1 종별 및 상기 제2 종별과 상이한 제3 종별인 경우에, 상기 상측 블록의 복호가 끝난 제어 파라미터를 이용하지 않고, 또한, 상기 처리 대상브락의 제어 파라미터가 속하는 데이터 단위의 계층의 깊이를 이용하는 제3 조건을 이용하여 상기 컨텍스트를 결정하며, 상기 제1 종별은, “split_coding_unit_flag”, 또는, “skip_flag”이며, 상기 제2 종별은, “merge_flag”와, “ref_idx_l0” 또는 “ref_idx_l1”과, “inter_pred_flag”와, “mvd_l0” 또는 “mvd_l1”과, “intra_chroma_pred_mode”와, “cbf_luma”, “cbf_cb” 또는 “cbf_cr” 중 1개 이상이며, 상기 제3 종별은, “merge_flag”와, “ref_idx_l0” 또는 “ref_idx_l1”과, “inter_pred_flag”와, “mvd_l0” 또는 “mvd_l1”과, “intra_chroma_pred_mode”와, “cbf_luma”, “cbf_cb” 또는 “cbf_cr” 중 상기 제2 종별 이외의 신호 종별이다.
본 발명은, 메모리 사용량을 삭감할 수 있는 화상 부호화 방법 또는 화상 복호 방법을 제공할 수 있다.
도 1은, 본 발명의 실시의 형태 1에 관련된 화상 부호화 장치의 기능 블록도이다.
도 2는, 본 발명의 실시의 형태 1에 관련된 가변길이 부호화부의 기능 블록도이다.
도 3은, 본 발명의 실시의 형태 1에 관련된 제어 파라미터의 컨텍스트 모델에 관한 표이다.
도 4는, 본 발명의 실시의 형태 1에 관련된 산술 부호화 방법을 나타내는 플로우도이다.
도 5는, 본 발명의 실시의 형태 2에 관련된 화상 복호 장치의 기능 블록도이다.
도 6은, 본 발명의 실시의 형태 2에 관련된 가변길이 복호부의 기능 블록도이다.
도 7은, 본 발명의 실시의 형태 2에 관련된 산술 복호 방법을 나타내는 플로우도이다.
도 8은, 본 발명의 실시의 형태 2에 관련된 산술 복호 방법의 변형예를 나타내는 플로우도이다.
도 9a는, 본 발명의 실시의 형태 2에 관련된 맵핑 정보와 컨텍스트 인덱스의 대응을 설명하기 위한 도이다.
도 9b는, 본 발명의 실시의 형태 2에 관련된 HEVC에 있어서의 분할 블록(트리 구조)을 나타내는 도이다.
도 10은, 본 발명의 실시의 형태 2에 관련된 다계층 블록 구조를 설명하기 위한 도이다.
도 11은, 본 발명의 실시의 형태 3에 관련된 split_coding_unit_flag의 산술 복호 방법을 나타내는 표이다.
도 12a는, 본 발명의 실시의 형태 3에 관련된 split_coding_unit_flag에 대한 검증 결과를 나타내는 표이다.
도 12b는, 본 발명의 실시의 형태 3에 관련된 split_coding_unit_flag에 대한 검증 결과를 나타내는 표이다.
도 13은, 본 발명의 실시의 형태 3에 관련된 skip_flag의 산술 복호 방법을 나타내는 표이다.
도 14a는, 본 발명의 실시의 형태 3에 관련된 skip_flag에 대한 검증 결과를 나타내는 표이다.
도 14b는, 본 발명의 실시의 형태 3에 관련된 skip_flag에 대한 검증 결과를 나타내는 표이다.
도 15는, 본 발명의 실시의 형태 3에 관련된 merge_flag의 산술 복호 방법을 나타내는 표이다.
도 16a는, 본 발명의 실시의 형태 3에 관련된 merge_flag에 대한 검증 결과를 나타내는 표이다.
도 16b는, 본 발명의 실시의 형태 3에 관련된 merge_flag에 대한 검증 결과를 나타내는 표이다.
도 17은, 본 발명의 실시의 형태 3에 관련된 ref_idx의 산술 복호 방법을 나타내는 표이다.
도 18a는, 본 발명의 실시의 형태 3에 관련된 ref_idx에 대한 검증 결과를 나타내는 표이다.
도 18b는, 본 발명의 실시의 형태 3에 관련된 ref_idx에 대한 검증 결과를 나타내는 표이다.
도 18c는, 본 발명의 실시의 형태 3에 관련된, ref_idx의 컨텍스트 모델에 관한 표이다.
도 18d는, 본 발명의 실시의 형태 3에 관련된, ref_idx의 컨텍스트 모델에 관한 표이다.
도 19는, 본 발명의 실시의 형태 3에 관련된 inter_pred_flag의 산술 복호 방법을 나타내는 표이다.
도 20a는, 본 발명의 실시의 형태 3에 관련된 inter_pred_flag에 대한 검증 결과를 나타내는 표이다.
도 20b는, 본 발명의 실시의 형태 3에 관련된 inter_pred_flag에 대한 검증 결과를 나타내는 표이다.
도 21은, 본 발명의 실시의 형태 3에 관련된 mvd의 산술 복호 방법을 나타내는 표이다.
도 22a는, 본 발명의 실시의 형태 3에 관련된 mvd에 대한 검증 결과를 나타내는 표이다.
도 22b는, 본 발명의 실시의 형태 3에 관련된 mvd에 대한 검증 결과를 나타내는 표이다.
도 22c는, 본 발명의 실시의 형태 3에 관련된, mvd의 컨텍스트 모델에 관한 표이다.
도 22d는, 본 발명의 실시의 형태 3에 관련된, mvd의 컨텍스트 모델에 관한 표이다.
도 23a는, 본 발명의 실시의 형태 3에 관련된 no_residual_data_flag의 산술 복호 방법을 나타내는 표이다.
도 23b는, 본 발명의 실시의 형태 3에 관련된 no_residual_data_flag의 신택스를 나타내는 표이다.
도 24a는, 본 발명의 실시의 형태 3에 관련된 no_residual_data_flag에 대한 검증 결과를 나타내는 표이다.
도 24b는, 본 발명의 실시의 형태 3에 관련된 no_residual_data_flag에 대한 검증 결과를 나타내는 표이다.
도 25a는, 본 발명의 실시의 형태 3에 관련된 intra_chroma_pred_mode의 산술 복호 방법을 나타내는 표이다.
도 25b는, 본 발명의 실시의 형태 3에 관련된 intra_chroma_pred_mode에 따른 IntraPredModeC의 결정 방법을 나타내는 표이다.
도 26a는, 본 발명의 실시의 형태 3에 관련된 intra_chroma_pred_mode에 대한 검증 결과를 나타내는 표이다.
도 26b는, 본 발명의 실시의 형태 3에 관련된 intra_chroma_pred_mode에 대한 검증 결과를 나타내는 표이다.
도 27은, 본 발명의 실시의 형태 3에 관련된 cbf_luma(cr, cb)의 산술 복호 방법을 나타내는 표이다.
도 28a는, 본 발명의 실시의 형태 3에 관련된 cbf_luma(cr, cb)에 대한 검증 결과를 나타내는 표이다.
도 28b는, 본 발명의 실시의 형태 3에 관련된 cbf_luma(cr, cb)에 대한 검증 결과를 나타내는 표이다.
도 29a는, 본 발명의 실시의 형태 3에 관련된 검증 결과를 나타내는 그래프이다.
도 29b는, 본 발명의 실시의 형태 3에 관련된 검증 결과를 나타내는 그래프이다.
도 30a는, 본 발명의 실시의 형태 3에 관련된 검증 결과를 나타내는 그래프이다.
도 30b는, 본 발명의 실시의 형태 3에 관련된 검증 결과를 나타내는 그래프이다.
도 31a는, 본 발명의 실시의 형태 3에 관련된 검증 결과를 나타내는 그래프이다.
도 31b는, 본 발명의 실시의 형태 3에 관련된 검증 결과를 나타내는 그래프이다.
도 32a는, 본 발명의 실시의 형태 3에 관련된 검증 결과를 나타내는 그래프이다.
도 32b는, 본 발명의 실시의 형태 3에 관련된 검증 결과를 나타내는 그래프이다.
도 33a는, 본 발명의 실시의 형태 3에 관련된 파라미터 세트의 일례를 나타내는 표이다.
도 33b는, 본 발명의 실시의 형태 3에 관련된 검증 결과를 나타내는 표이다.
도 34a는, 본 발명의 실시의 형태 3에 관련된 파라미터 세트의 일례를 나타내는 표이다.
도 34b는, 본 발명의 실시의 형태 3에 관련된 검증 결과를 나타내는 표이다.
도 35는, 본 발명의 실시의 형태 3에 관련된 산술 부호화 방법을 나타내는 플로우도이다.
도 36은, 본 발명의 실시의 형태 3에 관련된 산술 복호 방법을 나타내는 플로우도이다.
도 37은, 본 발명의 실시의 형태에 관련된, 인접 2블록의 대응하는 제어 파라미터의 값을 이용하는 컨텍스트 모델을 설명하기 위한 도이다.
도 38은, 본 발명의 실시의 형태에 관련된, 상측 블록을 이용하는 경우의 메모리 사용량의 증가를 설명하기 위한 도이다.
도 39는, 컨텐츠 전송 서비스를 실현하는 컨텐츠 공급 시스템의 전체 구성도이다.
도 40은, 디지털 방송용 시스템의 전체 구성도이다.
도 41은, 텔레비전의 구성예를 나타내는 블록도이다.
도 42는, 광디스크인 기록 미디어에 정보의 읽고 쓰기를 행하는 정보 재생/기록부의 구성예를 나타내는 블록도이다.
도 43은, 광디스크인 기록 미디어의 구조예를 나타내는 도이다.
도 44a는, 휴대 전화의 일례를 나타내는 도이다.
도 44b는, 휴대 전화의 구성예를 나타내는 블록도이다.
도 45는, 다중화 데이터의 구성을 나타내는 도이다.
도 46은, 각 스트림이 다중화 데이터에 있어서 어떻게 다중화되고 있는지를 모식적으로 나타내는 도이다.
도 47은, PES 패킷열에, 비디오 스트림이 어떻게 저장되는지를 더 상세하게 나타내는 도이다.
도 48은, 다중화 데이터에 있어서의 TS 패킷과 소스 패킷의 구조를 나타내는 도이다.
도 49는, PMT의 데이터 구성을 나타내는 도이다.
도 50은, 다중화 데이터 정보의 내부 구성을 나타내는 도이다.
도 51은, 스트림 속성 정보의 내부 구성을 나타내는 도이다.
도 52는, 영상 데이터를 식별하는 단계를 나타내는 도이다.
도 53은, 각 실시의 형태의 동화상 부호화 방법 및 동화상 복호화 방법을 실현하는 집적 회로의 구성예를 나타내는 블록도이다.
도 54는, 구동 주파수를 전환하는 구성을 나타내는 도이다.
도 55는, 영상 데이터를 식별하고, 구동 주파수를 전환하는 단계를 나타내는 도이다.
도 56은, 영상 데이터의 규격과 구동 주파수를 대응 지은 룩업 테이블의 일례를 나타내는 도이다.
도 57a는, 신호 처리부의 모듈을 공유화하는 구성의 일례를 나타내는 도이다.
도 57b는, 신호 처리부의 모듈을 공유화하는 구성의 다른 일례를 나타내는 도이다.
도 2는, 본 발명의 실시의 형태 1에 관련된 가변길이 부호화부의 기능 블록도이다.
도 3은, 본 발명의 실시의 형태 1에 관련된 제어 파라미터의 컨텍스트 모델에 관한 표이다.
도 4는, 본 발명의 실시의 형태 1에 관련된 산술 부호화 방법을 나타내는 플로우도이다.
도 5는, 본 발명의 실시의 형태 2에 관련된 화상 복호 장치의 기능 블록도이다.
도 6은, 본 발명의 실시의 형태 2에 관련된 가변길이 복호부의 기능 블록도이다.
도 7은, 본 발명의 실시의 형태 2에 관련된 산술 복호 방법을 나타내는 플로우도이다.
도 8은, 본 발명의 실시의 형태 2에 관련된 산술 복호 방법의 변형예를 나타내는 플로우도이다.
도 9a는, 본 발명의 실시의 형태 2에 관련된 맵핑 정보와 컨텍스트 인덱스의 대응을 설명하기 위한 도이다.
도 9b는, 본 발명의 실시의 형태 2에 관련된 HEVC에 있어서의 분할 블록(트리 구조)을 나타내는 도이다.
도 10은, 본 발명의 실시의 형태 2에 관련된 다계층 블록 구조를 설명하기 위한 도이다.
도 11은, 본 발명의 실시의 형태 3에 관련된 split_coding_unit_flag의 산술 복호 방법을 나타내는 표이다.
도 12a는, 본 발명의 실시의 형태 3에 관련된 split_coding_unit_flag에 대한 검증 결과를 나타내는 표이다.
도 12b는, 본 발명의 실시의 형태 3에 관련된 split_coding_unit_flag에 대한 검증 결과를 나타내는 표이다.
도 13은, 본 발명의 실시의 형태 3에 관련된 skip_flag의 산술 복호 방법을 나타내는 표이다.
도 14a는, 본 발명의 실시의 형태 3에 관련된 skip_flag에 대한 검증 결과를 나타내는 표이다.
도 14b는, 본 발명의 실시의 형태 3에 관련된 skip_flag에 대한 검증 결과를 나타내는 표이다.
도 15는, 본 발명의 실시의 형태 3에 관련된 merge_flag의 산술 복호 방법을 나타내는 표이다.
도 16a는, 본 발명의 실시의 형태 3에 관련된 merge_flag에 대한 검증 결과를 나타내는 표이다.
도 16b는, 본 발명의 실시의 형태 3에 관련된 merge_flag에 대한 검증 결과를 나타내는 표이다.
도 17은, 본 발명의 실시의 형태 3에 관련된 ref_idx의 산술 복호 방법을 나타내는 표이다.
도 18a는, 본 발명의 실시의 형태 3에 관련된 ref_idx에 대한 검증 결과를 나타내는 표이다.
도 18b는, 본 발명의 실시의 형태 3에 관련된 ref_idx에 대한 검증 결과를 나타내는 표이다.
도 18c는, 본 발명의 실시의 형태 3에 관련된, ref_idx의 컨텍스트 모델에 관한 표이다.
도 18d는, 본 발명의 실시의 형태 3에 관련된, ref_idx의 컨텍스트 모델에 관한 표이다.
도 19는, 본 발명의 실시의 형태 3에 관련된 inter_pred_flag의 산술 복호 방법을 나타내는 표이다.
도 20a는, 본 발명의 실시의 형태 3에 관련된 inter_pred_flag에 대한 검증 결과를 나타내는 표이다.
도 20b는, 본 발명의 실시의 형태 3에 관련된 inter_pred_flag에 대한 검증 결과를 나타내는 표이다.
도 21은, 본 발명의 실시의 형태 3에 관련된 mvd의 산술 복호 방법을 나타내는 표이다.
도 22a는, 본 발명의 실시의 형태 3에 관련된 mvd에 대한 검증 결과를 나타내는 표이다.
도 22b는, 본 발명의 실시의 형태 3에 관련된 mvd에 대한 검증 결과를 나타내는 표이다.
도 22c는, 본 발명의 실시의 형태 3에 관련된, mvd의 컨텍스트 모델에 관한 표이다.
도 22d는, 본 발명의 실시의 형태 3에 관련된, mvd의 컨텍스트 모델에 관한 표이다.
도 23a는, 본 발명의 실시의 형태 3에 관련된 no_residual_data_flag의 산술 복호 방법을 나타내는 표이다.
도 23b는, 본 발명의 실시의 형태 3에 관련된 no_residual_data_flag의 신택스를 나타내는 표이다.
도 24a는, 본 발명의 실시의 형태 3에 관련된 no_residual_data_flag에 대한 검증 결과를 나타내는 표이다.
도 24b는, 본 발명의 실시의 형태 3에 관련된 no_residual_data_flag에 대한 검증 결과를 나타내는 표이다.
도 25a는, 본 발명의 실시의 형태 3에 관련된 intra_chroma_pred_mode의 산술 복호 방법을 나타내는 표이다.
도 25b는, 본 발명의 실시의 형태 3에 관련된 intra_chroma_pred_mode에 따른 IntraPredModeC의 결정 방법을 나타내는 표이다.
도 26a는, 본 발명의 실시의 형태 3에 관련된 intra_chroma_pred_mode에 대한 검증 결과를 나타내는 표이다.
도 26b는, 본 발명의 실시의 형태 3에 관련된 intra_chroma_pred_mode에 대한 검증 결과를 나타내는 표이다.
도 27은, 본 발명의 실시의 형태 3에 관련된 cbf_luma(cr, cb)의 산술 복호 방법을 나타내는 표이다.
도 28a는, 본 발명의 실시의 형태 3에 관련된 cbf_luma(cr, cb)에 대한 검증 결과를 나타내는 표이다.
도 28b는, 본 발명의 실시의 형태 3에 관련된 cbf_luma(cr, cb)에 대한 검증 결과를 나타내는 표이다.
도 29a는, 본 발명의 실시의 형태 3에 관련된 검증 결과를 나타내는 그래프이다.
도 29b는, 본 발명의 실시의 형태 3에 관련된 검증 결과를 나타내는 그래프이다.
도 30a는, 본 발명의 실시의 형태 3에 관련된 검증 결과를 나타내는 그래프이다.
도 30b는, 본 발명의 실시의 형태 3에 관련된 검증 결과를 나타내는 그래프이다.
도 31a는, 본 발명의 실시의 형태 3에 관련된 검증 결과를 나타내는 그래프이다.
도 31b는, 본 발명의 실시의 형태 3에 관련된 검증 결과를 나타내는 그래프이다.
도 32a는, 본 발명의 실시의 형태 3에 관련된 검증 결과를 나타내는 그래프이다.
도 32b는, 본 발명의 실시의 형태 3에 관련된 검증 결과를 나타내는 그래프이다.
도 33a는, 본 발명의 실시의 형태 3에 관련된 파라미터 세트의 일례를 나타내는 표이다.
도 33b는, 본 발명의 실시의 형태 3에 관련된 검증 결과를 나타내는 표이다.
도 34a는, 본 발명의 실시의 형태 3에 관련된 파라미터 세트의 일례를 나타내는 표이다.
도 34b는, 본 발명의 실시의 형태 3에 관련된 검증 결과를 나타내는 표이다.
도 35는, 본 발명의 실시의 형태 3에 관련된 산술 부호화 방법을 나타내는 플로우도이다.
도 36은, 본 발명의 실시의 형태 3에 관련된 산술 복호 방법을 나타내는 플로우도이다.
도 37은, 본 발명의 실시의 형태에 관련된, 인접 2블록의 대응하는 제어 파라미터의 값을 이용하는 컨텍스트 모델을 설명하기 위한 도이다.
도 38은, 본 발명의 실시의 형태에 관련된, 상측 블록을 이용하는 경우의 메모리 사용량의 증가를 설명하기 위한 도이다.
도 39는, 컨텐츠 전송 서비스를 실현하는 컨텐츠 공급 시스템의 전체 구성도이다.
도 40은, 디지털 방송용 시스템의 전체 구성도이다.
도 41은, 텔레비전의 구성예를 나타내는 블록도이다.
도 42는, 광디스크인 기록 미디어에 정보의 읽고 쓰기를 행하는 정보 재생/기록부의 구성예를 나타내는 블록도이다.
도 43은, 광디스크인 기록 미디어의 구조예를 나타내는 도이다.
도 44a는, 휴대 전화의 일례를 나타내는 도이다.
도 44b는, 휴대 전화의 구성예를 나타내는 블록도이다.
도 45는, 다중화 데이터의 구성을 나타내는 도이다.
도 46은, 각 스트림이 다중화 데이터에 있어서 어떻게 다중화되고 있는지를 모식적으로 나타내는 도이다.
도 47은, PES 패킷열에, 비디오 스트림이 어떻게 저장되는지를 더 상세하게 나타내는 도이다.
도 48은, 다중화 데이터에 있어서의 TS 패킷과 소스 패킷의 구조를 나타내는 도이다.
도 49는, PMT의 데이터 구성을 나타내는 도이다.
도 50은, 다중화 데이터 정보의 내부 구성을 나타내는 도이다.
도 51은, 스트림 속성 정보의 내부 구성을 나타내는 도이다.
도 52는, 영상 데이터를 식별하는 단계를 나타내는 도이다.
도 53은, 각 실시의 형태의 동화상 부호화 방법 및 동화상 복호화 방법을 실현하는 집적 회로의 구성예를 나타내는 블록도이다.
도 54는, 구동 주파수를 전환하는 구성을 나타내는 도이다.
도 55는, 영상 데이터를 식별하고, 구동 주파수를 전환하는 단계를 나타내는 도이다.
도 56은, 영상 데이터의 규격과 구동 주파수를 대응 지은 룩업 테이블의 일례를 나타내는 도이다.
도 57a는, 신호 처리부의 모듈을 공유화하는 구성의 일례를 나타내는 도이다.
도 57b는, 신호 처리부의 모듈을 공유화하는 구성의 다른 일례를 나타내는 도이다.
(본 발명의 기초가 된 지견)
본 발명자는, 이하의 문제가 발생하는 것을 발견했다.
여기서, 차세대 부호화 방식인 High-Efficiency Video Coding(HEVC)에 있어서도, 각종 제어 파라미터의 부호화 및 복호에 있어서의 컨텍스트 모델에 대한 검토가 진행되고 있다(비특허 문헌 2). 제어 파라미터란, 부호화 비트 스트림에 포함되고, 부호화 처리 또는 복호 처리에서 이용되는 파라미터(플래그 등)를 의미하며, 구체적으로는, syntax element이다.
컨텍스트 모델이란, (1) 어떠한 단위(다치, 바이너리값, 또는 바이너리 배열(bin string)의 개개의 요소)의 신호에, (2) 어떠한 조건(Condition)을 고려할지를 나타내는 정보이다. 여기서, 어떠한 조건이란, 어떠한 조건의 요소수의 조건을 적용하는지, 또는, 조건으로서 고려하는 제어 파라미터의 신호 종별은 무엇이 좋은지이다. 이 조건을 상세하게 구분하면 할수록, 즉, 조건수 τ(the number of conditions)를 늘리면 늘릴수록, 1개의 조건에 해당하는 회수가 줄어 든다. 그 결과, 조건마다의 학습 회수가 줄어듦음으로써, 확률의 예측의 정밀도가 저하된다(예를 들면, 비특허 문헌 1의 “dilution effect”를 참조).
또, 조건수를 줄이면 줄일수록, 컨텍스트(주위의 조건)가 고려되어 있지 않게 되어, 통계의 변동에 추종(adaptive)하고 있지 않게 된다.
컨텍스트의 모델 설계에는, 모델의 설계 지침을 결정한 다음에, 화상 내용의 통계적 편향의 검증, 또는 화상의 부호화 및 복호를 제어하는 제어 파라미터의 통계적 편향의 검증 등의 화상에 특화한 검증을 행함으로써, 그 타당성을 고려할 필요가 있다.
H.264에서는, 한정된 수의 사전 사상을 심볼의 부호화에 이용하는 것을 룰의 규범으로 하면서, 컨텍스트 모델을 4개의 기본적인 타입(basic design types)으로 유형화하고 있다.
제1 및 제2 유형은 제어 파라미터의 부호화 및 복호에 관한 것이다.
제1 유형의 컨텍스트 모델은, 2개를 상한으로 하는(up to two)의 인접하는 부호화가 끝난 값을 이용한다(비특허 문헌 1 참조). 인접하는 2개의 부호화가 끝난 값의 정의는 제어 파라미터의 신호 종별의 개개에 의존하지만, 통상 좌측 및 상측에 인접하는 블록에 포함되는 대응하는 제어 파라미터의 값을 사용한다.
제2 컨텍스트 모델의 유형은, 발생 확률로서 바이너리 트리에 의거하여, 컨텍스트를 결정하는 타입이다. 구체적으로는, 제어 파라미터 mb_type 및 sub_mb_type에 적용된다.
제3 및 제4 유형은, 화상 데이터 등의 잔차값(residual data)의 부호화 및 복호에 관한 것이다. 제3 유형에서는 주파수 계수(또는 양자화 계수)의 스캔의 순서에 따라, 과거에 부호화 또는 복호된 값 만을 이용한다. 제4 유형에서는, 복호 되어 누적된 값(레벨값)에 따라, 컨텍스트를 결정한다.
상기 제1 유형 등의, H.264에 있어서의 확률 천이 모델의 설계 방침 및 실장 방법은 오랫동안 효과가 검증되고 있으며, 현재 검토 중인 HEVC에도 적용되도록 검토가 진행되고 있다(비특허 문헌 2를 참조). 예를 들면 제1 유형(컨텍스트 모델 using neighbouring syntax elements)은, 제어 파라미터 alf_cu_flag, split_coding_unit_flag, skip_flag, merge_flag, intra_chroma_pred_mode, inter_pred_flag, ref_idx_lc, ref_idx_l0, ref_idx_l1, mvd_l0, mvd_l1, mvd_lc, no_residual_data_flag, cbf_luma, cbf_cb 및 cbf_cr에 이용되는 것이 검토되고 있다(비특허 문헌 2의 9.3.3.1.1절을 참조)
그러나, 이 제1 유형 「인접 2블록을 이용하는 컨텍스트 모델」을 이용하는 부호화에 대해서는, 그 메모리 사용량에 대해서, 이하의 과제가 있는 것을 본 발명자는 발견했다.
도 37은, 인접 2블록의 대응하는 제어 파라미터의 값을 이용하는 컨텍스트 모델을 설명하기 위한 도이다. 또, 도 37은, H.264에 있어서의 인접 블록을 이용하는 컨텍스트 모델을 나타낸다.
도면 중의 블록 C는, 현재(Current)의 부호화 또는 복호 대상인 제어 파라미터 SE의 값을 포함한다. 이 SE의 값을 부호화하는 경우, 이미 부호화가 끝난 상측 블록 A 및 좌측 블록 B에 포함되는 동종의 제어 파라미터 SE의 값을 이용한다. 구체적으로는, 블록 C의 제어 파라미터 SE(또는 제어 파라미터 SE의 bin string의 1바이너리째)의 값 x가 「1」인지 「0」인지의 확률 p(x)를, 상측 블록 A의 제어 파라미터 SE의 값과 좌측 블록 B의 제어 파라미터 SE의 값을 조건으로 한 조건부 확률 p(x|(condition A (상측 블록의 값) 또한 condition B(좌측 블록의 값)))을 이용하여 예측한다.
도 38은, 상측 블록을 이용하는 경우의 메모리 사용량의 증가를 설명하기 위한 도이다.
도면 중의 (xP, yP)은, 블록 C가 포함되는 PredictionUnit(PU:움직임 예측 단위)의 좌측 위 화소 위치를 나타낸다. 여기서 블록 C는, 현재의 부호화 대상의 제어 파라미터(예를 들면, skip_flag)를 포함하는 블록이다. 또, 도면 중의 (xP, yA)은, condition A(상측 블록의 제어 파라미터 skip_flag의 값)으로서 이용되는, 블록 B에 포함되는 화소 위치를 나타낸다. 도면 중 (xL, yP)은, condition B (좌측 블록의 제어 파라미터 skip_flag의 값)으로서 이용되는, 블록 A에 포함되는 화소 위치를 나타낸다.
이 경우, 블록 C의 제어 파라미터 skip_flag의 값을 부호화 또는 복호하기 위해, 부호화 또는 복호 장치는, 상측 블록 B에 포함되는 (xP, yA)의 위치에 대응하는, PU의 skip_flag의 값(또는 조건의 판정 결과)과, 좌측 블록 A에 포함되는 (xL, yP)의 위치에 대응하는, PU의 skip_flag의 값(또는, 조건의 판정 결과)을 유지할 필요가 있다. 여기서, 이 픽처의 가로폭이 4096픽셀이라고 하면, 1개의 제어 파라미터 skip_flag의 부호화를 위해, 상측 블록행(도 38에 나타내는 Line L)에 포함되는 모든 판정값을 유지할 필요가 있다. 즉, 1개의 제어 파라미터를 위해, 4096픽셀÷블록 사이즈의 메모리 용량이 필요하게 된다.
여기서, 부호화 대상의 블록 C의 블록 사이즈는 가변이며, 예를 들면, 64×64, 16×16, 또는 4×4 등이다. 또, (xP, yA)를 포함하는 위의 행(Line L)에 포함되는 블록의 부호화 또는 복호 시에는, 다음에 부호화 또는 복호되는 블록 C의 블록 사이즈는 예측할 수 없다. 이것은, 부호화 또는 복호 장치는, 위의 행(블록 A가 포함되는 행)의 부호화 또는 복호의 시점에서는, 그 아래의 행(블록 C가 포함되는 행)의 각 블록의 사이즈를 알 수 없기 때문이다. 따라서, 부호화 또는 복호 장치는, 아래의 행의 블록 사이즈로서, 그 제어 파라미터가 적용되는 블록 사이즈 중 최소의 블록 사이즈가 이용되는 경우를 상정하고, 그 최소의 블록 사이즈마다 제어 파라미터의 값(또는 판정값)을 유지해 두지 않으면 안 된다. 많은 신호 종별에 있어서, 이 최소의 블록 사이즈는, 4×4이다. 또, 특별한 신호 종별에 있어서, 이 최소의 블록 사이즈는, 8×8 또는 16×16이다. 예를 들면, 최소의 블록 사이즈가 4×4인 경우, 유지해 두지 않으면 안 되는 제어 파라미터의 값(또는 판정값)은, 4096픽셀÷4=1024bits이다. 또한, 도 38의 검은 동그라미의 위치는, 실제로는 아래의 행(블록 C가 포함되는 행)의 부호화 또는 복호에 있어서는 그 조건값이 필요 없음에도 불구하고 유지해 두지 않으면 안 되는 조건을 나타낸다.
또한, 도 38에 나타내는 인접 2블록(좌측 블록 A와 상측 블록 B)은, H.264 시점의 인접 블록의 개념을 나타내고, 새로운 계층 블록 분할의 관점은 도입되어 있지 않다. 후술하는 대로, HEVC에서 도입이 예정되어 있는 재귀 4분 블록 분할 트리 구조(quad tree partitioning)에 적응한 제어 파라미터에 대해서는, 재귀의 실행순서, 계층 깊이, 또는 블록의 위치에 따라, 도 38에서 나타내는 참조하는 조건값이 의미를 이루지 않는 경우가 있다.
이와 같이, 본 발명자는, 제어 파라미터의 산술 부호화 또는 복호에 있어서 상측 블록의 조건값을 이용함으로써 메모리 사용량이 증가하는 것을 발견했다. 또한, 본 발명자는, HEVC에서는 이 메모리 사용량이 더 증가하는 것을 발견했다.
이에 반해, 본 발명의 일 양태에 관련된 화상 복호 방법은, 산술 복호를 이용하는 화상 복호 방법으로서, 복수의 컨텍스트 중, 처리 대상 블록에 사용하는 컨텍스트를 결정하는 컨텍스트 제어 단계와, 제어 파라미터가 산술 부호화됨으로써 얻어진, 상기 처리 대상 블록에 대응하는 비트열을, 결정된 상기 컨텍스트를 이용하여 산술 복호함으로써 2치 배열을 복원하는 산술 복호 단계와, 상기 2치 배열을 다치화함으로써 상기 제어 파라미터를 복원하는 다치화 단계를 포함하고, 상기 컨텍스트 제어 단계에서는, 상기 처리 대상 블록의 제어 파라미터의 신호 종별을 판정하고, 상기 신호 종별이 제1 종별인 경우에, 상기 처리 대상 블록에 인접하는 좌측 블록 및 상측 블록의 복호가 끝난 제어 파라미터를 함께 이용하는 제1 조건을 이용하여 상기 컨텍스트를 결정하고, 상기 신호 종별이, 상기 제1 종별과 상이한 제2 종별인 경우에, 상기 상측 블록의 복호가 끝난 제어 파라미터를 이용하지 않는 제2 조건을 이용하여 상기 컨텍스트를 결정하고, 상기 신호 종별이, 상기 제1 종별 및 상기 제2 종별과 상이한 제3 종별인 경우에, 상기 상측 블록의 복호가 끝난 제어 파라미터를 이용하지 않고, 또한, 상기 처리 대상 블록의 제어 파라미터가 속하는 데이터 단위의 계층의 깊이를 이용하는 제3 조건을 이용하여 상기 컨텍스트를 결정하며, 상기 제1 종별은, “split_coding_unit_flag”, 또는, “skip_flag”이며, 상기 제2 종별은, “merge_flag”와, “ref_idx_l0” 또는 “ref_idx_l1”과, “inter_pred_flag”와, “mvd_l0” 또는 “mvd_l1”과, “intra_chroma_pred_mode”와, “cbf_luma”, “cbf_cb” 또는 “cbf_cr” 중 1개 이상이며, 상기 제3 종별은, “merge_flag”와, “ref_idx_l0” 또는 “ref_idx_l1”과, “inter_pred_flag”와, “mvd_l0” 또는 “mvd_l1”과, “intra_chroma_pred_mode”와, “cbf_luma”, “cbf_cb” 또는 “cbf_cr” 중 상기 제2 종별 이외의 신호 종별이다.
이것에 의하면, 당해 화상 복호 방법은, 메모리 사용량을 삭감할 수 있다. 구체적으로는, 당해 화상 복호 방법은, 제2 종별의 제어 파라미터에 대해서는 상측 블록의 제어 파라미터를 사용하지 않기 때문에, 상측 블록의 제2 종별의 제어 파라미터를 유지할 필요가 없다. 이것에 의해, 당해 화상 복호 방법은, 획일적으로 「인접 블록의 제어 파라미터의 값에 의거한 컨텍스트 모델을 이용한다」라고 하여 좌측 블록과 상측 블록을 이용하는 경우에 비해 메모리 사용량을 삭감할 수 있다. 또한, 당해 화상 복호 방법은, 화상의 BD-rate값 평가 등을 손상시키지 않고, 적절히 제2 종별의 제어 파라미터의 메모리 사용량을 삭감할 수 있다.
또, 당해 화상 복호 방법은, 종래의 H.264에서는 고려되어 있지 않은, 신규 HEVC 특유의 데이터 구조의 계층 트리 구조에 적절한 컨텍스트의 이용, 또는, 메모리 참조를 행할 수 있다.
또한, 당해 화상 복호 방법은, 제3 종별의 제어 파라미터에 대해서는, 처리 대상 블록의 제어 파라미터가 속하는 데이터 단위의 계층의 깊이를 이용하여 컨텍스트를 결정함으로써, 메모리 사용량을 삭감하면서, 적절한 컨텍스트를 선택할 수 있다.
또, 상기 제3 종별은, “inter_pred_flag”여도 된다.
또, 상기 제3 종별은, “cbf_cb” 및 “cbf_cr”이어도 된다.
또, 상기 제3 종별은, “cbf_luma”여도 된다.
또, 상기 제1 종별은, “split_coding_unit_flag”, 및, “skip_flag”이며, 상기 제2 종별은, “merge_flag”와, “ref_idx_l0” 및 “ref_idx_l1”과, “mvd_l0” 및 “mvd_l1”과, “intra_chroma_pred_mode”이며, 상기 제3 종별은, “inter_pred_flag”와, “cbf_luma”, “cbf_cb” 및 “cbf_cr”이어도 된다.
또, 상기 제2 조건 및 상기 제3 조건은, 상기 상측 블록 및 상기 좌측 블록의 복호가 끝난 제어 파라미터를 함께 이용하지 않는 조건이어도 된다.
이것에 의하면, 당해 화상 복호 방법은, 상측 블록에 더하여, 좌측 블록의 제어 파라미터도 사용하지 않음으로써, 메모리 사용량을 더 삭감할 수 있다.
또, 상기 컨텍스트 제어 단계에서는, 상기 신호 종별이 상기 제2 종별인 경우에, 상기 제2 조건으로서, 미리 정해진 컨텍스트를 상기 대상 블록의 산술 복호에 사용하는 컨텍스트로 결정해도 된다.
이것에 의하면, 당해 화상 복호 방법은, 처리량을 저감할 수 있다.
또, 상기 컨텍스트 제어 단계에서는, 또한, 상기 처리 대상 블록의 위치에 의거하여, 상기 상측 블록의 제어 파라미터를 복호 시에 이용할 수 있는지 여부를 판정하고, 상기 상측 블록의 제어 파라미터를 이용할 수 없는 경우에, 상기 제2 조건 또는 상기 제3 조건을 이용하여 상기 컨텍스트를 결정해도 된다.
이것에 의하면, 당해 화상 복호 방법은, 처리량을 저감할 수 있다.
또, 상기 컨텍스트 제어 단계에서는, 상기 처리 대상 블록이 슬라이스 경계에 속하는 경우에, 상기 상측 블록의 제어 파라미터를 복호 시에 이용할 수 없다고 판정해도 된다.
또, 상기 컨텍스트 제어 단계에서는, 상기 처리 대상 블록의 제어 파라미터가 속하는 데이터 단위의 계층의 깊이에 따라 상기 상측 블록의 제어 파라미터를 복호 시에 이용할 수 있는지 여부를 판정해도 된다.
또, 상기 제2 종별 또는 상기 제3 종별은, 미리 정해진 데이터 구조를 가지는 제어 파라미터여도 된다.
또, 상기 컨텍스트 제어 단계에서는, 또한, 제1 단위의 제어 파라미터의 값에 의거하여, 상기 제1 단위보다 작은 제2 단위의 제어 파라미터에 대해, 상기 제1 조건을 이용하여 상기 컨텍스트를 결정할지, 상기 제2 조건을 이용하여 컨텍스트를 결정할지, 상기 제3 조건을 이용하여 컨텍스트를 결정할지를 전환해도 된다.
또, 상기 “split_coding_unit_flag”은, 상기 처리 대상 블록이, 복수의 블록으로 분할되어 있는지 여부를 나타내고, 상기 “skip_flag”는, 상기 처리 대상 블록을 스킵할지 여부를 나타내고, 상기 “merge_flag”는, 상기 처리 대상 블록에 머지 모드를 이용할지 여부를 나타내고, 상기 “ref_idx_l0”은, 상기 처리 대상 블록용의 리스트 0의 참조 픽처 인덱스를 나타내고, 상기 “ref_idx_l1”은, 상기 처리 대상 블록용의 리스트 1의 참조 픽처 인덱스를 나타내고, 상기 “inter_pred_flag”는, 상기 처리 대상 블록에, uni-prediction 및 bi-prediction 중 어느 것이 사용되는지를 나타내고, 상기 “mvd_l0”은, 상기 처리 대상 블록에 사용되는, 리스트 0의 움직임 벡터 성분과, 그 예측값의 차분을 나타내고, 상기 “mvd_l1”은, 상기 처리 대상 블록에 사용되는, 리스트 1의 움직임 벡터 성분과, 그 예측값의 차분을 나타내고, 상기 “intra_chroma_pred_mode”는, 상기 처리 대상 블록의 색차 샘플을 위한 인트라 예측 모드를 나타내고, 상기 “cbf_luma”는, 상기 처리 대상 블록의 휘도 변환 블록이, 레벨이 0이 아닌 1개 이상의 변환 계수를 포함하는지 여부를 나타내고, 상기 “cbf_cb”는, 상기 처리 대상 블록의 Cb변환 블록이, 레벨이 0이 아닌 1개 이상의 변환 계수를 포함하는지 여부를 나타내고, 상기 “cbf_cr”은, 상기 처리 대상 블록의 Cr변환 블록이, 레벨이 0이 아닌 1개 이상의 변환 계수를 포함하는지 여부를 나타내도 된다.
또, 상기 화상 복호 방법은, 부호화 신호에 포함되는, 제1 규격 또는 제2 규격을 나타내는 식별자에 따라, 상기 제1 규격에 준거한 복호 처리와, 상기 제2 규격에 준거한 복호 처리를 전환하고, 상기 ID가 제1 규격을 나타내는 경우에, 상기 제1 규격에 준거한 복호 처리로서, 상기 컨텍스트 제어 단계와, 상기 산술 복호 단계와, 상기 다치화 단계를 행해도 된다.
또, 본 발명의 일 양태에 관련된 화상 부호화 방법은, 산술 부호화를 이용하는 화상 부호화 방법으로서, 처리 대상 블록의 제어 파라미터를 2치화함으로써 2치 배열을 생성하는 2치화 단계와, 복수의 컨텍스트 중, 상기 처리 대상 블록에 사용하는 컨텍스트를 결정하는 컨텍스트 제어 단계와, 결정된 상기 컨텍스트를 이용하여 상기 2치 배열을 산술 부호화함으로써 비트열을 생성하는 산술 부호화 단계를 포함하고, 상기 컨텍스트 제어 단계에서는, 상기 처리 대상 블록의 제어 파라미터의 신호 종별을 판정하고, 상기 신호 종별이 제1 종별인 경우에, 상기 처리 대상 블록에 인접하는 좌측 블록 및 상측 블록의 제어 파라미터를 함께 이용하는 제1 조건을 이용하여 상기 컨텍스트를 결정하고, 상기 신호 종별이, 상기 제1 종별과 상이한 제2 종별인 경우에, 상기 상측 블록의 제어 파라미터를 이용하지 않는 제2 조건을 이용하여 상기 컨텍스트를 결정하고, 상기 신호 종별이, 상기 제1 종별 및 상기 제2 종별과 상이한 제3 종별인 경우에, 상기 상측 블록의 제어 파라미터를 이용하지 않고, 또한, 상기 처리 대상 블록의 제어 파라미터가 속하는 데이터 단위의 계층의 깊이를 이용하는 제3 조건을 이용하여 상기 컨텍스트를 결정하며, 상기 제1 종별은, “split_coding_unit_flag”, 또는, “skip_flag”이며, 상기 제2 종별은, “merge_flag”와, “ref_idx_l0” 또는 “ref_idx_l1”과, “inter_pred_flag”와, “mvd_l0” 또는 “mvd_l1”과, “intra_chroma_pred_mode”와, “cbf_luma”, “cbf_cb” 또는 “cbf_cr” 중 1개 이상이며, 상기 제3 종별은, “merge_flag”와, “ref_idx_l0” 또는 “ref_idx_l1”과, “inter_pred_flag”와, “mvd_l0” 또는 “mvd_l1”과, “intra_chroma_pred_mode”와, “cbf_luma”, “cbf_cb” 또는 “cbf_cr” 중 상기 제2 종별 이외의 신호 종별이다.
이것에 의하면, 당해 화상 부호화 방법은, 메모리 사용량을 삭감할 수 있다. 구체적으로는, 당해 화상 부호화 방법은, 제2 종별의 제어 파라미터에 대해서는 상측 블록의 제어 파라미터를 사용하지 않기 때문에, 상측 블록의 제2 종별의 제어 파라미터를 유지할 필요가 없다. 이것에 의해, 당해 화상 부호화 방법은, 획일적으로 「인접 블록의 제어 파라미터의 값에 의거한 컨텍스트 모델을 이용한다」라고 하여 좌측 블록과 상측 블록을 이용하는 경우에 비해 메모리 사용량을 삭감할 수 있다. 또한, 당해 화상 부호화 방법은, 화상의 BD-rate값 평가 등을 손상시키지 않고, 적절히 제2 종별의 제어 파라미터의 메모리 사용량을 삭감할 수 있다.
또, 당해 화상 부호화 방법은, 종래의 H.264에서는 고려되어 있지 않은, 신규 HEVC 특유의 데이터 구조의 계층 트리 구조에 적절한 컨텍스트의 이용, 또는, 메모리 참조를 행할 수 있다.
또한, 당해 화상 부호화 방법은, 제3 종별의 제어 파라미터에 대해서는, 처리 대상 블록의 제어 파라미터가 속하는 데이터 단위의 계층의 깊이를 이용하여 컨텍스트를 결정함으로써, 메모리 사용량을 삭감하면서, 적절한 컨텍스트를 선택할 수 있다.
또, 본 발명의 일 양태에 관련된 화상 복호 장치는, 산술 복호를 이용하는 화상 복호 장치로서, 복수의 컨텍스트 중, 처리 대상 블록의 산술 복호에 사용하는 컨텍스트를 결정하는 컨텍스트 제어부와, 제어 파라미터가 산술 부호화됨으로써 얻어진, 상기 처리 대상 블록에 대응하는 비트열을, 결정된 상기 컨텍스트를 이용하여 산술 복호함으로써 2치 배열을 복원하는 산술 복호부와, 상기 2치 배열을 다치화함으로써 상기 제어 파라미터를 복원하는 다치화부를 포함하고, 상기 컨텍스트 제어부는, 상기 처리 대상 블록의 제어 파라미터의 신호 종별을 판정하고, 상기 신호 종별이 제1 종별인 경우에, 상기 처리 대상 블록에 인접하는 좌측 블록 및 상측 블록의 복호가 끝난 제어 파라미터를 함께 이용하는 제1 조건을 이용하여 상기 컨텍스트를 결정하고, 상기 신호 종별이, 상기 제1 종별과 상이한 제2 종별인 경우에, 상기 상측 블록의 복호가 끝난 제어 파라미터를 이용하지 않는 제2 조건을 이용하여 상기 컨텍스트를 결정하고, 상기 신호 종별이, 상기 제1 종별 및 상기 제2 종별과 상이한 제3 종별인 경우에, 상기 상측 블록의 복호가 끝난 제어 파라미터를 이용하지 않고, 또한, 상기 처리 대상 블록의 제어 파라미터가 속하는 데이터 단위의 계층의 깊이를 이용하는 제3 조건을 이용하여 상기 컨텍스트를 결정하며, 상기 제1 종별은, “split_coding_unit_flag”, 또는, “skip_flag”이며, 상기 제2 종별은, “merge_flag”와, “ref_idx_l0” 또는 “ref_idx_l1”과, “inter_pred_flag”와, “mvd_l0” 또는 “mvd_l1”과, “intra_chroma_pred_mode”와, “cbf_luma”, “cbf_cb” 또는 “cbf_cr” 중 1개 이상이며, 상기 제3 종별은, “merge_flag”와, “ref_idx_l0” 또는 “ref_idx_l1”과, “inter_pred_flag”와, “mvd_l0” 또는 “mvd_l1”과, “intra_chroma_pred_mode”와, “cbf_luma”, “cbf_cb” 또는 “cbf_cr” 중 상기 제2 종별 이외의 신호 종별이다.
이것에 의하면, 당해 화상 복호 장치는, 메모리 사용량을 삭감할 수 있다.
또, 본 발명의 일 양태에 관련된 화상 부호화 장치는, 산술 부호화를 이용하는 화상 부호화 장치로서, 처리 대상 블록의 제어 파라미터를 2치화함으로써 2치 배열을 생성하는 2치화부와, 복수의 컨텍스트 중, 상기 처리 대상 블록에 사용하는 컨텍스트를 결정하는 컨텍스트 제어부와, 결정된 상기 컨텍스트를 이용하여 상기 2치 배열을 산술 부호화함으로써 비트열을 생성하는 산술 부호화부를 포함하고, 상기 컨텍스트 제어부는, 상기 처리 대상 블록의 제어 파라미터의 신호 종별을 판정하고, 상기 신호 종별이 제1 종별인 경우에, 상기 처리 대상 블록에 인접하는 좌측 블록 및 상측 블록의 제어 파라미터를 함께 이용하는 제1 조건을 이용하여 상기 컨텍스트를 결정하고, 상기 신호 종별이, 상기 제1 종별과 상이한 제2 종별인 경우에, 상기 상측 블록의 제어 파라미터를 이용하지 않는 제2 조건을 이용하여 상기 컨텍스트를 결정하고, 상기 신호 종별이, 상기 제1 종별 및 상기 제2 종별과 상이한 제3 종별인 경우에, 상기 상측 블록의 제어 파라미터를 이용하지 않고, 또한, 상기 처리 대상 블록의 제어 파라미터가 속하는 데이터 단위의 계층의 깊이를 이용하는 제3 조건을 이용하여 상기 컨텍스트를 결정하며, 상기 제1 종별은, “split_coding_unit_flag”, 또는, “skip_flag”이며, 상기 제2 종별은, “merge_flag”와, “ref_idx_l0” 또는 “ref_idx_l1”과, “inter_pred_flag”와, “mvd_l0” 또는 “mvd_l1”과, “intra_chroma_pred_mode”와, “cbf_luma”, “cbf_cb” 또는 “cbf_cr” 중 1개 이상이며, 상기 제3 종별은, “merge_flag”와, “ref_idx_l0” 또는 “ref_idx_l1”과, “inter_pred_flag”와, “mvd_l0” 또는 “mvd_l1”과, “intra_chroma_pred_mode”와, “cbf_luma”, “cbf_cb” 또는 “cbf_cr” 중 상기 제2 종별 이외의 신호 종별이다.
이것에 의하면, 당해 화상 부호화 장치는, 메모리 사용량을 삭감할 수 있다.
또, 본 발명의 일 양태에 관련된 화상 부호화 복호 장치는, 상기 화상 복호 장치와, 상기 화상 부호화 장치를 포함한다.
또한, 이들의 전반적 또는 구체적인 양태는, 시스템, 방법, 집적 회로, 컴퓨터 프로그램 또는 기록 매체로 실현되어도 되고, 시스템, 방법, 집적 회로, 컴퓨터 프로그램 및 기록 매체의 임의의 조합으로 실현되어도 된다.
이하, 본 발명의 일 양태에 관련된 화상 복호 장치 및 화상 부호화 장치에 대해서, 도면을 참조하면서 구체적으로 설명한다.
또한, 이하에서 설명하는 실시의 형태는, 모두 본 발명의 일 구체예를 나타내는 것이다. 이하의 실시의 형태에서 나타내는 수치, 형상, 재료, 구성 요소, 구성 요소의 배치 위치 및 접속 형태, 단계, 단계의 순서 등은, 일례이며, 본 발명을 한정하는 주지는 아니다. 또, 이하의 실시의 형태에 있어서의 구성 요소 중, 최상위 개념을 나타내는 독립 청구항에 기재되지 않은 구성 요소에 대해서는, 임의의 구성 요소로서 설명된다.
(실시의 형태 1)
이하, 본 발명의 실시의 형태 1에 관련된 화상 부호화 장치에 대해서 설명한다. 본 발명의 실시의 형태 1에 관련된 화상 부호화 장치는, 산술 부호화에 있어서, 제어 파라미터의 신호 종별에 따라, (1) 상측 블록을 이용하여 컨텍스트를 결정할지, (2) 상측 블록을 이용하지 않고 컨텍스트를 결정할지를 전환한다. 이것에 의해, 화질의 열화를 억제하면서, 메모리 사용량을 삭감할 수 있다.
우선, 본 발명의 실시의 형태 1에 관련된 화상 부호화 장치의 구성을 설명한다.
도 1은, 본 실시의 형태에 관련된 화상 부호화 장치(100)의 블록도이다.
도 1에 나타내는 화상 부호화 장치(100)는, 산술 부호화를 이용하는 화상 부호화 장치이며, 입력 화상 신호(121)를 부호화함으로써 비트 스트림(124)을 생성한다. 이 화상 부호화 장치(100)는, 제어부(101)와, 차분부(102)와, 변환 및 양자화부(103)와, 가변길이 부호화부(104)와, 역양자화 및 역변환부(105)와, 가산부(106)와, 화면내 예측부(107)와, 화면간 예측부(108)와, 스위치(109)를 포함한다.
제어부(101)는, 부호화 대상의 입력 화상 신호(121)에 의거하여 제어 파라미터(130)를 산출한다. 예를 들면, 제어 파라미터(130)는, 부호화 대상의 입력 화상 신호(121)의 픽처 타입을 나타내는 정보, 부호화 대상 블록의 움직임 예측 단위(Prediction Unit PU)의 사이즈, 및, 움직임 예측 단위의 제어 정보 등을 포함한다. 여기서 제어 파라미터(130)(Control data)는 그 자신이 부호화 대상이 된다. 따라서, 제어부(101)는, 이 제어 파라미터(130)를, 가변길이 부호화부(104)에 출력한다.
차분부(102)는, 블록 단위의 입력 화상 신호(121)와 예측 화상 신호(129)의 차분값(잔차값)인 잔차 신호(122)를 산출한다.
변환 및 양자화부(103)는, 잔차 신호(122)를 주파수 계수값으로 변환하고, 얻어진 주파수 계수값을 양자화함으로써 양자화 변환 계수(123)(residual data)를 생성한다.
역양자화 및 역변환부(105)는, 양자화 변환 계수(123)를 주파수 계수값으로 역양자화하고, 얻어진 주파수 계수값을 역변환함으로써, 복원된 잔차 신호(125)를 생성한다.
가산부(106)는, 잔차 신호(125)와 예측 화상 신호(129)를 가산함으로써 복원 화상 신호(126)를 출력한다.
화면내 예측부(107)는, 복원 화상 신호(126)를 이용하여 화면내 예측 처리를 행함으로써 예측 화상 신호(127)를 생성한다. 화면간 예측부(108)는, 복원 화상 신호(126)를 이용하여 화면간 예측 처리를 행함으로써 예측 화상 신호(128)를 생성한다.
스위치(109)는, 예측 화상 신호(127) 및 예측 화상 신호(128)의 한쪽을 선택하고, 선택한 신호를 예측 화상 신호(129)로서 출력한다.
가변길이 부호화부(104)는, 입력된 블록 마다의 양자화 변환 계수(123) 및 제어 파라미터(130)를, 상기 서술한 CABAC를 이용하여 부호화함으로써 비트 스트림(124)을 생성한다.
다음에, 가변길이 부호화부(104)의 구성을 설명한다.
도 2는, 가변길이 부호화부(104)의 기능 블록도이다. 가변길이 부호화부(104)는, 2치화부(141)와, 컨텍스트 제어부(142)와, 2치 산술 부호화부(143)를 포함한다. 이하, 제어 파라미터(130)의 가변길이 부호화 처리에 대해서 설명한다. 또한, 양자화 변환 계수(123)의 가변길이 부호화 처리에 대해서는 설명을 생략하지만, 예를 들면, 기존의 기술을 이용해 실현할 수 있다.
2치화부(141)는, 제어 파라미터(130)를 2치화함으로써 2치 배열(151)을 생성한다. 구체적으로는, 2치화부(141)는, 비특허 문헌 1에 있어서의 II. 1) binarizaion 처리를 실행하는 처리부이다. 이 2치화부(141)는, 제어 파라미터(130)를 신호 종별마다 사전에 정해진 2치화 처리 방법에 의해 bin string로 불리는 2치 배열(151)로 변환한다. 또한, 신호 종별과 2치화 처리 방법의 대응에 대해서는 후술한다. 또, 2치화부(141)는, 입력된 제어 파라미터(130)가 flag 등의 1바이너리값인 경우는, 당해 제어 파라미터(130)를 그대로 2치 배열(151)로서 출력한다.
컨텍스트 제어부(142)는, 복수의 컨텍스트(확률 상태 테이블) 중, 처리 대상의 블록에 포함되는 제어 파라미터(130)의 산술 부호화에 사용하는 컨텍스트를 결정한다. 또, 컨텍스트 제어부(142)는, 결정한 컨텍스트를 지정하는 컨텍스트 인덱스(152)를 2치 산술 부호화부(143)로 출력한다.
구체적으로는, 컨텍스트 제어부(142)는, 비특허 문헌 1에 있어서의 2) context modeling 처리를 실행하는 처리부이다. 이 컨텍스트 제어부(142)에는, 2치 산술 부호화부(143)가 출력한 2치 배열(151)에 포함되는 복수의 요소가 순차적으로 입력된다. 컨텍스트 제어부(142)는, 제어 파라미터(130)의 신호 종별과 이 바이너리의 2치 배열(151) 중의 요소 위치에 따라, 복수의 컨텍스트 중, 이 바이너리에 사용하는 컨텍스트를 선택하고, 선택한 컨텍스트를 나타내는 인덱스인 컨텍스트 인덱스(152)를 2치 산술 부호화부(143)에 출력한다.
또, 컨텍스트 제어부(142)는, 컨텍스트 상태로서, 제어 파라미터(130)의 2치 배열의 개개의 요소를 조건부 확률의 조건으로 더 상세 구분화한 수(이른바 컨텍스트 인덱스수)의 확률 상태 테이블을 유지하고 있어, 이 확률 상태 테이블을 초기화 및 갱신한다.
또, 컨텍스트 제어부(142)는, 신호 종별마다(2치 배열의 요소수가 2 이상인 경우는, 제어 파라미터(130)의 2치 배열의 요소 번호 마다인 것이다. 이하 동일)에 한층 더 상세 구분으로서 발생 조건 τ마다(컨텍스트마다)의 상태(probability state index)를 유지한다. 이 상태는, 「0」 또는 「1」의 2값 중, 확률이 낮은 쪽의 발생 확률 P(내분 비율:전형적으로는 6bit의 값)과, 확률이 높은 것이 어느 쪽인지를 나타내는 값(1bit)의 합계 7bit값이다. 또, 상태를 유지한다는 것은 초기화 및 갱신하는 것이다. 예를 들면, 갱신 처리란, H264와 마찬가지로 64개의 유한 상태 간의 천이이며, 지금 어느 확률 상태 probability state(즉 어느 확률)에 있는지의 indexing를 변경하는 것이다.
구체적으로는, 컨텍스트 제어부(142)는, 2값 중 확률이 높은 most probable측의 사상 X가 발생한 경우는, most probable측인 확률의 비율을 조금 증가시킨다. 예를 들면, 컨텍스트 제어부(142)는, 64개의 테이블에 대응하는 확률 인덱스(probability state index)의 값을 1증감시킴으로써, most probable측인 확률의 비율을 조금 증가시킬 수 있다. 한편, (예측된 확률에 반해) 확률이 낮은 쪽의 사상 not X가 발생한 경우에는, 컨텍스트 제어부(142)는, 유지하고 있는 most probable의 확률의 비율을 크고, 소정의 스케일 계수 α(예를 들면≒0.95)에 의거하여 감소시킨다(비특허 문헌 1, Fig 6을 참조). 본 실시의 형태의 컨텍스트 제어부(142)는, H.264와 마찬가지로, 이 α를 고려한 변경에 대응하도록, 대응 지어진 테이블 인덱스 변경값에 의거하여 상태를 천이시켜 유지하고 있다.
2치 산술 부호화부(143)는, 컨텍스트 제어부(142)에서 결정된 컨텍스트를 이용하여 2치 배열(151)을 산술 부호화함으로써 비트 스트림(124)(비트열)을 생성한다.
구체적으로는, 2치 산술 부호화부(143)는, 비특허 문헌 1에 있어서의 3) binary arithmetic coding 처리를 실행하는 처리부이다. 이 2치 산술 부호화부(143)는, 컨텍스트 인덱스(152)에서 지정되는 컨텍스트를 이용하여, 2치 배열(151)을 산술 부호화함으로써 비트 스트림(124)을 생성한다. 여기서 산술 부호화란, 다양한 신호 종별의 제어 파라미터(130)에 대해서 발생한 사상을 확률의 누적으로서 취급하고, 어떠한 사상이 발생했는지를 1개의 수직선 상의 소정 범위로 범위를 좁히면서 대응 짓는 것으로 말할 수 있다.
우선, 2치 산술 부호화부(143)는, 1개의 수직선을, 컨텍스트 제어부(142)로부터 주어진, 바이너리가 취할 수 있는 2개의 값의 발생 확률에 따라 2개의 반구간으로 내분한다. 실제로 발생한 바이너리의 값(예를 들면 「0」)이, 높은 확률(0.5를 넘는 확률(예를 들면 0.75))측의 값인 경우에는, 2치 산술 부호화부(143)는, 수직선 중의 범위의 하한치 low를 변경하지 않고 유지하며, 이번 확률 0.75에, 스케일 계수 0.95를 1회 승산한 결과에 대응하는 값을 새로운 폭 Range로 설정한다. 한편, 실제로 발생한 바이너리의 값이, 예측된 낮은 확률측의 값인 경우에는, 2치 산술 부호화부(143)는, 범위의 하한치 low를, 높은 쪽의 확률만큼 이동시켜, 폭 Range를 낮은 쪽의 확률에 따라 변경시킨다. 이와 같이, 확률폭 Range의 승산 결과의 누적에 의해 구간을 유지하지만, 확률이 낮은 쪽의 값이 연속해서 발생한 경우에는 폭 Range의 길이가 연산으로 확보할 수 있는 정밀도 이하가 된다. 이 경우, 2치 산술 부호화부(143)는, 정밀도를 유지하기 위해 폭 Range를 확대하는 처리(renorm)를 행함과 함께 현시점의 범위를 나타내기 위한 비트열을 출력한다. 반대로, 확률이 높은 쪽(0.95 등)의 값이 연속해서 발생한 경우에는, 이 확률값을 승산했다고 해도 폭 Range의 길이가 소정의 길이보다 짧아지기까지 몇번의 연산(표에 의한 실장의 경우는 상태 천이)을 행할 수 있다. 따라서 이 경우는 비트를 출력하기까지 누적할 수 있는 심볼수가 많아진다.
도 3은, 인접 블록의 제어 파라미터(130)의 값에 의거하는 컨텍스트 모델을 이용하는 제어 파라미터(130)를 정리한 표이다.
좌측부터 열의 의미를 설명한다.
(c2) 신호 종별(syntax element)은, 제어 파라미터(130)의 신호 종별의 구체 명칭을 나타낸다. 또한, 각 신호 종별의 의미는 후술한다.
(c3) 2치화 방식(binarization scheme)은, 바로 좌측의 열에서 지정되는 제어 파라미터(130)(SE)에 적용되는 2치화 방식을 나타낸다. 또한, 2치화 처리는, 상기 2치화부(141)에서 실행된다. 또, 란 중 「고정길이」이란, 2치화부(141)가, 바로 좌측의 제어 파라미터(130)의 값을 고정길이(Fixed Length)의 2치 배열(bin string)로 출력하는 것을 의미한다. HEVC에 있어서 신호 종별명이 “flag”로 끝나는 신호 종별의 제어 파라미터(130)는, 「0」 또는 「1」 중 어느 하나의 값을 취하는 1바이너리값이다. 따라서, 2치화부(141)가 출력하는 2치 배열(151)의 요소는, 제1번째의 요소(binIdx=0) 뿐이며, 제2번째 이후의 요소(binIdx>=1)의 요소는 출력하지 않는다. 즉, 2치화부(141)는, 제어 파라미터(130)의 값을 그대로 2치 배열(151)로서 출력한다.
또, 란 중 「가변길이」이란, 2치화부(141)가, 제어 파라미터(130)의 값을, 그 값의 발생 빈도 순서로 짧은 바이너리 길이가 되도록 대응 지어진 가변길이의 바이너리열(bin string, 또는, 2치 배열이며 요소수≥1)을 이용하여, 2치 배열화하여 출력하는 것을 나타낸다. 예를 들면, 2치화부(141)는, (Truncated) Unary형, 또는 Unary형과 다른 지수의 Golomb 방식 등의 복수의 방식의 조합 등의, 신호 종별에 대응한 방식을 이용하여 출력한다(비특허 문헌 1, A.Binarization를 참조). 또한, 가변길이인 경우, 2치 배열(151)의 배열 요소는 1개인 경우도 있지만, 2개 이상이 되는 경우도 있다. 또, 후술하는 화상 복호 장치의 다치화부에서는, 이 2치화 방식의 반대의 변환을 행함으로써, 입력된 2치 배열을 다치 또는 플래그값으로 복원한다.
(c4) 제1번째 요소(binIdx=0) 컨텍스트 인덱스는, 컨텍스트 제어부(142)가, c3의 란에서 지정된 2치화 방식에 의해 생성된 바이너리 배열에 포함되는 1번째의 요소에 대해 적용하는 컨텍스트 인덱스(증분값)의 선택지를 나타낸다. 란 중에 「0, 1, 2」로 기재되어 있는 경우, 컨텍스트 제어부(142)는, 3개의 확률 상태 테이블(컨텍스트)로부터 하나의 확률 상태 테이블을 선택하여 적용하는 것을 의미한다. 예를 들면, 신호 종별 “skip_flag”에 대해서는, 이 1개의 신호 종별에 대해서, 조건으로 세분화인 컨텍스트 인덱스를 3개 준비하고, 즉, 컨텍스트를 3개 준비하여 산술 부호화를 행하는 것을 의미하고 있다.
마찬가지로, c4란 중에 「0, 1, 2, 3」으로 기재되어 있는 경우, c2란에서 지정되는 신호 종별의 제어 파라미터(130)의 값을, c3란의 2치화 방식에 의해 2치 배열화된 2치 배열(151)에 포함되는 제1 요소(binIdx=0)에 적용되는 컨텍스트가 0, 1, 2, 또는, 3의 4개 중 택일인 것을 의미한다. 또한, 란 중의 조건식에 대해서는 후술한다.
(c5) 좌측 블록 조건 L(condL)는, 컨텍스트 제어부(142)가, 컬럼 c4에 있어서 0, 1, 2의 값 중 어느 하나의 값을 선택하기 위한 좌측 블록의 조건(condition)을 나타낸다. 이 조건은, 부호화 대상(또는 복호 대상)의 제어 파라미터에 대응하는, 좌측 블록의 제어 파라미터의 값에 따라 결정되는 true 또는 false의 값을 취한다.
예를 들면, 제어 파라미터(SE)가 skip_flag인 경우에는, skip_flag[xL][yL]의 값이 true(예를 들면 「1」)이면 true가, false(예를 들면 「0」)이면 false가 출력된다.
(c6) 상측 블록 조건 A(condA)는, 컨텍스트 제어부(142)가, 컬럼 c4로 지정된 배열 요소의 부호화 및 복호에 있어서 0, 1, 2의 값 중 어느 하나의 값을 선택하기 위한 상측 블록의 조건(condition)을 나타낸다. 이 조건은, 부호화 대상(또는 복호 대상)의 제어 파라미터에 대응하는, 상측 블록의 제어 파라미터의 값에 따라 결정되는 true 또는 false의 값을 취한다. 예를 들면, 제어 파라미터(SE)가 skip_flag인 경우에는, skip_flag[xA][yA]의 값이 true(예를 들면 「1」)이면 true가, false(예를 들면 「0」)이면 false가 출력된다.
또한, 도시하고 있지 않지만, 2비트 이상의 신호 종별에는 (c7) 「binIdx>=1에 적용하는 컨텍스트 증분값」이 대응 지어져 있다. 이 (c7)은, 컨텍스트 제어부(142)가, 2치 배열의 2요소째 이후의 바이너리(binIdx>=1의 인덱스값을 가지는 바이너리 배열 요소의 바이너리값)에 적용하는 컨텍스트 모델을 나타낸다.
본 실시의 형태에 관련된 화상 부호화 방법은, 상기 좌측 블록 조건 L 및 상측 블록 조건 A에 대해서 제어 파라미터(130)의 신호 종별에 따라 이하의 동작을 전환한다(상이한 패턴을 이용하여 동작한다).
(패턴 1) 2개의 인접 블록(좌측 블록 조건 L의 판정값과 상측 블록 조건 A의 판정값)을 사용한다.
(패턴 2) 1개의 인접 블록(좌측 블록 조건 L의 판정값 만)을 사용한다.
(패턴 3) 0개의 인접 블록을 사용한다(좌측 블록 조건 L도 상측 블록 조건 A도 사용하지 않는다).
도 4는, 도 2에 나타내는 가변길이 부호화부(104)가 실행하는 본 실시의 형태에 관련된 화상 부호화 방법을 나타내는 플로우도이다.
우선, 2치화부(141)는 제어 파라미터(130)의 값을, 이 제어 파라미터(130)의 신호 종별에 대응하는 방식으로 2치 배열화한다(S101).
다음에, 컨텍스트 제어부(142)는, 이 제어 파라미터(130)의 산술 부호화에 이용하는 컨텍스트의 기본값을 취득한다(S102). 예를 들면, 컨텍스트 제어부(142)는, 픽처 타입(I, P, B)에 따라 이 기본값을 결정한다.
다음에, 컨텍스트 제어부(142)는, 제어 파라미터(130)의 신호 종별에 따라, 상기 패턴 1~패턴 3 중 어느 하나를 이용하여 컨텍스트값을 결정한다(S103). 여기서, 컨텍스트값을 결정한다는 것은, 컨텍스트의 기본값에 대한 조정값(인크리먼트값 CtxIdxInc)을 결정하는 것과 등가이다.
우선, 컨텍스트 제어부(142)는, 제어 파라미터(130)의 신호 종별을 판별한다(S103). 제어 파라미터(130)의 신호 종별이 패턴 1에 대응하는 제1 종별인 경우(S104에서 제1 종별), 컨텍스트 제어부(142)는, 인접하는 2개의 블록(블록 A와 블록 B)의 각각의 제어 파라미터의 값으로부터 도출된 판정값을 이용하여 컨텍스트값을 결정한다(S105). 바꾸어 말하면, 컨텍스트 제어부(142)는, 좌측 블록 및 상측 블록의 2개의 인접 블록의 제어 파라미터를 이용하는 조건을 이용하여 컨텍스트를 결정한다. 이 경우, 컨텍스트 제어부(142)는, 도 3에 나타내는 (c5)CondL의 판정 결과와 (c6)condA의 판정 결과 양쪽의 값을 이용한다. 따라서, 제1 종별의 제어 파라미터에 대해서는 픽처의 세로 일렬분의 데이터를 유지하게 된다.
한편, 제어 파라미터(130)의 신호 종별이 패턴 2에 대응하는 제2 종별인 경우(S104에서 제2 종별), 컨텍스트 제어부(142)는, 1개의 인접 블록(부호화 순서로 가장 가까운 인접 블록)의 제어 파라미터의 값을 이용하여 컨텍스트값을 결정한다(S106). 바꾸어 말하면, 컨텍스트 제어부(142)는, 상측 블록의 제어 파라미터를 이용하지 않는 조건을 이용하여 컨텍스트를 결정한다.
한편, 제어 파라미터(130)의 신호 종별이 패턴 3에 대응하는 제3 종별인 경우(S104에서 제3 종별), 컨텍스트 제어부(142)는, 상측 블록 및 좌측 블록의 제어 파라미터를 함께 이용하지 않고, 고정적으로 컨텍스트값을 결정한다(S107).
다음에, 컨텍스트 제어부(142)는, 단계 S102에서 결정된 컨텍스트의 기본값에, 단계 S103에서 결정된 증분값을 가산함으로써 컨텍스트 인덱스값을 도출한다(S108).
마지막으로, 2치 산술 부호화부(143)는, 제1 요소의 바이너리값을, 단계 S108에서 결정된 컨텍스트 인덱스값에서 지정되는 컨텍스트값을 이용하여 산술 부호화함으로써, 비트열(비트 스트림(124))을 생성한다(S109).
다음에, 2치 배열에 포함되는 모든 요소에 대해 단계 S102~S109의 처리의 실행이 완료되어 있지 않는 경우(S110에서 NO), 가변길이 부호화부(104)는, 2치 배열에 포함되는 다음의 요소에 대해, 단계 S102~S109의 처리를 실행한다. 한편, 2치 배열에 포함되는 모든 요소에 대해 단계 S102~S109의 처리의 실행이 완료된 경우(S110에서 YES), 가변길이 부호화부(104)는, 처리 대상 블록의 제어 파라미터에 대한 부호화 처리를 종료한다.
이상과 같이, 본 실시의 형태에 관련된 화상 부호화 장치(100)는, 산술 부호화에 있어서, 제1 종별의 제어 파라미터에 대해서는, 상측 블록을 이용하여 컨텍스트를 결정하고, 제2 종별 및 제3 종별의 제어 파라미터에 대해서는, 상측 블록을 이용하지 않고 컨텍스트를 결정한다.
이 구성에 의해, 당해 화상 부호화 장치(100)는, 획일적으로 「인접 블록의 제어 파라미터의 값에 의거한 컨텍스트 모델을 이용한다」라고 하여 좌측 블록과 상측 블록을 이용하는 경우에 비해 메모리 사용량을 삭감할 수 있다. 이것에 의해, 당해 화상 부호화 장치(100)는, 화질의 열화를 억제하면서, 메모리 사용량을 삭감할 수 있다.
(실시의 형태 2)
본 실시의 형태에서는, 상기 화상 부호화 장치(100)에 의해 생성된 비트 스트림(124)을 복호하는 화상 복호 장치에 대해서 설명한다.
도 5는, 본 실시의 형태에 관련된 화상 복호 장치(200)의 블록도이다. 이 화상 복호 장치(200)는, 산술 복호를 이용하는 화상 복호 장치이며, 비트 스트림(124)을 복호함으로써 화상 신호(229)를 생성한다. 여기서 비트 스트림(124)은, 예를 들면, 상기 서술한 화상 부호화 장치(100)에 의해 생성된 비트 스트림(124)이다.
화상 복호 장치(200)는, 제어부(201)와, 가변길이 복호부(202)와, 역양자화부(204)와, 역변환부(205)와, 가산부(206)와, 화면내 예측부(207)와, 화면간 예측부(208)를 포함한다.
화상 복호 장치(200)는, 소정의 처리 단위의 부호열 마다 복호 처리를 행한다. 여기서 처리 단위는, 예를 들면, 슬라이스 단위, 또는 블록 단위이다.
가변길이 복호부(202)는, 비트 스트림(124)에 산술 복호를 행함으로써, 제어 파라미터(230)(control data syntax element)와, 양자화 변환 계수(223)(Residual data syntax element값)를 생성한다. 생성된 제어 파라미터(230)는 제어부(201)에 출력된다.
제어부(201)는, 제어 파라미터(230)에 따라 화상 복호 장치(200)에 포함되는 처리부를 제어한다.
역양자화부(204)는, 양자화 변환 계수(223)를 역양자화함으로써 직교 변환 계수(224)를 생성한다.
역변환부(205)는, 직교 변환 계수(224)를 역변환함으로써 잔차 신호(225)를 복원한다. 가산부(206)는 잔차 신호(225)와 예측 화상 신호(화상 신호(229))를 가산함으로써 복호 화상 신호(226)를 생성한다.
화면내 예측부(207)는, 복호 화상 신호(226)를 이용하여 화면내 예측 처리를 행함으로써 예측 화상 신호(227)를 생성한다. 화면간 예측부(208)는, 복호 화상 신호(226)를 이용하여 화면간 예측 처리를 행함으로써 예측 화상 신호(228)를 생성한다.
스위치(209)는, 예측 화상 신호(227) 및 예측 화상 신호(228)의 한쪽을 선택하고, 선택한 신호를 화상 신호(229)(예측 화상 신호)로서 출력한다.
다음에, 가변길이 복호부(202)의 구성을 설명한다.
도 6은, 가변길이 복호부(202)의 구성을 나타내는 기능 블록도이다. 가변길이 복호부(202)는, 2치 산술 복호부(243)와, 컨텍스트 제어부(242)와, 다치화부(241)를 포함한다. 이하, 제어 파라미터(230)의 가변길이 복호 처리에 대해서 설명한다. 또한, 양자화 변환 계수(223)의 가변길이 복호 처리에 대해서는 설명을 생략하지만, 예를 들면, 기존의 기술을 이용해 실현할 수 있다.
컨텍스트 제어부(242)는, 복수의 컨텍스트 중, 처리 대상의 블록의 제어 파라미터(230)의 산술 복호에 사용하는 컨텍스트를 결정한다. 또, 컨텍스트 제어부(242)는, 결정한 컨텍스트를 지정하는 컨텍스트 인덱스(252)를 2치 산술 복호부(243)로 출력한다.
구체적으로는, 컨텍스트 제어부(242)는, 유지하는 확률 천이 모델로서, 도 2에 나타내는 컨텍스트 제어부(142)와 동일한 컨텍스트 모델을 이용한다. 2치 산술 부호화부(143)가 64개의 확률 상태를 이용하는 경우는, 2치 산술 복호부(243)도 64개의 확률 상태를 가진다. 이것은, 부호화되는 수직선 상의 레인지를, 부호화측 및 복호측의 양쪽에서 완전히 동일하게 해석할 필요가 있기 때문이다. 따라서, 부호화측이, 상기 서술한 패턴 1~3의 3개의 패턴으로부터 선택한 패턴과, 동일한 패턴을 복호 장치측에서도 이용한다.
2치 산술 복호부(243)는, 컨텍스트 제어부(242)에서 결정된 컨텍스트를 이용하여 비트열(비트 스트림(124))을 산술 복호함으로써 2치 배열(251)을 복원한다. 구체적으로는, 2치 산술 복호부(243)는, 컨텍스트 제어부(242)로부터 주어진 컨텍스트 인덱스에 의해 지정되는 컨텍스트(확률 상태 테이블)를 이용하여, 입력된 비트열을 2치 배열(251)로 복원한다.
다치화부(241)는, 2치 배열(251)을 필요하면 다치화함으로써 제어 파라미터(230)로 복원한다. 이와 같이, 화상 부호화 장치(100)가 구비하는 컨텍스트 제어부(142)와, 화상 복호 장치(200)가 구비하는 컨텍스트 제어부(242)는, 어느 신호 종별의 제어 파라미터의 산술 부호화 및 산술 복호 시에 쌍방에서 동일한 컨텍스트 모델을 이용한다.
도 7은, 가변길이 복호부(202)가 실행하는 본 실시의 형태에 관련된 화상 복호 방법을 나타내는 플로우도이다.
우선, 가변길이 복호부(202)는 비트 스트림(124)을 취득한다(S201).
다음에, 컨텍스트 제어부(242)는, 비트 스트림(124)의 데이터 구조에 따라 복호 대상의 제어 파라미터의 신호 종별을 결정한다(S202).
다음에, 컨텍스트 제어부(242)는, 복호 대상의 제어 파라미터의 산술 복호에 이용하는 컨텍스트의 기본값을 결정한다(S203). 예를 들면, 컨텍스트 제어부(242)는, 픽처 타입(I, P, B)에 따라 이 기본값을 결정한다.
다음에, 컨텍스트 제어부(242)는, 제어 파라미터의 신호 종별에 따라, 상기 패턴 1~패턴 3 중 어느 하나를 이용하여 컨텍스트값을 결정한다(S204). 여기서, 컨텍스트값을 결정하는 것이란, 컨텍스트의 기본값에 대한 조정값(인크리먼트값 CtxIdxInc)을 결정하는 것과 등가이다. 예를 들면, 컨텍스트 제어부(242)는, 제어 파라미터의 신호 종별에 따라 패턴 1~패턴 3 중 어느 하나를 이용할지의 판단을, 정적으로 사전에 결정된 표에 따라 행한다.
컨텍스트 제어부(242)는, 2치 배열(251)에 포함되는 제1 요소의 바이너리의 값을 산술 복호에 의해 얻기 위해 이용하는 컨텍스트의 결정에 이용하는 인접 블록을, 제어 파라미터의 신호 종별에 따라 전환한다.
우선, 컨텍스트 제어부(242)는, 제어 파라미터(230)의 신호 종별을 판정한다(S205). 신호 종별이 패턴 1에 대응하는 제1 종별인 경우(S205에서 제1 종별), 컨텍스트 제어부(242)는, 인접하는 2개의 블록의 각각의 제어 파라미터를 이용하여 컨텍스트값을 결정한다(S206). 바꾸어 말하면, 컨텍스트 제어부(242)는, 좌측 블록 및 상측 블록의 2개의 인접 블록의 복호가 끝난 제어 파라미터를 이용하는 조건을 이용하여 컨텍스트를 결정한다.
한편, 신호 종별이 패턴 2에 대응하는 제2 종별인 경우(S205에서 제2 종별), 컨텍스트 제어부(242)는, 1개의 인접 블록(부호화 순서로 가장 가까운 인접 블록)의 제어 파라미터의 값을 이용하여 컨텍스트값을 결정한다(S207). 바꾸어 말하면, 컨텍스트 제어부(242)는, 상측 블록의 복호가 끝난 제어 파라미터를 이용하지 않는 조건을 이용하여 컨텍스트를 결정한다.
한편, 신호 종별이 패턴 3에 대응하는 제3 종별인 경우(S205에서 제3 종별), 컨텍스트 제어부(242)는, 고정적으로 컨텍스트값을 결정한다(S208). 바꾸어 말하면, 컨텍스트 제어부(242)는, 상측 블록 및 좌측 블록의 복호가 끝난 제어 파라미터를 함께 이용하지 않는 조건을 이용하여 컨텍스트를 결정한다.
다음에, 컨텍스트 제어부(242)는, 단계 S203에서 결정된 컨텍스트 인덱스의 기본값과, 단계 S204에서 결정된 증분값을 가산함으로써 컨텍스트 인덱스값을 결정한다(S209).
다음에, 2치 산술 복호부(243)는, 컨텍스트 제어부(242)로부터 주어진 컨텍스트 인덱스값에서 나타내는 컨텍스트값을 이용하여, 2치 배열의 요소의 하나를 복호에 의해 얻는다(S210).
다음에, 2치 배열에 포함되는 모든 요소에 대해 단계 S203~S210의 처리의 실행이 완료되어 있지 않는 경우(S211에서 NO), 가변길이 복호부(202)는, 2치 배열에 포함되는 다음의 요소에 대해, 단계 S203~S210의 처리를 실행한다.
한편, 2치 배열에 포함되는 모든 요소에 대해 단계 S203~S210의 처리의 실행이 완료된 경우(S211에서 YES), 다치화부(241)는, 상기의 단계 S203~S210의 처리를 1회 이상 반복함으로써 얻어진 2치 배열(251)의 1개 이상의 요소를 다치화함으로써 제어 파라미터(230)를 생성한다(S212).
이상으로부터, 본 실시의 형태에 관련된 화상 복호 장치(200)는, 산술 복호에 있어서, 제1 종별의 제어 파라미터에 대해서는, 상측 블록을 이용하여 컨텍스트를 결정하고, 제2 종별 및 제3 종별의 제어 파라미터에 대해서는, 상측 블록을 이용하지 않고 컨텍스트를 결정한다.
이 구성에 의해, 당해 화상 복호 장치(200)는, 획일적으로 「인접 블록의 제어 파라미터의 값에 의거한 컨텍스트 모델을 이용한다」라고 하여 좌측 블록과 상측 블록을 이용하는 경우에 비해 메모리 사용을 삭감할 수 있다. 이것에 의해, 당해 화상 복호 장치(200)는, 화질의 열화를 억제하면서, 메모리 사용량을 삭감할 수 있다.
또한, 다치화부(241)는, 2치 배열(251)이 flag 등이며, 요소수가 1개인 경우, 즉, 1binary인 경우에는, 당해 2치 배열(251)을 그대로 출력해도 된다.
또, 상기 서술 설명에 더하여, 제어부(101 또는 201)는 도시하지 않는 신호선을 통하여 각 처리부를 제어하는 처리, 또는 메모리의 값을 참조하는 처리 등을 행해도 된다.
또, 상기 설명에서는, 컨텍스트 제어부(142 또는 242)는, 패턴 1~패턴 3의 3개의 패턴을 제어 파라미터의 신호 종별에 따라 전환하고 있지만, 패턴 1~패턴 3 중 2개의 패턴을 신호 종별에 따라 전환해도 된다. 바꾸어 말하면, 컨텍스트 제어부(142 또는 242)는, 제어 파라미터의 신호 종별에 따라, 상측 블록 조건을 이용한다/하지 않는다를 전환하면 된다.
또, 컨텍스트 제어부(142 또는 242)는, 이러한 선택되는 컨텍스트 모델의 전환 방법(컨텍스트 모델 증분값을 변경하는 경우도 포함한다, 이하 동일)을 소정의 화상 정보에 따라 변경해도 된다. 예를 들면, 컨텍스트 제어부(142 또는 242)는, 메모리 유지량 및 각 컨텍스트의 학습 회수에 영향을 주는 화상의 가로폭의 사이즈 또는 샘플링 포맷 등에 따라, 이 전환 방침 자체를 다시 전환하는 것으로 해도 된다.
또, 상기 설명에서는, 설명의 간략화를 위해, 컨텍스트 제어부(142 또는 242)가, 상측 블록 조건을 이용한다/하지 않는다를 전환한다고 했지만, 컨텍스트 제어부(142 또는 242)는, 상측 블록이 애초부터 이용할 수 없는 경우를 이것과 조합하여 적용해도 된다. 예를 들면, 컨텍스트 제어부(142 또는 242)는, 처리 대상의 슬라이스가 엔트로피 슬라이스인지 여부(entropy_slice_flag 가 1인지 0인지)에 따라, 이 전환 방침 자체를 변경해도 된다. 마찬가지로, 애초부터 상측 인접 블록의 이용 가능성을 담보할 수 없는 경우에는, 컨텍스트 제어부(142 또는 242)는, 전환 방침을, 상측 블록을 이용하지 않는다로 변경해도 된다.
예를 들면, 도 8에 나타내는 바와 같이, 컨텍스트 제어부(142 또는 242)는, 소정의 단위의 파라미터의 값에 따라(S301), 컨텍스트 모델의 결정 방침을 제1 결정 규범(S302)과, 제2 결정 규범(S303)으로 전환해도 된다. 여기서, 소정의 단위의 파라미터의 값에 따라서란, 상기 서술한 바와 같이, 슬라이스가 entropy slice인지 여부 등에 따라서이다. 또, 제1 결정 규범이란, 도 7에 나타내는 처리를 행하는 규범이다. 제2 결정 규범이란, 도 7에 나타내는 단계 S204를 포함하지 않는 결정 규범이며, 예를 들면 종래의 결정 규범이다. 이것은 컨텍스트 인덱스의 증분값을, 국소적인 소정의 단위의 파라미터와 그 단위보다 큰 단위의 파라미터의 값으로 결정하는 것과 등가이다.
즉, 컨텍스트 제어부(142 또는 242)는, 제1 단위의 제어 파라미터의 값에 의거하여, 제1 단위보다 작은 단위에 적용되는 결정 규범을 다른 결정 규범으로 전환해도 된다.
도 9a는, 상기의 맵핑 정보와 컨텍스트 인덱스의 대응(assignment)을 설명하기 위한 도이다. 도 9a에서는, 신호 mvd_l0,l1, lc의 예를 나타낸다. 또한, 다른 신호 종별에 대해서도 마찬가지이다.
도 9a에 나타내는 할당(901B)은, 비특허 문헌 1에서 이용되고 있는 컨텍스트 인덱스의 할당이다. 오프셋값 0~13의 14개가 P픽처에 할당되어 있다. 또, 오프셋값 14~27의 14개가 B픽처에 할당되어 있다. 또한, mvd_l0[][][0]과 mvd_l0[][][1]은, 각각, 움직임 벡터의 차분에 있어서의 각 성분값(수평 방향 및 수직 방향)이다. 현재 검토 중인 HEVC에서는, 오프셋값 0~2의 3개와, 오프셋값 7~9의 3개와, 오프셋값 14~16의 3개와, 오프셋값 21~23의 3개가 2치 배열의 제1번째의 요소(binIdx=0)의 바이너리를 산술하기 위한 컨텍스트 조건값(condA와 condL에 의해 상세화되는 조건)로서 할당되어 있다. 또, 신호 종별과 컨텍스트 인덱스의 관계는, 다양한 화상 계열에 관계없이 고정적으로 정해져 있다.
도 9a에 나타내는 컨텍스트 인덱스의 할당(902B~904B)은, 본 실시의 형태에 관련된 컨텍스트 인덱스의 할당이다.
할당(902B)은, 패턴 2(상측 블록을 이용하지 않는다)를 이용하는 경우의 컨텍스트 인덱스의 할당(allocation)을 나타낸다. 이 경우, 오프셋값 0~2 등의 3개를 조건값으로서 할당할 필요는 없고, 오프셋값 0 및 1의 2개로 충분하다. 이것은, condA를 이용하지 않기 때문이다. 따라서 도 9a에 나타내는 해칭된 부분에 대한, 컨텍스트 인덱스의 할당이 불필요하다. 따라서, 할당(901B)과 마찬가지로 1개의 binIdx>0에 대해 4개씩 컨텍스트 인덱스를 할당했다고 해도, 합계로 컨텍스트 인덱스는 0~23의 24개로 충분하다. 따라서 적어도 4개의 컨텍스트가 삭감된다.
할당(903B)은 패턴 3(상측 블록 및 좌측 블록을 양쪽 모두 이용하지 않는다)을 이용하는 경우의 컨텍스트 인덱스의 할당을 나타낸다. 이 경우도 0~2 등의 3개를 조건값으로서 할당할 필요는 없고, 0 뿐인 1개로 충분하다. 이것은, condA 및 condL을 함께 이용하지 않기 때문이다. 따라서 도 9a에 나타내는 해칭된 부분에 대한, 컨텍스트 인덱스의 할당이 불필요하다. 따라서 합계로 컨텍스트 인덱스는 0~19의 20개로 충분하다. 따라서 적어도 8개의 컨텍스트가 삭감된다.
할당(904B)은, 상기 서술한 신호 종별의 블록의 단위보다 큰 단위로서, 화상 계열이 B픽처를 포함하지 않고 구성되는 경우, 또는 전방 참조 만이 이용되는 경우에 이용하는 할당의 예이다. 여기서, 전방 참조 만이 이용되는 경우란, 화상 계열이 I픽처와 P픽처 만을 포함하는 경우, 또는, 화상 계열에 포함되는 B픽처에 전방 참조 만이 이용되는 경우이다. 이 경우, 원래 컨텍스트 인덱스로서 B픽처용인 것을 이용할 필요가 없다. 이것은, 전방 참조 만이 이용되는 경우에는, 컨텍스트를 P픽처용의 컨텍스트와, B픽처용의 컨텍스트로 나눌 필요가 없기 때문이다.
따라서, 컨텍스트 인덱스(상대값)로서는, 도 9a에 나타내는 대로 0~9까지의 10개로 충분하다. 따라서 적어도 18개의 컨텍스트가 삭감된다. 즉, 초기화 대상 및 갱신 대상의 컨텍스트의 수가 삭감된다.
또한, 여기에서는, mvd를 예로 설명을 행했지만, B픽처용의 컨텍스트와 P픽처용의 컨텍스트가 이용되는 다른 신호 종별의 컨텍스트의 할당도 마찬가지이다.
또, 도 8에서 설명한 규범을 전환한다는 것은, 화상 계열의 전부 또는 일부(predetermined unit)에 대해, 그 파라미터의 종별에 따라, 사용하는 할당(901B~904B)을 전환하는 것으로도 말할 수 있다.
이와 같이, 본 실시의 형태에 의하면, 종래와 같이 정적인 1개의 규범(상측 블록 및 좌측 블록을 함께 이용하는 규범)에 따라 할당되어 있던 컨텍스트 인덱스를, 복수의 규범에 따라 변경할 수 있다. 따라서, 메모리 사용량의 삭감뿐만 아니라, 소정의 단위의 성질에 따라, 필요한 만큼 컨텍스트의 할당 방침을 전환할 수 있다.
또, 컨텍스트 제어부(142 또는 242)는, 화상 계열의 특징에 따라, 사용하는 결정 규범)을 변경해도 된다. 예를 들면, 컨텍스트 제어부(142 또는 242)는, I픽처의 간격(IntraPeriod의 설정값)에 따라, 사용하는 결정 규범을 변경해도 된다.
또한, 여기에서는, 컨텍스트 제어부(142 또는 242)는, 상기의 조건에 따라, 결정 규범을 전환한다고 했지만, 상측 블록을 이용할지 여부를 전환해도 된다.
또, 컨텍스트 제어부(142 또는 242)는, 위치적으로 상측 블록의 제어 파라미터를 부호화 또는 복호 시에 이용할 수 있는지 여부에 의거하여, 상측 블록의 제어 파라미터를 이용할지 여부를 결정해도 된다. 즉, 컨텍스트 제어부(142 또는 242)는, 처리 대상의 블록 위치에 의거하여, 상측 블록의 제어 파라미터를 복호 시에 이용할 수 있는지 여부를 판정하고, 상측 블록의 제어 파라미터를 이용할 수 없는 경우에, 패턴 2 또는 패턴 3을 이용하여 컨텍스트를 결정해도 된다. 또한, 컨텍스트 제어부(142 또는 242)는, 이 상측 블록의 참조값을 이용할 수 있는지 여부를, TU, CU, 또는 PU 블록 분할의 트리 구조에 의거하여 결정해도 된다. 즉, 컨텍스트 제어부(142 또는 242)는, 처리 대상의 제어 파라미터가 속하는 데이터 단위의 계층의 깊이에 따라 상측 블록의 제어 파라미터를 복호 시에 이용할 수 있는지 여부를 판정해도 된다.
도 9b는, HEVC 규격에 있어서의 픽처와 슬라이스와 블록의 관계를 나타내는 도이다. 1개의 픽처는 1개 이상의 슬라이스로 분할되어 있다. 도 9b에 나타내는 예에서는 픽처는, 2개의 슬라이스(SLICE1 및 SLICE2)로 분할되어 있다. 1개의 슬라이스는, 복수의 블록(301)(예를 들면, treeblocks)으로 구성된다. 여기서, 블록(301)은, 슬라이스를 소정의 사이즈로 분할한 경우에, 어떠한 제어 단위로서 최대의 단위이며, 그 단위를 계층 분할의 root로 한 경우의 그 root의 사이즈이다.
도 9b에 나타내는 예에서는, SLICE2는, 블록(301A)(startTb)으로부터 시작하여, 해칭된 블록(301)을 경유하여 우측 아래 코너의 블록까지의 복수의 블록을 포함하는 1시퀀스로 구성된다. 또한, 도면 중 해칭된 블록은 현재의 처리 대상이 되는 1개의 블록(Treeblock)이다.
그런데, 각각의 블록(301)은 N×M 화소로 구성된다. 또, 1개의 블록(301)은 내부에서 재귀적으로 분할(전형적으로는 4분할)된다. 즉, 1개의 Treeblock는 개념적으로 1개의 4분 트리를 구성한다(QuadTree). 도 9b에 나타내는 블록(301B)에서는, 4분할된 우측 위의 블록이 2계층에 걸쳐 재귀적으로 4분할되어 있다. 즉, 블록(301B)은, 좌측 위의 0번부터 우측 아래의 9번까지, 소정의 관점에서 분할된 10개의 논리적인 유닛을 포함한다.
여기서, 관점이란, 부호화 단위(CU)에 대한 tree, 또는 residual_data에 대한 Tree 등, 어느 root를 기점으로 서로 깊이가 상이할 수 있는 복수의 트리가 관념된다. 여기서 각종의 제어 파라미터의 값은 어느 하나의 잎노드에 속하게 된다.
그런데, 여기서, 실제로 상측 블록에 포함되는 있는 신호 종별의 제어 파라미터의 값이 「이용할 수 있는지(available) 여부는」, 당해 제어 파라미터가 속하는 트리의 종별에 의존한다. 따라서, 컨텍스트 제어부(142 또는 242)는, 제어 파라미터가 속하는 트리의 종별에 따라서 결정 규범을 변경해도 된다. 이것은, 신택스 단위로 변경하는 것과 등가다. 예를 들면, 컨텍스트 제어부(142 또는 242)는, 적응 필터에 대한 alf_param 등의 데이터 구조의 데이터에 대해서는, 상측 블록을 이용하지 않는 패턴 2 또는 패턴 3을 이용하고, 다른 신택스에 대해서는 종래 대로의 컨텍스트 모델 방침(패턴 1)을 이용해도 된다. 즉, 상기 제2 종별 또는 제3 종별은, 미리 정해진 데이터 구조를 가지는 제어 파라미터여도 된다. 또, 이것은, 인접의 정의의 트리의 종별에 의해 바뀌는 것을 의미한다.
또한, 실제로 그 제어 파라미터의 값을 이용할 수 있을지 어떨지, 또는, 메모리 사용량의 삭감에 효과가 발생할지는, 블록의 계층 관계 상의 위치에 따라 상이하다. 즉, 컨텍스트 제어부(142 또는 242)는, 블록의 계층 및 계층 내의 위치에 따라 상측 블록을 이용할지 여부를 전환해도 된다.
예를 들면, 도 9b에 나타내는 블록(301B)에 있어서의 각 번호 0~9는, 복호순서인 것으로 한다. 이 경우, 번호 4의 블록을 부호화 또는 복호하는 경우에, 번호 1의 블록 및 번호 2의 블록의 제어 파라미터를 이용할 수 있다.
또한, 메모리 사용량의 삭감의 관점에서, 컨텍스트 제어부(142 또는 242)는, Depth0가 아닌 블록이며, 또한, 자기의 위치가 세로 방향 분할에 있어서의 2개째 이상의 요소이면, 상측 블록을 이용하는 패턴 1을 선택해도 된다. 여기서 depth란, root로부터의 계층수를 나타낸다. 즉, 어느 블록을 block[xn],[y0][depth]로 규정한 경우, 처리 대상의 블록이 block[xn][(y0)+1][depth])가 성립하는 블록인지 여부에 따라, 결정 규범을 변경해도 된다. 즉, 도 9b에 나타내는 번호 4~9의 블록에 대해 상측 블록이 이용된다. 이것은, 이 트리의 부호화 또는 복호가, 도시된 번호순서(0으로부터 시작되어 9로 끝나는 순서)이면, 번호 4~9의 블록에서는, 상측 블록에 포함되는 제어 파라미터를 이용할 수 있는 것도 분명하기 때문이다. 또한, 이들 블록에서는, 데이터의 유지는 일시적이면 된다는 이점도 있다. 또, 이것은, x, y좌표에 더하여 계층을 포함하는 삼차원의 위치에 따라 컨텍스트값을 결정하는 것도 말할 수 있다. 또한, x, y좌표 및 계층 중 적어도 하나의 위치에 따라 컨텍스트값을 결정해도 된다.
또, 상계층의 블록의 조건값을 하계층의 블록의 조건값으로서 이용(답습)하는 것이 가능하다. 마찬가지로, 하계층의 블록의 조건값을 상계층의 블록의 조건값으로서 이용(답습)하는 것도 가능하다.
이것을 확장하여, 도 38에서 설명한 바와 같이, 최소 단위(예를 들면 4×4)를 기준으로 아래의 행을 위한 값을 유지하는 것이 아니라, 이하와 같은 방법을 이용해도 된다. 당해 방법은, 예를 들면, 32×32 또는 64×64 등의 최소 단위보다 큰 단위로 조건값 또는 조건값을 도출하기 위한 값을 유지한다. 당해 방법은, 아래의 행에서는, 위의 행의 2개의 블록의 값으로부터, 당해 2개의 블록과, 처리 대상의 블록의 위치 관계를 이용하여, 처리 대상의 블록 상측에 위치하는 블록에 대한 값을 내삽 또는 내분 등에 의해 산출한다. 예를 들면, 당해 방법은, 위의 행에 대해서, 최소 단위(예를 들면 4×4)보다 큰 단위로 샘플값을 유지해 두어, 아래의 행의 블록(예를 들면, 4×4~64×64 등)의 위치에 따라, 위의 행의 샘플값을 내분에 의해 도출한다. 이것에 의해, 계산량은 증가하지만, 메모리 사용량을 감소할 수 있다. 이와 같이, 당해 방법은, 최악의 경우를 상정하여 최소 단위로 샘플값을 유지하는 경우에 비해, 상행에 대한 메모리 사용량을 저감할 수 있다. 예를 들면, 32×32의 단위로 샘플값을 유지하는 경우, 최소 단위(4×4)를 이용하는 경우에 비해, 메모리 사용량은 8분의 1이다.
또, 예를 들면, split_coding_unit_flag는, 블록을 4분할하는지 여부를 나타내는 플래그이다. 이 플래그(split_condig_unit_flag)에 대해서는, 좌측 블록에 대해서는 조건값 condL을 유지하면서, 상측 블록에 대해서는 조건값(condA)를 이용하지 않고, 현재의 블록의 계층 깊이에 따라 컨텍스트를 결정해도 된다. 또, 신호 종별에 따라서는, 지배적 요인이, 상측 및 좌측이 아니며, 계층인 경우에는, 컨텍스트 제어부(142 또는 242)는, 「계층」 단독을 컨텍스트의 결정 조건으로서 이용해도 된다. 즉, 컨텍스트 제어부(142 또는 242)는, 그 외의 신호 종별에 대해서도, 상측 블록 및 좌측 블록을 참조하지 않고, 계층을 이용하여 컨텍스트를 결정해도 된다.
또한, 컨텍스트 제어부(142 또는 242)는, 처리 대상의 블록과 다른 슬라이스의 위치 관계를 고려하여, 이들 규범을 변경해도 된다. 이하, 도 9b에 나타내는 3개의 해칭한 블록(301A, 301B 및 301C)의 예를 설명한다.
여기서, 블록(301A)은, 스타트 블록이며, 좌측 블록 및 상측 블록이 모두 다른 슬라이스에 포함된다. 블록(301B)은, 상측 블록이 다른 슬라이스에 포함된다. 블록(301C)은, 상측 블록 및 좌측 블록이 모두, 자기의 블록이 포함되는 슬라이스와 동일한 슬라이스에 포함된다. 컨텍스트 제어부(142 또는 242)는, 이와 같은 조건에 따라, 규범을 전환해도 된다. 즉, 컨텍스트 제어부(142 또는 242)는, (1) 상측 블록이 다른 슬라이스에 포함되는지 여부에 따라 규범을 전환해도 되고, (2) 좌측 블록이 다른 슬라이스에 포함되는지 여부에 따라 규범을 전환해도 되고, (3) 이들 양쪽에 따라 규범을 전환해도 된다. 바꾸어 말하면, 컨텍스트 제어부(142 또는 242)는, 처리 대상의 블록이 슬라이스 경계에 속하는 경우에, 상측 블록의 제어 파라미터를 복호 시에 이용할 수 없다고 판정해도 된다. 이것에 의해, 예를 들면, 위의 슬라이스 1의 복호 처리가 종료되어 있지 않는 경우에, 슬라이스 2의 내부에서 자기적으로 정보를 얻을 수 있는지 여부를 고려한 복호 처리가 실현될 수 있다.
이하, 계층화된 처리 단위(다계층 블록 구조)에 대해서 설명한다. 도 10은, 계층화된 처리 단위(다계층 블록 구조)를 설명하기 위한 설명도이다.
상기 화상 부호화 장치(100)는, 동화상을 처리 단위 마다 부호화하고, 화상 복호 장치(200)는, 부호화 스트림을 처리 단위 마다 복호한다. 이 처리 단위는, 복수의 작은 처리 단위로 분할되고, 그 작은 처리 단위가 더 복수의 보다 작은 처리 단위로 분할되도록, 계층화되어 있다. 또한, 처리 단위가 작을 수록, 그 처리 단위가 있는 계층은 깊고, 하위에 있으며, 그 계층을 나타내는 값은 크다. 반대로, 처리 단위가 클 수록, 그 처리 단위가 있는 계층은 얕고, 상위에 있으며, 그 계층을 나타내는 값은 작다.
처리 단위에는, 부호화 단위(CU)와 예측 단위(PU)와 변환 단위(TU)가 있다. CU는, 최대 128×128 화소로 이루어지는 블록이며, 종래의 매크로 블록에 상당하는 단위이다. PU는, 화면간 예측의 기본 단위이다. TU는, 직교 변환의 기본 단위이며, 그 TU의 사이즈는 PU와 동일하거나, PU보다 한 계층 작은 사이즈이다. CU는, 예를 들면 4개의 서브 CU로 분할되고, 그 중의 하나의 서브 CU는, 그 서브 CU와 동일한 사이즈의 PU 및 TU를 포함한다(이 경우, PU와 TU는 서로 겹친 상태에 있다). 예를 들면, 그 PU는 또한 4개의 서브 PU로 분할되며, TU도 또한 4개의 서브 TU로 분할된다. 또한, 처리 단위가 복수의 작은 처리 단위로 분할되는 경우, 그 작은 처리 단위를 서브 처리 단위라고 한다. 예를 들면, 처리 단위가 CU인 경우에서는, 서브 처리 단위는 서브 CU이며, 처리 단위가 PU인 경우에서는, 서브 처리 단위는 서브 PU이며, 처리 단위가 TU인 경우에서는, 서브 처리 단위는 서브 TU이다.
구체적으로는, 이하대로이다.
픽처는 슬라이스로 분할된다. 슬라이스는 최대 부호화 단위의 시퀀스이다. 최대 부호화 단위의 위치는, 최대 부호화 단위 어드레스 lcuAddr에 의해 나타낸다.
최대 부호화 단위를 포함하는 각각의 부호화 단위는, 4개의 부호화 단위로 분할된다. 그 결과, 부호화 단위의 크기의 4분 트리 분할이 구성된다. 부호화 단위의 위치는, 최대 부호화 단위의 좌측 상단의 샘플(화소 또는 계수)을 기점으로 한 부호화 단위 인덱스 cuIdx에 의해 나타낸다.
부호화 단위의 분할이 허가되어 있지 않은 경우, 그 부호화 단위는 예측 단위로서 취급된다. 부호화 단위와 마찬가지로, 예측 단위의 위치는, 최대 부호화 단위의 좌측 상단의 샘플을 기점으로 한 예측 단위 인덱스 puIdx에 의해 나타낸다.
예측 단위는 복수의 파티션(예측 단위 파티션 또는 서브 PU)을 포함하고 있어도 된다. 예측 단위 파티션은, 예측 단위의 좌측 상단의 샘플을 기점으로 한 예측 단위 파티션 인덱스 puPartIdx에 의해 나타낸다.
예측 단위는 복수의 변환 단위를 포함하고 있어도 된다. 부호화 단위와 마찬가지로, 변환 단위는 4개의 작은 사이즈의 변환 단위(서브 변환 단위)로 분할되어도 된다. 이것은, 잔차 신호의 4분 트리 분할을 허가한다. 변환 단위의 위치는, 예측 단위의 좌측 상단의 샘플을 기점으로 한 변환 단위 인덱스 tuIdx에 의해 나타낸다.
여기서, 각 처리 단위의 정의는 이하 대로이다.
CTB(coding tree block):정사각형 영역의 4분 트리 분할을 특정하기 위한 기본 단위. CTB는 정사각형의 다양한 사이즈를 가진다.
LCTB(largest coding tree block):슬라이스에 있어서 허가되는 가장 큰 사이즈의 CTB. 슬라이스는 중복되지 않는 복수의 LCTB로 이루어진다.
SCTB(smallest coding tree block):슬라이스에 있어서 허가되는 가장 작은 사이즈의 CTB. SCTB를 보다 작은 CTB로 분할하는 것은 허가되어 있지 않다.
PU(prediction unit):예측 처리를 특정하기 위한 기본 단위. PU의 사이즈는, 분할이 허가되어 있지 않은 CU의 사이즈와 동일하다. CU에서는, CU를 4개의 정사각형 영역으로 분할하는 것이 허가되고 있는데 반해, PU에서는, PU를 임의의 형상의 복수의 파티션으로 분할할 수 있다.
TU(transform unit):변환 및 양자화를 특정하기 위한 기본 단위.
CU(coding unit):CTB와 동일.
LCU(largest coding unit):가장 큰 CTB와 동일.
SCU(smallest coding unit):가장 작은 CTB와 동일.
또, 양자화 파라미터는, 델타 양자화 스케일 파라미터(delta QP 또는 QP delta), 양자화 오프셋 파라미터, 인덱스(Qmatrix select idc) 및 양자화 데드 존 오프셋 파라미터 중 적어도 1개를 포함한다. 또한, 인덱스는, 복수의 양자화 스케일 매트릭스로부터 1개를 선택하기 위한 것이다.
델타 양자화 스케일 파라미터(delta QP or QP delta)는, 변환 계수에 적용되어야 할 양자화 스케일 파라미터와, 시퀀스 헤더 또는 슬라이스 헤더에서 지정되는 양자화 스케일 파라미터(또는, Z주사 순서로 직전의 양자화 스케일 파라미터)의 차분이다.
양자화 오프셋 파라미터는, 양자화 오프셋이라고도 불리며, 양자화를 행할 때의 신호의 반올림 조정값(오프셋값)이다. 따라서, 화상 부호화 장치(100)는, 양자화를 행할 때에는, 그 양자화 오프셋을 부호화하고, 화상 복호 장치(200)는, 그 부호화된 양자화 오프셋을 복호한다. 그리고, 화상 복호 장치(200)는, 변환 계수를 역양자화할 때에는, 그 양자화 오프셋을 이용한 보정을 행한다.
인덱스(Qmatrix select idc)는, 적응 양자화 매트릭스라고도 불리며, 복수의 양자화 스케일링 매트릭스로부터 어느 양자화 스케일링 매트릭스를 이용할지를 나타내는 인덱스다. 또, Qmatrix select idc는, 1개의 양자화 스케일링 매트릭스 밖에 없는 경우에는, 그 양자화 스케일링 매트릭스를 사용할지 여부를 나타낸다. 또한, 적응 용량자화 매트릭스는 블록 단위(처리 단위)로 제어 가능하다.
양자화 데드 존 오프셋 파라미터는, 적응 데드 존이라고도 불리며, 데드 존을 블록마다 적응적으로 변경하기 위한 제어 정보이다. 데드 존은, 주파수 계수가 양자화에 의해 0이 되는 폭(양자화 후에 +1 또는 -1이 되기 직전의 폭)이다.
또한, 상기 설명에서는, 패턴 3으로서 미리 정해진 고정값을 컨텍스트값으로서 이용하는 예를 서술했지만, 상측 블록 및 좌측 블록의 제어 파라미터를 함께 이용하지 않는 조건이면 되고, 패턴 3으로서 상측 블록 및 좌측 블록의 제어 파라미터의 조건을 포함하지 않는 조건을 이용해도 된다. 예를 들면, 패턴 3으로서, 컨텍스트 제어부(142 또는 242)는, 제어 파라미터가 속하는 데이터 단위의 계층의 깊이에 따라 컨텍스트를 결정해도 된다.
(실시의 형태 3)
본 실시의 형태에서는, 상기 제1 종별 및 제2 종별(또는 제3 종별)로서 어떠한 신호 종별을 이용해야 하는지에 대해서 설명한다.
구체적으로는, 본 발명자는, 도 3(비특허 문헌 2, 9.3.3.1.1.1절)에 나타낸 신호 종별 중 이하의 신호 종별의 개개에 대해서 검증을 행했다. 개개의 신호 종별에 대해서 검증을 행한 것은, 파라미터가 다방면에 걸쳐, 1개의 신호 종별에 대한 검증 결과(패턴 1~패턴 3 중 어느 것이 좋은지)로부터, 다른 신호 종별의 각 패턴이 타당성을 만족하고 있는지 어떤지의 예견이 곤란하기 때문이다.
검증은 JCTVC-E700, “Common test conditions and software reference configurations”(비특허 문헌 3 참조)에 기재된 구성(설정 파라미터, 및 소프트웨어 버젼 HM3.0)에 준거한다. 또, 테스트 화상의 길이는 모두 49프레임으로 제한한 결과이다.
본 실시의 형태에 관련된 화상 부호화 방법 및 화상 복호 방법은 CABAC에 관한 것이다. 따라서, Entropy Coding 모드로서, SymbolMode의 값이 1(# 0:LCEC, 1:CABAC)인 설정값의 세트인 이하의 4개의 테스트 패턴을 이용하여 검증을 행했다.
4.1 Intra, high-efficiency setting
4.3 Random access, high-efficiency setting
4.5 Low delay, high-efficiency setting
4.7 Low delay, high-efficiency setting (P slices only)
또, 평가는, HEVC에서의 실장 평가에 통일적인 평가 척도로서 이용되고 있는 “BD-RATE”값이라고 불리는 평가값을 이용한다. YBD-rate, UBD-rate, 및 VBD-rate는, 색공간 Y, U, V에 대한 BD-rate이며, 평가 척도값이다. 여기서 BD-rate란, VCEG-AI11(비특허 문헌 4)에 기재되어 있는, 2세트의 부호량과 PSNR의 결과를 적분하고, 그 면적의 비에 의해 부호화 효율을 나타낸 평가값이다. 또, BD-rate가 마이너스의 값을 나타내는 경우에 부호화 효율이 좋아진 것을 나타내고 있다. 비교의 기준은 패턴 1을 실장하는 참조 프로그램의 출력 결과이며, 이번 결과는, 패턴 2 및 패턴 3의 각각의 패턴 1에 대한 값을 나타내고 있다.
이하, 각 신호 종별의 검증 결과를 설명한다.
(제1 검증) “split_coding_unit_flag”
(제2 검증) “skip_flag”
(제3 검증) “merge_flag”
(제4 검증) “ref_idx_l0(l1, lc)”
(제5 검증) “inter_pred_flag”
(제6 검증) “mvd_l0(l1, lc)”
(제7 검증) “no_residual_data_flag”
(제8 검증) “intra_chroma_pred_mode”
(제9 검증) “cbf_luma, cbf_cr, cbf_cb”
(제1 검증) “split_coding_unit_flag”
도 11은 split_coding_unit_flag의 산술 복호 방법에 대해서 설명하기 위한 표이다.
검증에 있어서는, 검증 대상의 신호 종별만, 컨텍스트 모델을 패턴 1에서 패턴 2 또는 패턴 3으로 변경하고, 다른 신호 종별, 및 비특허 문헌 3에서 지정하는 검증용 파라미터에 대해서는 변경을 하지 않고 검증을 행하고 있다. 또, 도 11의 란 중의 값에서 「고정」이란, 컨텍스트값(또는 증분값)의 도출에 있어서, 「고정」이 기재된 열의 조건(좌측 블록 조건 또는 상측 블록 조건을 이용하지 않는 것이다. 즉, 좌측 블록 조건 및 우측 블록 조건의 한쪽의 조건 만이 「고정」인 경우는, 다른쪽의 조건 만이 이용된다. 또, 좌측 블록 조건 및 우측 블록 조건의 양쪽이 「고정」인 경우에는, 컨텍스트값(또는 증분값)으로서 미리 정해진 값(예를 들면 「0」)이 이용된다.
신호 종별 “split_coding_unit_flag”의 의미는, 이하에서 정의된다.
split_coding_unit_flag[x0][y0]는, 대상의 CU가 수평 및 수직의 사이즈가 절반의 복수의 CU로 분할되는지 여부를 나타낸다. x0 및 y0는, 화상의 좌측 위 코너에 위치하는 휘도 샘플을 기준으로 한, 대상의 CU의 좌측 위 코너에 위치하는 휘도 샘플의 좌표를 나타낸다. 즉, split_coding_unit_flag는, 대상의 CU가 4분할되어 있는지 여부를 나타낸다. 구체적으로는, split_coding_unit_flag의 값이 「1」인 경우, 대상의 CU는 분할되어 있으며, 당해 값이 「0」인 경우, 대상의 CU는 분할되어 있지 않다.
이 split_coding_unit_flag는, syntax로서 Coding tree syntax에 데이터 구조화된다. 화상 복호 장치는, 이 데이터 구조의 신택스에 준하여 비트열을 해석한다.
도 12a 및 도 12b는 split_coding_unit_flag에 대한 검증 결과를 나타내는 표이다.
도 12a는, (패턴 2) 1개의 인접 블록(좌측 블록 조건 L의 판정값 만)이 이용되는 경우의 검증 결과를 나타낸다. 도 12b는, (패턴 3) 0개의 인접 블록이 이용되는 (상측 블록 조건 L도 좌측도 이용되지 않는다) 경우의 검증 결과를 나타낸다.
또, 도 12a 및 도 12b에 나타내는 검증 결과는, 상기 서술한 4개의 테스트 패턴의 BD-Rate값의 증감을 나타낸다.
또, 평가값은, 좌측 블록 및 상측 블록의 양쪽을 이용하는 패턴 1인 경우의 평가값과의 상대적인 값을 나타내는 평가 척도이다. 구체적으로는, 평가값이 양의 값이면 그 결과는 패턴 1인 경우의 평가값(BD-rate)보다 나쁘다. 또, 평가값이 음의 값이면 그 결과는 패턴 1인 경우의 평가값보다 개선되어 있다.
이 결과에 의하면, split_coding_unit_flag에 관해서는, 컨텍스트 모델의 패턴으로서 패턴 1이 우수한 것을 알 수 있다. 바꾸어 말하면, 패턴 2 및 패턴 3은 패턴 1보다 평가값이 나쁘다.
따라서, 컨텍스트 제어부(142 및 242)는, 제어 파라미터의 신호 종별이 “split_coding_unit_flag” 인 경우는, BD-rate의 관점에서, 종래대로의 컨텍스트 모델의 패턴인 패턴 1을 이용하여 컨텍스트값을 결정한다.
(제2 검증) skip_flag
도 13은 skip_flag의 산술 복호 방법에 대해서 설명하기 위한 표이다. 또한, 검증 방법은, 상기 서술한 제1 검증과 동일하다.
신호 종별 “skip_flag”의 의미는 이하에서 정의된다.
P 또는 B 슬라이스를 복호하는 경우에 있어서, skip_flag[x0][y0]의 값이 「1」인 경우, 당해 skip_flag[x0][y0] 뒤에, 예측 움직임 벡터 인덱스 이외에, 현재의 CU용의 신택스 엘리먼트가 존재하지 않는 것을 의미한다. 또, skip_flag[x0][y0]의 값이 「1」인 경우, 현재의 CU가 스킵되지 않는 것을 의미한다. x0 및 y0는, 화상의 좌측 위 코너에 위치하는 휘도 샘플을 기준으로 한, 대상의 CU의 좌측 위 코너에 위치하는 휘도 샘플의 좌표를 나타낸다. 즉, skip_flag는, 대상의 CU를 스킵할지(스킵 블록으로서 취급할지) 여부를 나타낸다.
이 skip_flag는, syntax로서 Coding unit syntax에 데이터 구조화된다. 즉, skip_flag는 CU 마다 설정된다. 화상 복호 장치에서는, 이 데이터 구조의 신택스에 준하여, 비트열을 해석한다.
도 14a 및 도 14b는 skip_flag에 대한 검증 결과를 나타내는 표이다.
도 14a는, (패턴 2) 1개의 인접 블록(좌측 블록 조건 L의 판정값 만)이 이용되는 경우의 검증 결과를 나타낸다. 도 14b는, (패턴 3) 0개의 인접 블록이 이용되는 (상측 블록 조건 L도 좌측도 이용되지 않는다) 경우의 검증 결과를 나타낸다.
또한, 도 14a 및 도 14b에 나타내는 검증 결과는, 제1 검증과 마찬가지로, 상기 서술한 4개의 테스트 패턴의 BD-Rate값의 증감을 나타낸다. 또, 평가값의 의미는 제1 검증과 동일하다.
이 결과에 의하면, “skip_flag”에 관해서는, 컨텍스트 모델의 패턴으로서 패턴 1이 우수한 것을 알 수 있다. 바꾸어 말하면, 패턴 2 및 패턴 3은 패턴 1보다 평가값이 나쁘다.
따라서, 컨텍스트 제어부(142 및 242)는, 제어 파라미터의 신호 종별이 “skip_flag”인 경우는, BD-rate의 관점에서, 종래대로의 컨텍스트 모델의 패턴인 패턴 1을 이용하여 컨텍스트값을 결정한다.
(제3 검증) “merge_flag”
도 15는, merge_flag의 산술 복호 방법에 대해서 설명하기 위한 표이다. 또한, 검증 방법은, 상기 서술한 제1 검증 및 제2 검증과 동일하다.
신호 종별 “merge_flag”의 의미는 이하에서 정의된다.
merge_flag[x0][y0]는, 현재의 CU용의 인터 예측 파라미터가 가장 인접한 인터 예측된 블록으로부터 도출되는지 여부를 나타낸다. x0 및 y0는, 화상의 좌측 위 코너에 위치하는 휘도 샘플을 기준으로 한, 대상의 예측 블록의 좌측 위 코너에 위치하는 휘도 샘플의 좌표를 나타낸다. merge_flag[x0][y0]가 존재하지 않는 경우(InferredMergeFlag의 값이 「1」인 경우), merge_flag[x0][y0]가 「1」이라고 추론된다. 즉, merge_flag[x0][y0]는 머지 모드를 이용할지 여부를 나타낸다. 여기서, 머지 모드란, 부호화 대상 블록의 인접 블록으로부터 움직임 벡터 및 참조 픽처 인덱스를 카피하고, 부호화 대상 블록의 부호화를 행하는 모드이다.
이 merge_flag는, syntax로서 “Prediction unit”에 데이터 구조화된다. 즉, merge_flag는 PU 마다 설정된다. 화상 복호 장치에서는, 이 데이터 구조의 신택스에 준하여, 비트열을 해석한다.
도 16a 및 도 16b는 merge_flag에 대한 검증 결과를 나타내는 표이다.
도 16a는, (패턴 2) 1개의 인접 블록(좌측 블록 조건 L의 판정값 만)이 이용되는 경우의 검토 결과를 나타낸다. 도 16b는, (패턴 3) 0개의 인접 블록이 이용되는 (상측 블록 조건 L도 좌측도 이용되지 않는다) 경우의 검증 결과를 나타낸다.
또한, 도 16a 및 도 16b에 나타내는 검증 결과는, 제1 검증과 마찬가지로, 상기 서술한 4개의 테스트 패턴의 BD-Rate값의 증감을 나타낸다. 또, 평가값의 의미는 제1 검증과 동일하다.
이 결과에 의하면, 상기 서술한 제1 검증의 split_coding_unit_flag, 및, 제2 검증의 skip_flag와는 결과가 상이하며, 이 merge_flag에 관해서는, 컨텍스트 모델의 패턴으로서 패턴 1과, 패턴 2 또는 패턴 3 사이에 BD-rate의 큰 차가 발생하고 있지 않다.
따라서, 컨텍스트 제어부(142 및 242)는, 복수의 신호 종별의 제어 파라미터가 혼재하는 환경에 있어서, 특히, 신호 종별이 merge_flag인 경우는, 인접 블록으로서 상측 블록을 이용하지 않고 컨텍스트값을 결정한다. 즉, 컨텍스트 제어부(142 및 242)는, 제어 파라미터의 신호 종별이 merge_flag인 경우는, 패턴 2 또는 패턴 3을 이용하여 컨텍스트값을 결정한다. 바꾸어 말하면, 상기 제1 종별은, “split_coding_unit_flag”, 또는, “skip_flag”를 포함하고, 상기 제2 종별 또는 제3 종별은, “merge_flag”를 포함한다. 이것에 의해, 본 실시의 형태에 관련된 화상 부호화 장치 및 화상 복호 장치는, BD-rate값의 저하를 억제하면서, 메모리 사용량을 삭감할 수 있다.
또한, merge_flag에 대한 패턴 2와 패턴 3을 비교한 경우, 이들의 BD-rate에는 큰 차가 발생하고 있지 않다. 따라서, merge_flag에 대해 패턴 3을 이용하는 것이 보다 바람직하다. 이것에 의해, 한층 더 메모리 사용량의 삭감, 및 처리량의 삭감을 실현할 수 있다.
여기서, merge_flag와 skip_flag를 비교하면, 스킵 시에는 움직임 벡터의 잔차 데이터를 보내지 않지만, 머지 모드 시에는 움직임 벡터의 잔차 데이터를 보낸다는 차이가 있다. 이것에 의해, merge_flag에 대해, 만일 사용하는 컨텍스트가 최적이지 않았다고 해도, 이 잔차 데이터를 이용하는 처리에 의해, 최적의 컨텍스트를 사용할 수 없었던 것에 의한 화질의 저하를, 어느 정도 보충할 수 있다. 이와 같이, 화질의 저하가 억제된다고 생각할 수 있다.
(제4 검증) “ref_idx_l0(l1, lc)”
도 17은 ref_idx의 산술 복호화 방법에 대해서 설명하기 위한 표이다. 또한, 검증 방법은, 상기 서술한 제1 검증 및 제2 검증과 동일하다.
신호 종별 “ref_idx”의 의미는 이하에서 정의된다.
ref_idx_l0[x0][y0]는, 현재의 PU용의 리스트 0의 참조 픽처 인덱스를 나타낸다. x0 및 y0는, 화상의 좌측 위 코너에 위치하는 휘도 샘플을 기준으로 한, 대상의 예측 블록의 좌측 위 코너에 위치하는 휘도 샘플의 좌표를 나타낸다.
또, ref_idx_l1[x0][y0]는, refref_idx_l0에 있어서의 l0 및 리스트 0을 l1 및 리스트 1로 각각 치환한 경우와 동일한 의미를 가진다. 즉, ref_idx_l1은, 현재의 PU용의 리스트 1의 참조 픽처 인덱스를 나타낸다.
ref_idx_l1의 유무는 픽처 타입 등에 의거하여 결정할 수 있다.
또, ref_idx_lc[x0][y0]는, refref_idx_l0에 있어서의 l0 및 리스트 0을 lc 및 합성 리스트로 각각 치환한 경우와 동일한 의미를 가진다. 이 ref_idx_lc는 HAVC에서 추가된 제어 파라미터이다. 또, 합성 리스트는 리스트 0 및 리스트 1이 합성(머지)된 것이다. 통상, ref_idx_l0 및 ref_idx_l1과 ref_idx_lc의 한쪽 만이 비트 스트림에 포함된다. 또한, ref_idx_l0 및 ref_idx_l1은 한쪽 만이 비트 스트림에 포함되는 경우도 있으면, 양쪽이 비트 스트림에 포함되는 경우도 있다.
이 ref_idx_l0(l1, lc)는, syntax로서 “Prediction Unit”에 데이터 구조화된다. 화상 복호화 장치에서는, 이 데이터 구조의 신택스에 준하여, 비트열을 해석한다.
도 18a 및 도 18b는 ref_idx에 대한 검증 결과를 나타내는 표이다.
도 18a는, (패턴 2) 1개의 인접 블록(좌측 블록 조건 L의 판정값 만)이 이용되는 경우의 검증 결과를 나타낸다. 도 18b는, (패턴 3) 0개의 인접 블록이 이용되는 (상측 블록 조건 L도 좌측도 이용되지 않는다) 경우의 검증 결과를 나타낸다.
또한, 도 18a 및 도 18b에 나타내는 검증 결과는, 제1 검증과 마찬가지로, 상기 서술한 4개의 테스트 패턴의 BD-Rate값의 증감을 나타낸다. 또, 평가값의 의미는 제1 검증과 동일하다.
이 결과에 의하면, 상기 서술한 제1 검증의 split_coding_unit_flag, 및, 제2 검증의 skip_flag와는 결과가 상이하며, 이 ref_idx에 관해서는, 컨텍스트 모델의 패턴으로서 패턴 1과, 패턴 2 또는 패턴 3 사이에 BD-rate의 큰 차가 발생하고 있지 않다.
따라서, 컨텍스트 제어부(142 및 242)는, 복수의 신호 종별의 제어 파라미터가 혼재하는 환경에 있어서, 특히, 신호 종별이 ref_idx_l0(l1, lc)인 경우는, 인접 블록으로서 상측 블록을 이용하지 않고 컨텍스트값을 결정한다. 즉, 컨텍스트 제어부(142 및 242)는, 제어 파라미터의 신호 종별이 ref_idx_l0(l1, lc)인 경우는, 패턴 2 또는 패턴 3을 이용하여 컨텍스트값을 결정한다. 바꾸어 말하면, 상기 제1 종별은, “split_coding_unit_flag”, 또는, “skip_flag”를 포함하고, 상기 제2 종별 또는 제3 종별은, “ref_idx_l0(l1, lc)”을 포함한다. 이것에 의해, 본 실시의 형태에 관련된 화상 부호화 장치 및 화상 복호 장치는, BD-rate값의 저하를 억제하면서, 메모리 사용량을 삭감할 수 있다.
또한, 상기 제2 종별 또는 제3 종별은, ref_idx_l0, ref_idx_l1 및 ref_idx_lc 중 적어도 하나를 포함하면 된다. 예를 들면, 상기 제2 종별 또는 제3 종별은, ref_idx_lc를 포함하지 않고, ref_idx_l0 및 ref_idx_l1을 포함해도 된다.
또한, ref_idx에 대한 패턴 2와 패턴 3을 비교한 경우, 이들의 BD-rate에는 큰 차가 발생하고 있지 않다. 따라서, ref_idx_l0(l1, lc)에 대해 패턴 3을 이용하는 것이 보다 바람직하다. 이것에 의해, 한층 더 메모리 사용량의 삭감, 및 처리량의 삭감을 실현할 수 있다.
여기서, 스킵 모드 및 머지 모드가 아닌 통상의 인터 예측 모드인 경우에 ref_idx가 이용된다. 스킵 모드 및 머지 모드에서는, 처리 대상 블록의 움직임 벡터로서 상측 블록 및 좌측 블록과 동일한 움직임 벡터가 이용되지만, 그 이외의 통상의 인터 예측 모드에서는, 처리 대상 블록의 움직임 벡터로서 상측 블록 및 좌측 블록과 상이한 움직임 벡터가 이용된다. 이것에 의해, ref_idx에 대해, 패턴 1과 같이 상측 및 좌측 블록을 이용하면 부호화 효율이 저하된다고 생각할 수 있다. 즉, ref_idx에 대해 패턴 2 또는 패턴 3을 이용함으로써 부호화 효율을 향상시키는 것이 가능해진다.
여기서, 컨텍스트 제어부(142 및 242)는, ref_idx_lc [xP][yP]에 대한 조건 A(또는 조건 L)의 판정에, 인접 블록 A 또는 B의 ref_idx_lc[xL][yP] 또는, ref_idx_lc[xP][yA]를 이용하는 것이 아니라, 현 블록의 ref_idx_l0[xP][yP]에 대한 상기 condL의 결과와 condA의 결과로부터 도출한 값을 이용해도 된다. 바꾸어 말하면, 컨텍스트 제어부(142 및 242)는, 조건의 결과값을, 현 블록의 l0, l1의 값의 종속값으로서 도출해도 된다.
부호화 장치 또는 기록 장치는, ref_idx_lc를 스트림 기록시 또는 부호화에 ref_idx_l0 및 ref_idx_l1을 합성함으로써 생성한다. 즉, 이들 장치는, 내부에서의 판정 모두에 ref_idx_l0 및 ref_idx_l1을 사용한다. 따라서, 현 블록에 있어서, (1) 조건 condA 또는 L이 {(ref_idx_l0가 available), 또한, (ref_idx_l0>0 참이 성립)}이며, 또한, (2) 조건 condA 또는 L이 {(ref_idx_l1이 available), 또한, (ref_idx_l1>0 참이 성립)}인 경우는, 조건 condA 또는 L이(ref_idx_lc가 available), 또한, (ref_idx_lc>0 참이 성립)}도 성립한다.
따라서, 이하와 같이 해도 된다. 도 18c는, 비특허 문헌 2에 나타내는, ref_idx의 조건 A 및 조건 L을 나타내는 표이다. 도 18d는, 본 실시의 형태에 관련된 ref_idx의 조건 A 및 조건 L을 나타내는 표이다.
도 18d에 나타내는 바와 같이, 컨텍스트 제어부(142 및 242)는, ref_idx_lc의 조건값 condL 및 condA를, 동일 블록의 ref_idx_l0, 및 ref_idx_l1의 조건값의 적어도 한쪽으로부터 도출해도 된다. 즉, 컨텍스트 제어부(142 및 242)는, ref_idx_lc의 조건값 condL 및 condA를, 동일 블록의 ref_idx_l0, 및 ref_idx_l1의 조건값에 선형 종속시켜도 된다.
이와 같이 하면, ref_idx_lc에 대한 메모리 참조를 필요로 하지 않는다. 즉, 상측 블록의 ref_idx_lc의 값을 참조하지 않고, ref_idx_lc의 조건값을 도출하는 것이 가능해진다.
(제5 검증) “inter_pred_flag”
도 19는 inter_pred_flag의 산술 복호화 방법에 대해서 설명하기 위한 표이다.
신호 종별 “inter_pred_flag”의 의미는 이하에서 정의된다.
inter_pred_flag[x0][y0]는, 테이블(711)에 따라, 현재의 PU에, uni-prediction 및 bi-prediction 중 어느 것이 사용되는지를 나타낸다. x0 및 y0는, 화상의 좌측 위 코너에 위치하는 휘도 샘플을 기준으로 한, 대상의 예측 블록의 좌측 위 코너에 위치하는 휘도 샘플의 좌표를 나타낸다. 여기서, uni-prediction는, lc(합성 리스트)를 사용하는 예측이며, bi-prediction는 리스트 0 및 리스트 1을 사용하는 예측이다. 또, 합성 리스트는 리스트 0 및 리스트 1이 합성(머지)된 것이다. 또, inter_pred_flag는, 대상 슬라이스가 B 슬라이스인 경우에만 이용된다.
이 inter_pred_flag는, syntax로서 “Prediction Unit”에 데이터 구조화된다. 화상 복호화 장치에서는, 이 데이터 구조의 신택스에 준하여, 비트열을 해석한다.
도 20a 및 도 20b는 inter_pred_flag에 대한 검증 결과를 나타내는 표이다.
도 20a는, (패턴 2) 1개의 인접 블록(좌측 블록 조건 L의 판정값 만)이 이용되는 경우의 검증 결과를 나타낸다. 도 20b는, (패턴 3) 0개의 인접 블록이 이용되는 (상측 블록 조건 L도 좌측도 이용되지 않는다) 경우의 검증 결과를 나타낸다.
또한, 도 20a 및 도 20b에 나타내는 검증 결과는, 제1 검증과 마찬가지로, 상기 서술한 4개의 테스트 패턴의 BD-Rate값의 증감을 나타낸다. 또, 평가값의 의미는 제1 검증과 동일하다.
이 결과에 의하면, 상기 서술한 제1 검증의 split_coding_unit_flag, 및, 제2 검증의 skip_flag와는 결과가 상이하며, 이 inter_pred_flag에 관해서는, 컨텍스트 모델의 패턴으로서 패턴 1과, 패턴 2 또는 패턴 3 사이에 BD-rate의 큰 차가 발생하고 있지 않다.
따라서, 컨텍스트 제어부(142 및 242)는, 복수의 신호 종별의 제어 파라미터가 혼재하는 환경에 있어서, 특히, 신호 종별이 inter_pred_flag인 경우는, 인접 블록으로서 상측 블록을 이용하지 않고 컨텍스트값을 결정한다. 즉, 컨텍스트 제어부(142 및 242)는, 제어 파라미터의 신호 종별이 inter_pred_flag인 경우는, 패턴 2 또는 패턴 3을 이용하여 컨텍스트값을 결정한다. 바꾸어 말하면, 상기 제1 종별은, “split_coding_unit_flag”, 또는, “skip_flag”를 포함하고, 상기 제2 종별 또는 제3 종별은, “inter_pred_flag”를 포함한다. 이것에 의해, 본 실시의 형태에 관련된 화상 부호화 장치 및 화상 복호 장치는, BD-rate값의 저하를 억제하면서, 메모리 사용량을 삭감할 수 있다.
또한, inter_pred_flag에 대한 패턴 2와 패턴 3을 비교한 경우, 이들의 BD-rate에는 큰 차가 발생하고 있지 않다. 따라서, inter_pred_flag에 대해 패턴 3을 이용하는 것이 보다 바람직하다. 이것에 의해, 한층 더 메모리 사용량의 삭감, 및 처리량의 삭감을 실현할 수 있다.
여기서, 스킵 모드 및 머지 모드가 아닌 통상의 인터 예측 모드인 경우에 inter_pred_flag가 이용된다. 스킵 모드 및 머지 모드에서는, 처리 대상 블록의 움직임 벡터로서 상측 블록 및 좌측 블록과 동일한 움직임 벡터가 이용되지만, 그 이외의 통상의 인터 예측 모드에서는, 처리 대상 블록의 움직임 벡터로서 상측 블록 및 좌측 블록과 상이한 움직임 벡터가 이용된다. 이것에 의해, inter_pred_flag에 대해, 패턴 1과 같이 상측 및 좌측 블록을 이용하면 부호화 효율이 저하된다고 생각할 수 있다. 즉, inter_pred_flag에 대해 패턴 2 또는 패턴 3을 이용함으로써 부호화 효율을 향상시키는 것이 가능해진다.
또한, 상기 서술한 바와 같이, inter_pred_flag에 대해, 처리 대상 블록의 계층에 따라 컨텍스트값을 결정함으로써 부호화 효율을 더 향상시킬 수 있다.
(제6 검증) “mvd_l0(l1, lc)”
도 21은 mvd_l0(l1, lc)의 산술 복호화 방법에 대해서 설명하기 위한 표이다.
신호 종별 mvd_l0(l1, lc)의 의미는 이하에서 정의된다.
mvd_l0[x0][y0][compIdx]는, 사용되는, 리스트 0의 벡터 성분과, 그 예측값의 차분을 나타낸다. x0 및 y0는, 화상의 좌측 위 코너에 위치하는 휘도 샘플을 기준으로 한, 대상의 예측 블록의 좌측 위 코너에 위치하는 휘도 샘플의 좌표를 나타낸다. 수평 방향의 움직임 벡터 성분의 차분에는 compIdx=0이 할당된다. 또, 수직 방향의 움직임 벡터 성분에는 compIdx=1이 할당된다. 2개의 성분이 모두 존재하지 않는 경우, 값은 「0」으로 간주된다. 즉, mvd_l0는, 어느 PU 위치(xP, yP)에 있어서의, 움직임 벡터와 예측 벡터의 차분을, 제1 성분(수평 성분 compIdx=0)과 제2 성분(수직 성분 compIdx=1)을 이용하여 표현한 것이다.
mvd_l1[x0][y0][compIdx]는, mvd_l0에 있어서의 l0 및 리스트 0을 l1 및 리스트 1로 각각 치환한 경우와 동일한 의미를 가진다. 이 mvd_l1의 유무는 픽처 타입 등에 의거하여 결정할 수 있다.
또, mvd_lc[x0][y0][compIdx]는, mvd_l0에 있어서의 l0 및 리스트 0을 lc 및 합성 리스트로 각각 치환한 경우와 동일한 의미를 가진다. 즉, mvd_lc는, mvd_l0과 mvd_l1을 합성함으로써 생성된다.
이하, 간단히 mvd로 부를 때는, 당해 mvd는, 적어도 mvd_l0을 포함하고, 화상의 조건에 따라 mvd_l1 및 mvd_lc의 적어도 한쪽을 포함한다.
이 mvd는, syntax로서 “Prediction Unit”에 데이터 구조화된다. 화상 복호화 장치에서는, 이 데이터 구조의 신택스에 준하여, 비트열을 해석한다.
도 22a 및 도 22b는 mvd에 대한 검증 결과를 나타내는 표이다.
도 22a는, (패턴 2) 1개의 인접 블록(좌측 블록 조건 L의 판정값 만)이 이용되는 경우의 검증 결과를 나타낸다. 도 22b는, (패턴 3) 0개의 인접 블록이 이용되는 (상측 블록 조건 L도 좌측도 이용되지 않는다) 경우의 검증 결과를 나타낸다.
또한, 도 22a 및 도 22b에 나타내는 검증 결과는, 제1 검증과 마찬가지로, 상기 서술한 4개의 테스트 패턴의 BD-Rate값의 증감을 나타낸다. 또, 평가값의 의미는 제1 검증과 동일하다.
이 결과에 의하면, 상기 서술한 제1 검증의 split_coding_unit_flag, 및, 제2 검증의 skip_flag와는 결과가 상이하며, 이 mvd에 관해서는, 컨텍스트 모델의 패턴으로서 패턴 1과, 패턴 2 또는 패턴 3 사이에 BD-rate의 큰 차가 발생하고 있지 않다.
따라서, 컨텍스트 제어부(142 및 242)는, 복수의 신호 종별의 제어 파라미터가 혼재하는 환경에 있어서, 특히, 신호 종별이 mvd_l0(l1, lc)인 경우는, 인접 블록으로서 상측 블록을 이용하지 않고 컨텍스트값을 결정한다. 즉, 컨텍스트 제어부(142 및 242)는, 제어 파라미터의 신호 종별이 mvd_l0(l1, lc)인 경우는, 패턴 2 또는 패턴 3을 이용하여 컨텍스트값을 결정한다. 바꾸어 말하면, 상기 제1 종별은, “split_coding_unit_flag”, 또는, “skip_flag”를 포함하고, 상기 제2 종별 또는 제3 종별은, “mvd_l0”, “mvd_l1” 또는 “mvd_lc”를 포함한다. 이것에 의해, 본 실시의 형태에 관련된 화상 부호화 장치 및 화상 복호 장치는, BD-rate값의 저하를 억제하면서, 메모리 사용량을 삭감할 수 있다.
또한, 상기 제2 종별 또는 제3 종별은, mvd_l0, mvd_l1 및 mvd_lc 중 적어도 하나를 포함하면 된다. 예를 들면, 상기 제2 종별 또는 제3 종별은, mvd_lc를 포함하지 않고, mvd_l0 및 mvd_l1을 포함해도 된다.
또한, mvd에 대한 패턴 2와 패턴 3을 비교한 경우, 이들의 BD-rate에는 큰 차가 발생하고 있지 않다. 따라서, mvd_l0(l1, lc)에 대해 패턴 3을 이용하는 것이 보다 바람직하다. 이것에 의해, 한층 더 메모리 사용량의 삭감, 및 처리량의 삭감을 실현할 수 있다.
여기서, 스킵 시에는 움직임 벡터의 잔차 데이터(mvd)를 보내지 않지만, 머지 모드 시에는 움직임 벡터의 잔차 데이터(mvd)를 보낸다. 이것에 의해, 머지 모드 시에 있어서는, 만일 사용하는 컨텍스트가 최적이지 않았다고 해도, 이 mvd를 이용하는 처리에 의해, 최적의 컨텍스트를 사용할 수 없었던 것에 의한 화질의 저하를, 어느 정도 보충할 수 있다. 이러한 이유에 의해, mvd에 대해 주변의 블록을 이용하지 않는 경우의 화질의 저하가 억제된다고 생각할 수 있다.
상기 서술한 소정의 조건에 따라, 상측 블록, 또는 좌측 블록의 조건값(condA 또는 condL)을 이용하는 경우는, 이하의 변형을 적용할 수도 있다.
첫번째의 변형예는, mvd_l0과 mvd_l1과 mvd_lc의 종속 관계를 이용하는 방법이다.
구체적으로는, 컨텍스트 제어부(142 및 242)는, mvd_l0과 mvd_l1과 mvd_lc의 3개의 신호 종별 중 2개의 신호 종별의 조건값(condL 또는 condA)을 이용하여, 그들에 종속되는 조건값을 가지는 다른 신호 종별의 조건값을 도출해도 된다.
예를 들면, mvd_l0과 lvd_l1의 2개의 신호 종별의 조건값(l0의 condA의 값과 l1의 condA의 값)에 대해, mvd_lc의 condA의 값이 종속 관계에 있는 경우, 컨텍스트 제어부(142 및 242)는, mvd_lc에 대한 condA의 값을 참조할 필요는 없다.
도 22c는, 비특허 문헌 2에 나타내는, mvd의 조건 A 및 조건 L을 나타내는 표이다. 도 22d는, 본 실시의 형태에 관련된 mvd의 조건 A 및 조건 L을 나타내는 표이다.
도 22d에 나타내는 바와 같이, 컨텍스트 제어부(142 및 242)는, mvd_lc의 조건값 condL 및 condA를, 동일 블록의 mvd_l0, 및 mvd_l1의 조건값의 적어도 한쪽으로부터 도출해도 된다.
또한, 컨텍스트 제어부(142 및 242)는, 이들 관계를, 수평 방향(compIdx=0), 또는, 수직 방향(compIdx=1)의, 한쪽 또는 양쪽에 적용해도 된다.
또한, 컨텍스트 제어부(142 및 242)는, compIdx=0과 1의 사이의 종속 관계를 이용해도 된다. 즉, 컨텍스트 제어부(142 및 242)는, 수평 방향 mvd_l0[ ][ ][0], 및 수직 방향 mvd_l0[ ][ ][1]의 2개의 조건값 중 한쪽의 조건값의 결과를 다른쪽에 종속시켜도 된다. 즉, 컨텍스트 제어부(142 및 242)는, 수평 방향 및 수직 방향의 한쪽의 mvd의 조건값 condL 및 condA를, 다른쪽의 mvd의 조건값으로부터 도출해도 된다. 여기서, 비특허 문헌 2에서는, 수평 방향의 mvd(mvd_l0[ ][ ][0], mvd_l1[ ][ ][0], mvd_lc[ ][ ][0])과, 수직 방향의 mvd(mvd_l0[ ][ ][1], mvd_l1[ ][ ][1], mvd_lc[ ][ ][1])의 각각에 컨텍스트 인덱스(인덱스 증분값+기준값)가 설정되어 있다. 상기의 종속 관계를 이용함으로써, 이러한 불필요한 부분을 삭감할 수 있다. 즉, 컨텍스트 인덱스의 수를 삭감할 수 있다.
여기서, 비특허 문헌 2에 기재에서는, mvd의 1비트째에 대해서만, 상측 블록 및 좌측 블록의 조건값이 이용되어 있다. 즉, 컨텍스트 제어부(142 및 242)는, mvd의 1비트째에 대해, 상기 패턴 2 또는 패턴 3을 이용해도 된다. 바꾸어 말하면, 컨텍스트 제어부(142 및 242)는, 움직임 벡터와 예측 벡터의 차분이 0 이상인지 여부를 나타내는, abs_mvd_greater0_flag[compIdx]에 대해 상기 패턴 2 또는 패턴 3을 이용해도 된다.
(제7 검증) “no_residual_data_flag”
도 23a는 “no_residual_data_flag”의 산술 복호화 방법에 대해서 설명하기 위한 표이다.
신호 종별 “no_residual_data_flag”의 의미는 이하에서 정의된다.
no_residual_data_flag가 「1」인 경우, 현재의 CU용의 잔차 데이터가 존재하지 않는다. no_residual_data_flag가 「0」인 경우, 현재의 CU용의 잔차 데이터가 존재한다. no_residual_data_flag가 존재하지 않는 경우, 그 값은 「0」으로 간주된다.
이 no_residual_data_flag는, syntax로서 상기 서술한 트리의 종별 중, Transform Tree 중에 데이터 구조화된다. 도 23b는, Transform tree syntax를 나타내는 표이다. 화상 복호화 장치에서는, 이 데이터 구조의 신택스에 준하여, 비트열을 해석한다.
도 24a 및 도 24b는, “no_residual_data_flag”에 대한 검증 결과를 나타내는 표이다.
도 24a는, (패턴 2) 1개의 인접 블록(좌측 블록 조건 L의 판정값 만)이 이용되는 경우의 검증 결과를 나타낸다. 도 24b는, (패턴 3) 0개의 인접 블록이 이용되는 (상측 블록 조건 L도 좌측도 이용되지 않는다) 경우의 검증 결과를 나타낸다.
또한, 도 24a 및 도 24b에 나타내는 검증 결과는, 제1 검증과 마찬가지로, 상기 서술한 4개의 테스트 패턴의 BD-Rate값의 증감을 나타낸다. 또, 평가값의 의미는 제1 검증과 동일하다.
이 결과에 의하면, 상기 서술한 제1 검증의 split_coding_unit_flag, 및, 제2 검증의 skip_flag와는 결과가 상이하며, 이 no_residual_data_flag에 관해서는, 컨텍스트 모델의 패턴으로서 패턴 1과, 패턴 2 또는 패턴 3 사이에 BD-rate의 큰 차가 발생하고 있지 않다.
따라서, 컨텍스트 제어부(142 및 242)는, 복수의 신호 종별의 제어 파라미터가 혼재하는 환경에 있어서, 특히, 신호 종별이 no_residual_data_flag인 경우는, 인접 블록으로서 상측 블록을 이용하지 않고 컨텍스트값을 결정한다. 즉, 컨텍스트 제어부(142 및 242)는, 제어 파라미터의 신호 종별이 no_residual_data_flag인 경우는, 패턴 2 또는 패턴 3을 이용하여 컨텍스트값을 결정한다. 바꾸어 말하면, 상기 제1 종별은, “split_coding_unit_flag”, 또는, “skip_flag”를 포함하고, 상기 제2 종별 또는 제3 종별은, “no_residual_data_flag”를 포함한다. 이것에 의해, 본 실시의 형태에 관련된 화상 부호화 장치 및 화상 복호 장치는, BD-rate값의 저하를 억제하면서, 메모리 사용량을 삭감할 수 있다.
또한, no_residual_data_flag에 대한 패턴 2와 패턴 3을 비교한 경우, 이들의 BD-rate에는 큰 차가 발생하고 있지 않다. 따라서, no_residual_data_flag에 대해 패턴 3을 이용하는 것이 보다 바람직하다. 이것에 의해, 한층 더 메모리 사용량의 삭감, 및 처리량의 삭감을 실현할 수 있다.
여기서, no_residual_data_flag는, 휘도 및 색차의 계수(잔차)의 유무를 나타낸다. 또, 이 잔차는, 인트라 예측의 경우에는 커지고, 인터 예측의 경우에는 작아진다. 따라서, 주위의 블록의 모드가, 대상 블록의 모드와 상이한 경우(특성이 상이한 경우)에는, 부호화 효율이 저하된다. 예를 들면, 대상 블록이 인트라 예측되고, 주위의 블록이 인터 예측되고 있는 경우, 대상 블록의 잔차는 작아지고, 주위의 블록의 잔차는 커진다. 이것에 의해, 주위의 컨텍스트를 이용하면 부호화 효율이 저하된다. 따라서, 컨텍스트 제어부(142 및 242)는, 주위의 블록에 의존하지 않고, 대상 블록의 컨텍스트를 이용함으로써 부호화 효율을 향상시키는 것이 가능해진다.
(제8 검증) “intra_chroma_pred_mode”
도 25a는 intra_chroma_pred_mode의 산술 복호화 방법에 대해서 설명하기 위한 표이다.
이 intra_chroma_pred_mode는, syntax로서 “Prediction Unit”에 데이터 구조화된다. 화상 복호화 장치에서는, 이 데이터 구조의 신택스에 준하여, 비트열을 해석한다.
신호 종별 “intra_chroma_pred_mode”의 의미는 이하에서 정의된다.
intra_chroma_pred_mode[x0][y0]는, 색차 샘플을 위한 인트라 예측 모드를 나타낸다. x0 및 y0는, 화상의 좌측 위 코너에 위치하는 휘도 샘플을 기준으로 한, 대상의 예측 블록의 좌측 위 코너에 위치하는 luma 샘플의 좌표를 나타낸다.
이 intra_chroma_pred_mode의 값(0 이상 4 이하의 값)과, 현 블록의 IntraPredMode[xP][yB]를 조합하여, 색차에 대한 면내 예측 모드값인 “chroma intra prediction mode”(IntraPredModeC)가 결정된다. 여기서, 현 블록의 좌표를 [xB][yB]로 한다. 이 [xB][yB]는 [xP][yP]와 동일한 위치를 나타낸다. 또, IntraPredMode는, 휘도에 대한 예측 모드값이다.
도 25b는, 비특허 문헌 2에 기재되어 있는 intra_chroma_pred_mode와 IntraPredMode에 따른 IntraPredModeC의 도출 방법을 나타내는 표이다.
또, 도 25a에 나타내는 IntraPredMode(대문자 시작의 변수)는, 부호화열에 직접적으로 부호화된 값이 아니고, 디코더 내부에서 복호 처리된 후의 값의 배열이다. 대상 블록의 IntraPredMode[xP][yP]의 도출 처리 시에, 인접 블록의 IntraPredMode[xP][yA] 등이 이용 가능하면 이용된다.
도 26a 및 도 26b는, “intra_chroma_pred_mode”에 대한 검증 결과를 나타내는 표이다.
도 26a는, (패턴 2) 1개의 인접 블록(좌측 블록 조건 L의 판정값 만)이 이용되는 경우의 검증 결과를 나타낸다. 도 26b는, (패턴 3) 0개의 인접 블록이 이용되는 (상측 블록 조건 L도 좌측도 이용되지 않는다) 경우의 검증 결과를 나타낸다.
또한, 도 26a 및 도 26b에 나타내는 검증 결과는, 제1 검증과 마찬가지로, 상기 서술한 4개의 테스트 패턴의 BD-Rate값의 증감을 나타낸다. 또, 평가값의 의미는 제1 검증과 동일하다.
이 결과에 의하면, 상기 서술한 제1 검증의 split_coding_unit_flag, 및, 제2 검증의 skip_flag와는 결과가 상이하며, 이 intra_chroma_pred_mode에 관해서는, 컨텍스트 모델의 패턴으로서 패턴 1과, 패턴 2 또는 패턴 3 사이에 BD-rate의 큰 차가 발생하고 있지 않다.
따라서, 컨텍스트 제어부(142 및 242)는, 복수의 신호 종별의 제어 파라미터가 혼재하는 환경에 있어서, 특히, 신호 종별이 intra_chroma_pred_mode인 경우는, 인접 블록으로서 상측 블록을 이용하지 않고 컨텍스트값을 결정한다. 즉, 컨텍스트 제어부(142 및 242)는, 제어 파라미터의 신호 종별이 intra_chroma_pred_mode인 경우는, 패턴 2 또는 패턴 3을 이용하여 컨텍스트값을 결정한다. 바꾸어 말하면, 상기 제1 종별은, “split_coding_unit_flag”, 또는, “skip_flag”를 포함하고, 상기 제2 종별 또는 제3 종별은, “intra_chroma_pred_mode”를 포함한다. 이것에 의해, 본 실시의 형태에 관련된 화상 부호화 장치 및 화상 복호 장치는, BD-rate값의 저하를 억제하면서, 메모리 사용량을 삭감할 수 있다.
또한, intra_chroma_pred_mode에 대한 패턴 2와 패턴 3을 비교한 경우, 이들의 BD-rate에는 큰 차가 발생하고 있지 않다. 따라서, intra_chroma_pred_mode에 대해 패턴 3을 이용하는 것이 보다 바람직하다. 이것에 의해, 한층 더 메모리 사용량의 삭감, 및 처리량의 삭감을 실현할 수 있다.
여기서, intra_chroma_pred_mode는 전부 4비트의 정보이며, 최초의 1비트가, 휘도의 인트라 예측과 동일한 모드를 색차에 사용할지 여부를 나타낸다. 여기서, 컨텍스트 제어부(142 및 242)는, 이 최초의 1비트에 대해 패턴 2 또는 패턴 3을 이용한다. 구체적으로는, 색차에 휘도와 동일한 모드를 이용하는 경우, intra_chroma_pred_mode는 「0」이다. 색차에 휘도와 상이한 모드를 이용하는 경우, intra_chroma_pred_mode는 「1」이며, 나머지의 3비트는 색차에 이용하는 모드를 나타낸다.
여기서, 인트라 예측은, 상측 블록 및 좌측 블록과 대상 블록의 상관을 이용하고 있다. 즉, 인트라 예측에는, 이미 상관 정보가 이용되고 있기 때문에, 휘도와 동일한 모드를 색차에 이용하는 것이 효율적이다. 바꾸어 말하면, 모드의 바리에이션을 갖게 하기 위해, 휘도와 상이한 모드를 색차에 이용하는 것도 가능하게 되어 있지만, 색차에 휘도와 상이한 모드를 이용하여, 주위의 컨텍스트를 이용하는 케이스는 드물다. 즉, 휘도와 동일한 모드를 이용하는, intra_chroma_pred_mode가 「0」으로 설정되어 있는 케이스가 많다. 이것에 의해, 주위의 컨텍스트를 이용하는 메리트가 적고, 대상 블록의 컨텍스트를 이용함으로써, 부호화 효율을 유지하면서, 처리량을 삭감하는 것이 가능해진다.
또, 상측 블록이 디코드 시에 “avaibale”이용 가능한지 여부를 판정하는 것은 매우 곤란하다. 도 38을 참조하여, 복호 프로세스에서 도출되어 배열화되는 IntraPredMode의 배열에 대해서 생각한다.
대상 블록을 포함하는 행의 1행 위의 행(LineL)의 IntraPredMode은, IntraPredMode[수평 방향 n번째][1행 위(LineL)]로 표시된다. 또, 대상 블록을 포함하는 현재의 행의 IntraPredMode은, IntraPredMode[수평 방향 k번째][현재행]으로 표시된다. 여기서, 현재의 산술 복호 대상으로 하는 신호는, intra_chroma_pred_mode [수평 방향 j번째][현재행]이다.
우선, 상기의 1행 위의 행과 현재의 행의 수평 방향의 n번째와 k번째가 대응 지어질 보장은 없다. 이것은, 도 38의 설명에서 서술한 대로, PU 블록의 사이즈는 블록마다 변화하기 때문이다. 따라서 이들을 관리하려고 하면 무엇인가 대응표를 만들거나, 도 38에 설명한 대로, 모든 IntraPredMode를 최소 단위로 취득해 두는, 이외의 방법은 없다.
또한, 복호 대상의 intra_chroma_pred_mode와는 상이하여, 위의 행의 IntraPredMode는, 산술 복호부의 해석에 의해 취득이 가능한 신호 종별이 아닌, 다른 복호 프로세스에 의해 도출되는 값(H.264 등의, 대문자 시작의 변수)이다. 따라서, 산술 복호부가 단독으로 이 값의 이용 가능성을 취득하는 것 자체가, 큰 부하가 발생하게 된다.
따라서, intra_chroma_pred_mode가 인접 블록을 이용하는 컨텍스트 모델에 있어서, 상측 블록의 조건값(특히 IntraPredMode[대응 수평 위치][일행 위]에 대한 조건 판정값) CondA를 이용하지 않는 것은, 메모리 사용량의 점에서 유용하다.
(제9 검증) “cbf_luma, cbf_cr, cbf_cb”
도 27은 cbf_luma, cbf_cr 및 cbf_cb_의 산술 복호화 방법에 대해서 설명하기 위한 표이다.
신호 종별 “cbf_luma”의 의미는 이하에서 정의된다.
cbf_luma[x0][y0][trafoDepth]가 「1」인 경우, 휘도 변환 블록은, 레벨이 0이 아닌 1개 이상의 변환 계수를 포함한다. x0 및 y0는, 화상의 좌측 위 코너에 위치하는 휘도 샘플을 기준으로 한, 대상의 예측 블록의 좌측 위 코너에 위치하는 luma 샘플의 좌표를 나타낸다. trafoDepth는, 변환 부호화용의 블록 중에 있어서의 CU의 현재의 분할 레벨을 나타낸다. trafoDepth가 「0」인 경우, 블록은 CU에 대응한다.
즉, 휘도 변환 블록의 위치는, 수직 및 수평 요소에 더하여, CU의 계층을 기준으로 한 상대적인 계층 깊이(trafoDepth)를 포함하는 3차원 배열의 값으로서 정의된다.
또, 신호 종별 “cbf_cb”의 의미는, 휘도에 대한 cbf_luma를 색차(Cb)에 대해서 규정하는 것이다. 이 신호 종별 “cbf_cb”의 의미는 이하에서 정의된다.
cbf_cb[x0][y0][trafoDepth]가 「1」인 경우, Cb변환 블록은, 레벨이 0이 아닌 1개 이상의 변환 계수를 포함한다. x0 및 y0는, 화상의 좌측 위 코너에 위치하는 휘도 샘플을 기준으로 한, 대상의 예측 블록의 좌측 위 코너에 위치하는 luma 샘플의 좌표를 나타낸다. trafoDepth는, 변환 부호화용의 블록 중에 있어서의 CU의 현재의 분할 레벨을 나타낸다. trafoDepth가 「0」인 경우, 블록은 CU에 대응한다. cbf_cb[ x0 ][ y0 ][ trafoDepth ]가 존재하지 않고, 또한 PredMode가 MODE_INTRA와 상이한 경우, cbf_cb[ x0 ][ y0 ][ trafoDepth ]의 값은 「0」으로 간주된다.
즉, Cb변환 블록의 위치는, 수직 및 수평 요소에 더하여, CU의 계층을 기준으로 한 상대적인 계층 깊이(trafoDepth)를 포함하는 3차원 배열의 값으로서 정의된다.
또, 신호 종별 “cbf_cr”의 의미는, 휘도에 대한 cbf_luma를 색차(Cr)에 대해서 규정하는 것이다. 이 신호 종별 “cbf_cr”의 의미는 이하에서 정의된다.
cbf_cr[x0][y0][trafoDepth]가 「1」인 경우, Cr변환 블록은, 레벨이 0이 아닌 1개 이상의 변환 계수를 포함한다. x0 및 y0는, 화상의 좌측 위 코너에 위치하는 휘도 샘플을 기준으로 한, 대상의 예측 블록의 좌측 위 코너에 위치하는 luma 샘플의 좌표를 나타낸다. trafoDepth는, 변환 부호화용의 블록 중에 있어서의 CU의 현재의 분할 레벨을 나타낸다. trafoDepth가 「0」인 경우, 블록은 CU에 대응한다. cbf_cr[ x0 ][ y0 ][ trafoDepth ]가 존재하지 않고, 또한 PredMode가 MODE_INTRA와 상이한 경우, cbf_cr[ x0 ][ y0 ][ trafoDepth ]의 값은 「0」으로 간주된다.
즉, Cb변환 블록의 위치는, 수직 및 수평 요소에 더하여, CU의 계층을 기준으로 한 상대적인 계층 깊이(trafoDepth)를 포함하는 3차원 배열의 값으로서 정의된다.
도 28a 및 도 28b는 cbf_luma, cbf_cb 및 cbf_cr에 대한 검증 결과를 나타내는 표이다.
도 28a는, (패턴 2) 1개의 인접 블록(좌측 블록 조건 L의 판정값 만)이 이용되는 경우의 검증 결과를 나타낸다. 도 28b는, (패턴 3) 0개의 인접 블록이 이용되는 (상측 블록 조건 L도 좌측도 이용되지 않는다) 경우의 검증 결과를 나타낸다.
또한, 도 28a 및 도 28b에 나타내는 검증 결과는, 제1 검증과 마찬가지로, 상기 서술한 4개의 테스트 패턴의 BD-Rate값의 증감을 나타낸다. 또, 평가값의 의미는 제1 검증과 동일하다.
이 결과에 의하면, 상기 서술한 제1 검증의 split_coding_unit_flag, 및, 제2 검증의 skip_flag와는 결과가 상이하며, 이 cbf_luma, cbf_cb 및 cbf_cr에 관해서는, 컨텍스트 모델의 패턴으로서 패턴 1과, 패턴 2 또는 패턴 3 사이에 BD-rate의 큰 차가 발생하고 있지 않다.
따라서, 컨텍스트 제어부(142 및 242)는, 복수의 신호 종별의 제어 파라미터가 혼재하는 환경에 있어서, 특히, 신호 종별이 cbf_luma, cbf_cb 및 cbf_cr인 경우는, 인접 블록으로서 상측 블록을 이용하지 않고 컨텍스트값을 결정한다. 즉, 컨텍스트 제어부(142 및 242)는, 제어 파라미터의 신호 종별이 cbf_luma, cbf_cb 및 cbf_cr인 경우는, 패턴 2 또는 패턴 3을 이용하여 컨텍스트값을 결정한다. 바꾸어 말하면, 상기 제1 종별은, “split_coding_unit_flag”, 또는, “skip_flag”를 포함하고, 상기 제2 종별 또는 제3 종별은, “cbf_luma”, “cbf_cb”, 또는, “cbf_cr”을 포함한다. 이것에 의해, 본 실시의 형태에 관련된 화상 부호화 장치 및 화상 복호 장치는, BD-rate값의 저하를 억제하면서, 메모리 사용량을 삭감할 수 있다.
또한, cbf_luma, cbf_cb 및 cbf_cr에 대한 패턴 2와 패턴 3을 비교한 경우, 이들의 BD-rate에는 큰 차가 발생하고 있지 않다. 따라서, cbf_luma, cbf_cb 및 cbf_cr에 대해 패턴 3을 이용하는 것이 보다 바람직하다. 이것에 의해, 한층 더 메모리 사용량의 삭감, 및 처리량의 삭감을 실현할 수 있다.
또, cbf_luma, cbf_cb 및 cbf_cr은, 계층을 가지는 3차원 배열의 값이다. 따라서, 실시의 형태 2의 도 9b에서 서술한 대로, 계층 깊이에 따라 「인접」 참조값의, 복호순서(재귀 실행순서를 포함한다, 이하 동일)에서의 순서의 거리(멀기)가 상이해진다. 따라서, 제어 파라미터의 값을 이용할 수 있을지 어떨지, 또는, 메모리 사용량의 삭감에 효과가 발생할지는, 블록의 계층 관계 상의 위치에 따라 상이하다.
따라서, 컨텍스트 제어부(142 및 242)는, 계층 깊이에 의거하여 조건값의 결정 규범을 변경해도 된다. 예를 들면, 컨텍스트 제어부(142 및 242)는, 계층이 상측의 블록의 조건값을 계층이 하측의 블록의 조건값으로서 이용(답습)해도 된다.
또, 컨텍스트 제어부(142 및 242)는, 이들에 더하여, 또는 단독으로, 다른 슬라이스와의 위치 관계를 고려하여, 이들 규범을 변경해도 된다.
또한, 상기 서술 검증에 의해 이하의 상세 변형을 생각할 수 있다. 상기 서술한 “dilution effect”가 발생할지 여부는 그 조건이 적용되는 학습 회수에 의존한다. 일반적으로 4:2:0 포맷 등, Y, U, V에 대해서 휘도를 상징하는 Y에 대해서는, 샘플수가 다른 2축(U, V)에 비해 많다. 따라서, 구별을 해야 할 1개의 경계는 (a) luma 와 (b) cb 및 cr의 세트의 경계이다.
예를 들면, (a) cbf_luma에 대해서는 패턴 3을 적용하면서, (b) cbf_cb 및 cbf_cr에 대해서는 다른 패턴 2 또는 패턴 1을 적용하는 것으로 해도 된다. 즉, 컨텍스트 제어부(142 및 242)는, 신호 종별이, cbf_luma인 경우와, cbf_cb 또는 cbf_cr인 경우에서 상이한 조건을 이용하여 컨텍스트를 결정해도 된다. 또, 컨텍스트 제어부(142 및 242)는, (a) cbf_luma에 대해서는 패턴 1을 적용하면서, (b) cbf_cb 및 cbf_cr에 대해서는 다른 패턴 2 또는 패턴 3을 적용해도 된다.
또, 컨텍스트 제어부(142 및 242)는, (b) cbf_cb 및 cbf_cr에 대해서는, 계층의 깊이에 따라 컨텍스트를 결정해도 된다.
이와 같이, (b) cbf_cb 및 cbf_cr에 대한 조건수(컨텍스트의 조건수)를 (a) cbf_luma에 비해 줄임으로써, 샘플수가 적은 (b) cbf_cb 및 cbf_cr의 각 조건(조건수 M(M<N), 고정)의 학습 회수를, 샘플수가 많은 (a) cbf_luma의 각 조건(조건수 N, N은, 0~3의 4개)의 학습 회수에 가깝게 할 수 있다.
또한, 컨텍스트 제어부(142 및 242)는, (a) cbf_luma에 대해서, 계층의 깊이에 따라 컨텍스트를 결정해도 된다.
여기서, 컨텍스트 제어부(142 및 242)는, 학습 회수가 충분하면, 정밀도를 요구하는 경우에는 (컨텍스트) 조건을 늘리는 것이 바람직하다. 또, 컨텍스트 제어부(142 및 242)는, 학습 회수가 적으면, 컨텍스트 조건을 줄이는 것이 바람직하다. 따라서, 컨텍스트 제어부(142 및 242)는, 이들 조건을 해상도에 따라 전환해도 된다. 또, 컨텍스트 제어부(142 및 242)는, 포맷(4:2:0) 등에 따라 이들 조건을 전환해도 된다.
또, cbf_luma, cbf_cr, 및 cbf_cb는 계층의 깊이에 의해, 휘도 또는 색차의 계수의 유무를 나타낸다. 즉, cbf_luma, cbf_cr, 및 cbf_cb는, 잔차 데이터의 유무를 나타내는 no_residual_data_flag의 하위에 해당한다. 여기서, CU≥PU≥TU의 관계에 있어서의, CU의 크기에 대해 선택할 수 있는 제일 큰 TU에 대해, no_residual_data_flag가 이용된다. 구체적으로는, TU의 제일 위의 계층에서 no_residual_data_flag가 사용된다. 한편, cbf_luma, cbf_cr, 및 cbf_cb는, no_residual_data_flag보다 하위의 계층에서 사용된다. no_residual_data_flag가 존재하면, 그 이후의 블록은 잔차 데이터가 없는 것을 나타낸다. 또, 계층이 깊어지면 질수록 잔차 데이터가 있을 가능성이 높아진다. 따라서, 컨텍스트 제어부(142 및 242)는, cbf_luma, cbf_cr, 및 cbf_cb에 대해, 계층의 정보를 이용함으로써, 부호화 효율을 향상시키는 것이 가능해진다. 바꾸어 말하면, 컨텍스트 제어부(142 및 242)는, 처리 대상 블록의 제어 파라미터(cbf_luma, cbf_cr, 및 cbf_cb)가 속하는 데이터 단위의 계층의 깊이에 따라 컨텍스트를 결정해도 된다. 한편, no_residual_data_flag는, 예측 모드에 의존하는 플래그이기 때문에, 컨텍스트값으로서 계층에 의존하지 않는 고정값을 이용하는 것이 바람직하다.
이하, 상기 서술한 전체 신호 종별의 검증 결과를 정리해 나타낸다.
도 29a 및 도 29b는, 4.1 Intra, high-efficiency setting의 결과(전체 신호 종별)를 나타내는 그래프이다.
도 30a 및 도 30b는, 4.3 Random access, high-efficiency setting의 결과(전체 신호 종별)를 나타내는 그래프이다.
도 31a 및 도 31b는, 4.5 Low delay, high-efficiency setting의 결과(전체 신호 종별)를 나타내는 그래프이다.
도 32a 및 도 32b는, 4.7 Low delay, high-efficiency setting (P slices only)를 나타내는 그래프이다.
도 33a는, 각 제어 파라미터에 상기 패턴 1~패턴 3 중 어느 하나를 할당한 파라미터 세트를 나타내는 표이다. 도 33a에 나타내는 예에서는, “split_coding_unit_flag”, 및, “skip_flag”에는 패턴 1(상측 블록 및 좌측 블록을 함께 이용한다)이 할당되어 있으며, “merge_flag”와, “ref_idx”와, “inter_pred_flag”와, “mvd_l0”, “mvd_l1” 및 “mvd_lc”와, “no_residual_data_flag”와, “intra_chroma_pred_mode”와, “cbf_luma”, “cbf_cb” 및 “cbf_cr”에 패턴 3(상측 블록 및 좌측 블록을 함께 이용하지 않는다)이 할당되어 있다.
도 33b는, 도 33a에 나타내는 파라미터 세트를 이용한 경우의 검증 결과를 나타내는 표이다. 도 33b에 나타내는 바와 같이 도 33a에 나타내는 파라미터 세트를 이용함으로써 부호화 효율의 저하를 억제하면서, 메모리 사용량을 삭감할 수 있다.
도 34a는, 다른 파라미터 세트의 예를 나타내는 표이다. 도 34a에 나타내는 예에서는, “split_coding_unit_flag”, 및, “skip_flag”에는 패턴 1(상측 블록 및 좌측 블록을 함께 이용한다)이 할당되어 있으며, “intra_chroma_pred_mode”와, “cbf_luma”, “cbf_cb” 및 “cbf_cr”에 패턴 2(좌측 블록만을 이용한다)가 할당되어 있으며, “merge_flag”와, “ref_idx”와, “inter_pred_flag”와, “mvd_l0”, “mvd_l1” 및 “mvd_lc”와, “no_residual_data_flag”에 패턴 3(상측 블록 및 좌측 블록을 함께 이용하지 않는다)이 할당되어 있다.
도 34b는, 도 34a에 나타내는 파라미터 세트를 이용한 경우의 검증 결과를 나타내는 표이다. 도 34b에 나타내는 바와 같이 도 34a에 나타내는 파라미터 세트를 이용함으로써 부호화 효율의 저하를 억제하면서, 메모리 사용량을 삭감할 수 있다.
또, 상기 서술한 바와 같이, 컨텍스트 제어부(142 또는 242)는, 계층을 이용하여 컨텍스트를 결정해도 된다.
도 35는, 이 경우의 가변길이 부호화부(104)가 실행하는 화상 부호화 방법을 나타내는 플로우도이다. 도 35에 나타내는 처리는, 도 4에 나타내는 처리에 대해, 단계 S111 및 S112가 추가되어 있다.
신호 종별이 패턴 4에 대응하는 제4 종별인 경우(S104에서 제4 종별), 컨텍스트 제어부(142)는, 패턴 4로서, 1개의 인접 블록(좌측 블록)의 제어 파라미터의 값과, 처리 대상 블록의 계층을 이용하여 컨텍스트값을 결정한다(S111). 바꾸어 말하면, 컨텍스트 제어부(142)는, 상측 블록의 제어 파라미터를 이용하지 않고, 또한, 좌측 블록의 제어 파라미터와, 처리 대상의 제어 파라미터가 속하는 데이터 단위의 계층의 깊이에 따라 컨텍스트를 결정한다.
또, 신호 종별이 패턴 5에 대응하는 제5 종별인 경우(S104에서 제5 종별), 컨텍스트 제어부(142)는, 패턴 5로서, 처리 대상 블록의 계층을 이용하여 컨텍스트값을 결정한다(S112). 바꾸어 말하면, 컨텍스트 제어부(142)는, 상측 블록 및 좌측 블록의 제어 파라미터를 함께 이용하지 않고, 또한, 처리 대상의 제어 파라미터가 속하는 데이터 단위의 계층의 깊이에 따라 컨텍스트를 결정한다.
또한, 가변길이 복호부(202)에 있어서도 동일한 처리가 실행된다. 도 36은, 가변길이 복호부(202)가 실행하는 화상 복호 방법을 나타내는 플로우도이다. 도 36에 나타내는 처리는, 도 7에 나타내는 처리에 대해, 단계 S213 및 S214가 추가되어 있다.
신호 종별이 패턴 4에 대응하는 제4 종별인 경우(S205에서 제4 종별), 컨텍스트 제어부(242)는, 패턴 4로서, 1개의 인접 블록(좌측 블록)의 제어 파라미터의 값과, 처리 대상 블록의 계층을 이용하여 컨텍스트값을 결정한다(S213). 바꾸어 말하면, 컨텍스트 제어부(242)는, 상측 블록의 제어 파라미터를 이용하지 않고, 또한, 좌측 블록의 제어 파라미터와, 처리 대상의 제어 파라미터가 속하는 데이터 단위의 계층의 깊이에 따라 컨텍스트를 결정한다.
또, 신호 종별이 패턴 5에 대응하는 제5 종별인 경우(S205에서 제5 종별), 컨텍스트 제어부(242)는, 패턴 5로서, 처리 대상 블록의 계층을 이용하여 컨텍스트값을 결정한다(S214). 바꾸어 말하면, 컨텍스트 제어부(242)는, 상측 블록 및 좌측 블록의 제어 파라미터를 함께 이용하지 않고, 또한, 처리 대상의 제어 파라미터가 속하는 데이터 단위의 계층의 깊이에 따라 컨텍스트를 결정한다.
또한, 상기의 각 실시의 형태의 설명에 있어서의 패턴 2를 패턴 4로 치환해도 되고, 패턴 3을 패턴 5로 치환해도 된다.
이상, 본 발명의 실시의 형태에 관련된 화상 부호화 장치 및 화상 복호 장치에 대해서 설명했지만, 본 발명은, 이 실시의 형태에 한정되는 것은 아니다.
예를 들면, 상기 실시의 형태 1~3에 관련된, 화상 부호화 장치, 화상 복호 장치 및 그들의 변형예의 기능 중 적어도 일부를 조합해도 된다.
또, 상기에서 이용한 숫자 및 논리값은, 모두 본 발명을 구체적으로 설명하기 위해 예시하는 것이며, 본 발명은 예시된 숫자에 제한되지 않는다.
또, 블록도에 있어서의 기능 블록의 분할은 일례이며, 복수의 기능 블록을 하나의 기능 블록으로서 실현되거나, 하나의 기능 블록을 복수에 분할하거나, 일부의 기능을 다른 기능 블록으로 옮겨도 된다. 또, 유사하는 기능을 가지는 복수의 기능 블록의 기능을 단일의 하드웨어 또는 소프트웨어가 병렬 또는 시분할로 처리해도 된다.
또, 상기의 화상 부호화 장치에 의한 화상 부호화 방법, 및 화상 복호 장치에 의한 화상 복호 방법에 있어서의, 각 단계가 실행되는 순서는, 본 발명을 구체적으로 설명하기 위해 예시하기 위한 것이며, 상기 이외의 순서여도 된다. 또, 상기 단계의 일부가, 다른 단계와 동시(병렬)에 실행되어도 된다.
(추가 검증)
각 신호 종별과 컨텍스트의 결정 방법의 조합에 대해서 검증 결과를 나타낸다. 이하에 나타내는 조합에서는, BD-rate를 크게 감소시키지 않고, 메모리 사용량을 삭감할 수 있는 것이 확인되었다.
<조합 1>
skip_flag 패턴 1(상측과 좌측을 참조한다)
split_coding_unit_flag 패턴 1(상측과 좌측을 참조한다)
merge_flag 패턴 3(상측도 좌측도 참조하지 않는다)
intra_chroma_pred_mode 패턴 3(상측도 좌측도 참조하지 않는다)
inter_pred_flag 패턴 3(상측도 좌측도 참조하지 않는다)
ref_idx 패턴 3(상측도 좌측도 참조하지 않는다)
mvd 패턴 3(상측도 좌측도 참조하지 않는다)
cbf_luma(intra) 패턴 1(상측과 좌측을 참조한다)
cbf_chroma(intra) 패턴 3(상측도 좌측도 참조하지 않는다)
<조합 2>
skip_flag 패턴 1(상측과 좌측을 참조한다)
split_coding_unit_flag 패턴 1(상측과 좌측을 참조한다)
merge_flag 패턴 3(상측도 좌측도 참조하지 않는다)
intra_chroma_pred_mode 패턴 3(상측도 좌측도 참조하지 않는다)
inter_pred_flag 패턴 3(상측도 좌측도 참조하지 않는다)
ref_idx 패턴 3(상측도 좌측도 참조하지 않는다)
mvd 패턴 3(상측도 좌측도 참조하지 않는다)
cbf_luma(intra) 패턴 1(상측과 좌측을 참조한다)
cbf_chroma(intra) 패턴 5(상측도 좌측도 참조하지 않는다, 계층을 참조)
<조합 3>
skip_flag 패턴 1(상측과 좌측을 참조한다)
split_coding_unit_flag 패턴 1(상측과 좌측을 참조한다)
merge_flag 패턴 3(상측도 좌측도 참조하지 않는다)
intra_chroma_pred_mode 패턴 3(상측도 좌측도 참조하지 않는다)
inter_pred_flag 패턴 3(상측도 좌측도 참조하지 않는다)
ref_idx 패턴 3(상측도 좌측도 참조하지 않는다)
mvd 패턴 3(상측도 좌측도 참조하지 않는다)
cbf_luma(intra) 패턴 3(상측도 좌측도 참조하지 않는다)
cbf_chroma(intra) 패턴 3(상측도 좌측도 참조하지 않는다)
<조합 4>
skip_flag 패턴 1(상측과 좌측을 참조한다)
split_coding_unit_flag 패턴 1(상측과 좌측을 참조한다)
merge_flag 패턴 3(상측도 좌측도 참조하지 않는다)
intra_chroma_pred_mode 패턴 3(상측도 좌측도 참조하지 않는다)
inter_pred_flag 패턴 3(상측도 좌측도 참조하지 않는다)
ref_idx 패턴 3(상측도 좌측도 참조하지 않는다)
mvd 패턴 3(상측도 좌측도 참조하지 않는다)
cbf_luma(intra) 패턴 3(상측도 좌측도 참조하지 않는다)
cbf_chroma(intra) 패턴 5(상측도 좌측도 참조하지 않는다, 계층을 참조)
<조합 5>
skip_flag 패턴 1(상측과 좌측을 참조한다)
split_coding_unit_flag 패턴 1(상측과 좌측을 참조한다)
merge_flag 패턴 3(상측도 좌측도 참조하지 않는다)
intra_chroma_pred_mode 패턴 3(상측도 좌측도 참조하지 않는다)
inter_pred_flag 패턴 5(상측도 좌측도 참조하지 않는다, 계층을 참조)
ref_idx 패턴 3(상측도 좌측도 참조하지 않는다)
mvd 패턴 3(상측도 좌측도 참조하지 않는다)
cbf_luma(intra) 패턴 1(상측과 좌측을 참조한다)
cbf_chroma(intra) 패턴 3(상측도 좌측도 참조하지 않는다)
<조합 6>
skip_flag 패턴 1(상측과 좌측을 참조한다)
split_coding_unit_flag 패턴 1(상측과 좌측을 참조한다)
merge_flag 패턴 3(상측도 좌측도 참조하지 않는다)
intra_chroma_pred_mode 패턴 3(상측도 좌측도 참조하지 않는다)
inter_pred_flag 패턴 5(상측도 좌측도 참조하지 않는다, 계층을 참조)
ref_idx 패턴 3(상측도 좌측도 참조하지 않는다)
mvd 패턴 3(상측도 좌측도 참조하지 않는다)
cbf_luma(intra) 패턴 1(상측과 좌측을 참조한다)
cbf_chroma(intra) 패턴 5(상측도 좌측도 참조하지 않는다, 계층을 참조)
<조합 7>
skip_flag 패턴 1(상측과 좌측을 참조한다)
split_coding_unit_flag 패턴 1(상측과 좌측을 참조한다)
merge_flag 패턴 3(상측도 좌측도 참조하지 않는다)
intra_chroma_pred_mode 패턴 3(상측도 좌측도 참조하지 않는다)
inter_pred_flag 패턴 5(상측도 좌측도 참조하지 않는다, 계층을 참조)
ref_idx 패턴 3(상측도 좌측도 참조하지 않는다)
mvd 패턴 3(상측도 좌측도 참조하지 않는다)
cbf_luma(intra) 패턴 3(상측도 좌측도 참조하지 않는다)
cbf_chroma(intra) 패턴 3(상측도 좌측도 참조하지 않는다)
<조합 8>
skip_flag 패턴 1(상측과 좌측을 참조한다)
split_coding_unit_flag 패턴 1(상측과 좌측을 참조한다)
merge_flag 패턴 3(상측도 좌측도 참조하지 않는다)
intra_chroma_pred_mode 패턴 3(상측도 좌측도 참조하지 않는다)
inter_pred_flag 패턴 5(상측도 좌측도 참조하지 않는다, 계층을 참조)
ref_idx 패턴 3(상측도 좌측도 참조하지 않는다)
mvd 패턴 3(상측도 좌측도 참조하지 않는다)
cbf_luma(intra) 패턴 3(상측도 좌측도 참조하지 않는다)
cbf_chroma(intra) 패턴 5(상측도 좌측도 참조하지 않는다, 계층을 참조)
<조합 9>
skip_flag 패턴 1(상측과 좌측을 참조한다)
split_coding_unit_flag 패턴 2(좌측을 참조한다)
merge_flag 패턴 3(상측도 좌측도 참조하지 않는다)
intra_chroma_pred_mode 패턴 3(상측도 좌측도 참조하지 않는다)
inter_pred_flag 패턴 3(상측도 좌측도 참조하지 않는다)
ref_idx 패턴 3(상측도 좌측도 참조하지 않는다)
mvd 패턴 3(상측도 좌측도 참조하지 않는다)
cbf_luma(intra) 패턴 1(상측과 좌측을 참조한다)
cbf_chroma(intra) 패턴 3(상측도 좌측도 참조하지 않는다)
<조합 10>
skip_flag 패턴 1(상측과 좌측을 참조한다)
split_coding_unit_flag 패턴 2(좌측을 참조한다)
merge_flag 패턴 3(상측도 좌측도 참조하지 않는다)
intra_chroma_pred_mode 패턴 3(상측도 좌측도 참조하지 않는다)
inter_pred_flag 패턴 3(상측도 좌측도 참조하지 않는다)
ref_idx 패턴 3(상측도 좌측도 참조하지 않는다)
mvd 패턴 3(상측도 좌측도 참조하지 않는다)
cbf_luma(intra) 패턴 1(상측과 좌측을 참조한다)
cbf_chroma(intra) 패턴 5(상측도 좌측도 참조하지 않는다, 계층을 참조)
<조합 11>
skip_flag 패턴 1(상측과 좌측을 참조한다)
split_coding_unit_flag 패턴 2(좌측을 참조한다)
merge_flag 패턴 3(상측도 좌측도 참조하지 않는다)
intra_chroma_pred_mode 패턴 3(상측도 좌측도 참조하지 않는다)
inter_pred_flag 패턴 3(상측도 좌측도 참조하지 않는다)
ref_idx 패턴 3(상측도 좌측도 참조하지 않는다)
mvd 패턴 3(상측도 좌측도 참조하지 않는다)
cbf_luma(intra) 패턴 3(상측도 좌측도 참조하지 않는다)
cbf_chroma(intra) 패턴 3(상측도 좌측도 참조하지 않는다)
<조합 12>
skip_flag 패턴 1(상측과 좌측을 참조한다)
split_coding_unit_flag 패턴 2(좌측을 참조한다)
merge_flag 패턴 3(상측도 좌측도 참조하지 않는다)
intra_chroma_pred_mode 패턴 3(상측도 좌측도 참조하지 않는다)
inter_pred_flag 패턴 3(상측도 좌측도 참조하지 않는다)
ref_idx 패턴 3(상측도 좌측도 참조하지 않는다)
mvd 패턴 3(상측도 좌측도 참조하지 않는다)
cbf_luma(intra) 패턴 3(상측도 좌측도 참조하지 않는다)
cbf_chroma(intra) 패턴 5(상측도 좌측도 참조하지 않는다, 계층을 참조)
<조합 13>
skip_flag 패턴 1(상측과 좌측을 참조한다)
split_coding_unit_flag 패턴 2(좌측을 참조한다)
merge_flag 패턴 3(상측도 좌측도 참조하지 않는다)
intra_chroma_pred_mode 패턴 3(상측도 좌측도 참조하지 않는다)
inter_pred_flag 패턴 5(상측도 좌측도 참조하지 않는다, 계층을 참조)
ref_idx 패턴 3(상측도 좌측도 참조하지 않는다)
mvd 패턴 3(상측도 좌측도 참조하지 않는다)
cbf_luma(intra) 패턴 1(상측과 좌측을 참조한다)
cbf_chroma(intra) 패턴 3(상측도 좌측도 참조하지 않는다)
<조합 14>
skip_flag 패턴 1(상측과 좌측을 참조한다)
split_coding_unit_flag 패턴 2(좌측을 참조한다)
merge_flag 패턴 3(상측도 좌측도 참조하지 않는다)
intra_chroma_pred_mode 패턴 3(상측도 좌측도 참조하지 않는다)
inter_pred_flag 패턴 5(상측도 좌측도 참조하지 않는다, 계층을 참조)
ref_idx 패턴 3(상측도 좌측도 참조하지 않는다)
mvd 패턴 3(상측도 좌측도 참조하지 않는다)
cbf_luma(intra) 패턴 1(상측과 좌측을 참조한다)
cbf_chroma(intra) 패턴 5(상측도 좌측도 참조하지 않는다, 계층을 참조)
<조합 15>
skip_flag 패턴 1(상측과 좌측을 참조한다)
split_coding_unit_flag 패턴 2(좌측을 참조한다)
merge_flag 패턴 3(상측도 좌측도 참조하지 않는다)
intra_chroma_pred_mode 패턴 3(상측도 좌측도 참조하지 않는다)
inter_pred_flag 패턴 5(상측도 좌측도 참조하지 않는다, 계층을 참조)
ref_idx 패턴 3(상측도 좌측도 참조하지 않는다)
mvd 패턴 3(상측도 좌측도 참조하지 않는다)
cbf_luma(intra) 패턴 3(상측도 좌측도 참조하지 않는다)
cbf_chroma(intra) 패턴 3(상측도 좌측도 참조하지 않는다)
<조합 16>
skip_flag 패턴 1(상측과 좌측을 참조한다)
split_coding_unit_flag 패턴 2(좌측을 참조한다)
merge_flag 패턴 3(상측도 좌측도 참조하지 않는다)
intra_chroma_pred_mode 패턴 3(상측도 좌측도 참조하지 않는다)
inter_pred_flag 패턴 5(상측도 좌측도 참조하지 않는다, 계층을 참조)
ref_idx 패턴 3(상측도 좌측도 참조하지 않는다)
mvd 패턴 3(상측도 좌측도 참조하지 않는다)
cbf_luma(intra) 패턴 3(상측도 좌측도 참조하지 않는다)
cbf_chroma(intra) 패턴 5(상측도 좌측도 참조하지 않는다, 계층을 참조)
<조합 17>
skip_flag 패턴 1(상측과 좌측을 참조한다)
split_coding_unit_flag 패턴 4(좌측과 계층을 참조한다)
merge_flag 패턴 3(상측도 좌측도 참조하지 않는다)
intra_chroma_pred_mode 패턴 3(상측도 좌측도 참조하지 않는다)
inter_pred_flag 패턴 3(상측도 좌측도 참조하지 않는다)
ref_idx 패턴 3(상측도 좌측도 참조하지 않는다)
mvd 패턴 3(상측도 좌측도 참조하지 않는다)
cbf_luma(intra) 패턴 1(상측과 좌측을 참조한다)
cbf_chroma(intra) 패턴 3(상측도 좌측도 참조하지 않는다)
<조합 18>
skip_flag 패턴 1(상측과 좌측을 참조한다)
split_coding_unit_flag 패턴 4(좌측과 계층을 참조한다)
merge_flag 패턴 3(상측도 좌측도 참조하지 않는다)
intra_chroma_pred_mode 패턴 3(상측도 좌측도 참조하지 않는다)
inter_pred_flag 패턴 3(상측도 좌측도 참조하지 않는다)
ref_idx 패턴 3(상측도 좌측도 참조하지 않는다)
mvd 패턴 3(상측도 좌측도 참조하지 않는다)
cbf_luma(intra) 패턴 1(상측과 좌측을 참조한다)
cbf_chroma(intra) 패턴 5(상측도 좌측도 참조하지 않는다, 계층을 참조)
<조합 19>
skip_flag 패턴 1(상측과 좌측을 참조한다)
split_coding_unit_flag 패턴 4(좌측과 계층을 참조한다)
merge_flag 패턴 3(상측도 좌측도 참조하지 않는다)
intra_chroma_pred_mode 패턴 3(상측도 좌측도 참조하지 않는다)
inter_pred_flag 패턴 3(상측도 좌측도 참조하지 않는다)
ref_idx 패턴 3(상측도 좌측도 참조하지 않는다)
mvd 패턴 3(상측도 좌측도 참조하지 않는다)
cbf_luma(intra) 패턴 3(상측도 좌측도 참조하지 않는다)
cbf_chroma(intra) 패턴 3(상측도 좌측도 참조하지 않는다)
<조합 20>
skip_flag 패턴 1(상측과 좌측을 참조한다)
split_coding_unit_flag 패턴 4(좌측과 계층을 참조한다)
merge_flag 패턴 3(상측도 좌측도 참조하지 않는다)
intra_chroma_pred_mode 패턴 3(상측도 좌측도 참조하지 않는다)
inter_pred_flag 패턴 3(상측도 좌측도 참조하지 않는다)
ref_idx 패턴 3(상측도 좌측도 참조하지 않는다)
mvd 패턴 3(상측도 좌측도 참조하지 않는다)
cbf_luma(intra) 패턴 3(상측도 좌측도 참조하지 않는다)
cbf_chroma(intra) 패턴 5(상측도 좌측도 참조하지 않는다, 계층을 참조)
<조합 21>
skip_flag 패턴 1(상측과 좌측을 참조한다)
split_coding_unit_flag 패턴 4(좌측과 계층을 참조한다)
merge_flag 패턴 3(상측도 좌측도 참조하지 않는다)
intra_chroma_pred_mode 패턴 3(상측도 좌측도 참조하지 않는다)
inter_pred_flag 패턴 5(상측도 좌측도 참조하지 않는다, 계층을 참조)
ref_idx 패턴 3(상측도 좌측도 참조하지 않는다)
mvd 패턴 3(상측도 좌측도 참조하지 않는다)
cbf_luma(intra) 패턴 1(상측과 좌측을 참조한다)
cbf_chroma(intra) 패턴 3(상측도 좌측도 참조하지 않는다)
<조합 22>
skip_flag 패턴 1(상측과 좌측을 참조한다)
split_coding_unit_flag 패턴 4(좌측과 계층을 참조한다)
merge_flag 패턴 3(상측도 좌측도 참조하지 않는다)
intra_chroma_pred_mode 패턴 3(상측도 좌측도 참조하지 않는다)
inter_pred_flag 패턴 5(상측도 좌측도 참조하지 않는다, 계층을 참조)
ref_idx 패턴 3(상측도 좌측도 참조하지 않는다)
mvd 패턴 3(상측도 좌측도 참조하지 않는다)
cbf_luma(intra) 패턴 1(상측과 좌측을 참조한다)
cbf_chroma(intra) 패턴 5(상측도 좌측도 참조하지 않는다, 계층을 참조)
<조합 23>
skip_flag 패턴 1(상측과 좌측을 참조한다)
split_coding_unit_flag 패턴 4(좌측과 계층을 참조한다)
merge_flag 패턴 3(상측도 좌측도 참조하지 않는다)
intra_chroma_pred_mode 패턴 3(상측도 좌측도 참조하지 않는다)
inter_pred_flag 패턴 5(상측도 좌측도 참조하지 않는다, 계층을 참조)
ref_idx 패턴 3(상측도 좌측도 참조하지 않는다)
mvd 패턴 3(상측도 좌측도 참조하지 않는다)
cbf_luma(intra) 패턴 3(상측도 좌측도 참조하지 않는다)
cbf_chroma(intra) 패턴 3(상측도 좌측도 참조하지 않는다)
<조합 24>
skip_flag 패턴 1(상측과 좌측을 참조한다)
split_coding_unit_flag 패턴 4(좌측과 계층을 참조한다)
merge_flag 패턴 3(상측도 좌측도 참조하지 않는다)
intra_chroma_pred_mode 패턴 3(상측도 좌측도 참조하지 않는다)
inter_pred_flag 패턴 5(상측도 좌측도 참조하지 않는다, 계층을 참조)
ref_idx 패턴 3(상측도 좌측도 참조하지 않는다)
mvd 패턴 3(상측도 좌측도 참조하지 않는다)
cbf_luma(intra) 패턴 3(상측도 좌측도 참조하지 않는다)
cbf_chroma(intra) 패턴 5(상측도 좌측도 참조하지 않는다, 계층을 참조)
<조합 25>
skip_flag 패턴 1(상측과 좌측을 참조한다)
split_coding_unit_flag 패턴 1(상측과 좌측을 참조한다)
merge_flag 패턴 3(상측도 좌측도 참조하지 않는다)
intra_chroma_pred_mode 패턴 3(상측도 좌측도 참조하지 않는다)
inter_pred_flag 패턴 3(상측도 좌측도 참조하지 않는다)
ref_idx 패턴 3(상측도 좌측도 참조하지 않는다)
mvd 패턴 3(상측도 좌측도 참조하지 않는다)
cbf_luma(intra) 패턴 5(상측도 좌측도 참조하지 않는다, 계층을 참조)
cbf_chroma(intra) 패턴 3(상측도 좌측도 참조하지 않는다)
<조합 26>
skip_flag 패턴 1(상측과 좌측을 참조한다)
split_coding_unit_flag 패턴 1(상측과 좌측을 참조한다)
merge_flag 패턴 3(상측도 좌측도 참조하지 않는다)
intra_chroma_pred_mode 패턴 3(상측도 좌측도 참조하지 않는다)
inter_pred_flag 패턴 3(상측도 좌측도 참조하지 않는다)
ref_idx 패턴 3(상측도 좌측도 참조하지 않는다)
mvd 패턴 3(상측도 좌측도 참조하지 않는다)
cbf_luma(intra) 패턴 5(상측도 좌측도 참조하지 않는다, 계층을 참조)
cbf_chroma(intra) 패턴 5(상측도 좌측도 참조하지 않는다, 계층을 참조)
<조합 27>
skip_flag 패턴 1(상측과 좌측을 참조한다)
split_coding_unit_flag 패턴 1(상측과 좌측을 참조한다)
merge_flag 패턴 3(상측도 좌측도 참조하지 않는다)
intra_chroma_pred_mode 패턴 3(상측도 좌측도 참조하지 않는다)
inter_pred_flag 패턴 5(상측도 좌측도 참조하지 않는다, 계층을 참조)
ref_idx 패턴 3(상측도 좌측도 참조하지 않는다)
mvd 패턴 3(상측도 좌측도 참조하지 않는다)
cbf_luma(intra) 패턴 5(상측도 좌측도 참조하지 않는다, 계층을 참조)
cbf_chroma(intra) 패턴 3(상측도 좌측도 참조하지 않는다)
<조합 28>
skip_flag 패턴 1(상측과 좌측을 참조한다)
split_coding_unit_flag 패턴 1(상측과 좌측을 참조한다)
merge_flag 패턴 3(상측도 좌측도 참조하지 않는다)
intra_chroma_pred_mode 패턴 3(상측도 좌측도 참조하지 않는다)
inter_pred_flag 패턴 5(상측도 좌측도 참조하지 않는다, 계층을 참조)
ref_idx 패턴 3(상측도 좌측도 참조하지 않는다)
mvd 패턴 3(상측도 좌측도 참조하지 않는다)
cbf_luma(intra) 패턴 5(상측도 좌측도 참조하지 않는다, 계층을 참조)
cbf_chroma(intra) 패턴 5(상측도 좌측도 참조하지 않는다, 계층을 참조)
<조합 29>
skip_flag 패턴 1(상측과 좌측을 참조한다)
split_coding_unit_flag 패턴 2(좌측을 참조한다)
merge_flag 패턴 3(상측도 좌측도 참조하지 않는다)
intra_chroma_pred_mode 패턴 3(상측도 좌측도 참조하지 않는다)
inter_pred_flag 패턴 3(상측도 좌측도 참조하지 않는다)
ref_idx 패턴 3(상측도 좌측도 참조하지 않는다)
mvd 패턴 3(상측도 좌측도 참조하지 않는다)
cbf_luma(intra) 패턴 5(상측도 좌측도 참조하지 않는다, 계층을 참조)
cbf_chroma(intra) 패턴 3(상측도 좌측도 참조하지 않는다)
<조합 30>
skip_flag 패턴 1(상측과 좌측을 참조한다)
split_coding_unit_flag 패턴 2(좌측을 참조한다)
merge_flag 패턴 3(상측도 좌측도 참조하지 않는다)
intra_chroma_pred_mode 패턴 3(상측도 좌측도 참조하지 않는다)
inter_pred_flag 패턴 3(상측도 좌측도 참조하지 않는다)
ref_idx 패턴 3(상측도 좌측도 참조하지 않는다)
mvd 패턴 3(상측도 좌측도 참조하지 않는다)
cbf_luma(intra) 패턴 5(상측도 좌측도 참조하지 않는다, 계층을 참조)
cbf_chroma(intra) 패턴 5(상측도 좌측도 참조하지 않는다, 계층을 참조)
<조합 31>
skip_flag 패턴 1(상측과 좌측을 참조한다)
split_coding_unit_flag 패턴 2(좌측을 참조한다)
merge_flag 패턴 3(상측도 좌측도 참조하지 않는다)
intra_chroma_pred_mode 패턴 3(상측도 좌측도 참조하지 않는다)
inter_pred_flag 패턴 5(상측도 좌측도 참조하지 않는다, 계층을 참조)
ref_idx 패턴 3(상측도 좌측도 참조하지 않는다)
mvd 패턴 3(상측도 좌측도 참조하지 않는다)
cbf_luma(intra) 패턴 5(상측도 좌측도 참조하지 않는다, 계층을 참조)
cbf_chroma(intra) 패턴 3(상측도 좌측도 참조하지 않는다)
<조합 32>
skip_flag 패턴 1(상측과 좌측을 참조한다)
split_coding_unit_flag 패턴 2(좌측을 참조한다)
merge_flag 패턴 3(상측도 좌측도 참조하지 않는다)
intra_chroma_pred_mode 패턴 3(상측도 좌측도 참조하지 않는다)
inter_pred_flag 패턴 5(상측도 좌측도 참조하지 않는다, 계층을 참조)
ref_idx 패턴 3(상측도 좌측도 참조하지 않는다)
mvd 패턴 3(상측도 좌측도 참조하지 않는다)
cbf_luma(intra) 패턴 5(상측도 좌측도 참조하지 않는다, 계층을 참조)
cbf_chroma(intra) 패턴 5(상측도 좌측도 참조하지 않는다, 계층을 참조)
<조합 33>
skip_flag 패턴 1(상측과 좌측을 참조한다)
split_coding_unit_flag 패턴 4(좌측과 계층을 참조한다)
merge_flag 패턴 3(상측도 좌측도 참조하지 않는다)
intra_chroma_pred_mode 패턴 3(상측도 좌측도 참조하지 않는다)
inter_pred_flag 패턴 3(상측도 좌측도 참조하지 않는다)
ref_idx 패턴 3(상측도 좌측도 참조하지 않는다)
mvd 패턴 3(상측도 좌측도 참조하지 않는다)
cbf_luma(intra) 패턴 5(상측도 좌측도 참조하지 않는다, 계층을 참조)
cbf_chroma(intra) 패턴 3(상측도 좌측도 참조하지 않는다)
<조합 34>
skip_flag 패턴 1(상측과 좌측을 참조한다)
split_coding_unit_flag 패턴 4(좌측과 계층을 참조한다)
merge_flag 패턴 3(상측도 좌측도 참조하지 않는다)
intra_chroma_pred_mode 패턴 3(상측도 좌측도 참조하지 않는다)
inter_pred_flag 패턴 3(상측도 좌측도 참조하지 않는다)
ref_idx 패턴 3(상측도 좌측도 참조하지 않는다)
mvd 패턴 3(상측도 좌측도 참조하지 않는다)
cbf_luma(intra) 패턴 5(상측도 좌측도 참조하지 않는다, 계층을 참조)
cbf_chroma(intra) 패턴 5(상측도 좌측도 참조하지 않는다, 계층을 참조)
<조합 35>
skip_flag 패턴 1(상측과 좌측을 참조한다)
split_coding_unit_flag 패턴 4(좌측과 계층을 참조한다)
merge_flag 패턴 3(상측도 좌측도 참조하지 않는다)
intra_chroma_pred_mode 패턴 3(상측도 좌측도 참조하지 않는다)
inter_pred_flag 패턴 5(상측도 좌측도 참조하지 않는다, 계층을 참조)
ref_idx 패턴 3(상측도 좌측도 참조하지 않는다)
mvd 패턴 3(상측도 좌측도 참조하지 않는다)
cbf_luma(intra) 패턴 5(상측도 좌측도 참조하지 않는다, 계층을 참조)
cbf_chroma(intra) 패턴 3(상측도 좌측도 참조하지 않는다)
<조합 36>
skip_flag 패턴 1(상측과 좌측을 참조한다)
split_coding_unit_flag 패턴 4(좌측과 계층을 참조한다)
merge_flag 패턴 3(상측도 좌측도 참조하지 않는다)
intra_chroma_pred_mode 패턴 3(상측도 좌측도 참조하지 않는다)
inter_pred_flag 패턴 5(상측도 좌측도 참조하지 않는다, 계층을 참조)
ref_idx 패턴 3(상측도 좌측도 참조하지 않는다)
mvd 패턴 3(상측도 좌측도 참조하지 않는다)
cbf_luma(intra) 패턴 5(상측도 좌측도 참조하지 않는다, 계층을 참조)
cbf_chroma(intra) 패턴 5(상측도 좌측도 참조하지 않는다, 계층을 참조)
(실시의 형태 4)
상기 각 실시의 형태에서 나타낸 동화상 부호화 방법(화상 부호화 방법) 또는 동화상 복호화 방법(화상 복호 방법)의 구성을 실현하기 위한 프로그램을 기억 미디어에 기록함으로써, 상기 각 실시의 형태에서 나타낸 처리를 독립된 컴퓨터 시스템에서 간단하게 실시하는 것이 가능해진다. 기억 미디어는, 자기 디스크, 광디스크, 광자기 디스크, IC카드, 반도체 메모리 등, 프로그램을 기록할 수 있는 것이면 된다.
또한 여기서, 상기 각 실시의 형태에서 나타낸 동화상 부호화 방법(화상 부호화 방법)이나 동화상 복호화 방법(화상 복호 방법)의 응용예와 그것을 이용한 시스템을 설명한다. 당해 시스템은, 화상 부호화 방법을 이용한 화상 부호화 장치, 및 화상 복호 방법을 이용한 화상 복호 장치로 이루어지는 화상 부호화 복호 장치를 가지는 것을 특징으로 한다. 시스템에 있어서의 다른 구성에 대해서, 경우에 따라 적절히 변경할 수 있다.
도 39는, 컨텐츠 전송 서비스를 실현하는 컨텐츠 공급 시스템 ex100의 전체 구성을 나타낸 도이다. 통신 서비스의 제공 에리어를 원하는 크기로 분할하여, 각 셀 내에 각각 고정 무선국인 기지국 ex106, ex107, ex108, ex109, ex110이 설치되어 있다.
이 컨텐츠 공급 시스템 ex100은, 인터넷 ex101에 인터넷 서비스 프로바이더 ex102 및 전화망 ex104, 및 기지국 ex106 내지 ex110을 통하여, 컴퓨터 ex111, PDA(Personal Digital Assistant) ex112, 카메라 ex113, 휴대 전화 ex114, 게임기 ex115 등의 각 기기가 접속된다.
그러나, 컨텐츠 공급 시스템 ex100은 도 39와 같은 구성에 한정되지 않으며, 어느 하나의 요소를 조합하여 접속하도록 해도 된다. 또, 고정 무선국인 기지국 ex106 내지 ex110을 통하지 않고, 각 기기가 전화망 ex104에 직접 접속되어도 된다. 또, 각 기기가 근거리 무선 등을 통하여 직접 서로 접속되어 있어도 된다.
카메라 ex113은 디지털 비디오 카메라 등의 동화상 촬영이 가능한 기기이며, 카메라 ex116은 디지털 카메라 등의 정지 화상 촬영, 동화상 촬영이 가능한 기기이다. 또, 휴대 전화 ex114는, GSM(등록상표)(Global System for Mobile Communications) 방식, CDMA(Code Division Multiple Access) 방식, W-CDMA(Wideband-Code Division Multiple Access) 방식, 혹은 LTE(Long Term Evolution) 방식, HSPA(High Speed Packet Access)의 휴대 전화기, 또는 PHS(Personal Handyphone System) 등이며, 어느 것이어도 상관없다.
컨텐츠 공급 시스템 ex100에서는, 카메라 ex113 등이 기지국 ex109, 전화망 ex104를 통해서 스트리밍 서버 ex103에 접속됨으로써, 라이브 전송 등이 가능해진다. 라이브 전송에서는, 사용자가 카메라 ex113을 이용하여 촬영하는 컨텐츠(예를 들면, 음악 라이브의 영상 등)에 대해 상기 각 실시의 형태에서 설명한 바와 같이 부호화 처리를 행하여(즉, 본 발명의 일 양태에 관련된 화상 부호화 장치로서 기능한다), 스트리밍 서버 ex103에 송신한다. 한편, 스트리밍 서버 ex103은 요구가 있었던 클라이언트에 대해 송신된 컨텐츠 데이터를 스트림 전송한다. 클라이언트로서는, 상기 부호화 처리된 데이터를 복호화하는 것이 가능한, 컴퓨터 ex111, PDA ex112, 카메라 ex113, 휴대 전화 ex114, 게임기 ex115 등이 있다. 전송된 데이터를 수신한 각 기기에서는, 수신한 데이터를 복호화 처리하여 재생한다(즉, 본 발명의 일 양태에 관련된 화상 복호 장치로서 기능한다).
또한, 촬영한 데이터의 부호화 처리는 카메라 ex113에서 행해도, 데이터의 송신 처리를 하는 스트리밍 서버 ex103에서 행해도 되고, 서로 분담해서 행해도 된다. 마찬가지로 전송된 데이터의 복호화 처리는 클라이언트로 행해도, 스트리밍 서버 ex103에서 행해도 되고, 서로 분담해서 행해도 된다. 또, 카메라 ex113에 한정되지 않고, 카메라 ex116으로 촬영한 정지 화상 및/또는 동화상 데이터를, 컴퓨터 ex111을 통하여 스트리밍 서버 ex103에 송신해도 된다. 이 경우의 부호화 처리는 카메라 ex116, 컴퓨터 ex111, 스트리밍 서버 ex103 중 어느 하나로 행해도 되고, 서로 분담해서 행해도 된다.
또, 이들 부호화·복호화 처리는, 일반적으로 컴퓨터 ex111이나 각 기기가 가지는 LSI ex500에 있어서 처리한다. LSI ex500은, 원칩이어도 복수칩으로 이루어지는 구성이어도 된다. 또한, 동화상 부호화·복호화용의 소프트웨어를 컴퓨터 ex111 등으로 판독 가능한 어떠한 기록 미디어(CD-ROM, 플렉서블 디스크, 하드 디스크 등)에 넣고, 그 소프트웨어를 이용하여 부호화·복호화 처리를 행해도 된다. 또한, 휴대 전화 ex114가 카메라가 달린 경우에는, 그 카메라로 취득한 동화상 데이터를 송신해도 된다. 이 때의 동화상 데이터는 휴대 전화 ex114가 가지는 LSI ex500로 부호화 처리된 데이터이다.
또, 스트리밍 서버 ex103은 복수의 서버나 복수의 컴퓨터이며, 데이터를 분산시켜 처리하거나 기록하거나 전송하는 것이어도 된다.
이상과 같이 하여, 컨텐츠 공급 시스템 ex100에서는, 부호화된 데이터를 클라이언트가 수신하여 재생할 수 있다. 이와 같이 컨텐츠 공급 시스템 ex100에서는, 사용자가 송신한 정보를 실시간으로 클라이언트가 수신하여 복호화하고, 재생할 수 있어, 특별한 권리나 설비를 갖지 않는 사용자라도 개인 방송을 실현할 수 있다.
또한, 컨텐츠 공급 시스템 ex100의 예에 한정되지 않고, 도 40에 나타내는 바와 같이, 디지털 방송용 시스템 ex200에도, 상기 각 실시의 형태의 적어도 동화상 부호화 장치(화상 부호화 장치) 또는 동화상 복호화 장치(화상 복호 장치) 중 어느 하나를 넣을 수 있다. 구체적으로는, 방송국 ex201에서는 영상 데이터에 음악 데이터 등이 다중화된 다중화 데이터가 전파를 통하여 통신 또는 위성 ex202에 전송된다. 이 영상 데이터는 상기 각 실시의 형태에서 설명한 동화상 부호화 방법에 의해 부호화된 데이터이다(즉, 본 발명의 일 양태에 관련된 화상 부호화 장치에 의해 부호화된 데이터이다). 이것을 받은 방송 위성 ex202는, 방송용의 전파를 발신하고, 이 전파를 위성 방송의 수신이 가능한 가정의 안테나 ex204가 수신한다. 수신한 다중화 데이터를, 텔레비전(수신기) ex300 또는 셋탑 박스(STB) ex217 등의 장치가 복호화하여 재생한다(즉, 본 발명의 일 양태에 관련된 화상 복호 장치로서 기능한다).
또, DVD, BD 등의 기록 미디어 ex215에 기록한 다중화 데이터를 판독하여 복호화하거나, 또는 기록 미디어 ex215에 영상 신호를 부호화하고, 또한 경우에 따라서는 음악 신호와 다중화하여 기입하는 리더/레코더 ex218에도 상기 각 실시의 형태에서 나타낸 동화상 복호화 장치 또는 동화상 부호화 장치를 실장하는 것이 가능하다. 이 경우, 재생된 영상 신호는 모니터 ex219에 표시되고, 다중화 데이터가 기록된 기록 미디어 ex215에 의해 다른 장치나 시스템에 있어서 영상 신호를 재생할 수 있다. 또, 케이블 텔레비젼용의 케이블 ex203 또는 위성/지상파 방송의 안테나 ex204에 접속된 셋탑 박스 ex217 내에 동화상 복호화 장치를 실장하고, 이것을 텔레비전의 모니터 ex219로 표시해도 된다. 이 때 셋탑 박스가 아닌, 텔레비전 내에 동화상 복호화 장치를 넣어도 된다.
도 41는, 상기 각 실시의 형태에서 설명한 동화상 복호화 방법 및 동화상 부호화 방법을 이용한 텔레비전(수신기) ex300을 나타낸 도이다. 텔레비전 ex300은, 상기 방송을 수신하는 안테나 ex204 또는 케이블 ex203 등을 통하여 영상 데이터에 음성 데이터가 다중화된 다중화 데이터를 취득, 또는 출력하는 튜너 ex301과, 수신한 다중화 데이터를 복조하거나, 또는 외부에 송신하는 다중화 데이터로 변조하는 변조/복조부 ex302와, 복조한 다중화 데이터를 영상 데이터와, 음성 데이터로 분리하거나, 또는 신호 처리부 ex306에서 부호화된 영상 데이터, 음성 데이터를 다중화하는 다중/분리부 ex303을 구비한다.
또, 텔레비전 ex300은, 음성 데이터, 영상 데이터 각각을 복호화하거나, 또는 각각의 정보를 부호화하는 음성 신호 처리부 ex304, 영상 신호 처리부 ex305(본 발명의 일 양태에 관련된 화상 부호화 장치 또는 화상 복호 장치로서 기능한다)를 가지는 신호 처리부 ex306과, 복호화한 음성 신호를 출력하는 스피커 ex307, 복호화한 영상 신호를 표시하는 디스플레이 등의 표시부 ex308을 가지는 출력부 ex309를 가진다. 또한, 텔레비전 ex300은, 사용자 조작의 입력을 받아들이는 조작 입력부 ex312 등을 가지는 인터페이스부 ex317을 가진다. 또한, 텔레비전 ex300은, 각 부를 통괄적으로 제어하는 제어부 ex310, 각 부에 전력을 공급하는 전원 회로부 ex311을 가진다. 인터페이스부 ex317은, 조작 입력부 ex312 이외에, 리더/레코더 ex218 등의 외부 기기와 접속되는 브릿지 ex313, SD카드 등의 기록 미디어 ex216을 장착 가능하게 하기 위한 슬롯부 ex314, 하드 디스크 등의 외부 기록 미디어와 접속하기 위한 드라이버 ex315, 전화망과 접속하는 모뎀 ex316 등을 가지고 있어도 된다. 또한 기록 미디어 ex216은, 저장하는 불휘발성/휘발성의 반도체 메모리 소자에 의해 전기적으로 정보의 기록을 가능하게 한 것이다. 텔레비전 ex300의 각 부는 동기 버스를 통하여 서로 접속되어 있다.
우선, 텔레비전 ex300이 안테나 ex204 등에 의해 외부로부터 취득한 다중화 데이터를 복호화하고, 재생하는 구성에 대해서 설명한다. 텔레비전 ex300은, 리모트 컨트롤러 ex220 등으로부터의 사용자 조작을 받아, CPU 등을 가지는 제어부 ex310의 제어에 기초하여, 변조/복조부 ex302로 복조한 다중화 데이터를 다중/분리부 ex303에서 분리한다. 또한 텔레비전 ex300은, 분리한 음성 데이터를 음성 신호 처리부 ex304에서 복호화하고, 분리한 영상 데이터를 영상 신호 처리부 ex305에서 상기 각 실시의 형태에서 설명한 복호화 방법을 이용하여 복호화한다. 복호화한 음성 신호, 영상 신호는, 각각 출력부 ex309로부터 외부를 향해 출력된다. 출력할 때에는, 음성 신호와 영상 신호가 동기하여 재생하도록, 버퍼 ex318, ex319 등에 일단 이들 신호를 축적하면 된다. 또, 텔레비전 ex300은, 방송 등으로부터가 아닌, 자기/광디스크, SD카드 등의 기록 미디어 ex215, ex216로부터 다중화 데이터를 읽어내도 된다. 다음에, 텔레비전 ex300이 음성 신호나 영상 신호를 부호화하고, 외부에 송신 또는 기록 미디어 등에 기입하는 구성에 대해서 설명한다. 텔레비전 ex300은, 리모트 컨트롤러 ex220 등으로부터의 사용자 조작을 받아, 제어부 ex310의 제어에 기초하여, 음성 신호 처리부 ex304에서 음성 신호를 부호화하고, 영상 신호 처리부 ex305에서 영상 신호를 상기 각 실시의 형태에서 설명한 부호화 방법을 이용하여 부호화한다. 부호화한 음성 신호, 영상 신호는 다중/분리부 ex303에서 다중화되어 외부에 출력된다. 다중화할 때에는, 음성 신호와 영상 신호가 동기하도록, 버퍼 ex320, ex321 등에 일단 이들 신호를 축적하면 된다. 또한, 버퍼 ex318, ex319, ex320, ex321은 도시하고 있는 바와 같이 복수 구비하고 있어도 되고, 1개 이상의 버퍼를 공유하는 구성이어도 된다. 또한, 도시하고 있는 것 이외에, 예를 들면 변조/복조부 ex302나 다중/분리부 ex303의 사이 등에서도 시스템의 오버플로우, 언더 플로우를 피하는 완충재로서 버퍼에 데이터를 축적하는 것으로 해도 된다.
또, 텔레비전 ex300은, 방송 등이나 기록 미디어 등으로부터 음성 데이터, 영상 데이터를 취득하는 것 이외에, 마이크나 카메라의 AV 입력을 받아들이는 구성을 구비하고, 그들로부터 취득한 데이터에 대해 부호화 처리를 행해도 된다. 또한, 여기에서는 텔레비전 ex300은 상기의 부호화 처리, 다중화, 및 외부 출력을 할 수 있는 구성으로서 설명했지만, 이러한 처리를 행하지 못하고, 상기 수신, 복호화 처리, 외부 출력 만이 가능한 구성이어도 된다.
또, 리더/레코더 ex218로 기록 미디어로부터 다중화 데이터를 읽어내거나, 또는 기입하는 경우에는, 상기 복호화 처리 또는 부호화 처리는 텔레비전 ex300, 리더/레코더 ex218 중 어느 하나로 행해도 되고, 텔레비전 ex300과 리더/레코더 ex218가 서로 분담해서 행해도 된다.
일례로서, 광디스크로부터 데이터의 읽어들임 또는 기입을 하는 경우의 정보 재생/기록부 ex400의 구성을 도 42에 나타낸다. 정보 재생/기록부 ex400은, 이하에 설명하는 요소 ex401, ex402, ex403, ex404, ex405, ex406, ex407을 구비한다. 광헤드 ex401은, 광디스크인 기록 미디어 ex215의 기록면에 레이저 스폿을 조사하여 정보를 기입하고, 기록 미디어 ex215의 기록면으로부터의 반사광을 검출하여 정보를 읽어들인다. 변조 기록부 ex402는, 광헤드 ex401에 내장된 반도체 레이저를 전기적으로 구동하여 기록 데이터에 따라 레이저광의 변조를 행한다. 재생 복조부 ex403은, 광헤드 ex401에 내장된 포토디텍터에 의해 기록면으로부터의 반사광을 전기적으로 검출한 재생 신호를 증폭하고, 기록 미디어 ex215에 기록된 신호 성분을 분리하고 복조하여, 필요한 정보를 재생한다. 버퍼 ex404는, 기록 미디어 ex215에 기록하기 위한 정보 및 기록 미디어 ex215로부터 재생한 정보를 일시적으로 유지한다. 디스크 모터 ex405는 기록 미디어 ex215를 회전시킨다. 서보 제어부 ex406은, 디스크 모터 ex405의 회전 구동을 제어하면서 광헤드 ex401을 소정의 정보 트랙에 이동시켜, 레이저 스폿의 추종 처리를 행한다. 시스템 제어부 ex407은, 정보 재생/기록부 ex400 전체의 제어를 행한다. 상기의 읽어냄이나 기입의 처리는 시스템 제어부 ex407이, 버퍼 ex404에 유지된 각종 정보를 이용하여, 또 필요에 따라 새로운 정보의 생성·추가를 행함과 함께, 변조 기록부 ex402, 재생 복조부 ex403, 서보 제어부 ex406을 협조 동작시키면서, 광헤드 ex401을 통하여, 정보의 기록 재생을 행함으로써 실현된다. 시스템 제어부 ex407은 예를 들면 마이크로 프로세서로 구성되며, 읽어냄 기입의 프로그램을 실행함으로써 그러한 처리를 실행한다.
이상에서는, 광헤드 ex401은 레이저 스폿을 조사하는 것으로서 설명했지만, 근접장광을 이용하여 보다 고밀도의 기록을 행하는 구성이어도 된다.
도 43에 광디스크인 기록 미디어 ex215의 모식도를 나타낸다. 기록 미디어 ex215의 기록면에는 안내 홈(그루브)이 스파이럴 형상으로 형성되며, 정보 트랙 ex230에는, 미리 그루브의 형상의 변화에 따라 디스크 상의 절대 위치를 나타내는 번지 정보가 기록되어 있다. 이 번지 정보는 데이터를 기록하는 단위인 기록 블록 ex231의 위치를 특정하기 위한 정보를 포함하며, 기록이나 재생을 행하는 장치에 있어서 정보 트랙 ex230을 재생하여 번지 정보를 판독함으로써 기록 블록을 특정할 수 있다. 또, 기록 미디어 ex215는, 데이터 기록 영역 ex233, 내주 영역 ex232, 외주 영역 ex234를 포함하고 있다. 사용자 데이터를 기록하기 위해 이용하는 영역이 데이터 기록 영역 ex233이며, 데이터 기록 영역 ex233보다 내주 또는 외주에 배치되어 있는 내주 영역 ex232와 외주 영역 ex234는, 사용자 데이터의 기록 이외의 특정 용도로 이용된다. 정보 재생/기록부 ex400은, 이러한 기록 미디어 ex215의 데이터 기록 영역 ex233에 대해, 부호화된 음성 데이터, 영상 데이터 또는 그들 데이터를 다중화한 다중화 데이터의 읽기 쓰기를 행한다.
이상에서는, 1층의 DVD, BD 등의 광디스크를 예로 들어 설명했지만, 이들에 한정된 것이 아닌, 다층 구조이며 표면 이외에도 기록 가능한 광디스크여도 된다. 또, 디스크의 동일한 장소에 다양한 상이한 파장의 색 광을 이용하여 정보를 기록하거나, 다양한 각도로부터 상이한 정보의 층을 기록하는 등, 다차원적인 기록/재생을 행하는 구조의 광디스크여도 된다.
또, 디지털 방송용 시스템 ex200에 있어서, 안테나 ex205를 가지는 차 ex210에서 위성 ex202 등으로부터 데이터를 수신하고, 차 ex210이 가지는 카 내비게이션 ex211 등의 표시 장치에 동화상을 재생하는 것도 가능하다. 또한, 카 내비게이션 ex211의 구성은 예를 들면 도 41에 나타내는 구성 중, GPS 수신부를 더한 구성을 생각할 수 있으며, 동일한 것을 컴퓨터 ex111이나 휴대 전화 ex114 등에서도 생각할 수 있다.
도 44a는, 상기 실시의 형태에서 설명한 동화상 복호화 방법 및 동화상 부호화 방법을 이용한 휴대 전화 ex114를 나타낸 도이다. 휴대 전화 ex114는, 기지국 ex110과의 사이에서 전파를 송수신하기 위한 안테나 ex350, 영상, 정지 화상을 찍는 것이 가능한 카메라부 ex365, 카메라부 ex365로 촬상한 영상, 안테나 ex350으로 수신한 영상 등이 복호화된 데이터를 표시하는 액정 디스플레이 등의 표시부 ex358을 구비한다. 휴대 전화 ex114는, 또한, 조작 키부 ex366을 가지는 본체부, 음성을 출력하기 위한 스피커 등인 음성 출력부 ex357, 음성을 입력하기 위한 마이크 등인 음성 입력부 ex356, 촬영한 영상, 정지 화상, 녹음한 음성, 또는 수신한 영상, 정지 화상, 메일 등의 부호화된 데이터 혹은 복호화된 데이터를 보존하는 메모리부 ex367, 또는 동일하게 데이터를 보존하는 기록 미디어와의 인터페이스부인 슬롯부 ex364를 구비한다.
또한, 휴대 전화 ex114의 구성예에 대해서, 도 44b를 이용하여 설명한다. 휴대 전화 ex114는, 표시부 ex358 및 조작 키부 ex366을 구비한 본체부의 각 부를 통괄적으로 제어하는 주제어부 ex360에 대해, 전원 회로부 ex361, 조작 입력 제어부 ex362, 영상 신호 처리부 ex355, 카메라 인터페이스부 ex363, LCD(Liquid Crystal Display) 제어부 ex359, 변조/복조부 ex352, 다중/분리부 ex353, 음성 신호 처리부 ex354, 슬롯부 ex364, 메모리부 ex367이 버스 ex370을 통하여 서로 접속되어 있다.
전원 회로부 ex361은, 사용자의 조작에 의해 종화 및 전원 키가 온 상태가 되면, 배터리 팩으로부터 각 부에 대해 전력을 공급함으로써 휴대 전화 ex114를 동작 가능한 상태로 기동한다.
휴대 전화 ex114는, CPU, ROM, RAM 등을 가지는 주제어부 ex360의 제어에 기초하여, 음성 통화 모드 시에 음성 입력부 ex356에서 수음한 음성 신호를 음성 신호 처리부 ex354에서 디지털 음성 신호로 변환하고, 이것을 변조/복조부 ex352에서 스펙트럼 확산 처리하고, 송신/수신부 ex351에서 디지털 아날로그 변환 처리 및 주파수 변환 처리를 실시한 후에 안테나 ex350을 통하여 송신한다. 또 휴대 전화 ex114는, 음성 통화 모드 시에 안테나 ex350을 통하여 수신한 수신 데이터를 증폭시켜 주파수 변환 처리 및 아날로그 디지털 변환 처리를 실시하고, 변조/복조부 ex352에서 스펙트럼 역확산 처리하여, 음성 신호 처리부 ex354에서 아날로그 음성 신호로 변환한 후, 이것을 음성 출력부 ex357로부터 출력한다.
또한 데이터 통신 모드 시에 전자 메일을 송신하는 경우, 본체부의 조작 키부 ex366 등의 조작에 의해 입력된 전자 메일의 텍스트 데이터는 조작 입력 제어부 ex362를 통하여 주제어부 ex360에 송출된다. 주제어부 ex360은, 텍스트 데이터를 변조/복조부 ex352에서 스펙트럼 확산 처리를 하고, 송신/수신부 ex351에서 디지털 아날로그 변환 처리 및 주파수 변환 처리를 실시한 후에 안테나 ex350을 통하여 기지국 ex110으로 송신한다. 전자 메일을 수신하는 경우는, 수신한 데이터에 대해 이 거의 반대의 처리가 행해지며, 표시부 ex358에 출력된다.
데이터 통신 모드 시에 영상, 정지 화상, 또는 영상과 음성을 송신하는 경우, 영상 신호 처리부 ex355는, 카메라부 ex365로부터 공급된 영상 신호를 상기 각 실시의 형태에서 나타낸 동화상 부호화 방법에 의해 압축 부호화하고(즉, 본 발명의 일 양태에 관련된 화상 부호화 장치로서 기능한다), 부호화된 영상 데이터를 다중/분리부 ex353에 송출한다. 또, 음성 신호 처리부 ex354는, 영상, 정지 화상 등을 카메라부 ex365로 촬상 중에 음성 입력부 ex356에서 수음한 음성 신호를 부호화하고, 부호화된 음성 데이터를 다중/분리부 ex353에 송출한다.
다중/분리부 ex353은, 영상 신호 처리부 ex355로부터 공급된 부호화된 영상 데이터와 음성 신호 처리부 ex354로부터 공급된 부호화된 음성 데이터를 소정의 방식으로 다중화하고, 그 결과 얻어지는 다중화 데이터를 변조/복조부(변조/복조 회로부) ex352에서 스펙트럼 확산 처리를 하고, 송신/수신부 ex351에서 디지털 아날로그 변환 처리 및 주파수 변환 처리를 실시한 후에 안테나 ex350을 통하여 송신한다.
데이터 통신 모드 시에 홈페이지 등에 링크된 동화상 파일의 데이터를 수신하는 경우, 또는 영상 및 혹은 음성이 첨부된 전자 메일을 수신하는 경우, 안테나 ex350을 통하여 수신된 다중화 데이터를 복호화하기 위해, 다중/분리부 ex353은, 다중화 데이터를 분리함으로써 영상 데이터의 비트 스트림과 음성 데이터의 비트 스트림으로 나누어, 동기 버스 ex370을 통하여 부호화된 영상 데이터를 영상 신호 처리부 ex355에 공급함과 함께, 부호화된 음성 데이터를 음성 신호 처리부 ex354에 공급한다. 영상 신호 처리부 ex355는, 상기 각 실시의 형태에서 나타낸 동화상 부호화 방법에 대응한 동화상 복호화 방법에 의해 복호화함으로써 영상 신호를 복호하고(즉, 본 발명의 일 양태에 관련된 화상 복호 장치로서 기능한다), LCD 제어부 ex359를 통하여 표시부 ex358로부터, 예를 들면 홈페이지에 링크된 동화상 파일에 포함되는 영상, 정지 화상이 표시된다. 또 음성 신호 처리부 ex354는, 음성 신호를 복호하고, 음성 출력부 ex357로부터 음성이 출력된다.
또, 상기 휴대 전화 ex114 등의 단말은, 텔레비전 ex300과 마찬가지로, 부호화기·복호화기를 양쪽 모두 가지는 송수신형 단말 외에, 부호화기 뿐인 송신 단말, 복호화기 뿐인 수신 단말과 같은 세가지의 실장 형식을 생각할 수 있다. 또한, 디지털 방송용 시스템 ex200에 있어서, 영상 데이터에 음악 데이터 등이 다중화된 다중화 데이터를 수신, 송신하는 것으로서 설명했지만, 음성 데이터 이외에 영상에 관련하는 문자 데이터 등이 다중화된 데이터여도 되고, 다중화 데이터가 아닌 영상 데이터 자체여도 된다.
이와 같이, 상기 각 실시의 형태에서 나타낸 동화상 부호화 방법 혹은 동화상 복호화 방법을 상기 서술한 어느 하나의 기기·시스템에 이용하는 것은 가능하며, 그렇게 함으로써, 상기 각 실시의 형태에서 설명한 효과를 얻을 수 있다.
또, 본 발명은 이와 같은 상기 실시의 형태에 한정되는 것이 아니며, 본 발명의 범위를 일탈하는 일 없이 다양한 변형 또는 수정이 가능하다.
(실시의 형태 5)
상기 각 실시의 형태에서 나타낸 동화상 부호화 방법 또는 장치와, MPEG-2, MPEG4-AVC, VC-1 등 상이한 규격에 준거한 동화상 부호화 방법 또는 장치를, 필요에 따라 적절히 전환함으로써, 영상 데이터를 생성하는 것도 가능하다.
여기서, 각각 상이한 규격에 준거하는 복수의 영상 데이터를 생성한 경우, 복호할 때에, 각각의 규격에 대응한 복호 방법을 선택할 필요가 있다. 그러나, 복호하는 영상 데이터가, 어느 규격에 준거하는 것인지 식별할 수 없기 때문에, 적절한 복호 방법을 선택할 수 없다는 과제를 발생시킨다.
이 과제를 해결하기 위해, 영상 데이터에 음성 데이터 등을 다중화한 다중화 데이터는, 영상 데이터가 어느 규격에 준거하는 것인지를 나타내는 식별 정보를 포함하는 구성으로 한다. 상기 각 실시의 형태에서 나타내는 동화상 부호화 방법 또는 장치에 의해 생성된 영상 데이터를 포함하는 다중화 데이터의 구체적인 구성을 이하 설명한다. 다중화 데이터는, MPEG-2 트랜스포트 스트림 형식의 디지털 스트림이다.
도 45는, 다중화 데이터의 구성을 나타낸 도이다. 도 45에 나타내는 바와 같이 다중화 데이터는, 비디오 스트림, 오디오 스트림, 프리젠테이션 그래픽스 스트림(PG), 인터랙티브 그래픽스 스트림 중, 1개 이상을 다중화함으로써 얻어진다. 비디오 스트림은 영화의 주영상 및 부영상을, 오디오 스트림(IG)은 영화의 주음성 부분과 그 주음성과 믹싱하는 부음성을, 프리젠테이션 그래픽스 스트림은, 영화의 자막을 각각 나타내고 있다. 여기서 주영상이란 화면에 표시되는 통상의 영상을 나타내며, 부영상이란 주영상 중에 작은 화면으로 표시하는 영상이다. 또, 인터랙티브 그래픽스 스트림은, 화면 상에 GUI 부품을 배치함으로써 작성되는 대화 화면을 나타내고 있다. 비디오 스트림은, 상기 각 실시의 형태에서 나타낸 동화상 부호화 방법 또는 장치, 종래의 MPEG-2, MPEG4-AVC, VC-1 등의 규격에 준거한 동화상 부호화 방법 또는 장치에 의해 부호화되어 있다. 오디오 스트림은, 돌비 AC-3, Dolby Digital Plus, MLP, DTS, DTS-HD, 또는, 리니어 PCM 등의 방식으로 부호화되어 있다.
다중화 데이터에 포함되는 각 스트림은 PID에 의해 식별된다. 예를 들면, 영화의 영상에 이용하는 비디오 스트림에는 0x1011이, 오디오 스트림에는 0x1100에서 0x111F까지가, 프리젠테이션 그래픽스에는 0x1200에서 0x121F까지가, 인터랙티브 그래픽스 스트림에는 0x1400에서 0x141F까지가, 영화의 부영상에 이용하는 비디오 스트림에는 0x1B00에서 0x1B1F까지, 주음성과 믹싱하는 부음성에 이용하는 오디오 스트림에는 0x1A00에서 0x1A1F가, 각각 할당되어 있다.
도 46은, 다중화 데이터가 어떻게 다중화되는지를 모식적으로 나타낸 도이다. 우선, 복수의 비디오 프레임으로 이루어지는 비디오 스트림 ex235, 복수의 오디오 프레임으로 이루어지는 오디오 스트림 ex238을, 각각 PES 패킷열 ex236 및 ex239로 변환하고, TS 패킷 ex237 및 ex240으로 변환한다. 동일하게 프리젠테이션 그래픽스 스트림 ex241 및 인터랙티브 그래픽스 ex244의 데이터를 각각 PES 패킷열 ex242 및 ex245로 변환하고, 또한 TS 패킷 ex243 및 ex246으로 변환한다. 다중화 데이터 ex247은 이들 TS 패킷을 1개의 스트림에 다중화함으로써 구성된다.
도 47은, PES 패킷열에, 비디오 스트림이 어떻게 저장되는지를 더 상세하게 나타내고 있다. 도 47에 있어서의 제1단은 비디오 스트림의 비디오 프레임열을 나타낸다. 제2단은, PES 패킷열을 나타낸다. 도 47의 화살표 yy1, yy2, yy3, yy4로 나타내는 바와 같이, 비디오 스트림에 있어서의 복수의 Video Presentation Unit인 I픽쳐, B픽쳐, P픽쳐는, 픽쳐마다 분할되어, PES 패킷의 페이로드에 저장된다. 각 PES 패킷은 PES 헤더를 가지며, PES 헤더에는, 픽쳐의 표시 시각인 PTS(Presentation Time-Stamp)나 픽쳐의 복호 시각인 DTS(Decoding Time-Stamp)가 저장된다.
도 48은, 다중화 데이터에 최종적으로 기입되는 TS 패킷의 형식을 나타내고 있다. TS 패킷은, 스트림을 식별하는 PID 등의 정보를 가지는 4byte의 TS 헤더와 데이터를 저장하는 184byte의 TS 페이로드로 구성되는 188byte 고정 길이의 패킷이며, 상기 PES 패킷은 분할되어 TS 페이로드에 저장된다. BD-ROM의 경우, TS 패킷에는, 4byte의 TP_Extra_Header가 부여되어, 192byte의 소스 패킷을 구성하고, 다중화 데이터에 기입된다. TP_Extra_Header에는 ATS(Arrival_Time_Stamp) 등의 정보가 기재된다. ATS는 당해 TS 패킷의 디코더의 PID 필터로의 전송 개시 시각을 나타낸다. 다중화 데이터에는 도 48 하단에 나타내는 바와 같이 소스 패킷이 늘어서게 되어, 다중화 데이터의 선두로부터 인크리먼트하는 번호는 SPN(소스 패킷 넘버)로 불린다.
또, 다중화 데이터에 포함되는 TS 패킷에는, 영상·음성·자막 등의 각 스트림 이외에도 PAT(Program Association Table), PMT(Program Map Table), PCR(Program Clock Reference) 등이 있다. PAT는 다중화 데이터 중에 이용되는 PMT의 PID가 무엇인지를 나타내며, PAT 자신의 PID는 0으로 등록된다. PMT는, 다중화 데이터 중에 포함되는 영상·음성·자막 등의 각 스트림의 PID와 각 PID에 대응하는 스트림의 속성 정보를 가지며, 또 다중화 데이터에 관한 각종 디스크립터를 가진다. 디스크립터에는 다중화 데이터의 카피를 허가·불허가를 지시하는 카피 컨트롤 정보 등이 있다. PCR은, ATS의 시간축인 ATC(Arrival Time Clock)와 PTS·DTS의 시간축인 STC(System Time Clock)의 동기를 취하기 위해, 그 PCR 패킷이 디코더에 전송되는 ATS에 대응하는 STC 시간의 정보를 가진다.
도 49는 PMT의 데이터 구조를 상세하게 설명하는 도이다. PMT의 선두에는, 그 PMT에 포함되는 데이터의 길이 등을 적은 PMT 헤더가 배치된다. 그 뒤에는, 다중화 데이터에 관한 디스크립터가 복수 배치된다. 상기 카피 컨트롤 정보 등이, 디스크립터로서 기재된다. 디스크립터 뒤에는, 다중화 데이터에 포함되는 각 스트림에 관한 스트림 정보가 복수 배치된다. 스트림 정보는, 스트림의 압축 코덱 등을 식별하기 위해 스트림 타입, 스트림의 PID, 스트림의 속성 정보(프레임 레이트, 어스펙트비 등)가 기재된 스트림 디스크립터로 구성된다. 스트림 디스크립터는 다중화 데이터에 존재하는 스트림의 수만큼 존재한다.
기록 매체 등에 기록하는 경우에는, 상기 다중화 데이터는, 다중화 데이터 정보 파일과 함께 기록된다.
다중화 데이터 정보 파일은, 도 50에 나타내는 바와 같이 다중화 데이터의 관리 정보이며, 다중화 데이터와 1대 1로 대응하여, 다중화 데이터 정보, 스트림 속성 정보와 엔트리 맵으로 구성된다.
다중화 데이터 정보는 도 50에 나타내는 바와 같이 시스템 레이트, 재생 개시 시각, 재생 종료 시각으로 구성되어 있다. 시스템 레이트는 다중화 데이터의, 후술하는 시스템 타겟 디코더의 PID 필터로의 최대 전송 레이트를 나타낸다. 다중화 데이터 중에 포함되는 ATS의 간격은 시스템 레이트 이하가 되도록 설정되어 있다. 재생 개시 시각은 다중화 데이터의 선두의 비디오 프레임의 PTS이며, 재생 종료 시각은 다중화 데이터의 종단의 비디오 프레임의 PTS에 1프레임 분의 재생 간격을 더한 것이 설정된다.
스트림 속성 정보는 도 51에 나타내는 바와 같이, 다중화 데이터에 포함되는 각 스트림에 대한 속성 정보가, PID마다 등록된다. 속성 정보는 비디오 스트림, 오디오 스트림, 프리젠테이션 그래픽스 스트림, 인터랙티브 그래픽스 스트림마다 상이한 정보를 가진다. 비디오 스트림 속성 정보는, 그 비디오 스트림이 어떠한 압축 코덱으로 압축되었는지, 비디오 스트림을 구성하는 개개의 픽쳐 데이터의 해상도가 어느 정도인지, 어스펙트비는 어느 정도인지, 프레임 레이트는 어느 정도인지 등의 정보를 가진다. 오디오 스트림 속성 정보는, 그 오디오 스트림이 어떠한 압축 코덱으로 압축되었는지, 그 오디오 스트림에 포함되는 채널수는 몇인지, 무슨 언어에 대응하는지, 샘플링 주파수가 어느 정도인지 등의 정보를 가진다. 이러한 정보는, 플레이어가 재생되기 전의 디코더의 초기화 등에 이용된다.
본 실시의 형태에 있어서는, 상기 다중화 데이터 중, PMT에 포함되는 스트림 타입을 이용한다. 또, 기록 매체에 다중화 데이터가 기록되어 있는 경우에는, 다중화 데이터 정보에 포함되는, 비디오 스트림 속성 정보를 이용한다. 구체적으로는, 상기 각 실시의 형태에서 나타낸 동화상 부호화 방법 또는 장치에 있어서, PMT에 포함되는 스트림 타입, 또는, 비디오 스트림 속성 정보에 대해, 상기 각 실시의 형태에서 나타낸 동화상 부호화 방법 또는 장치에 의해 생성된 영상 데이터인 것을 나타내는 고유의 정보를 설정하는 단계 또는 수단을 설치한다. 이 구성에 의해, 상기 각 실시의 형태에서 나타낸 동화상 부호화 방법 또는 장치에 의해 생성한 영상 데이터와, 다른 규격에 준거하는 영상 데이터를 식별하는 것이 가능해진다.
또, 본 실시의 형태에 있어서의 동화상 복호화 방법의 단계를 도 52에 나타낸다. 단계 exS100에 있어서, 다중화 데이터로부터 PMT에 포함되는 스트림 타입, 또는, 다중화 데이터 정보에 포함되는 비디오 스트림 속성 정보를 취득한다. 다음에, 단계 exS101에 있어서, 스트림 타입, 또는, 비디오 스트림 속성 정보가 상기 각 실시의 형태에서 나타낸 동화상 부호화 방법 또는 장치에 의해 생성된 다중화 데이터인 것을 나타내고 있는지 아닌지를 판단한다. 그리고, 스트림 타입, 또는, 비디오 스트림 속성 정보가 상기 각 실시의 형태에서 나타낸 동화상 부호화 방법 또는 장치에 의해 생성된 것으로 판단된 경우에는, 단계 exS102에 있어서, 상기 각 실시의 형태에서 나타낸 동화상 복호 방법에 의해 복호를 행한다. 또, 스트림 타입, 또는, 비디오 스트림 속성 정보가, 종래의 MPEG-2, MPEG4-AVC, VC-1 등의 규격에 준거하는 것임을 나타내고 있는 경우에는, 단계 exS103에 있어서, 종래의 규격에 준거한 동화상 복호 방법에 의해 복호를 행한다.
이와 같이, 스트림 타입, 또는, 비디오 스트림 속성 정보에 새로운 고유값을 설정함으로써, 복호할 때에, 상기 각 실시의 형태에서 나타낸 동화상 복호화 방법 또는 장치로 복호 가능한지를 판단할 수 있다. 따라서, 상이한 규격에 준거하는 다중화 데이터가 입력된 경우여도, 적절한 복호화 방법 또는 장치를 선택할 수 있기 때문에, 에러를 일으키지 않고 복호하는 것이 가능해진다. 또, 본 실시의 형태에서 나타낸 동화상 부호화 방법 또는 장치, 또는, 동화상 복호 방법 또는 장치를, 상기 서술한 어느 하나의 기기·시스템에 이용하는 것도 가능하다.
(실시의 형태 6)
상기 각 실시의 형태에서 나타낸 동화상 부호화 방법 및 장치, 동화상 복호화 방법 및 장치는, 전형적으로는 집적 회로인 LSI에서 실현된다. 일례로서, 도 53에 1칩화된 LSI ex500의 구성을 나타낸다. LSI ex500은, 이하에 설명하는 요소 ex501, ex502, ex503, ex504, ex505, ex506, ex507, ex508, ex509를 구비하고, 각 요소는 버스 ex510을 통하여 접속하고 있다. 전원 회로부 ex505는 전원이 온 상태인 경우에 각 부에 대해 전력을 공급함으로써 동작 가능한 상태로 기동한다.
예를 들면 부호화 처리를 행하는 경우에는, LSI ex500은, CPU ex502, 메모리 컨트롤러 ex503, 스트림 컨트롤러 ex504, 구동 주파수 제어부 ex512 등을 가지는 제어부 ex501의 제어에 기초하여, AV I/O ex509에 의해 마이크 ex117이나 카메라 ex113 등으로부터 AV 신호를 입력한다. 입력된 AV 신호는, 일단 SDRAM 등의 외부의 메모리 ex511에 축적된다. 제어부 ex501의 제어에 기초하여, 축적한 데이터는 처리량이나 처리 속도에 따라 적절히 복수회로 나누어 신호 처리부 ex507에 보내지고, 신호 처리부 ex507에 있어서 음성 신호의 부호화 및/또는 영상 신호의 부호화가 행해진다. 여기서 영상 신호의 부호화 처리는 상기 각 실시의 형태에서 설명한 부호화 처리이다. 신호 처리부 ex507에서는 또한, 경우에 따라 부호화된 음성 데이터와 부호화된 영상 데이터를 다중화하는 등의 처리를 행하여, 스트림 I/O ex506로부터 외부로 출력한다. 이 출력된 다중화 데이터는, 기지국 ex107을 향해 송신되거나, 또는 기록 미디어 ex215에 기입된다. 또한, 다중화할 때에는 동기하도록, 일단 버퍼 ex508에 데이터를 축적하면 된다.
또한, 상기에서는, 메모리 ex511이 LSI ex500의 외부의 구성으로서 설명했지만, LSI ex500의 내부에 포함되는 구성이어도 된다. 버퍼 ex508도 1개로 한정된 것이 아니며, 복수의 버퍼를 구비하고 있어도 된다. 또, LSI ex500은 1칩화되어도 되고, 복수칩화되어도 된다.
또, 상기에서는, 제어부 ex501이, CPU ex502, 메모리 컨트롤러 ex503, 스트림 컨트롤러 ex504, 구동 주파수 제어부 ex512 등을 가지는 것으로 하고 있지만, 제어부 ex501의 구성은, 이 구성에 한정되지 않는다. 예를 들면, 신호 처리부 ex507이 CPU를 더 구비하는 구성이어도 된다. 신호 처리부 ex507의 내부에도 CPU를 설치함으로써, 처리 속도를 보다 향상시키는 것이 가능해진다. 또, 다른 예로서, CPU ex502가 신호 처리부 ex507, 또는 신호 처리부 ex507의 일부인 예를 들면 음성 신호 처리부를 구비하는 구성이어도 된다. 이러한 경우에는, 제어부 ex501은, 신호 처리부 ex507, 또는 그 일부를 가지는 CPU ex502를 구비하는 구성이 된다.
또한, 여기에서는, LSI로 했지만, 집적도의 차이에 따라, IC, 시스템 LSI, 슈퍼 LSI, 울트라 LSI라고 호칭되는 경우도 있다.
또한, 집적 회로화의 수법은 LSI에 한정되는 것이 아니며, 전용 회로 또는 범용 프로세서로 실현되어도 된다. LSI 제조 후에, 프로그램하는 것이 가능한 FPGA(Field Programmable Gate Array)나, LSI 내부의 회로 셀의 접속이나 설정을 재구성 가능한 리컨피규러블·프로세서를 이용해도 된다.
또, 반도체 기술의 진보 또는 파생하는 다른 기술에 의해 LSI로 치환되는 집적 회로화의 기술이 등장하면, 당연, 그 기술을 이용하여 기능 블록의 집적화를 행해도 된다. 바이오 기술의 적응 등이 가능성으로서 있을 수 있다.
(실시의 형태 7)
상기 각 실시의 형태에서 나타낸 동화상 부호화 방법 또는 장치에 의해 생성된 영상 데이터를 복호하는 경우, 종래의 MPEG-2, MPEG4-AVC, VC-1 등의 규격에 준거하는 영상 데이터를 복호하는 경우에 비해, 처리량이 증가하는 것을 생각할 수 있다. 그 때문에, LSI ex500에 있어서, 종래의 규격에 준거하는 영상 데이터를 복호할 때의 CPU ex502의 구동 주파수보다 높은 구동 주파수로 설정할 필요가 있다. 그러나, 구동 주파수를 높게 하면, 소비 전력이 높아진다는 과제가 생긴다.
이 과제를 해결하기 위해, 텔레비전 ex300, LSI ex500 등의 동화상 복호화 장치는, 영상 데이터가 어느 규격에 준거하는 것인지를 식별하여, 규격에 따라 구동 주파수를 전환하는 구성으로 한다. 도 54는, 본 실시의 형태에 있어서의 구성 ex800을 나타내고 있다. 구동 주파수 전환부 ex803은, 영상 데이터가, 상기 각 실시의 형태에서 나타낸 동화상 부호화 방법 또는 장치에 의해 생성된 것인 경우에는, 구동 주파수를 높게 설정한다. 그리고, 상기 각 실시의 형태에서 나타낸 동화상 복호화 방법을 실행하는 복호 처리부 ex801에 대해, 영상 데이터를 복호하도록 지시한다. 한편, 영상 데이터가, 종래의 규격에 준거하는 영상 데이터인 경우에는, 영상 데이터가, 상기 각 실시의 형태에서 나타낸 동화상 부호화 방법 또는 장치에 의해 생성된 것인 경우에 비해, 구동 주파수를 낮게 설정한다. 그리고, 종래의 규격에 준거하는 복호 처리부 ex802에 대해, 영상 데이터를 복호하도록 지시한다.
보다 구체적으로는, 구동 주파수 전환부 ex803은, 도 53의 CPU ex502와 구동 주파수 제어부 ex512로 구성된다. 또, 상기 각 실시의 형태에서 나타낸 동화상 복호화 방법을 실행하는 복호 처리부 ex801, 및, 종래의 규격에 준거하는 복호 처리부 ex802는, 도 53의 신호 처리부 ex507에 해당한다. CPU ex502는, 영상 데이터가 어느 규격에 준거하는 것인지를 식별한다. 그리고, CPU ex502로부터의 신호에 기초하여, 구동 주파수 제어부 ex512는, 구동 주파수를 설정한다. 또, CPU ex502로부터의 신호에 기초하여, 신호 처리부 ex507은, 영상 데이터의 복호를 행한다. 여기서, 영상 데이터의 식별에는, 예를 들면, 실시의 형태 5에서 기재한 식별 정보를 이용하는 것을 생각할 수 있다. 식별 정보에 관해서는, 실시의 형태 5에서 기재한 것에 한정되지 않고, 영상 데이터가 어느 규격에 준거하는지 식별할 수 있는 정보이면 된다. 예를 들면, 영상 데이터가 텔레비전에 이용되는 것인지, 디스크에 이용되는 것인지 등을 식별하는 외부 신호에 기초하여, 영상 데이터가 어느 규격에 준거하는 것인지 식별 가능한 경우에는, 이러한 외부 신호에 기초하여 식별해도 된다. 또, CPU ex502에 있어서의 구동 주파수의 선택은, 예를 들면, 도 56과 같은 영상 데이터의 규격과, 구동 주파수를 대응 지은 룩업 테이블에 기초하여 행하는 것을 생각할 수 있다. 룩업 테이블을, 버퍼 ex508이나, LSI의 내부 메모리에 저장해 두고, CPU ex502가 이 룩업 테이블을 참조함으로써, 구동 주파수를 선택하는 것이 가능하다.
도 55는, 본 실시의 형태의 방법을 실시하는 단계를 나타내고 있다. 우선, 단계 exS200에서는, 신호 처리부 ex507에 있어서, 다중화 데이터로부터 식별 정보를 취득한다. 다음에, 단계 exS201에서는, CPU ex502에 있어서, 식별 정보에 기초하여 영상 데이터가 상기 각 실시의 형태에서 나타낸 부호화 방법 또는 장치에 의해 생성된 것인지 아닌지를 식별한다. 영상 데이터가 상기 각 실시의 형태에서 나타낸 부호화 방법 또는 장치에 의해 생성된 것인 경우에는, 단계 exS202에 있어서, 구동 주파수를 높게 설정하는 신호를, CPU ex502가 구동 주파수 제어부 ex512에 보낸다. 그리고, 구동 주파수 제어부 ex512에 있어서, 높은 구동 주파수로 설정된다. 한편, 종래의 MPEG-2, MPEG4-AVC, VC-1 등의 규격에 준거하는 영상 데이터인 것을 나타내고 있는 경우에는, 단계 exS203에 있어서, 구동 주파수를 낮게 설정하는 신호를, CPU ex502가 구동 주파수 제어부 ex512에 보낸다. 그리고, 구동 주파수 제어부 ex512에 있어서, 영상 데이터가 상기 각 실시의 형태에서 나타낸 부호화 방법 또는 장치에 의해 생성된 것인 경우에 비해, 낮은 구동 주파수로 설정된다.
또한, 구동 주파수의 전환에 연동하여, LSI ex500 또는 LSI ex500을 포함하는 장치에 부여하는 전압을 변경함으로써, 전력 절약 효과를 보다 높이는 것이 가능하다. 예를 들면, 구동 주파수를 낮게 설정하는 경우에는, 이것에 수반하여, 구동 주파수를 높게 설정하고 있는 경우에 비해, LSI ex500 또는 LSI ex500을 포함하는 장치에 부여하는 전압을 낮게 설정하는 것을 생각할 수 있다.
또, 구동 주파수의 설정 방법은, 복호할 때의 처리량이 큰 경우에, 구동 주파수를 높게 설정하고, 복호할 때의 처리량이 작은 경우에, 구동 주파수를 낮게 설정하면 되며, 상기 서술한 설정 방법에 한정되지 않는다. 예를 들면, MPEG4-AVC 규격에 준거하는 영상 데이터를 복호하는 처리량이, 상기 각 실시의 형태에서 나타낸 동화상 부호화 방법 또는 장치에 의해 생성된 영상 데이터를 복호하는 처리량보다 큰 경우에는, 구동 주파수의 설정을 상기 서술한 경우의 반대로 하는 것을 생각할 수 있다.
또한, 구동 주파수의 설정 방법은, 구동 주파수를 낮게 하는 구성에 한정되지 않는다. 예를 들면, 식별 정보가, 상기 각 실시의 형태에서 나타낸 동화상 부호화 방법 또는 장치에 의해 생성된 영상 데이터인 것을 나타내고 있는 경우에는, LSI ex500 또는 LSI ex500을 포함하는 장치에 부여하는 전압을 높게 설정하고, 종래의 MPEG-2, MPEG4-AVC, VC-1 등의 규격에 준거하는 영상 데이터인 것을 나타내고 있는 경우에는, LSI ex500 또는 LSI ex500을 포함하는 장치에 부여하는 전압을 낮게 설정하는 것도 생각할 수 있다. 또, 다른 예로서는, 식별 정보가, 상기 각 실시의 형태에서 나타낸 동화상 부호화 방법 또는 장치에 의해 생성된 영상 데이터인 것을 나타내고 있는 경우에는, CPU ex502의 구동을 정지시키지 않고, 종래의 MPEG-2, MPEG4-AVC, VC-1 등의 규격에 준거하는 영상 데이터인 것을 나타내고 있는 경우에는, 처리에 여유가 있기 때문에, CPU ex502의 구동을 일시 정지시키는 것도 생각할 수 있다. 식별 정보가, 상기 각 실시의 형태에서 나타낸 동화상 부호화 방법 또는 장치에 의해 생성된 영상 데이터인 것을 나타내고 있는 경우여도, 처리에 여유가 있으면, CPU ex502의 구동을 일시 정지시키는 것도 생각할 수 있다. 이 경우는, 종래의 MPEG-2, MPEG4-AVC, VC-1 등의 규격에 준거하는 영상 데이터인 것을 나타내고 있는 경우에 비해, 정지 시간을 짧게 설정하는 것을 생각할 수 있다.
이와 같이, 영상 데이터가 준거하는 규격에 따라, 구동 주파수를 전환함으로써, 전력 절약화를 도모하는 것이 가능해진다. 또, 전지를 이용하여 LSI ex500 또는 LSI ex500을 포함하는 장치를 구동하고 있는 경우에는, 전력 절약화에 수반하여, 전지의 수명을 길게 하는 것이 가능하다.
(실시의 형태 8)
텔레비전이나, 휴대 전화 등, 상기 서술한 기기·시스템에는, 상이한 규격에 준거하는 복수의 영상 데이터가 입력되는 경우가 있다. 이와 같이, 상이한 규격에 준거하는 복수의 영상 데이터가 입력된 경우에도 복호할 수 있도록 하기 위해, LSI ex500의 신호 처리부 ex507이 복수의 규격에 대응하고 있을 필요가 있다. 그러나, 각각의 규격에 대응하는 신호 처리부 ex507을 개별적으로 이용하면, LSI ex500의 회로 규모가 커지고, 또, 비용이 증가한다는 과제가 생긴다.
이 과제를 해결하기 위해, 상기 각 실시의 형태에서 나타낸 동화상 복호 방법을 실행하기 위한 복호 처리부와, 종래의 MPEG-2, MPEG4-AVC, VC-1 등의 규격에 준거하는 복호 처리부를 일부 공유화하는 구성으로 한다. 이 구성예를 도 57a의 ex900에 나타낸다. 예를 들면, 상기 각 실시의 형태에서 나타낸 동화상 복호 방법과, MPEG4-AVC 규격에 준거하는 동화상 복호 방법은, 엔트로피 부호화, 역양자화, 디블로킹·필터, 움직임 보상 등의 처리에 있어서 처리 내용이 일부 공통된다. 공통되는 처리 내용에 대해서는, MPEG4-AVC 규격에 대응하는 복호 처리부 ex902를 공유하고, MPEG4-AVC 규격에 대응하지 않는, 본 발명의 일 양태에 특유의 다른 처리 내용에 대해서는, 전용의 복호 처리부 ex901을 이용한다는 구성을 생각할 수 있다. 특히, 본 발명의 일 양태는, 산술 복호에 특징을 가지고 있기 때문에, 예를 들면, 산술 복호에 대해서는 전용의 복호 처리부 ex901을 이용하고, 그 이외의 역양자화, 디블로킹·필터, 움직임 보상 중 어느 하나, 또는, 모든 처리에 대해서는, 복호 처리부를 공유하는 것을 생각할 수 있다. 복호 처리부의 공유화에 관해서는, 공통되는 처리 내용에 대해서는, 상기 각 실시의 형태에서 나타낸 동화상 복호화 방법을 실행하기 위한 복호 처리부를 공유하고, MPEG4-AVC 규격에 특유의 처리 내용에 대해서는, 전용의 복호 처리부를 이용하는 구성이어도 된다.
또, 처리를 일부 공유화하는 다른 예를 도 57b의 ex1000에 나타낸다. 이 예에서는, 본 발명의 일 양태에 특유의 처리 내용에 대응한 전용의 복호 처리부 ex1001과, 다른 종래 규격에 특유의 처리 내용에 대응한 전용의 복호 처리부 ex1002와, 본 발명의 일 양태에 관련된 동화상 복호 방법과 다른 종래 규격의 동화상 복호 방법에 공통되는 처리 내용에 대응한 공용의 복호 처리부 ex1003을 이용하는 구성으로 하고 있다. 여기서, 전용의 복호 처리부 ex1001, ex1002는, 반드시 본 발명의 일 양태, 또는, 다른 종래 규격에 특유의 처리 내용에 특화된 것이 아니며, 다른 범용 처리를 실행할 수 있는 것이어도 된다. 또, 본 실시의 형태의 구성을, LSI ex500에서 실장하는 것도 가능하다.
이와 같이, 본 발명의 일 양태에 관련된 동화상 복호 방법과, 종래의 규격의 동화상 복호 방법에서 공통되는 처리 내용에 대해서, 복호 처리부를 공유함으로써, LSI의 회로 규모를 작게 하고, 또한, 비용을 저감하는 것이 가능하다.
<산업상의 이용 가능성>
본 발명은, 화상 부호화 방법, 화상 복호 방법, 화상 부호화 장치 및 화상 복호 장치에 적용할 수 있으며, 특히, 산술 부호화 및 산술 복호를 행하는 화상 부호화 방법, 화상 복호 방법, 화상 부호화 장치 및 화상 복호 장치에 이용 가능하다.
100 화상 부호화 장치 101 제어부
102 차분부 103 변환 및 양자화부
104 가변길이 부호화부 105 역양자화 및 역변환부
106, 206 가산부 107, 207 면내 예측부
108, 208 면간 예측부 109, 209 스위치
121 입력 화상 신호 122, 125, 225 잔차 신호
123, 223 양자화 변환 계수 124 비트 스트림
126 복원 화상 신호
127, 128, 129, 227, 228 예측 화상 신호
130, 230 제어 파라미터 141 2치화부
142, 242 컨텍스트 제어부 143 2치 산술 부호화부
151, 251 2치 배열 152, 252 컨텍스트 인덱스
200 화상 복호 장치 201 제어부
202 가변길이 복호부 204 역양자화부
205 역변환부 224 직교 변환 계수
226 복호 화상 신호 229 화상 신호
241 다치화부 243 2치 산술 복호부
102 차분부 103 변환 및 양자화부
104 가변길이 부호화부 105 역양자화 및 역변환부
106, 206 가산부 107, 207 면내 예측부
108, 208 면간 예측부 109, 209 스위치
121 입력 화상 신호 122, 125, 225 잔차 신호
123, 223 양자화 변환 계수 124 비트 스트림
126 복원 화상 신호
127, 128, 129, 227, 228 예측 화상 신호
130, 230 제어 파라미터 141 2치화부
142, 242 컨텍스트 제어부 143 2치 산술 부호화부
151, 251 2치 배열 152, 252 컨텍스트 인덱스
200 화상 복호 장치 201 제어부
202 가변길이 복호부 204 역양자화부
205 역변환부 224 직교 변환 계수
226 복호 화상 신호 229 화상 신호
241 다치화부 243 2치 산술 복호부
Claims (18)
- 산술 복호를 이용하는 화상 복호 방법으로서,
복수의 컨텍스트 중, 처리 대상 블록에 사용하는 컨텍스트를 결정하는 컨텍스트 제어 단계와,
제어 파라미터가 산술 부호화됨으로써 얻어진, 상기 처리 대상 블록에 대응하는 비트열을, 결정된 상기 컨텍스트를 이용하여 산술 복호함으로써 2치 배열을 복원하는 산술 복호 단계와,
상기 2치 배열을 다치화함으로써 상기 제어 파라미터를 복원하는 다치화 단계를 포함하고,
상기 컨텍스트 제어 단계에서는,
상기 처리 대상 블록의 제어 파라미터의 신호 종별을 판정하고,
상기 신호 종별이 제1 종별인 경우에, 상기 처리 대상 블록에 인접하는 좌측 블록 및 상측 블록의 복호가 끝난 제어 파라미터를 함께 이용하는 제1 조건을 이용하여 상기 컨텍스트를 결정하고,
상기 신호 종별이, 상기 제1 종별과 상이한 제2 종별인 경우에, 상기 상측 블록의 복호가 끝난 제어 파라미터를 이용하지 않는 제2 조건을 이용하여 상기 컨텍스트를 결정하고,
상기 신호 종별이, 상기 제1 종별 및 상기 제2 종별과 상이한 제3 종별인 경우에, 상기 상측 블록의 복호가 끝난 제어 파라미터를 이용하지 않고, 또한, 상기 처리 대상 블록의 제어 파라미터가 속하는 데이터 단위의 계층의 깊이를 이용하는 제3 조건을 이용하여 상기 컨텍스트를 결정하며,
상기 제1 종별은, “split_coding_unit_flag”, 또는, “skip_flag”이며,
상기 제2 종별은, “merge_flag”와, “ref_idx_l0” 또는 “ref_idx_l1”과, “inter_pred_flag”와, “mvd_l0” 또는 “mvd_l1”과, “intra_chroma_pred_mode”와, “cbf_luma”, “cbf_cb” 또는 “cbf_cr” 중 1개 이상이며,
상기 제3 종별은, “merge_flag”와, “ref_idx_l0” 또는 “ref_idx_l1”과, “inter_pred_flag”와, “mvd_l0” 또는 “mvd_l1”과, “intra_chroma_pred_mode”와, “cbf_luma”, “cbf_cb” 또는 “cbf_cr” 중 상기 제2 종별 이외의 신호 종별인, 화상 복호 방법. - 청구항 1에 있어서,
상기 제3 종별은 “inter_pred_flag”인, 화상 복호 방법. - 청구항 1 또는 청구항 2에 있어서,
상기 제3 종별은 “cbf_cb” 및 “cbf_cr”인, 화상 복호 방법. - 청구항 1 내지 청구항 3 중 어느 한 항에 있어서,
상기 제3 종별은 “cbf_luma”인, 화상 복호 방법. - 청구항 1 내지 청구항 4 중 어느 한 항에 있어서,
상기 제1 종별은, “split_coding_unit_flag”, 및, “skip_flag”이며,
상기 제2 종별은, “merge_flag”와, “ref_idx_l0” 및 “ref_idx_l1”과, “mvd_l0” 및 “mvd_l1”과, “intra_chroma_pred_mode”이며,
상기 제3 종별은, “inter_pred_flag”와, “cbf_luma”, “cbf_cb” 및 “cbf_cr”인, 화상 복호 방법. - 청구항 1 내지 청구항 5 중 어느 한 항에 있어서,
상기 제2 조건 및 상기 제3 조건은, 상기 상측 블록 및 상기 좌측 블록의 복호가 끝난 제어 파라미터를 함께 이용하지 않는 조건인, 화상 복호 방법. - 청구항 6에 있어서,
상기 컨텍스트 제어 단계에서는,
상기 신호 종별이 상기 제2 종별인 경우에, 상기 제2 조건으로서, 미리 정해진 컨텍스트를 상기 대상 블록의 산술 복호에 사용하는 컨텍스트로 결정하는, 화상 복호 방법. - 청구항 1 내지 청구항 7 중 어느 한 항에 있어서,
상기 컨텍스트 제어 단계에서는, 또한,
상기 처리 대상 블록의 위치에 의거하여, 상기 상측 블록의 제어 파라미터를 복호 시에 이용할 수 있는지 여부를 판정하고,
상기 상측 블록의 제어 파라미터를 이용할 수 없는 경우에, 상기 제2 조건 또는 상기 제3 조건을 이용하여 상기 컨텍스트를 결정하는, 화상 복호 방법. - 청구항 8에 있어서,
상기 컨텍스트 제어 단계에서는,
상기 처리 대상 블록이 슬라이스 경계에 속하는 경우에, 상기 상측 블록의 제어 파라미터를 복호 시에 이용할 수 없다고 판정하는, 화상 복호 방법. - 청구항 8에 있어서,
상기 컨텍스트 제어 단계에서는,
상기 처리 대상 블록의 제어 파라미터가 속하는 데이터 단위의 계층의 깊이에 따라 상기 상측 블록의 제어 파라미터를 복호 시에 이용할 수 있는지 여부를 판정하는, 화상 복호 방법. - 청구항 1 내지 청구항 10 중 어느 한 항에 있어서,
상기 제2 종별 또는 상기 제3 종별은, 미리 정해진 데이터 구조를 가지는 제어 파라미터인, 화상 복호 방법. - 청구항 1 내지 청구항 11 중 어느 한 항에 있어서,
상기 컨텍스트 제어 단계에서는, 또한,
제1 단위의 제어 파라미터의 값에 의거하여, 상기 제1 단위보다 작은 제2 단위의 제어 파라미터에 대해, 상기 제1 조건을 이용하여 상기 컨텍스트를 결정할지, 상기 제2 조건을 이용하여 컨텍스트를 결정할지, 상기 제3 조건을 이용하여 컨텍스트를 결정할지를 전환하는, 화상 복호 방법. - 청구항 1 내지 청구항 12 중 어느 한 항에 있어서,
상기 “split_coding_unit_flag”는, 상기 처리 대상 블록이, 복수의 블록으로 분할되어 있는지 여부를 나타내고,
상기 “skip_flag”는, 상기 처리 대상 블록을 스킵할지 여부를 나타내고,
상기 “merge_flag”는, 상기 처리 대상 블록에 머지 모드를 이용할지 여부를 나타내고,
상기 “ref_idx_l0”은, 상기 처리 대상 블록용의 리스트 0의 참조 픽처 인덱스를 나타내고,
상기 “ref_idx_l1”은, 상기 처리 대상 블록용의 리스트 1의 참조 픽처 인덱스를 나타내고,
상기 “inter_pred_flag”는, 상기 처리 대상 블록에, uni-prediction 및 bi-prediction 중 어느 것이 사용되는지를 나타내고,
상기 “mvd_l0”은, 상기 처리 대상 블록에 사용되는, 리스트 0의 움직임 벡터 성분과, 그 예측값의 차분을 나타내고,
상기 “mvd_l1”은, 상기 처리 대상 블록에 사용되는, 리스트 1의 움직임 벡터 성분과, 그 예측값의 차분을 나타내고,
상기 “intra_chroma_pred_mode”는, 상기 처리 대상 블록의 색차 샘플을 위한 인트라 예측 모드를 나타내고,
상기 “cbf_luma”는, 상기 처리 대상 블록의 휘도 변환 블록이, 레벨이 0이 아닌 1개 이상의 변환 계수를 포함하는지 여부를 나타내고,
상기 “cbf_cb”는, 상기 처리 대상 블록의 Cb 변환 블록이, 레벨이 0이 아닌 1개 이상의 변환 계수를 포함하는지 여부를 나타내고,
상기 “cbf_cr”은, 상기 처리 대상 블록의 Cr변환 블록이, 레벨이 0이 아닌 1개 이상의 변환 계수를 포함하는지 여부를 나타내는, 화상 복호 방법. - 청구항 1 내지 청구항 13 중 어느 한 항에 있어서,
상기 화상 복호 방법은, 부호화 신호에 포함되는, 제1 규격 또는 제2 규격을 나타내는 식별자에 따라, 상기 제1 규격에 준거한 복호 처리와, 상기 제2 규격에 준거한 복호 처리를 전환하고,
상기 ID가 제1 규격을 나타내는 경우에, 상기 제1 규격에 준거한 복호 처리로서, 상기 컨텍스트 제어 단계와, 상기 산술 복호 단계와, 상기 다치화 단계를 행하는, 화상 복호 방법. - 산술 부호화를 이용하는 화상 부호화 방법으로서,
처리 대상 블록의 제어 파라미터를 2치화함으로써 2치 배열을 생성하는 2치화 단계와,
복수의 컨텍스트 중, 상기 처리 대상 블록에 사용하는 컨텍스트를 결정하는 컨텍스트 제어 단계와,
결정된 상기 컨텍스트를 이용하여 상기 2치 배열을 산술 부호화함으로써 비트열을 생성하는 산술 부호화 단계를 포함하고,
상기 컨텍스트 제어 단계에서는,
상기 처리 대상 블록의 제어 파라미터의 신호 종별을 판정하고,
상기 신호 종별이 제1 종별인 경우에, 상기 처리 대상 블록에 인접하는 좌측 블록 및 상측 블록의 제어 파라미터를 함께 이용하는 제1 조건을 이용하여 상기 컨텍스트를 결정하고,
상기 신호 종별이, 상기 제1 종별과 상이한 제2 종별인 경우에, 상기 상측 블록의 제어 파라미터를 이용하지 않는 제2 조건을 이용하여 상기 컨텍스트를 결정하고,
상기 신호 종별이, 상기 제1 종별 및 상기 제2 종별과 상이한 제3 종별인 경우에, 상기 상측 블록의 제어 파라미터를 이용하지 않고, 또한, 상기 처리 대상 블록의 제어 파라미터가 속하는 데이터 단위의 계층의 깊이를 이용하는 제3 조건을 이용하여 상기 컨텍스트를 결정하며,
상기 제1 종별은, “split_coding_unit_flag”, 또는, “skip_flag”이며,
상기 제2 종별은, “merge_flag”와, “ref_idx_l0” 또는 “ref_idx_l1”과, “inter_pred_flag”와, “mvd_l0” 또는 “mvd_l1”과, “intra_chroma_pred_mode”와, “cbf_luma”, “cbf_cb” 또는 “cbf_cr” 중 1개 이상이며,
상기 제3 종별은, “merge_flag”와, “ref_idx_l0” 또는 “ref_idx_l1”과, “inter_pred_flag”와, “mvd_l0” 또는 “mvd_l1”과, “intra_chroma_pred_mode”와, “cbf_luma”, “cbf_cb” 또는 “cbf_cr” 중 상기 제2 종별 이외의 신호 종별인, 화상 부호화 방법. - 산술 복호를 이용하는 화상 복호 장치로서,
복수의 컨텍스트 중, 처리 대상 블록의 산술 복호에 사용하는 컨텍스트를 결정하는 컨텍스트 제어부와,
제어 파라미터가 산술 부호화됨으로써 얻어진, 상기 처리 대상 블록에 대응하는 비트열을, 결정된 상기 컨텍스트를 이용하여 산술 복호함으로써 2치 배열을 복원하는 산술 복호부와,
상기 2치 배열을 다치화함으로써 상기 제어 파라미터를 복원하는 다치화부를 포함하고,
상기 컨텍스트 제어부는,
상기 처리 대상 블록의 제어 파라미터의 신호 종별을 판정하고,
상기 신호 종별이 제1 종별인 경우에, 상기 처리 대상 블록에 인접하는 좌측 블록 및 상측 블록의 복호가 끝난 제어 파라미터를 함께 이용하는 제1 조건을 이용하여 상기 컨텍스트를 결정하고,
상기 신호 종별이, 상기 제1 종별과 상이한 제2 종별인 경우에, 상기 상측 블록의 복호가 끝난 제어 파라미터를 이용하지 않는 제2 조건을 이용하여 상기 컨텍스트를 결정하고,
상기 신호 종별이, 상기 제1 종별 및 상기 제2 종별과 상이한 제3 종별인 경우에, 상기 상측 블록의 복호가 끝난 제어 파라미터를 이용하지 않고, 또한, 상기 처리 대상 블록의 제어 파라미터가 속하는 데이터 단위의 계층의 깊이를 이용하는 제3 조건을 이용하여 상기 컨텍스트를 결정하며,
상기 제1 종별은, “split_coding_unit_flag”, 또는, “skip_flag”이며,
상기 제2 종별은, “merge_flag”와, “ref_idx_l0” 또는 “ref_idx_l1”과, “inter_pred_flag”와, “mvd_l0” 또는 “mvd_l1”과, “intra_chroma_pred_mode”와, “cbf_luma”, “cbf_cb” 또는 “cbf_cr” 중 1개 이상이며,
상기 제3 종별은, “merge_flag”와, “ref_idx_l0” 또는 “ref_idx_l1”과, “inter_pred_flag”와, “mvd_l0” 또는 “mvd_l1”과, “intra_chroma_pred_mode”와, “cbf_luma”, “cbf_cb”는 “cbf_cr” 중 상기 제2 종별 이외의 신호 종별인, 화상 복호 장치. - 산술 부호화를 이용하는 화상 부호화 장치로서,
처리 대상 블록의 제어 파라미터를 2치화함으로써 2치 배열을 생성하는 2치화부와,
복수의 컨텍스트 중, 상기 처리 대상 블록에 사용하는 컨텍스트를 결정하는 컨텍스트 제어부와,
결정된 상기 컨텍스트를 이용하여 상기 2치 배열을 산술 부호화함으로써 비트열을 생성하는 산술 부호화부를 포함하고,
상기 컨텍스트 제어부는,
상기 처리 대상 블록의 제어 파라미터의 신호 종별을 판정하고,
상기 신호 종별이 제1 종별인 경우에, 상기 처리 대상 블록에 인접하는 좌측 블록 및 상측 블록의 제어 파라미터를 함께 이용하는 제1 조건을 이용하여 상기 컨텍스트를 결정하고,
상기 신호 종별이, 상기 제1 종별과 상이한 제2 종별인 경우에, 상기 상측 블록의 제어 파라미터를 이용하지 않는 제2 조건을 이용하여 상기 컨텍스트를 결정하고,
상기 신호 종별이, 상기 제1 종별 및 상기 제2 종별과 상이한 제3 종별인 경우에, 상기 상측 블록의 제어 파라미터를 이용하지 않고, 또한, 상기 처리 대상 블록의 제어 파라미터가 속하는 데이터 단위의 계층의 깊이를 이용하는 제3 조건을 이용하여 상기 컨텍스트를 결정하며,
상기 제1 종별은, “split_coding_unit_flag”, 또는, “skip_flag”이며,
상기 제2 종별은, “merge_flag”와, “ref_idx_l0” 또는 “ref_idx_l1”과, “inter_pred_flag”와, “mvd_l0” 또는 “mvd_l1”과, “intra_chroma_pred_mode”와, “cbf_luma”, “cbf_cb” 또는 “cbf_cr” 중 1개 이상이며,
상기 제3 종별은, “merge_flag”와, “ref_idx_l0” 또는 “ref_idx_l1”과, “inter_pred_flag”와, “mvd_l0” 또는 “mvd_l1”과, “intra_chroma_pred_mode”와, “cbf_luma”, “cbf_cb” 또는 “cbf_cr” 중 상기 제2 종별 이외의 신호 종별인, 화상 부호화 장치. - 청구항 16에 기재된 화상 복호 장치와,
청구항 17에 기재된 화상 부호화 장치를 포함하는, 화상 부호화 복호 장치.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020207024349A KR102271116B1 (ko) | 2011-07-11 | 2012-07-06 | 화상 복호 방법, 화상 부호화 방법, 화상 복호 장치, 화상 부호화 장치 및 화상 부호화 복호 장치 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161506430P | 2011-07-11 | 2011-07-11 | |
US61/506,430 | 2011-07-11 | ||
PCT/JP2012/004407 WO2013008438A1 (ja) | 2011-07-11 | 2012-07-06 | 画像復号方法、画像符号化方法、画像復号装置、画像符号化装置及び画像符号化復号装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020207024349A Division KR102271116B1 (ko) | 2011-07-11 | 2012-07-06 | 화상 복호 방법, 화상 부호화 방법, 화상 복호 장치, 화상 부호화 장치 및 화상 부호화 복호 장치 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20140034209A true KR20140034209A (ko) | 2014-03-19 |
Family
ID=47505742
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020207024349A KR102271116B1 (ko) | 2011-07-11 | 2012-07-06 | 화상 복호 방법, 화상 부호화 방법, 화상 복호 장치, 화상 부호화 장치 및 화상 부호화 복호 장치 |
KR1020217019620A KR102404121B1 (ko) | 2011-07-11 | 2012-07-06 | 화상 복호 방법, 화상 부호화 방법, 화상 복호 장치, 화상 부호화 장치 및 화상 부호화 복호 장치 |
KR1020137032467A KR20140034209A (ko) | 2011-07-11 | 2012-07-06 | 화상 복호 방법, 화상 부호화 방법, 화상 복호 장치, 화상 부호화 장치 및 화상 부호화 복호 장치 |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020207024349A KR102271116B1 (ko) | 2011-07-11 | 2012-07-06 | 화상 복호 방법, 화상 부호화 방법, 화상 복호 장치, 화상 부호화 장치 및 화상 부호화 복호 장치 |
KR1020217019620A KR102404121B1 (ko) | 2011-07-11 | 2012-07-06 | 화상 복호 방법, 화상 부호화 방법, 화상 복호 장치, 화상 부호화 장치 및 화상 부호화 복호 장치 |
Country Status (15)
Country | Link |
---|---|
US (7) | US9462282B2 (ko) |
EP (1) | EP2733941B1 (ko) |
JP (3) | JPWO2013008438A1 (ko) |
KR (3) | KR102271116B1 (ko) |
CN (3) | CN106851295B (ko) |
AR (1) | AR087117A1 (ko) |
AU (1) | AU2012281918C1 (ko) |
BR (1) | BR112013031540B1 (ko) |
CA (1) | CA2838575C (ko) |
ES (1) | ES2784552T3 (ko) |
HU (1) | HUE049138T2 (ko) |
MX (1) | MX2013013941A (ko) |
RU (2) | RU2714371C2 (ko) |
TW (1) | TWI587687B (ko) |
WO (1) | WO2013008438A1 (ko) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018070555A1 (ko) * | 2016-10-10 | 2018-04-19 | 디지털인사이트주식회사 | 다양한 블록 분할 구조를 결합하여 사용하는 비디오 코딩 방법 및 장치 |
WO2018128222A1 (ko) * | 2017-01-03 | 2018-07-12 | 엘지전자 주식회사 | 영상 코딩 시스템에서 영상 디코딩 방법 및 장치 |
WO2019009584A1 (ko) * | 2017-07-04 | 2019-01-10 | 삼성전자 주식회사 | 다중 코어 변환에 의한 비디오 복호화 방법 및 장치, 다중 코어 변환에 의한 비디오 부호화 방법 및 장치 |
WO2020180153A1 (ko) * | 2019-03-06 | 2020-09-10 | 엘지전자 주식회사 | 인터 예측을 위한 비디오 신호의 처리 방법 및 장치 |
Families Citing this family (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2661080A4 (en) * | 2010-12-31 | 2016-06-29 | Korea Electronics Telecomm | METHOD FOR CODING VIDEO INFORMATION AND METHOD FOR DECODING VIDEO INFORMATION AND DEVICE THEREFOR |
PT2685724T (pt) * | 2011-03-06 | 2020-06-01 | Lg Electronics Inc | Método de intra previsão de bloco de crominância usando amostra de luminância e aparelho a usar o mesmo |
EP4404558A3 (en) | 2011-06-23 | 2024-10-23 | Sun Patent Trust | Image decoding device, image encoding device |
USRE47366E1 (en) | 2011-06-23 | 2019-04-23 | Sun Patent Trust | Image decoding method and apparatus based on a signal type of the control parameter of the current block |
WO2012176465A1 (ja) | 2011-06-24 | 2012-12-27 | パナソニック株式会社 | 画像復号方法、画像符号化方法、画像復号装置、画像符号化装置及び画像符号化復号装置 |
CA2830046C (en) | 2011-06-24 | 2018-09-04 | Panasonic Corporation | Image decoding method, image coding method, image decoding apparatus, image coding apparatus, and image coding and decoding apparatus |
MY169636A (en) | 2011-06-27 | 2019-04-24 | Sun Patent Trust | Image decoding method, image coding method, image decoding apparatus, image coding apparatus, and image coding and decoding apparatus |
AU2012277215B2 (en) | 2011-06-28 | 2016-07-07 | Sun Patent Trust | Image decoding method, image coding method, image decoding apparatus, image coding apparatus, and image coding and decoding apparatus |
WO2013001767A1 (ja) | 2011-06-29 | 2013-01-03 | パナソニック株式会社 | 画像復号方法、画像符号化方法、画像復号装置、画像符号化装置及び画像符号化復号装置 |
KR102060619B1 (ko) | 2011-06-30 | 2019-12-30 | 선 페이턴트 트러스트 | 화상 복호 방법, 화상 부호화 방법, 화상 복호 장치, 화상 부호화 장치 및 화상 부호화 복호 장치 |
KR101955374B1 (ko) * | 2011-06-30 | 2019-05-31 | 에스케이 텔레콤주식회사 | 고속 코딩 단위(Coding Unit) 모드 결정을 통한 부호화/복호화 방법 및 장치 |
RU2597473C2 (ru) | 2011-06-30 | 2016-09-10 | Сан Пэтент Траст | Способ декодирования, способ кодирования, устройство декодирования, устройство кодирования, и устройство кодирования и декодирования |
CN106851295B (zh) | 2011-07-11 | 2019-10-18 | 太阳专利托管公司 | 编码方法及编码装置 |
US9948938B2 (en) * | 2011-07-21 | 2018-04-17 | Texas Instruments Incorporated | Methods and systems for chroma residual data prediction |
US9288508B2 (en) * | 2011-11-08 | 2016-03-15 | Qualcomm Incorporated | Context reduction for context adaptive binary arithmetic coding |
US9426466B2 (en) | 2012-06-22 | 2016-08-23 | Qualcomm Incorporated | Transform skip mode |
US9307264B2 (en) * | 2012-06-22 | 2016-04-05 | Sharp Kabushiki Kaisha | Arithmetic decoding device, arithmetic coding device, image decoding apparatus, and image coding apparatus |
US9973759B2 (en) * | 2013-07-08 | 2018-05-15 | Hfi Innovation Inc. | Method of simplified CABAC coding in 3D video coding |
WO2015051011A1 (en) * | 2013-10-02 | 2015-04-09 | Arris Enterprises, Inc. | Modified hevc transform tree syntax |
US9842424B2 (en) * | 2014-02-10 | 2017-12-12 | Pixar | Volume rendering using adaptive buckets |
WO2015188297A1 (zh) * | 2014-06-08 | 2015-12-17 | 北京大学深圳研究生院 | 加权跳过模式的视频图像块压缩算术编解码方法及装置 |
EP3099072A1 (en) * | 2015-05-28 | 2016-11-30 | Parabola Research Limited | Method, system and device for image and video coding |
US10257394B2 (en) | 2016-02-12 | 2019-04-09 | Contrast, Inc. | Combined HDR/LDR video streaming |
JP7081835B2 (ja) | 2016-08-09 | 2022-06-07 | コントラスト, インコーポレイテッド | 車両制御のためのリアルタイムhdrビデオ |
EP3562154A4 (en) * | 2016-12-26 | 2019-12-25 | Nec Corporation | IMAGE CODING METHOD, IMAGE DECODING METHOD, IMAGE CODING DEVICE, IMAGE DECODING DEVICE AND PROGRAM |
US10523966B2 (en) * | 2017-03-31 | 2019-12-31 | Mediatek Inc. | Coding transform blocks |
US10531085B2 (en) * | 2017-05-09 | 2020-01-07 | Futurewei Technologies, Inc. | Coding chroma samples in video compression |
US10951888B2 (en) | 2018-06-04 | 2021-03-16 | Contrast, Inc. | Compressed high dynamic range video |
CA3109667A1 (en) * | 2018-08-14 | 2020-02-20 | Contrast, Inc. | Image processing noise reduction |
EP3847818B1 (en) | 2018-09-18 | 2023-12-13 | Huawei Technologies Co., Ltd. | A video encoder, a video decoder and corresponding methods |
US11115652B2 (en) | 2018-12-07 | 2021-09-07 | Tencent America LLC | Method and apparatus for further improved context design for prediction mode and coded block flag (CBF) |
PH12019000380A1 (en) * | 2018-12-17 | 2020-09-28 | Nokia Technologies Oy | An apparatus, a method and a computer program for video coding and decoding |
KR20240010542A (ko) * | 2018-12-17 | 2024-01-23 | 삼성전자주식회사 | 예측 모드를 시그널링하는 비디오 신호 처리 방법 및 장치 |
WO2020184952A1 (ko) * | 2019-03-10 | 2020-09-17 | 엘지전자 주식회사 | 비디오 신호에서 인터 예측을 위한 움직임 벡터 차분 정보를 처리하기 위한 비디오 신호의 처리 방법 및 장치 |
JP7100194B2 (ja) * | 2019-03-11 | 2022-07-12 | 日本放送協会 | 画像符号化装置、画像復号装置、及びプログラム |
CN113966611B (zh) * | 2019-06-09 | 2023-12-15 | 北京字节跳动网络技术有限公司 | 视频编解码中的重要系数信令 |
CN111339193B (zh) * | 2020-02-21 | 2023-06-27 | 腾讯云计算(北京)有限责任公司 | 类别的编码方法及装置 |
US12118120B2 (en) | 2021-05-17 | 2024-10-15 | Bank Of America Corporation | Prevention of unauthorized access to information |
US11934554B2 (en) | 2021-05-17 | 2024-03-19 | Bank Of America Corporation | Information security by preventing unauthorized data access |
Family Cites Families (139)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53142227A (en) | 1977-05-18 | 1978-12-11 | Toshiba Shiyashin Youhin Kk | Light control type electrooflashing device |
JPS60125210A (ja) | 1983-12-08 | 1985-07-04 | Agency Of Ind Science & Technol | ポリイミド膜の製膜改善方法 |
JPS6225405A (ja) | 1985-07-26 | 1987-02-03 | 株式会社日立製作所 | 抵抗器の温度検出機構 |
JPS6225405U (ko) | 1985-07-30 | 1987-02-16 | ||
JPS638448A (ja) | 1986-06-27 | 1988-01-14 | Nippon Synthetic Chem Ind Co Ltd:The | 樹脂組成物 |
JPS638448U (ko) | 1986-07-03 | 1988-01-20 | ||
TW330976B (en) | 1995-12-18 | 1998-05-01 | Lg Electronics Inc | Constant temperature dehumidifying device for air regulator and control method thereof |
CN1305311C (zh) * | 2001-06-29 | 2007-03-14 | 株式会社Ntt都科摩 | 图像编码装置、图像解码装置、图像编码方法、及图像解码方法 |
US7457358B2 (en) | 2001-09-26 | 2008-11-25 | Interact Devices, Inc. | Polymorphic codec system and method |
US7457359B2 (en) | 2001-09-26 | 2008-11-25 | Mabey Danny L | Systems, devices and methods for securely distributing highly-compressed multimedia content |
PT2271111T (pt) | 2001-11-06 | 2016-11-08 | Panasonic Ip Corp America | Método de codificação de figuração em movimento e método de descodificação de figuração em movimento |
CN101448162B (zh) | 2001-12-17 | 2013-01-02 | 微软公司 | 处理视频图像的方法 |
JP2004088722A (ja) | 2002-03-04 | 2004-03-18 | Matsushita Electric Ind Co Ltd | 動画像符号化方法および動画像復号化方法 |
EP3324626B1 (en) | 2002-04-19 | 2019-06-12 | Panasonic Intellectual Property Corporation of America | Motion vector calculating method |
KR101011849B1 (ko) | 2002-04-19 | 2011-01-31 | 파나소닉 주식회사 | 움직임 벡터 계산방법 |
JP3807342B2 (ja) | 2002-04-25 | 2006-08-09 | 三菱電機株式会社 | デジタル信号符号化装置、デジタル信号復号装置、デジタル信号算術符号化方法、およびデジタル信号算術復号方法 |
JP2003319391A (ja) | 2002-04-26 | 2003-11-07 | Sony Corp | 符号化装置および方法、復号装置および方法、記録媒体、並びにプログラム |
PT1487113E (pt) | 2002-05-02 | 2006-12-29 | Fraunhofer Ges Forschung | Codificação e descodificação de coeficientes de transformação em codificadores de imagem ou de vídeo |
AU2003242037A1 (en) | 2002-07-02 | 2004-01-23 | Matsushita Electric Industrial Co., Ltd. | Image encoding method and image decoding method |
CN101867823B (zh) | 2002-08-08 | 2012-05-02 | 松下电器产业株式会社 | 解码方法及解码装置 |
US6795584B2 (en) | 2002-10-03 | 2004-09-21 | Nokia Corporation | Context-based adaptive variable length coding for adaptive block transforms |
JP2004297768A (ja) * | 2003-03-10 | 2004-10-21 | Mitsubishi Electric Corp | 映像信号符号化装置、および映像信号符号化方法 |
EP1603338A4 (en) | 2003-03-10 | 2007-12-05 | Mitsubishi Electric Corp | APPARATUS AND METHOD FOR VIDEO SIGNAL CODING |
US7945102B2 (en) | 2003-03-24 | 2011-05-17 | Sony Corporation | Data encoding apparatus, data encoding method, data output apparatus, data output method, signal processing system, signal processing apparatus, signal processing method, data decoding apparatus, and data decoding method |
US7630440B2 (en) | 2003-05-28 | 2009-12-08 | Broadcom Corporation | Context adaptive binary arithmetic code decoding engine |
US7426308B2 (en) | 2003-07-18 | 2008-09-16 | Microsoft Corporation | Intraframe and interframe interlace coding and decoding |
US7724827B2 (en) | 2003-09-07 | 2010-05-25 | Microsoft Corporation | Multi-layer run level encoding and decoding |
US7379608B2 (en) * | 2003-12-04 | 2008-05-27 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung, E.V. | Arithmetic coding for transforming video and picture data units |
TWI330976B (en) | 2003-12-05 | 2010-09-21 | Trident Microsystems Far East | Method and apparatus for encoding/decoding dynamic graphic content |
JP2005184042A (ja) | 2003-12-15 | 2005-07-07 | Sony Corp | 画像復号装置及び画像復号方法並びに画像復号プログラム |
EP1551185A1 (en) | 2004-01-05 | 2005-07-06 | Thomson Licensing S.A. | Encoding method, decoding method, and encoding apparatus for a digital picture sequence |
US20090102973A1 (en) | 2004-01-09 | 2009-04-23 | Harris Scott C | Video split device |
KR100608050B1 (ko) | 2004-01-14 | 2006-08-02 | 삼성전자주식회사 | 사용자의 요구에 의해 활성화되는 인터랙티브 그래픽스트림을 저장한 저장 매체, 재생 장치 및 그 재생 방법 |
US8175444B2 (en) | 2004-01-14 | 2012-05-08 | Samsung Electronics Co., Ltd. | Method of reproducing from storage medium storing interactive graphics stream activated in response to user's command |
US7599435B2 (en) | 2004-01-30 | 2009-10-06 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Video frame encoding and decoding |
CN101699866B (zh) | 2004-01-30 | 2016-08-03 | 松下电器(美国)知识产权公司 | 运动图片编码方法和运动图片解码方法 |
US7469070B2 (en) | 2004-02-09 | 2008-12-23 | Lsi Corporation | Method for selection of contexts for arithmetic coding of reference picture and motion vector residual bitstream syntax elements |
JP4273996B2 (ja) | 2004-02-23 | 2009-06-03 | ソニー株式会社 | 画像符号化装置及び方法、並びに画像復号装置及び方法 |
WO2005106875A1 (en) | 2004-04-28 | 2005-11-10 | Matsushita Electric Industrial Co., Ltd. | Moving picture stream generation apparatus, moving picture coding apparatus, moving picture multiplexing apparatus and moving picture decoding apparatus |
US20070160147A1 (en) | 2004-06-25 | 2007-07-12 | Satoshi Kondo | Image encoding method and image decoding method |
KR101050261B1 (ko) | 2004-07-14 | 2011-07-19 | 에이전시 포 사이언스, 테크놀로지 앤드 리서치 | 콘텍스트 기반의 신호 엔코딩 및 디코딩 |
KR20060016243A (ko) | 2004-08-17 | 2006-02-22 | 엘지전자 주식회사 | 감시용 디지털 비디오 레코더에서의 멀티 채널 영상표시장치 및 방법 |
JP4375305B2 (ja) | 2004-10-26 | 2009-12-02 | ソニー株式会社 | 情報処理装置および情報処理方法、記録媒体、並びに、プログラム |
US20060120461A1 (en) | 2004-12-06 | 2006-06-08 | Roy Knight | Two processor architecture supporting decoupling of outer loop and inner loop in video decoder |
EP1836858A1 (en) | 2005-01-14 | 2007-09-26 | Sungkyunkwan University | Methods of and apparatuses for adaptive entropy encoding and adaptive entropy decoding for scalable video encoding |
CN101133650B (zh) | 2005-04-01 | 2010-05-19 | 松下电器产业株式会社 | 图像解码装置以及图像解码方法 |
RU2371881C1 (ru) | 2005-07-08 | 2009-10-27 | ЭлДжи ЭЛЕКТРОНИКС ИНК. | Способ моделирования информации кодирования видеосигнала для компрессии/декомпрессии информации |
US8320453B2 (en) | 2005-07-08 | 2012-11-27 | Lg Electronics Inc. | Method for modeling coding information of a video signal to compress/decompress the information |
JP2009510807A (ja) | 2005-07-08 | 2009-03-12 | エルジー エレクトロニクス インコーポレイティド | ビデオ信号のコーディング情報を圧縮/展開するためにコーディング情報モデリング方法 |
US20090034857A1 (en) | 2005-07-22 | 2009-02-05 | Mitsubishi Electric Corporation | Image encoder and image decoder, image encoding method and image decoding method, image encoding program and image decoding program, and computer readable recording medium recorded with image encoding program and computer readable recording medium recorded with image decoding program |
US20090123066A1 (en) | 2005-07-22 | 2009-05-14 | Mitsubishi Electric Corporation | Image encoding device, image decoding device, image encoding method, image decoding method, image encoding program, image decoding program, computer readable recording medium having image encoding program recorded therein, |
US20080165849A1 (en) | 2005-07-22 | 2008-07-10 | Mitsubishi Electric Corporation | Image encoder and image decoder, image encoding method and image decoding method, image encoding program and image decoding program, and computer readable recording medium recorded with image encoding program and computer readable recording medium recorded with image decoding program |
US8488889B2 (en) | 2005-07-22 | 2013-07-16 | Mitsubishi Electric Corporation | Image encoder and image decoder, image encoding method and image decoding method, image encoding program and image decoding program, and computer readable recording medium recorded with image encoding program and computer readable recording medium recorded with image decoding program |
US8509551B2 (en) | 2005-07-22 | 2013-08-13 | Mitsubishi Electric Corporation | Image encoder and image decoder, image encoding method and image decoding method, image encoding program and image decoding program, and computer readable recording medium recording with image encoding program and computer readable recording medium recorded with image decoding program |
US20080130990A1 (en) | 2005-07-22 | 2008-06-05 | Mitsubishi Electric Corporation | Image encoder and image decoder, image encoding method and image decoding method, image encoding program and image decoding program, and computer readable recording medium recorded with image encoding program and computer readable recording medium recorded with image decoding program |
CN102176754B (zh) | 2005-07-22 | 2013-02-06 | 三菱电机株式会社 | 图像编码装置和方法、以及图像解码装置和方法 |
US20080130989A1 (en) | 2005-07-22 | 2008-06-05 | Mitsubishi Electric Corporation | Image encoder and image decoder, image encoding method and image decoding method, image encoding program and image decoding program, and computer readable recording medium recorded with image encoding program and computer readable recording medium recorded with image decoding program |
US20080123947A1 (en) | 2005-07-22 | 2008-05-29 | Mitsubishi Electric Corporation | Image encoding device, image decoding device, image encoding method, image decoding method, image encoding program, image decoding program, computer readable recording medium having image encoding program recorded therein |
US20080137744A1 (en) | 2005-07-22 | 2008-06-12 | Mitsubishi Electric Corporation | Image encoder and image decoder, image encoding method and image decoding method, image encoding program and image decoding program, and computer readable recording medium recorded with image encoding program and computer readable recording medium recorded with image decoding program |
US20080123977A1 (en) | 2005-07-22 | 2008-05-29 | Mitsubishi Electric Corporation | Image encoder and image decoder, image encoding method and image decoding method, image encoding program and image decoding program, and computer readable recording medium recorded with image encoding program and computer readable recording medium recorded with image decoding program |
US20080130988A1 (en) | 2005-07-22 | 2008-06-05 | Mitsubishi Electric Corporation | Image encoder and image decoder, image encoding method and image decoding method, image encoding program and image decoding program, and computer readable recording medium recorded with image encoding program and computer readable recording medium recorded with image decoding program |
CN100584025C (zh) | 2005-08-04 | 2010-01-20 | 华为技术有限公司 | 一种基于内容自适应的算术解码系统及装置 |
US7894523B2 (en) | 2005-09-05 | 2011-02-22 | Lg Electronics Inc. | Method for modeling coding information of a video signal for compressing/decompressing coding information |
US7595743B1 (en) | 2005-10-26 | 2009-09-29 | Lsi Corporation | System and method for reducing storage requirements for content adaptive binary arithmetic coding |
JP5089878B2 (ja) | 2005-10-28 | 2012-12-05 | パナソニック株式会社 | 画像符号化装置 |
US9479794B2 (en) | 2005-11-10 | 2016-10-25 | Freescale Semiconductor, Inc. | Resource efficient video processing via prediction error computational adjustments |
CN100440979C (zh) * | 2005-12-15 | 2008-12-03 | 清华大学 | 基于上下文的自适应二维变长解码方法和装置 |
GB0600141D0 (en) | 2006-01-05 | 2006-02-15 | British Broadcasting Corp | Scalable coding of video signals |
KR101215615B1 (ko) | 2006-01-10 | 2012-12-26 | 삼성전자주식회사 | 동일 채널 내에서 서로 다른 코덱을 이용하여 부호화된 비디오 및 오디오 데이터 스트림의 재생을 위한 코덱 변경 방법 및 장치 |
US7983343B2 (en) | 2006-01-12 | 2011-07-19 | Lsi Corporation | Context adaptive binary arithmetic decoding for high definition video |
WO2007079781A1 (en) | 2006-01-13 | 2007-07-19 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Picture coding using adaptive colour space transformation |
US20070200949A1 (en) | 2006-02-21 | 2007-08-30 | Qualcomm Incorporated | Rapid tuning in multimedia applications |
KR100750165B1 (ko) | 2006-02-22 | 2007-08-17 | 삼성전자주식회사 | 압축률 향상을 위해 개선된 컨텍스트 모델 선택을 사용하는cabac 부호화 방법 및 장치, 그리고 cabac복호화 방법 및 장치 |
JP2007300517A (ja) * | 2006-05-02 | 2007-11-15 | Sony Corp | 動画像処理方法、動画像処理方法のプログラム、動画像処理方法のプログラムを記録した記録媒体及び動画像処理装置 |
US7656326B2 (en) | 2006-06-08 | 2010-02-02 | Via Technologies, Inc. | Decoding of context adaptive binary arithmetic codes in computational core of programmable graphics processing unit |
US7262722B1 (en) | 2006-06-26 | 2007-08-28 | Intel Corporation | Hardware-based CABAC decoder with parallel binary arithmetic decoding |
JP4787100B2 (ja) | 2006-07-27 | 2011-10-05 | パナソニック株式会社 | 画像符号化装置 |
US9883202B2 (en) | 2006-10-06 | 2018-01-30 | Nxp Usa, Inc. | Scaling video processing complexity based on power savings factor |
WO2008072592A1 (ja) | 2006-12-14 | 2008-06-19 | Nec Corporation | 映像符号化方法、映像符号化装置および映像符号化プログラム |
KR20150039215A (ko) | 2007-01-11 | 2015-04-09 | 톰슨 라이센싱 | Mpeg-4 avc 하이 레벨 코딩에 있어서 cavlc 4:4:4 인트라 프로파일, high 4:4:4 인트라 프로파일, 및 high 4:4:4 예측 프로파일에 대하여 coded_block_flag 신택스 엘리먼트 및 coded_block_pattern 신택스 엘리먼트의 신택스를 사용하는 방법 및 장치 |
US8204129B2 (en) | 2007-03-27 | 2012-06-19 | Freescale Semiconductor, Inc. | Simplified deblock filtering for reduced memory access and computational complexity |
US8750377B2 (en) | 2007-04-12 | 2014-06-10 | Thomson Licensing | Method and apparatus for context dependent merging for skip-direct modes for video encoding and decoding |
JP2008289125A (ja) | 2007-04-20 | 2008-11-27 | Panasonic Corp | 算術復号化装置及びその方法 |
CN100531386C (zh) | 2007-06-15 | 2009-08-19 | 上海富瀚微电子有限公司 | 一种上下文自适应二进制算术编码器及其方法 |
RU2339181C1 (ru) | 2007-06-25 | 2008-11-20 | Государственное образовательное учреждение высшего профессионального образования Академия Федеральной службы охраны Российской Федерации (Академия ФСО России) | Способ передачи дополнительной информации при фрактальном кодировании изображений |
US8145002B2 (en) | 2007-06-28 | 2012-03-27 | Mitsubishi Electric Corporation | Image encoding device and image encoding method |
US9237357B2 (en) | 2007-09-02 | 2016-01-12 | Lg Electronics Inc. | Method and an apparatus for processing a video signal |
TWI339074B (en) | 2007-09-05 | 2011-03-11 | Via Tech Inc | Operating method and device of coded block flag parameter |
US7777654B2 (en) | 2007-10-16 | 2010-08-17 | Industrial Technology Research Institute | System and method for context-based adaptive binary arithematic encoding and decoding |
CN103037220B (zh) | 2008-01-04 | 2016-01-13 | 华为技术有限公司 | 视频编码、解码方法及装置和视频处理系统 |
US8542748B2 (en) | 2008-03-28 | 2013-09-24 | Sharp Laboratories Of America, Inc. | Methods and systems for parallel video encoding and decoding |
JP4962400B2 (ja) * | 2008-04-30 | 2012-06-27 | ソニー株式会社 | 算術復号装置 |
US7592937B1 (en) | 2008-06-02 | 2009-09-22 | Mediatek Inc. | CABAC decoding unit and method |
KR20090129926A (ko) | 2008-06-13 | 2009-12-17 | 삼성전자주식회사 | 영상 부호화 방법 및 그 장치, 영상 복호화 방법 및 그 장치 |
FR2932911A1 (fr) | 2008-06-24 | 2009-12-25 | France Telecom | Procede et dispositif de remplissage des zones d'occultation d'une carte de profondeur ou de disparites estimee a partir d'au moins deux images. |
KR20110040893A (ko) | 2008-07-10 | 2011-04-20 | 미쓰비시덴키 가부시키가이샤 | 화상 부호화 장치, 화상 복호 장치, 화상 부호화 방법 및 화상 복호 방법 |
EP2321904B1 (en) | 2008-08-19 | 2014-05-28 | Thomson Licensing | Context-based adaptive binary arithmetic coding (cabac) video stream compliance |
US8634457B2 (en) * | 2008-09-26 | 2014-01-21 | Qualcomm Incorporated | Determining availability of video data units |
US7932843B2 (en) | 2008-10-17 | 2011-04-26 | Texas Instruments Incorporated | Parallel CABAC decoding for video decompression |
EP2182732A1 (en) | 2008-10-28 | 2010-05-05 | Panasonic Corporation | Switching between scans in image coding |
WO2010125606A1 (en) | 2009-04-29 | 2010-11-04 | Aspa-Japan Co., Ltd. | Method for image data compression and compression system of image data |
EP2536151A4 (en) | 2010-02-10 | 2014-03-19 | Lg Electronics Inc | METHOD AND DEVICE FOR PROCESSING A VIDEO SIGNAL |
US9237355B2 (en) | 2010-02-19 | 2016-01-12 | Qualcomm Incorporated | Adaptive motion resolution for video coding |
WO2011125211A1 (ja) | 2010-04-08 | 2011-10-13 | 株式会社 東芝 | 画像符号化方法及び画像復号化方法 |
CN102215396A (zh) | 2010-04-09 | 2011-10-12 | 华为技术有限公司 | 一种视频编解码方法和系统 |
US20110249754A1 (en) * | 2010-04-12 | 2011-10-13 | Qualcomm Incorporated | Variable length coding of coded block pattern (cbp) in video compression |
US8942282B2 (en) * | 2010-04-12 | 2015-01-27 | Qualcomm Incorporated | Variable length coding of coded block pattern (CBP) in video compression |
CN106067983B (zh) | 2010-04-13 | 2019-07-12 | Ge视频压缩有限责任公司 | 解码数据流的方法、生成数据流的方法及解码器 |
CN106231328B (zh) | 2010-04-13 | 2020-06-12 | Ge视频压缩有限责任公司 | 解码器、解码方法、编码器以及编码方法 |
DK2568706T3 (en) | 2010-05-04 | 2019-03-11 | Lg Electronics Inc | METHOD AND DEVICE FOR PROCESSING A VIDEO SIGNAL |
US20110310976A1 (en) | 2010-06-17 | 2011-12-22 | Qualcomm Incorporated | Joint Coding of Partition Information in Video Coding |
SI2924995T1 (sl) | 2010-07-09 | 2018-10-30 | Samsung Electronics Co., Ltd. | Postopek za dekodiranje videa z uporabo združevanja blokov |
KR20120016980A (ko) | 2010-08-17 | 2012-02-27 | 한국전자통신연구원 | 영상 부호화 방법 및 장치, 그리고 복호화 방법 및 장치 |
HUE059881T2 (hu) | 2010-09-27 | 2023-01-28 | Lg Electronics Inc | Blokkfelosztási eljárás és dekódoló eszköz |
US8885704B2 (en) | 2010-10-01 | 2014-11-11 | Qualcomm Incorporated | Coding prediction modes in video coding |
CN103477635B (zh) | 2010-10-08 | 2017-01-18 | Ge视频压缩有限责任公司 | 编码器和编码方法与解码器和解码方法 |
CN107105304B (zh) | 2010-11-04 | 2020-06-09 | Ge视频压缩有限责任公司 | 解码装置和方法、编码装置和方法、存储和传输图像方法 |
US9008181B2 (en) | 2011-01-24 | 2015-04-14 | Qualcomm Incorporated | Single reference picture list utilization for interprediction video coding |
EP2675169B1 (en) | 2011-02-09 | 2019-06-26 | LG Electronics Inc. | Method for encoding and decoding image data with a temporal motion vector predictor and device using same |
US20120224639A1 (en) | 2011-03-03 | 2012-09-06 | General Instrument Corporation | Method for interpolating half pixels and quarter pixels |
US9788019B2 (en) | 2011-03-09 | 2017-10-10 | Hfi Innovation Inc. | Method and apparatus of transform unit partition with reduced complexity |
CN103535040B (zh) | 2011-03-21 | 2017-12-22 | Lg电子株式会社 | 选择运动矢量预测值的方法和使用其的设备 |
WO2012163199A1 (en) | 2011-05-27 | 2012-12-06 | Mediatek Inc. | Method and apparatus for line buffer reduction for video processing |
US8995523B2 (en) * | 2011-06-03 | 2015-03-31 | Qualcomm Incorporated | Memory efficient context modeling |
CN106851319B (zh) | 2011-06-10 | 2020-06-19 | 寰发股份有限公司 | 推导方法及推导装置 |
EP4404558A3 (en) | 2011-06-23 | 2024-10-23 | Sun Patent Trust | Image decoding device, image encoding device |
WO2012176465A1 (ja) | 2011-06-24 | 2012-12-27 | パナソニック株式会社 | 画像復号方法、画像符号化方法、画像復号装置、画像符号化装置及び画像符号化復号装置 |
CA2830046C (en) | 2011-06-24 | 2018-09-04 | Panasonic Corporation | Image decoding method, image coding method, image decoding apparatus, image coding apparatus, and image coding and decoding apparatus |
MY169636A (en) | 2011-06-27 | 2019-04-24 | Sun Patent Trust | Image decoding method, image coding method, image decoding apparatus, image coding apparatus, and image coding and decoding apparatus |
AU2012277215B2 (en) | 2011-06-28 | 2016-07-07 | Sun Patent Trust | Image decoding method, image coding method, image decoding apparatus, image coding apparatus, and image coding and decoding apparatus |
WO2013001767A1 (ja) | 2011-06-29 | 2013-01-03 | パナソニック株式会社 | 画像復号方法、画像符号化方法、画像復号装置、画像符号化装置及び画像符号化復号装置 |
RU2597473C2 (ru) | 2011-06-30 | 2016-09-10 | Сан Пэтент Траст | Способ декодирования, способ кодирования, устройство декодирования, устройство кодирования, и устройство кодирования и декодирования |
KR102060619B1 (ko) | 2011-06-30 | 2019-12-30 | 선 페이턴트 트러스트 | 화상 복호 방법, 화상 부호화 방법, 화상 복호 장치, 화상 부호화 장치 및 화상 부호화 복호 장치 |
US20130003858A1 (en) | 2011-06-30 | 2013-01-03 | Vivienne Sze | Simplified Context Selection For Entropy Coding of Transform Coefficient Syntax Elements |
MY193609A (en) | 2011-07-01 | 2022-10-20 | Samsung Electronics Co Ltd | Method and apparatus for entropy encoding using hierarchical data unit, and method and apparatus for decoding |
CN106851295B (zh) | 2011-07-11 | 2019-10-18 | 太阳专利托管公司 | 编码方法及编码装置 |
US8804816B2 (en) | 2011-08-30 | 2014-08-12 | Microsoft Corporation | Video encoding enhancements |
US20130188741A1 (en) | 2012-01-21 | 2013-07-25 | General Instrument Corporation | Devices and methods for sample adaptive offset coding and/or selection of band offset parameters |
BR122019022458B1 (pt) | 2012-06-11 | 2021-10-05 | Samsung Electronics Co., Ltd | Método decodificador de vídeo |
-
2012
- 2012-07-06 CN CN201710181459.XA patent/CN106851295B/zh active Active
- 2012-07-06 RU RU2016144371A patent/RU2714371C2/ru active
- 2012-07-06 WO PCT/JP2012/004407 patent/WO2013008438A1/ja active Application Filing
- 2012-07-06 MX MX2013013941A patent/MX2013013941A/es active IP Right Grant
- 2012-07-06 ES ES12811252T patent/ES2784552T3/es active Active
- 2012-07-06 RU RU2013154106/08A patent/RU2604680C2/ru active
- 2012-07-06 KR KR1020207024349A patent/KR102271116B1/ko active IP Right Grant
- 2012-07-06 CN CN201710181456.6A patent/CN107087185B/zh active Active
- 2012-07-06 EP EP12811252.1A patent/EP2733941B1/en active Active
- 2012-07-06 BR BR112013031540-7A patent/BR112013031540B1/pt active IP Right Grant
- 2012-07-06 CN CN201280028018.1A patent/CN103765885B/zh active Active
- 2012-07-06 CA CA2838575A patent/CA2838575C/en active Active
- 2012-07-06 HU HUE12811252A patent/HUE049138T2/hu unknown
- 2012-07-06 KR KR1020217019620A patent/KR102404121B1/ko active IP Right Grant
- 2012-07-06 KR KR1020137032467A patent/KR20140034209A/ko active Application Filing
- 2012-07-06 AU AU2012281918A patent/AU2012281918C1/en active Active
- 2012-07-06 JP JP2013523819A patent/JPWO2013008438A1/ja active Pending
- 2012-07-09 US US13/544,061 patent/US9462282B2/en active Active
- 2012-07-10 TW TW101124753A patent/TWI587687B/zh active
- 2012-07-10 AR ARP120102497A patent/AR087117A1/es active IP Right Grant
-
2016
- 2016-08-23 US US15/244,336 patent/US9854257B2/en active Active
- 2016-12-07 JP JP2016237521A patent/JP2017073816A/ja active Pending
-
2017
- 2017-10-30 US US15/797,155 patent/US10154270B2/en active Active
-
2018
- 2018-07-11 JP JP2018131711A patent/JP6660602B2/ja active Active
- 2018-10-26 US US16/171,961 patent/US10575003B2/en active Active
-
2020
- 2020-01-16 US US16/744,396 patent/US11343518B2/en active Active
-
2022
- 2022-04-21 US US17/725,771 patent/US11770544B2/en active Active
-
2023
- 2023-08-14 US US18/233,376 patent/US12108059B2/en active Active
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018070555A1 (ko) * | 2016-10-10 | 2018-04-19 | 디지털인사이트주식회사 | 다양한 블록 분할 구조를 결합하여 사용하는 비디오 코딩 방법 및 장치 |
US10904525B2 (en) | 2016-10-10 | 2021-01-26 | Intellectual Discovery Co., Ltd. | Video coding method and apparatus utilizing combination of diverse block partitioning structures |
US11589045B2 (en) | 2016-10-10 | 2023-02-21 | Intellectual Discovery Co., Ltd. | Video coding method and apparatus utilizing combination of diverse block partitioning structures |
WO2018128222A1 (ko) * | 2017-01-03 | 2018-07-12 | 엘지전자 주식회사 | 영상 코딩 시스템에서 영상 디코딩 방법 및 장치 |
WO2019009584A1 (ko) * | 2017-07-04 | 2019-01-10 | 삼성전자 주식회사 | 다중 코어 변환에 의한 비디오 복호화 방법 및 장치, 다중 코어 변환에 의한 비디오 부호화 방법 및 장치 |
US11589066B2 (en) | 2017-07-04 | 2023-02-21 | Samsung Electronics Co., Ltd. | Video decoding method and apparatus using multi-core transform, and video encoding method and apparatus using multi-core transform |
US12003750B2 (en) | 2017-07-04 | 2024-06-04 | Samsung Electronics Co., Ltd. | Video decoding method and apparatus using multi-core transform, and video encoding method and apparatus using multi-core transform |
WO2020180153A1 (ko) * | 2019-03-06 | 2020-09-10 | 엘지전자 주식회사 | 인터 예측을 위한 비디오 신호의 처리 방법 및 장치 |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6660602B2 (ja) | 復号方法及び復号装置 | |
JP6631893B2 (ja) | 符号化復号方法及び符号化復号装置 | |
JP6650604B2 (ja) | 復号方法及び復号装置 | |
KR102060621B1 (ko) | 화상 복호 방법, 화상 부호화 방법, 화상 복호 장치, 화상 부호화 장치 및 화상 부호화 복호 장치 | |
KR102062283B1 (ko) | 화상 복호 방법, 화상 부호화 방법, 화상 복호 장치, 화상 부호화 장치 및 화상 부호화 복호 장치 | |
KR102008030B1 (ko) | 화상 복호 방법, 화상 부호화 방법, 화상 복호 장치, 화상 부호화 장치 및 화상 부호화 복호 장치 | |
KR102006032B1 (ko) | 화상 복호 방법, 화상 부호화 방법, 화상 복호 장치, 화상 부호화 장치 및 화상 부호화 복호 장치 | |
KR102067683B1 (ko) | 화상 복호 방법, 화상 부호화 방법, 화상 복호 장치, 화상 부호화 장치 및 화상 부호화 복호 장치 | |
KR102060619B1 (ko) | 화상 복호 방법, 화상 부호화 방법, 화상 복호 장치, 화상 부호화 장치 및 화상 부호화 복호 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
N231 | Notification of change of applicant | ||
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application | ||
E601 | Decision to refuse application | ||
E801 | Decision on dismissal of amendment | ||
A107 | Divisional application of patent |