KR20140026207A - Recombinant micro-organisms for producing hexanol and the method for producing hexanol by using thereof - Google Patents
Recombinant micro-organisms for producing hexanol and the method for producing hexanol by using thereof Download PDFInfo
- Publication number
- KR20140026207A KR20140026207A KR1020120093322A KR20120093322A KR20140026207A KR 20140026207 A KR20140026207 A KR 20140026207A KR 1020120093322 A KR1020120093322 A KR 1020120093322A KR 20120093322 A KR20120093322 A KR 20120093322A KR 20140026207 A KR20140026207 A KR 20140026207A
- Authority
- KR
- South Korea
- Prior art keywords
- hexanol
- microorganism
- coa
- ketothiolase
- beta
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0071—Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/80—Vectors or expression systems specially adapted for eukaryotic hosts for fungi
- C12N15/81—Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
- C12N15/815—Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts for yeasts other than Saccharomyces
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/02—Preparation of oxygen-containing organic compounds containing a hydroxy group
- C12P7/04—Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y101/00—Oxidoreductases acting on the CH-OH group of donors (1.1)
- C12Y101/01—Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
- C12Y101/01157—3-Hydroxybutyryl-CoA dehydrogenase (1.1.1.157)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y103/00—Oxidoreductases acting on the CH-CH group of donors (1.3)
- C12Y103/01—Oxidoreductases acting on the CH-CH group of donors (1.3) with NAD+ or NADP+ as acceptor (1.3.1)
- C12Y103/01038—Trans-2-enoyl-CoA reductase (NADPH) (1.3.1.38)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y203/00—Acyltransferases (2.3)
- C12Y203/01—Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
- C12Y203/01009—Acetyl-CoA C-acetyltransferase (2.3.1.9)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y203/00—Acyltransferases (2.3)
- C12Y203/01—Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
- C12Y203/01016—Acetyl-CoA C-acyltransferase (2.3.1.16)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y402/00—Carbon-oxygen lyases (4.2)
- C12Y402/01—Hydro-lyases (4.2.1)
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Mycology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- General Chemical & Material Sciences (AREA)
- Plant Pathology (AREA)
- Medicinal Chemistry (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
본 발명은 시토크롬 p450 단일산화제(cytochrome P450 monooxygenase)의 활성이 강화된 헥산올(hexanol) 생산용 미생물 및 상기 미생물 제조방법에 관한 것이다. 또한, 본 발명은 상기 미생물을 배양하는 단계; 및 상기 배양물 또는 미생물로부터 헥산올을 회수하는 단계를 포함하는, 헥산올 제조방법 및 이를 통해 제조된 헥산올에 관한 것이다.
The present invention relates to a microorganism for producing hexanol with enhanced activity of cytochrome p450 monooxygenase and a method for producing the microorganism. In addition, the present invention comprises the steps of culturing the microorganism; And it relates to a hexanol production method and hexanol prepared through the step of recovering hexanol from the culture or microorganism.
인류의 오랜 에너지원인 화석에너지원이 고갈됨에 따라, 원유의 지속적인 가격 상승과 가채량의 한계를 극복하고, 석유화학제품 제조 및 사용으로 인한 이산화탄소 방출과 환경오염 방지를 위해 기존의 석유화학기반 산업에서 바이오매스를 이용하려는 바이오 기반 경제로의 이동이 활발히 진행되고 있다.As fossil energy sources, the long-time energy sources of mankind, have been depleted, existing petrochemical-based industries have been used to overcome the limits of continuous price rises and saturation of crude oil, and to prevent carbon dioxide emissions and environmental pollution from petrochemical production and use. There is an active shift towards bio-based economies that want to use biomass.
또한, 석유유래 제품의 사용으로 인한 이산화탄소 배출량이 계속 증가함에 따라서 이의 감축을 목표로 했던 교토의정서의 발효에 따라 많은 국가들이 이산화탄소 배출량 감소를 위한 정책수립과 기술발전을 모색하고 있으며, 바이오 화학 산업과 이를 이용한 바이오 화학 제품이 하나의 해결책 방안으로 인식되어 개발 및 상업화가 진행중이다.In addition, with the entry into force of the Kyoto Protocol, which aims to reduce carbon dioxide emissions from the use of petroleum-derived products, many countries are seeking to develop policies and technologies to reduce carbon dioxide emissions. Biochemical products using this are recognized as a solution and are being developed and commercialized.
이 중 바이오 매스는 재생가능한 유기물질로 식물, 동물, 미생물 모두를 포함하며, 여기에는 작물과 나무, 농산품과 사료작물, 농업 및 산림 폐기물, 조류(Algae), 도시 폐기물 등에서 추출된 재생가능한 유기물질이 포함된다. 바이오 매스는 기존 석유 유래 물질과 달리 화석 연료에 비의존적이며, 다양한 공급원을 포함하고, 친환경적이라는 장점이 있다.Among them, biomass is a renewable organic substance, which includes plants, animals, and microorganisms, which are renewable organic substances extracted from crops and trees, agricultural products and feed crops, agricultural and forest waste, algae, and municipal waste. This includes. Unlike conventional petroleum-derived materials, biomass has the advantage of being independent of fossil fuels, containing a variety of sources, and being environmentally friendly.
이러한 바이오 매스를 원료로 생명공학 기술을 이용하여 바이오 연료와 바이오 기반 화학제품을 생산하는 기술이 연구 개발되고 있으며, 바이오 연료 분야에서는 수송연료 대체를 위한 바이오에탄올, 바이오디젤, 바이오부탄올 등의 바이오 연료가, 바이오케미컬분야에서는 PLA, 1,3-PDO, 바이오 에틸렌과 부타디엔과 같은 C2~C4계 빌딩블럭 등을 이용한 다양한 바이오플라스틱 및 바이오케미컬이 연구 개발 및 생산되어 출시되고 있다.
As a raw material, biotechnology and bio-based chemicals are being researched and developed using biotechnology as a raw material. In the biofuel field, biofuels such as bioethanol, biodiesel, and biobutanol for transport fuel replacement In the biochemical field, various bioplastics and biochemicals using PLA, 1,3-PDO, C2 ~ C4 building blocks such as bioethylene and butadiene have been researched, developed and produced.
특히, 바이오 플라스틱은 대사-발효 공정으로 이용하여 얻어지는 C3, C4, C5, C6 등의 플라스틱 단량체 및 이로부터 화학적 또는 생물학적 방법에 의해 생산되는, 인체 및 화학산업용 고분자물질을 통칭하는 것이다. 식물에서 유래되거나 생분해 가능한 바이오 플라스틱 산업은 소비자의 친환경 제품에 대한 선호도 증가, 난분해성 플라스틱에 대한 사용 규제 증대, 석유 기반 제품의 가격 상승 등으로 인해 시장 경쟁력이 향상됨에 따라 빠른 성장율을 보이고 있다. 이에 따라, 바이오 플라스틱의 2013년 세계수요는 90만톤, 가격으로는 26억 달러에 이를 것으로 예상되고 있으며, 2015년에는 전체 플라스틱 시장의 1.5-4.8%를 차지하고 시장규모가 400만~1,250만 톤에 달할 것으로 예상된다.
In particular, bioplastics collectively refers to plastic monomers such as C3, C4, C5, C6 obtained by using metabolic-fermentation processes, and polymers for human body and chemical industry, which are produced by chemical or biological methods therefrom. The plant-derived or biodegradable bioplastics industry is growing at a rapid pace as market competitiveness improves with increasing consumer preference for environmentally friendly products, increased regulations on the use of hardly degradable plastics, and rising prices for petroleum-based products. Accordingly, the global demand for bioplastics in 2013 is expected to reach 900,000 tons, with a price of $ 2.6 billion.In 2015, it accounts for 1.5-4.8% of the entire plastic market, and the market size ranges from 4 million to 12.5 million tons. It is expected to reach.
현재 C3, C4, C5, C6 단량체를 기반으로 한 바이오 플라스틱 생산기술은 기술적 성숙도가 매우 높은 상태이나, C5, C6 단량체 생산기술은 현재 기술적으로 낮은 단계에 머물러 있다. 특히, C3나 C4 단량체를 이용한 바이오 플라스틱은 이미 산업화가 진행중이나 C5 및 C6 단량체를 이용한 바이오 플라스틱은 단량체 생산기술의 미비로 인해 산업화에 난항을 겪고 있었다. 따라서, C5 및 C6 단량체 생산기술 및 이를 이용한 바이오 플라스틱 생산 기술은 바이오 플라스틱 산업에서 추후 주력 발달 분야로 주목받고 있으며 이를 위해 효율적인 C5 및 C6 단량체 생산기술이 필요한 실정이다.
Currently, bioplastics production technology based on C3, C4, C5, and C6 monomers has a very high level of technical maturity, but C5 and C6 monomers are currently at a technically low level. In particular, bioplastics using C3 or C4 monomers are already being industrialized, but bioplastics using C5 and C6 monomers are having difficulty in industrialization due to the lack of monomer production technology. Therefore, C5 and C6 monomer production technology and bioplastics production technology using the same have attracted attention as the main development field in the bioplastics industry in the future, for this purpose, efficient C5 and C6 monomer production technology is required.
이러한 배경하에서, 본 발명자들은 바이오 플라스틱의 전구체로 사용되는 C6 단량체인 헥산올(hexanol)을 보다 고수율로 생합성할 수 있는 균주를 개발하기 위하여 예의 연구 노력한 결과, 시토크롬 p450 단일산화제(cytochrome P450 monooxygenase)를 발현하는 유전자를 도입한 균주에서 헥산올이 높은 수율로 수득되는 것을 확인하였으며, 이에 추가로 아세틸 CoA 아세틸전이효소(acetyl-CoA acetyltransferase), 베타-케토티올라제 Ⅱ(ß-Ketothiolase Ⅱ), 크로토네이즈(Crotonase), 3-히드록시부티릴-CoA 탈수소효소(3-hydroxybutyryl-CoA dehydrogenase), 알코올 탈수소효소(alcohol dehydrogenase) 및 트랜스-이노일-CoA 환원효소(trans-enoyl-CoA reductase)를 발현하는 유전자를 도입시켜 중간 산물인 베타-케토헥사노일-CoA의 생산을 증가시킨 균주에서 최종 산물인 헥산올이 높은 수율로 수득되는 것을 확인하여, 본 발명을 완성하였다.
Under these backgrounds, the present inventors have diligently researched to develop a strain capable of biosynthesizing a higher yield of hexanol, a C6 monomer used as a precursor of bioplastics, and thus, cytochrome P450 monooxygenase. It was confirmed that hexanol was obtained in a high yield in the strain in which the gene was expressed. In addition, acetyl-CoA acetyltransferase, beta-ketothiolase Ⅱ (ß-Ketothiolase II), Crotonase, 3-hydroxybutyryl-CoA dehydrogenase, alcohol dehydrogenase and trans-enoyl-CoA reductase It was confirmed that the final product hexanol was obtained in high yield in a strain that increased the production of beta-ketohexanoyl-CoA by introducing a gene expressing W, thereby completing the present invention.
본 발명의 하나의 목적은 시토크롬 p450 단일산화제(cytochrome P450 monooxygenase)의 활성이 강화된 헥산올(hexanol) 생산용 미생물을 제공하는 것이다.One object of the present invention is to provide a microorganism for producing hexanol with enhanced activity of cytochrome P450 monooxygenase.
본 발명의 다른 목적은 시토크롬 p450 단일산화제를 발현하는 벡터를 미생물 내로 도입하는 단계를 포함하는, 상기 미생물의 제조방법을 제공하는 것이다.Another object of the present invention is to provide a method for preparing the microorganism, comprising introducing a vector expressing a cytochrome p450 monooxidant into the microorganism.
본 발명의 또 다른 목적은 미생물을 배양하는 단계; 및 상기 배양물 또는 미생물로부터 헥산올을 회수하는 단계를 포함하는, 헥산올 제조방법을 제공하는 것이다.Another object of the present invention is to culture the microorganism; And it provides a method for producing hexanol, comprising the step of recovering hexanol from the culture or microorganism.
본 발명의 또 다른 목적은 상기 헥산올 제조방법에 의해 제조된 헥산올을 제공하는 것이다.
Still another object of the present invention is to provide a hexanol prepared by the hexanol production method.
상기 목적을 달성하기 위한 하나의 양태로서, 본 발명은 시토크롬 p450 단일산화제(cytochrome P450 monooxygenase)의 활성이 강화된 것을 특징으로 하는 헥산올(hexanol) 생산용 미생물을 제공한다.
As one embodiment for achieving the above object, the present invention provides a microorganism for hexanol (hexanol) production, characterized in that the activity of cytochrome P450 monooxygenase is enhanced.
본 발명의 용어, "시토크롬 p450 단일산화제(cytochrome P450 monooxygenase, CYP)"는 대부분의 약물이나 환경물질 등의 다양한 외인성 물질 또는 스테로이드나 지질 등의 내인성 물질에 대해 산화적 대사 작용을 수행하는 생명체에 필수적인 촉매효소이다. 상기 효소는 헴(heme)을 보결 원자단(prosthetic group)으로 가지고 있어 철 이온이 착염될 수 있는 효소이다. As used herein, the term "cytochrome P450 monooxygenase (CYP)" is essential for an organism that performs oxidative metabolism to various exogenous substances such as most drugs or environmental substances or endogenous substances such as steroids or lipids. It is a catalytic enzyme. The enzyme has a heme (prosthetic group) as a prosthetic group (iron ions can be complexed enzyme).
본 발명과 관련되어 시토크롬 p450 단일산화제는 베타-케토헥사노일-CoA(β-ketohexanoyl-CoA)를 산화시키는 과정을 통해 헥산올(hexanol)을 생성하는 기능을 한다. 이의 서열은 공지의 데이터 베이스 등에서 얻을 수 있으며, 그 예로 NCBI의 GenBank Accession No.AY505118일 수 있으나, 이에 제한되지는 않는다. 상기 CYP를 코딩하는 아미노산은 상기 서열과 70% 이상, 바람직하게는 80% 이상, 더욱 바람직하게는 90% 이상, 보다 더욱 바람직하게는 95% 이상, 더욱더 바람직하게는 98% 이상, 가장 바람직하게는 99% 이상의 유사성을 나타내는 아미노산 서열로서 실질적으로 베타-케토헥사노일-CoA(β-ketohexanoyl-CoA)를 산화시키는 활성을 갖는 단백질이라면 제한없이 포함하며, 또한 이러한 유사성을 갖는 서열로서 실질적으로 시토크롬 p450 단일산화제와 동일하거나 상응하는 생물학적 활성을 갖는 아미노산 서열이라면, 일부 서열이 결실, 변형, 치환, 또는 부가된 아미노산 서열을 갖는 단백질 변이체도 본 발명의 범위 내에 포함됨은 자명하다.
Cytochrome p450 monooxidant in the context of the present invention functions to produce hexanol through the process of oxidizing beta-ketohexanoyl-CoA (β-ketohexanoyl-CoA). The sequence thereof may be obtained from a known database, for example, but may be, but is not limited to, GenBank Accession No.AY505118 of NCBI. The amino acid encoding the CYP is at least 70%, preferably at least 80%, more preferably at least 90%, even more preferably at least 95%, even more preferably at least 98%, most preferably An amino acid sequence showing at least 99% similarity includes any protein having an activity of substantially oxidizing beta-ketohexanoyl-CoA (beta-ketohexanoyl-CoA), without limitation, and as a sequence having such similarity, substantially cytochrome p450 single If it is an amino acid sequence having the same or corresponding biological activity as the oxidizing agent, it is obvious that protein variants having amino acid sequences in which some sequences are deleted, modified, substituted, or added are also included within the scope of the present invention.
본 발명의 한 실시예에서는 클루이베로마이세스 막시아누스(Kluyveromyces marxianus, K. marxianus) 균주에 서열번호 9의 염기서열을 갖는 시토크롬 p450 단일산화제(CYP)를 도입한 재조합 균주를 배양하여 hexanol 생성을 확인하였다(도 5a, 5b 및 5c). 특히, 도 5a에서 볼 수 있듯이, 천연형 K. marxianus 균주에서는 헥산올이 전혀 생산되지 않는 것에 비해, CYP 유전자를 도입한 균주에서는 4 시간 만에 190 mg/L의 헥산올이 생성되는 것을 확인하였다.
In one embodiment of the present invention, hexanol production is obtained by culturing a recombinant strain in which cytochrome p450 monooxidant (CYP) having a nucleotide sequence of SEQ ID NO: 9 is introduced into a Kluyveromyces marxianus ( K. marxianus ) strain. It was confirmed (FIGS. 5A, 5B and 5C). In particular, as shown in Figure 5a, it was confirmed that in the strain of the CYP gene produced 190 mg / L hexanol in 4 hours, compared to the hexanol is not produced in the natural type K. marxianus strain .
본 발명의 용어, "활성"은 효소가 가진 기능을 의미하며, 본 발명에서는 생체 내(in vivo)에서 효소들이 본래 가지고 있는 기능 또는 in vitro 상에서 나타내는 기능을 모두 포함한다. 이에 따라, 본 발명에서 "활성 강화"는 해당 효소들의 활성이 기존보다 향상되는 것을 의미하며, 이는 반응속도 측면, 화학 평형 측면, 반응 에너지 측면 등 어떤 일 측면에서라도 효소들의 활성이 유익하게 변화되는 것을 의미한다.As used herein, the term "activity" means a function of an enzyme, and the present invention includes all functions that are inherent in enzymes in vivo or exhibited in vitro. Accordingly, in the present invention, "enhancing activity" means that the activity of the enzymes is improved than before, which means that the activity of the enzymes is changed beneficially in any one aspect, such as reaction rate, chemical equilibrium, and reaction energy. it means.
본 발명에서 상기 활성을 강화(또는 증가)시키는 방법은 당해 분야에서 잘 알려진 다양한 방법의 적용이 가능하다. 그 방법의 예는, 이로 제한되는 것은 아니지만, 특정 효소를 코딩하는 염기서열을 포함하는 폴리뉴클레오타이드를 추가로 염색체에 삽입하는 방법 또는 상기 폴리뉴클레오타이드를 벡터 시스템에 도입하는 방법 등에 의하여 특정 효소를 코딩하는 염기서열의 카피수를 증가시키는 방법, 강한 프로모터로 교체하는 방법, 프로모터에 변이를 도입하는 방법, 및 유전자 변이에 의한 방법 등이 있다. 하나의 구체적 실시에서, 에스케리아속 또는 클루이베로마이세스속 미생물에서 상기 효소들의 활성을 강화시키기 위해 효소를 암호화하는 유전자를 벡터에 도입하고 미생물을 형질전환시킴으로써 상기 유전자의 카피수를 증가시키는 방법을 사용할 수 있다.
In the present invention, a method of enhancing (or increasing) the activity may be applied to various methods well known in the art. Examples of the method include, but are not limited to, encoding a specific enzyme by a method of additionally inserting a polynucleotide comprising a nucleotide sequence encoding a specific enzyme into a chromosome or introducing the polynucleotide into a vector system. There are a method of increasing the number of copies of the nucleotide sequence, a method of replacing with a strong promoter, a method of introducing a mutation into a promoter, and a method by genetic variation. In one specific embodiment, a method of increasing the copy number of a gene by introducing a gene encoding the enzyme into a vector and transforming the microorganism in order to enhance the activity of the enzymes in an Escherichia or Cl. Can be used.
본 발명의 용어, "헥산올(hexanol)"은 탄소수가 6개인 지방족 포화 알코올을 의미하며, C6H13OH의 시성식을 가지며, 17 가지의 이성질체를 포함한다. 알코올기(OH)의 위치에 따라 n-헥산올의 n이 결정된다. 본 발명에서는 바람직하게는 상기 헥산올은 1-헥산올일 수 있다. 1-헥산올은 CH3(CH2)5OH의 구조를 갖는 알코올로, 이는 바이오 플라스틱의 제조에 있어서 전구체로 사용될 수 있다. 즉, 본 발명의 미생물에 의해 제조된 헥산올은 바이오 플라스틱의 전구체로 이용되며, 바이오, 화학적 방법에 의해 바이오 플라스틱을 대량으로 제조할 수 있는 기반이 된다. As used herein, the term "hexanol" refers to an aliphatic saturated alcohol having 6 carbon atoms, having a formula of C 6 H 13 OH, and containing 17 isomers. N of n-hexanol is determined by the position of alcohol group (OH). In the present invention, preferably, the hexanol may be 1-hexanol. 1-hexanol is an alcohol having a structure of CH 3 (CH 2 ) 5 OH, which can be used as a precursor in the manufacture of bioplastics. That is, hexanol prepared by the microorganism of the present invention is used as a precursor of bioplastics, and becomes a basis for producing bioplastics in large quantities by bio and chemical methods.
본 발명의 용어, "미생물"은 조류(algae), 세균류(bacteria), 원생동물류(protozoa), 사상균류(fungi), 효모류(yeast)와 한계적 생물이라고 할 수 있는 바이러스(virus) 등이 이에 속한다. 최소 생활단위임에 따라 생명을 유지하기 위한 최소한의 대사과정을 수행하고 있으며, 이러한 대사과정에 유전공학적인 방법을 이용하여 특정 대사과정을 촉진 또는 저해하거나 하는 방법으로 원하는 방향으로 조절할 수 있다. As used herein, the term "microorganism" includes algae, bacteria, protozoa, fungi, yeast and marginal organisms. Belong. As it is a minimum living unit, it performs minimal metabolic processes to maintain life, and it can be adjusted in a desired direction by promoting or inhibiting specific metabolic processes by using genetic engineering methods for these metabolic processes.
본 발명에서 상기 미생물은 바람직하게는 효모(yeast)일 수 있다. 효모(yeast)는 각종 발효에 이용되는 미생물로 가장 간단한 형태의 진핵생물이다. 바람직하게는 상기 효모는 사카로마이세스(Saccharomyces)속, 칸디다(Candida)속, 클루이베로마이세스(Kluyveromyces)속, 또는 토룰라스포라(Torulaspora)속일 수 있으며, 가장 바람직하게는 클루이베로마이세스 막시아누스(Klluyveromyces marxianus)일 수 있다.In the present invention, the microorganism may be yeast. Yeast is a microorganism used in various fermentations and is the simplest form of eukaryotes. Preferably, the yeast may be of the genus Saccharomyces, Candida, Kluyveromyces, or Torulaspora, and most preferably the genus Cluiveromyces membrane. May be Klluyveromyces marxianus.
본 발명에서 클루이베로마이세스 막시아누스는 다양한 탄소원을 사용할 수 있는 능력, 고온에서의 성장 능력, 빠른 성장율 및 과량의 당에 노출되었을 때 에탄올을 생산하는 경향이 적은(크렙트리 음성형) 특성을 갖는 효모 균주이다. 일반적인 효모 균주와 달리 클루이베로마이세스 막시아누스는 많은 균주가 보고되어 있다. In the present invention, Kluyveromyces maximanus is characterized by its ability to use various carbon sources, its ability to grow at high temperatures, its rapid growth rate, and its low tendency to produce ethanol when exposed to excess sugar (creptree negative type). Having yeast strain. Unlike common yeast strains, many strains have been reported.
본 발명에서, 상기 미생물은 기탁번호 KACC 93152B인 것인 미생물일 수 있다.
In the present invention, the microorganism may be a microorganism having the accession number KACC 93152B.
본 발명의 상기 헥산올(hexanol) 생산용 미생물은 아세틸 CoA 아세틸전이효소(acetyl-CoA acetyltransferase, AtoB), 베타-케토티올라제 Ⅰ(ß-Ketothiolase Ⅰ, phbA), 베타-케토티올라제 Ⅱ(ß-Ketothiolase Ⅱ, BktB), 크로토네이즈(Crotonase, Crt), 3-히드록시부티릴-CoA 탈수소효소(3-hydroxybutyryl-CoA dehydrogenase, Hbd), 및 트랜스-이노일-CoA 환원효소(trans-enoyl-CoA reductase, Ter)의 활성이 추가로 강화된 것일 수 있다. The microorganisms for hexanol production of the present invention are acetyl CoA acetyltransferase (AtoB), beta-ketothiolase I (ß-Ketothiolase I, phbA), beta-ketothiolase II (ß-Ketothiolase II, BktB), Crotonase (Crt), 3-hydroxybutyryl-CoA dehydrogenase (3-hydroxybutyryl-CoA dehydrogenase (Hbd), and trans-inoyl-CoA reductase (trans) -enoyl-CoA reductase, Ter) activity may be further enhanced.
본 발명의 용어, "아세틸 CoA 아세틸전이효소(acetyl-CoA acetyltransferase)"는 아세틸 CoA(Acetyl-coenzyme A)에 아세틸기를 전이시켜 acetyl-CoA 두 개로부터 acetoacetyl-CoA를 생성하는 효소를 의미한다. 구체적으로는 미토콘드리아에 존재하면서 케톤 bodies의 형성과 분해에 작용하며, isoleucine의 적절한 대사과정에 필요한 효소이다(NCBI Accession No. NC_012971.2)As used herein, the term "acetyl-CoA acetyltransferase" refers to an enzyme that generates acetoacetyl-CoA from two acetyl-CoAs by transferring an acetyl group to acetyl CoA (acetyl-coenzyme A). Specifically, it exists in the mitochondria and acts in the formation and degradation of ketone bodies and is an enzyme necessary for proper metabolism of isoleucine (NCBI Accession No. NC_012971.2)
본 발명의 용어, "베타-케토티올라제 Ⅰ(ß-Ketothiolase Ⅰ)" 및 "베타-케토티올라제 Ⅱ(ß-Ketothiolase Ⅱ)"는 탄소수 C2 짜리의 CoA 화합물을 중합시켜(condensation) 이를 탄소수 C4 또는 C6 등의 화합물로 생산하는 효소를 뜻한다. 본 발명에서 β-ketothiolaseⅠ(phbA)과 Ⅱ(bktB)는 대사과정의 중간 대사물질인 butyryl-CoA에 두 개의 acetyl-CoA가 추가하여 β-ketohexanoyl-CoA(C6)를 생산하는 효소를 의미한다(NCBI Accession No. AF026544). As used herein, the terms "beta-ketothiolase I" and "beta-ketothiolase II" are condensation of a CoA compound having C2 carbon atoms. It means an enzyme produced by a compound such as C4 or C6. In the present invention, β-ketothiolase I (phbA) and II (bktB) refer to an enzyme that produces β-ketohexanoyl-CoA (C6) by adding two acetyl-CoAs to butyryl-CoA, an intermediate metabolite of metabolism ( NCBI Accession No. AF026544).
본 발명의 용어, "크로토네이즈(Crotonase)"는 다른 표현으로는 이노일-CoA 수화효소(enoyl-CoA hydratase)로 물분자를 enoyl-CoA 화합물에 결합시키는 효소를 의미하며, 가역적으로 hydroxy 그룹을 가진 CoA 화합물에서 물분자를 분해해서 enoyl-coA 화합물을 생성하는 작용도 매개하는 효소이다. 본 발명에서는 3-hydroxybutyryl-CoA에 작용하여 crotonyl-CoA를 생성하는 방향으로 이용된다 (NCBI Accession No. U17110.1). As used herein, the term "Crotonase" refers to an enzyme that binds a water molecule to an enoyl-CoA compound by, in other words, an enoyl-CoA hydratase, and reversibly a hydroxy group. It is an enzyme that also mediates the action of decomposing water molecules in CoA compounds that produce enoyl-coA compounds. In the present invention, it is used in the direction of producing crotonyl-CoA by acting on 3-hydroxybutyryl-CoA (NCBI Accession No. U17110.1).
본 발명의 용어, "3-히드록시부티릴-CoA 탈수소효소(3-hydroxybutyryl-CoA dehydrogenase)"는 3-히드록시부티릴-CoA에서 수소를 이탈시키는 작용을 매개하며, 이는 일종의 산화반응으로 해석될 수 있다. 다만, 본 반응도 가역적인 반응으로 되려 Acetoacetyl-CoA에 수소를 부착시켜 3-히드록시부티릴-CoA를 생성하는 일종의 환원작용도 매개할 수 있다. 본 발명에서 3-히드록시부티릴-CoA 탈수소효소는 아세토아세틸-CoA에 수소를 결합시켜 3-히드록시부티릴-CoA를 생성하는 방향으로 이용된다(NCBI Accession No. P52041). As used herein, the term "3-hydroxybutyryl-CoA dehydrogenase" mediates the release of hydrogen from 3-hydroxybutyryl-CoA, which is interpreted as a kind of oxidation reaction. Can be. However, this reaction can also be a reversible reaction, which can also mediate a kind of reductive action to produce 3-hydroxybutyryl-CoA by attaching hydrogen to Acetoacetyl-CoA. In the present invention, 3-hydroxybutyryl-CoA dehydrogenase is used in the direction of generating 3-hydroxybutyryl-CoA by binding hydrogen to acetoacetyl-CoA (NCBI Accession No. P52041).
본 발명의 용어, "트랜스-이노일-CoA 환원효소(trans-enoyl-CoA reductase)"는 트랜스-이노일-CoA에 수소를 부착시켜 환원시키는 효소를 의미한다. 본 발명에서는 crotonyl-CoA에 두 개의 수소를 부착시켜 부티릴-CoA를 생성하는 작용을 하며, 이는 비가역적인 반응이다(NCBI Accession No. Q73Q47).
As used herein, the term “trans-enoyl-CoA reductase” refers to an enzyme that reduces hydrogen by attaching hydrogen to trans-inoyl-CoA. In the present invention, two hydrogens are attached to crotonyl-CoA to produce butyryl-CoA, which is an irreversible reaction (NCBI Accession No. Q73Q47).
본 발명의 상기 헥산올(hexanol) 생산용 미생물은 알코올 탈수소효소(alcohol dehydrogenase, AdhE2)의 활성이 추가로 강화된 것일 수 있다.The microorganism for producing hexanol of the present invention may be one in which the activity of alcohol dehydrogenase (AdhE2) is further enhanced.
본 발명의 용어, "알코올 탈수소효소(alcohol dehydrogenase)"는 알코올에서 수소를 이탈시키는 작용을 매개하며, 이는 일종의 산화반응으로 해석될 수 있다. 다만, 본 효소에 의한 상기 반응은 가역적인 반응이다. 본 발명에서 알코올 탈수소효소는 1-Butanol에서 수소를 이탈시켜 butyraldehyde를 생성하는 작용과, butyraldehyde에서 수소를 이탈시켜 butyryl-CoA를 생성하는 방향으로 이용된다(NCBI Accession No. ).The term "alcohol dehydrogenase" in the present invention mediates the action of hydrogen to desorb from alcohol, which can be interpreted as a kind of oxidation reaction. However, the reaction by this enzyme is a reversible reaction. In the present invention, the alcohol dehydrogenase is used to generate butyraldehyde by desorbing hydrogen from 1-Butanol and to generate butyryl-CoA by desorbing hydrogen from butyraldehyde (NCBI Accession No.).
본 발명에서, 상기 미생물은 바람직하게는 기탁번호 KACC 93154B인 것인 미생물일 수 있다.
In the present invention, the microorganism may be a microorganism that is preferably Accession Number KACC 93154B.
본 발명에서 상기 효소들의 유래는 바람직하게는 베타-케토티올라제 Ⅰ 및 베타-케토티올라제 Ⅱ는 랄스토니아 유트로파(Ralstonia eutropha) 유래이고; 아세틸 CoA 아세틸전이효소 및 티오에스테라제는 에스체리키아 콜라이(Escherichia coli)유래이며; 알코올 탈수소효소, 크로토네이즈 및 3-히드록시부티릴-CoA 탈수소효소는 클로스트리듐 아세토부틸리쿰(Clostridium acetobutylicum) 유래이고; 트랜스-이노일-CoA 환원효소는 트레포네마 덴터코울러(Treponema denticola) 유래이며; 시토크롬 p450 단일산화제는 로도코커스 루버(Rhodococus ruber)유래일 수 있으나, 상기 효소의 활성을 갖는 단백질이라면 제한없이 포함하며, 또한 실질적으로 상기 효소들과 동일하거나 상응하는 생물학적 활성을 갖는 아미노산 서열이라면, 일부 서열이 결실, 변형, 치환, 또는 부가된 아미노산 서열을 갖는 단백질 변이체도 본 발명의 범위 내에 포함됨은 자명하다.
In the present invention, the enzymes are preferably beta-ketothiolase I and beta-ketothiolase II derived from Ralstonia eutropha; Acetyl CoA acetyltransferase and thioesterase are derived from Escherichia coli; Alcohol dehydrogenase, crotonase and 3-hydroxybutyryl-CoA dehydrogenase are derived from Clostridium acetobutylicum; Trans-inoyl-CoA reductase is from Treponema denticola; Cytochrome p450 monooxidants may be derived from Rhodococus ruber, but include without limitation any protein having the activity of the enzyme, and some if the amino acid sequence having substantially the same or corresponding biological activity as the enzyme It is obvious that protein variants whose sequences have deleted, modified, substituted, or added amino acid sequences are also included within the scope of the present invention.
또 하나의 양태로서, 본 발명은 시토크롬 p450 단일산화제를 발현하는 벡터를 미생물 내로 도입하는 단계를 포함하는, 상기 미생물의 제조방법을 제공한다.As another aspect, the present invention provides a method for producing the microorganism, comprising introducing into the microorganism a vector expressing a cytochrome p450 monooxidant.
본 발명의 용어, "벡터"는 특정 유전자를 숙주세포 내로 전달하는 목적을 가진 모든 핵산분자가 될 수 있으며, 일반적으로는 자가복제서열, 게놈삽입서열, 파지 또는 뉴클레오티드 서열, 선형 또는 원형, 단일 또는 이중가닥의 DNA 혹은 RNA이다. 특히, 외래 유전자를 가지고 있으며 외래 유전자 외에 특정 숙주세포의 형질전환을 용이하게 하는 인자를 갖는 것일 수 있다. 일반적으로 벡터에는 적당한 유전자의 전사 및 번역을 지시하는 서열, 선택마커, 및 자가복제 또는 염색체 삽입을 허용하는 서열이 포함된다. 벡터의 구체적인 예로는, 플라스미드 벡터(pSE계, pBR계, pUC계,pBluscriptII계, pGEM계, pTZ계, pET계, pJSKM316GPD계)와 파지 또는 코스미드 벡터(pWE15, M13, EMBL3, EMBL4, FIX II, DASH II,ZAP II, gt11, Charon4A, Charon21A) 등이 있으나, 이에 제한되는 것은 아니다.As used herein, the term "vector" may be any nucleic acid molecule for the purpose of delivering a specific gene into a host cell, and is generally self-replicating sequence, genome insertion sequence, phage or nucleotide sequence, linear or circular, single or Double stranded DNA or RNA. In particular, it may have a foreign gene and may have a factor that facilitates transformation of a specific host cell in addition to the foreign gene. Generally, vectors include sequences that direct the transcription and translation of appropriate genes, selection markers, and sequences that allow self-replicating or chromosomal insertion. Specific examples of the vector include plasmid vectors (pSE, pBR, pUC, pBluscriptII, pGEM, pTZ, pET, pJSKM316GPD) and phage or cosmid vectors (pWE15, M13, EMBL3, EMBL4, FIX II). , DASH II, ZAP II, gt11, Charon4A, Charon21A), but are not limited thereto.
본 발명에서 상기 벡터는 효모에서 목적 단백질을 발현시킬 수 있는 효모 발현용 벡터일 수 있다. 바람직하게는 상기 효모 발현용 벡터는 효모의 genome 상에 목적 단백질을 도입(integration)시키는 것인 벡터일 수 있다. 한편, 상기 효모 발현용 벡터는 바람직하게는 클루이베로마이세스 막시아누스 균주에서 발현되는 pJSKM316GPD 벡터일 수 있다.
In the present invention, the vector may be a yeast expression vector capable of expressing the protein of interest in yeast. Preferably, the yeast expression vector may be a vector which integrates a target protein on the genome of the yeast. On the other hand, the yeast expression vector may be a pJSKM316GPD vector preferably expressed in Kluyveromyces maximans strain.
본 발명의 용어, "도입"은 외부에 존재하던 유전자가 벡터나 숙주세포 등에 포함되도록 하는 어떤 방법도 포함한다. 해당 유전자를 벡터로 도입하거나, 벡터 등을 숙주세포 등에 도입하는 방법은 당 분야에서 공지된 바와 같이 적합한 표준 기술을 선택하여 수행할 수 있다. 특히, 본 발명에서 벡터를 미생물에 도입하는 방법은 당업계에 공지된 임의의 방법을 선택하여 사용할 수 있으며, 이에 제한되지는 않으나, 미세주입법(microijection), 전기천공법(electroporation), 입자분사법(particle bombardment), 직접근육주입법, 인슐레이터(insulator) 및 트랜스포존을 이용한 방법 중에서 적절하게 선택하여 적용할 수 있다.
As used herein, the term "introduction" includes any method for allowing an external gene to be included in a vector or a host cell. The method of introducing the gene into a vector or introducing a vector or the like into a host cell may be performed by selecting a suitable standard technique as known in the art. In particular, the method of introducing a vector into the microorganism in the present invention can be used by selecting any method known in the art, but is not limited to this, microijection (microijection), electroporation (electroporation), particle injection method (particle bombardment), direct muscle injection method, an insulator (insulator) and a method using a transposon can be appropriately selected and applied.
본 발명의 구체적인 실시예에 따르면, 상기 추가되는 8개의 유전자들은 클루이베로마이세스 막시아누스에서 발현가능한 pJSKM316GPD 벡터에 삽입되었다(도 2). 이를 클루이베로마이세스 막시아누스에 도입하였다. 또한, 상기 1-hexanol 발현관련 8개의 유전자들은 숙주 미생물의 genome상에 random integration되는 과정을 통하여 genome에 내재적으로 포함되었다(도 3). 이는 colony PCR 확인과 RT-PCR을 통한 mRNA 분석을 통해 genome 내에 도입된 것과 정상적으로 발현된 것을 확인하였다(도 4).
According to a specific embodiment of the present invention, the eight additional genes were inserted into a pJSKM316GPD vector expressable in Kluyveromyces macxanus (FIG. 2). It was introduced into Cluj Veromaises Maxianus. In addition, the eight genes related to 1-hexanol expression were inherently included in the genome through a process of random integration on the genome of the host microorganism (FIG. 3). The colony PCR and RT-PCR mRNA analysis confirmed that it was normally expressed and introduced into the genome (FIG. 4).
또 하나의 양태로서, 본 발명은 상기 미생물을 배양하는 단계; 및 상기 배양물 또는 미생물로부터 헥산올을 회수하는 단계를 포함하는, 헥산올 제조방법을 제공한다.
As another aspect, the present invention comprises the steps of culturing the microorganism; And it provides a method for producing hexanol, comprising the step of recovering hexanol from the culture or microorganism.
본 발명에서 재조합 효모 균주의 배양은 널리 공지된 방법에 따라서 수행될 수 있고, 산소가 유입되지 않은 혐기 상태에서 배양하는 것이 바람직하다. 또한, 배양 온도, 배양 시간 및 배지의 pH 등의 조건은 적절하게 조절될 수 있다. 적절한 배양 방법으로는 유가식 배양(fed-batch culture), 회분식 배양(batch culture) 및 연속식 배양(cintinuous culture) 등이 가능하며, 바람직하게는 유가식 배양이지만, 이에 제한되는 것은 아니다.Cultivation of the recombinant yeast strain in the present invention can be carried out according to well-known methods, it is preferable to culture in an anaerobic state in which oxygen is not introduced. In addition, conditions such as the incubation temperature, the incubation time and the pH of the medium may be appropriately adjusted. Suitable culture methods include fed-batch culture, batch culture and continuous culture (cintinuous culture), and the like, but preferably fed-batch culture, but is not limited thereto.
사용되는 배양 배지는 특정한 균주의 요구 조건을 적절하게 충족시켜야 한다. 다양한 미생물에 대한 배양 배지는 공지되어 있다(예를 들면, "Manual of Methods for General Bacteriology" from American Society for Bacteriology (Washington D.C., USA, 1981)). 배지 내 탄소 공급원은 당 및 탄수화물(예: 글루코오스, 슈크로오스, 락토오스, 프럭토오스, 말토오스, 몰라세, 전분 및 셀룰로오스), 유지 및 지방(예: 대두유, 해바라기씨유, 땅콩유 및 코코넛유), 지방산(예: 팔미트산, 스테아르산 및 리놀레산), 알코올(예: 글리세롤 및 에탄올) 및 유기산(예: 아세트산) 등을 이용할 수 있다. 이들 물질은 개별적으로 또는 혼합물로서 사용될 수 있다. 질소 공급원은 질소-함유 유기 화합물(예: 펩톤, 효모 추출액, 육즙, 맥아 추출액, 옥수수 침지액, 대두 박분 및 우레아), 또는 무기 화합물(예: 황산암모늄, 염화암모늄, 인산암모늄, 탄산암모늄 및 질산암모늄)을 이용할 수 있으며, 이들 물질 또한 개별적으로 또는 혼합물로서 사용될 수 있다. 인 공급원으로서 인산이수소칼륨 또는, 인산수소이칼륨 또는 상응하는 나트륨 함유 염을 이용할 수 있다. 또한, 배양 배지는 성장에 필수적인 금속염(예: 황산마그네슘 또는 황산철)을 함유할 수 있으며, 최종적으로, 아미노산 및 비타민과 같은 필수 성장-촉진 물질을 상기 언급한 물질 외에 사용할 수 있다. 적합한 전구체를 상기 배양 배지에 추가로 가할 수 있다. 상기 공급 물질은 배양물에 한번에 모두 가하거나, 배양중 적절하게 공급할 수 있다.The culture medium used should suitably meet the requirements of a particular strain. Culture media for various microorganisms are known (see, for example, " Manual of Methods for General Bacteriology ", from the American Society for Bacteriology (Washington D.C., USA, 1981)). Carbon sources in the medium include sugars and carbohydrates (e.g. glucose, sucrose, lactose, fructose, maltose, molasses, starch and cellulose), fats and fats (e.g. soybean oil, sunflower seed oil, peanut oil and coconut oil). ), Fatty acids such as palmitic acid, stearic acid and linoleic acid, alcohols such as glycerol and ethanol, organic acids such as acetic acid, and the like. These materials may be used individually or as a mixture. Nitrogen sources include nitrogen-containing organic compounds such as peptone, yeast extract, juice, malt extract, corn steep liquor, soybean meal and urea, or inorganic compounds such as ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate, Ammonium), and these materials may also be used individually or as a mixture. Potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium containing salts can be used as the phosphorus source. In addition, the culture medium may contain metal salts essential for growth (for example, magnesium sulfate or ferrous sulfate), and finally essential growth-promoting substances such as amino acids and vitamins may be used in addition to the above-mentioned substances. Additional suitable precursors may be added to the culture medium. The feed material may be added all at once to the culture, or may be supplied appropriately during the culture.
배양물의 pH는 염기성 화합물(예: 수산화나트륨, 수산화칼륨 또는 암모니아) 또는 산성 화합물(예: 인산 또는 황산)을 적절히 사용하여 조절할 수 있다. 발포는 지방산 폴리글리콜 에스테르와 같은 소포제를 사용하여 조절할 수 있다. 배양 온도는 통상적으로 20 내지 45℃, 바람직하게는 25 내지 40℃이다, 가장 바람직하게는 30℃이다. 배양은 원하는 목적 물질의 생성량이 최대로 얻어질 때까지 계속될 수 있으며, 목적 물질은 배양 배지 중으로 배출되거나, 세포 중에 포함되어 있을 수 있다.The pH of the culture can be adjusted by appropriate use of a basic compound (eg sodium hydroxide, potassium hydroxide or ammonia) or an acidic compound (eg phosphoric acid or sulfuric acid). Foaming can be controlled using antifoams such as fatty acid polyglycol esters. The culture temperature is usually 20 to 45 ° C, preferably 25 to 40 ° C, most preferably 30 ° C. Cultivation can be continued until the desired amount of desired material is obtained, and the desired material can be discharged into the culture medium or contained in the cells.
따라서, 본 발명의 "배양물"은 미생물과 그 미생물을 배양한 배양기 내에 존재하는 모든 물질을 포함한다. 일반적으로 미생물 자체와 미생물이 배지에 배설한 각종 효소, 대사물질 등을 함유하는 물질을 의미한다. Thus, the "culture" of the present invention includes microorganisms and all materials present in the incubator in which the microorganisms are cultured. In general, it means a substance containing microorganisms themselves and various enzymes, metabolites, etc. excreted in the medium.
본 발명의 용어, "회수"는 특정 물질을 혼합물에서 분리해내는 과정을 의미한다. 특히, "헥산올을 회수하는 단계"는 상기 배양물 및 미생물 등에 대사산물로 다른 물질들과 혼합되어 있는 헥산올을 분리해 내는 과정을 의미하며, 이는 당업계에 널리 알려져 있는 방법으로 세포 또는 배양 배지로부터 분리해낼 수 있다. 헥산올 회수는 헥산올의 물리, 화학적 특성에 따라 적합한 공지의 방법을 이용할 수 있으며, 예를 들면, 여과, 음이온 교환 크로마토그래피, 결정화 및 HPLC 등의 방법이 가능하나, 이에 제한되는 것은 아니다.As used herein, the term "recovery" refers to the process of separating a particular substance from a mixture. In particular, the step of recovering hexanol refers to a process of separating hexanol mixed with other substances as a metabolite such as the culture and microorganism, which is a cell or culture by a method well known in the art. It can be separated from the medium. Hexanol recovery may use a known method suitable according to the physical and chemical properties of the hexanol, for example, filtration, anion exchange chromatography, crystallization and HPLC may be used, but is not limited thereto.
본 발명에서 상기 헥산올은 본 발명의 대사과정상 1-헥산올인 것이 바람직하다.
In the present invention, the hexanol is preferably 1-hexanol in the metabolic process of the present invention.
본 발명의 구체적인 실시예에 따르면, 상기 미생물을 배양하여 생성되는 1-Hexanol은 Gas Chromatography를 통하여 분석하였다. 장비는 YL 6100 series 기계를 사용하여 컬럼은 DB-FFAP(30m x 0.25 mm ID, 0.25μm) 를 사용하였으며 운반기체로는 헬륨가스를 사용하였다. 오븐은 초기에 100℃로 5분간 유지하였으며 100℃부터 250℃까지 분당 10℃도씩 증가시켰으며 250℃에서 12분간 유지하였다. 주입기는 1:50 분할모드로 검출기는 300℃로 설정하였다. 1-hexanol는 4.14분의 retention time을 보였다. 다만, 본 실시예에서 사용한 기체 크로마토그래피는 1-헥산올을 상업적으로 이용하기 위한 실시가 아닌 실험적으로 얼마만큼의 양이 생산될 수 있는지 검출하는 목적으로 사용되었다. 이런 점에서, 상기 헥산올을 분리해 내는 단계는 1-헥산올을 상업적 사용가능하도록 고순도 및 대량으로 분리해낼 수 있는 방법이 적절하다.
According to a specific embodiment of the present invention, 1-Hexanol produced by culturing the microorganism was analyzed by gas chromatography. The equipment used YL 6100 series machine and the column was DB-FFAP (30m x 0.25mm ID, 0.25μm) and helium gas was used as carrier gas. The oven was initially kept at 100 ° C. for 5 minutes, increased by 10 ° C. per minute from 100 ° C. to 250 ° C., and held at 250 ° C. for 12 minutes. The injector was set at 1:50 split mode and the detector at 300 ° C. 1-hexanol had a retention time of 4.14 minutes. However, the gas chromatography used in this example was used for the purpose of detecting how much can be produced experimentally, not for the commercial use of 1-hexanol. In this regard, the step of separating the hexanol is a method capable of separating the high-purity and large quantities of 1-hexanol for commercial use.
또 하나의 양태로서, 본 발명은 상기 헥산올 제조방법에 의해 제조된 헥산올을 제공한다.As another aspect, the present invention provides a hexanol prepared by the hexanol production method.
본 발명에서 상기 헥산올은 본 발명의 대사과정상 1-헥산올인 것이 바람직하다. 본 발명에서 제조된 헥산올은 바이오 플라스틱의 전구체로 이용될 수 있다.
In the present invention, the hexanol is preferably 1-hexanol in the metabolic process of the present invention. Hexanol prepared in the present invention can be used as a precursor of bioplastics.
본 발명에 의하면, 기존에 1-hexanol 제조방법이 오랜 시간의 발효에도 불구하고 생산량이 낮아, 1-hexanol의 생합성 산업에 걸림돌이 되고 있었으나, 본 발명에서 제시하고 있는 유전자를 도입함으로 인해 발효 시간 및 생산량 측면에서 크게 발전된 미생물을 제공한다. 이로 인해, 본 발명의 미생물을 이용할 경우 1-hexanol 생합성 및 이로 인한 바이오 플라스틱 산업의 성장에 크게 이바지할 것으로 사료되며, 새로운 간편하고 비용이 적게 드는 바이오 플라스틱의 제조방법에 도움이 될 것이다.
According to the present invention, the production method of the 1-hexanol in the past despite a long time fermentation is low production, which has been an obstacle to the biosynthesis industry of 1-hexanol, the fermentation time and the introduction of the gene proposed in the present invention It provides microorganisms that are greatly developed in terms of yield. For this reason, the use of the microorganism of the present invention is expected to contribute greatly to the growth of the 1-hexanol biosynthesis and thereby the bioplastics industry, and will help in the production of a new simple and low-cost bioplastics.
도 1은 1-hexanol 생산을 위한 생합성 경로 모식도이다.
도 2는 1-hexanol 생합성 경로에 필요한 유전자의 구축 발현벡터를 도시하는 도면이다.
도 3은 1-hexanol 생합성 경로에 필요한 유전자를 미생물 genome에 Random integration 형질전환하는 기작을 설명하는 모식도이다.
도 4는 K. marxianus에 형질전환된 생합성 유전자를 확인하는 도면이다.
도 5a는 탄소원으로 glucose를 공급하고 micro-aerobic 발효조건하에서 각 균주들의 1-hexanol 생성량을 분석하는 도면이다.
도 5b는 탄소원으로 galactose를 공급하고 micro-aerobic 발효조건하에서 각 균주들의 1-hexanol 생성량을 분석하는 도면이다.
도 5c는 탄소원으로 galactose를 공급하고 oxygen limited 발효조건하에서 각 균주들의 1-hexanol 생성량을 분석하는 도면이다.1 is a schematic diagram of the biosynthetic pathway for 1-hexanol production.
FIG. 2 is a diagram showing construct expression vectors of genes required for the 1-hexanol biosynthesis pathway. FIG.
Figure 3 is a schematic diagram illustrating a mechanism for random integration transformation of the gene required for the 1-hexanol biosynthetic pathway into the microbial genome.
4 is a diagram confirming the biosynthetic gene transformed in K. marxianus .
FIG. 5a is a diagram of supplying glucose as a carbon source and analyzing 1-hexanol production amount of each strain under micro-aerobic fermentation conditions. FIG.
FIG. 5b is a diagram of supplying galactose as a carbon source and analyzing 1-hexanol production of each strain under micro-aerobic fermentation conditions. FIG.
FIG. 5c is a diagram of supplying galactose as a carbon source and analyzing 1-hexanol production of each strain under oxygen limited fermentation conditions. FIG.
이하, 하기 실시예에 의하여 본 발명을 보다 상세하게 설명한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐 본 발명의 범위가 이들로 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the following examples are intended to illustrate the present invention, but the scope of the present invention is not limited thereto.
실시예Example
1. 1- 1. 1-
HexanolHexanol
생합성 유전자 도입 균주 제작 Production of biosynthetic gene introduction strain
클루이베로마이세스 막시아누스(Kluyveromyces marxianus)는 자체적으로 1-Hexanol를 생산할 수 없기 때문에 유전자를 도입하여 1-Hexanol를 생합성하는 균주를 제작하고자 하였다.
Since Kluyveromyces marxianus cannot produce 1-Hexanol on its own, it was intended to produce a strain that biosynthesizes 1-Hexanol.
실시예Example
1-1. 1-1.
헥산올Hexanol
생합성 대사경로 설계 Biosynthetic Metabolic Pathway Design
천연형 대장균에 1-hexanol의 전구체인 C6 (hexanoic acid)를 생산하는 효소인 Ralstonia eutropha 유래의 베타-케토티올라제 I(phbA)과 Ⅱ(bktB)를 도입하였음에도 해당 재조합 균주는 발효생성물로 C6의 카르복실산을 생산하지 않았다. 이는 acetyl-CoA를 butyryl-CoA로 전환시켜주는 베타-케토티올라제가 활성이 없기 때문이었는바, 이후 헥산올을 생산하는 대사경로로 기존 베타-케토티올라제를 이용하는 경로가 아닌 별도의 경로를 설계하였다(도 1). Ralstonia , an enzyme that produces C6 (hexanoic acid), a precursor of 1-hexanol, to native E. coli Although the beta-ketothiolase I (phbA) and II (bktB) derived from eutropha were introduced, the recombinant strain did not produce C6 carboxylic acid as a fermentation product. This is because the beta-ketothiolase, which converts acetyl-CoA to butyryl-CoA, is inactive.Therefore, a metabolic pathway that produces hexanol is used instead of the existing beta-ketothiolase. Design was made (FIG. 1).
상기 문제를 해결하기 위해서, 대사공학적으로 다른 생합성 경로에 있는 크로토네이즈(Crotonase, Crt), 트랜스-이노일-CoA(Trans-enoyl-CoA reductase, Ter)를 이용하여 중간 산물인 Butyryl-CoA를 대량 생산을 유도하고, 이에 상기에서 도입한 베타-케토티올라제 I과 Ⅱ (phbA, bktB)이 기능하여 최종적으로 1-헥산올을 대량 생산할 수 있었다. In order to solve this problem, Butyryl-CoA, an intermediate product, was synthesized using Crotonase (CRT) and Trans-enoyl-CoA reductase (Ter) in different biosynthetic pathways. Induced mass production, and thus beta-ketothiolase I and II (phbA, bktB) were introduced to function to finally mass-produce 1-hexanol.
상기 과정을 도입한 대사경로는 다음과 같다. Glucose에서 Acetyl-CoA가 생산되며, 두 개의 Acetyl-CoA에 아세틸-CoA 아세틸전이효소(acetyl-CoA acetyltransferase, AtoB)에 의해 acetyl-CoA 한 분자가 더 결합하여, acetoacetyl-CoA로 전환되었다. Acetoacetyl-CoA는 3-히드록시부티릴-CoA 탈수소효소(3-hydroxybutyl-CoA dehydrogenase, Hbd)에 의해 NADH가 환원되어 3-hydroxybutyl-CoA로 전환되었다. 3-hydroxybutyl-CoA는 Crt에 의해 butyric acid 중간 산물인 crotonyl-CoA로 전환되었다. Crotonyl-CoA는 Ter에 의해 butyryl-CoA로 전환되는데 이 유전자들은 NADP+, NAD+를 acceptor로 하여 CH-CH 결합 내에서 oxidoreductase로 작용하였다. Butyryl-CoA는 phbA, 및 bktB에 의해 두 개의 acetyl-CoA가 추가됨으로써 헥산산(C6)를 생산하였다. 최종적으로 P450 monooxygenase 기질을 가지고 monooxygenation 시킴으로써 헥산산을 n-헥산올로 전환시켰다.The metabolic pathways introducing the process are as follows. Acetyl-CoA is produced in glucose, and one more molecule of acetyl-CoA is bound to two acetoacetyl-CoA by acetyl-CoA acetyltransferase (AtoB). Acetoacetyl-CoA was converted to 3-hydroxybutyl-CoA by NADH reduction by 3-hydroxybutyl-CoA dehydrogenase (Hbd). 3-hydroxybutyl-CoA was converted to crotonyl-CoA, a butyric acid intermediate by Crt. Crotonyl-CoA is converted to butyryl-CoA by Ter, which acts as an oxidoreductase in CH-CH bonds using NADP + and NAD + as acceptors. Butyryl-CoA produced hexanoic acid (C6) by adding two acetyl-CoAs by phbA and bktB. Finally, hexanoic acid was converted to n-hexanol by monooxygenation with P450 monooxygenase substrate.
여기에 추가적으로, atoB 유전자가 acetyl-CoA에서 acetoacetyl-CoA 반응이 아닌 β-oxidation 반응을 통해 acetoacetyl-CoA를 두 분자의 acetyl-CoA로 전환시키는 문제점을 해결하기 위해 직접적으로 acetyl-CoA에서 acetoacetyl-CoA를 생산하는 경로가 아닌 malonyl-CoA를 경유하여 acetoacetyl-CoA로 가는 우회 경로를 구축하였다. 이 반응에 관여하는 유전자는 말로일-CoA 캐리어 단백질(malonyl-CoA carrier protein, MCT1)이며 Saccharomyces cerevisiae 로부터 분리하여 도입하였다.
In addition, the atoB gene directly resolves acetoacetyl-CoA from acetyl-CoA to acetyl-CoA through a β-oxidation reaction rather than acetoacetyl-CoA to acetyl-CoA. Bypass route was established to acetoacetyl-CoA via malonyl-CoA rather than to produce. The gene involved in this reaction is the malonyl-CoA carrier protein (MCT1) and Saccharomyces Introduced separately from cerevisiae .
실시예Example
1-2. 1-Hexanol 생합성 대사경로 유전자 동정 1-2. Gene Identification of 1-Hexanol Biosynthesis Metabolic Pathway
상기 설계된 1-Hexanol 생합성 대사경로를 균주 내에 도입하기 위해 도입한 유전자들은 하기 표 1과 같다.
Genes introduced to introduce the designed 1-Hexanol biosynthetic metabolic pathway into the strain are shown in Table 1 below.
(β-ketothiolase Ⅱ) BktB
(β-ketothiolase II)
(β-ketothiolase Ⅰ) phbA
(β-ketothiolase I)
(acetyl-CoA acetyltransferase) AtoB
(acetyl-CoA acetyltransferase)
(Crotonase)Crt
(Crotonase)
(3-hydroxybutyryl-CoA dehydrogenase) Hbd
(3-hydroxybutyryl-CoA dehydrogenase)
(trans-enoyl-CoA reductase) Ter
(trans-enoyl-CoA reductase)
(cytochrome P450 monooxygenase) CYP
(cytochrome P450 monooxygenase)
(alcohol dehydrogenase) AdhE2
(alcohol dehydrogenase)
(malonyl-CoA carrier protein) MCT1
(malonyl-CoA carrier protein)
실시예Example
1-3. 1-3.
K.K.
marxianusmarxianus
내 1- My 1-
HexanolHexanol
생합성 유전자 발현 시스템 구축 Biosynthetic Gene Expression System
기존 K. marxianus에서 형질전환 하기 위한 발현용 벡터인 pJSKM316GPD 벡터에 실시예 1-2에서 동정해낸 유전자를 도입하여 1-Hexanol 생합성 유전자들을 구축하였다. 이에 사용되었던 프라이머들은 하기 표 3과 같다.
1-Hexanol biosynthetic genes were constructed by introducing the genes identified in Examples 1-2 into the pJSKM316GPD vector, which is an expression vector for transformation in K. marxianus . Primers used for this are shown in Table 3 below.
K. marxianus에 상기 1-Hexanol 생합성 유전자들을 형질전환하기 위하여 genome 상에 상기 도입 유전자들을 random integration 방법으로 도입하였다. 구체적으로는, K. marxianus에 형질전환하기 위한 발현용 벡터 pJSKM316GPD에 구축되어진 1-Hexanol 생합성 유전자들을 삽입한 플라스미드를 URA3 auxotroph 부터 CYC terminator까지 PCR(polymerase chain reaction)로 증폭한 후 동일한 농도 (한 플라스미드 당 50~100 ng/㎕)로 맞추어 형질전환하였다(도 2 및 도 3). 도입되어진 1-hexanol 생합성 유전자들은 플레이트상에서의 colony PCR 확인과 RT-PCR을 통한 mRNA 분석을 통해 genome내에 도입된 것과 정상적으로 발현됨을 확인하였다(도 4).
In order to transform K. marxianus into the 1-Hexanol biosynthetic genes, the transgenes were introduced on the genome by a random integration method. Specifically, the plasmid in which the 1-Hexanol biosynthetic genes constructed in the expression vector pJSKM316GPD for transforming K. marxianus was inserted was amplified by PCR (polymerase chain reaction) from URA3 auxotroph to CYC terminator and then the same concentration (one plasmid). Transformation at 50-100 ng / μl) (FIG. 2 and FIG. 3). The introduced 1-hexanol biosynthesis genes were confirmed to be normally expressed and introduced into the genome through colony PCR and RT-PCR mRNA analysis on the plate (Fig. 4).
실시예Example
2. K. 2. K.
marxianusmarxianus
균주의 발효 조건 및 1- Fermentation Conditions and 1- of Strains
HexanolHexanol
생성 분석 Generation analysis
상기 실시예 1-3에서 구축된 1-Hexanol 생합성 유전자 발현 재조합 K.marxianus 균주는 하기와 같은 단계로 발효가 진행되었다.1-Hexanol biosynthetic gene expression recombinant K.marxianus strain constructed in Example 1-3 was fermented in the following steps.
먼저, 상기 균주를 5 ml의 YPD (1% yeast extract, 2% peptone, 2% glucose) 배지에 하룻밤 동안(overnight) 전배양(pre-culture)하였고, 이를 pH7.0으로 맞춘 50ml의 YP(1% yeast extract, 2% peptone, Galactose 20g/L 또는 Glucose 20g/L) 배지에 각각 micro-aerobic과 oxygen limited 조건에서 37℃, 100rpm에서 발효하였다. 지방산의 변화량을 확인하기 위해 시간마다 샘플을 채취하였다. 생성되는 1-Hexanol은 Gas Chromatography를 통하여 분석하였다. 장비는 YL 6100 series 기계를 사용하여 컬럼은 DB-FFAP(30m x 0.25 mm ID, 0.25μm) 를 사용하였으며 운반기체로는 헬륨가스를 사용하였다. 오븐은 초기에 100℃로 5분간 유지하였으며 100℃부터 250℃까지 분당 10℃도씩 증가시켰으며 250℃에서 12분간 유지하였다. 주입기는 1:50 분할모드로 검출기는 300℃로 설정하였다. 1-hexanol는 4.14분의 retention time을 보였다. 소모되는 glucose와 galactose양은 환원당 정량방법인 DNS을 이용하여 측정하였다. 배지에서 소모되는 glucose와 galactos양은 환원당 정량방법인 DNS을 이용하여 측정하였다. First, the strain was pre-cultured overnight in 5 ml of YPD (1% yeast extract, 2% peptone, 2% glucose) medium, and 50 ml of YP (1) was adjusted to pH 7.0. % yeast extract, 2% peptone, Galactose 20g / L or Glucose 20g / L) were fermented at 37 ℃ and 100rpm under micro-aerobic and oxygen limited conditions, respectively. Samples were taken every hour to determine the amount of change in fatty acids. The produced 1-Hexanol was analyzed by Gas Chromatography. The equipment used YL 6100 series machine and the column was DB-FFAP (30m x 0.25mm ID, 0.25μm) and helium gas was used as carrier gas. The oven was initially kept at 100 ° C. for 5 minutes, increased by 10 ° C. per minute from 100 ° C. to 250 ° C., and held at 250 ° C. for 12 minutes. The injector was set at 1:50 split mode and the detector at 300 ° C. 1-hexanol had a retention time of 4.14 minutes. The amount of glucose and galactose consumed was measured using DNS, the quantitative method of reducing sugar. The amount of glucose and galactos consumed in the medium was measured using DNS, a quantitative reducing sugar method.
시간마다 채취한 샘플을 분석한 결과, CYP153A P450 만 K. marxianus에 integration된 형질전환체 CYP균주, AtoB, Crt, Hbd, Ter, bktB, phbA, CYP153A P450 reductase 가 K. marxianus에 random integration된 형질전환체 H6C균주, AtoB, Crt, Hbd, Ter, AdhE2, bktB, phbA, CYP153A P450 reductase 가 K. marxianus에 random integration된 형질전환체 H7C균주들을 pH 7.0에 micro-aerobic 조건에서의 glucose를 이용하여 발효하였다. CYP균주는 4시간째 샘플에서 약 190 mg/L, H6C균주는 4시간째 샘플에서 약 159 mg/L , H7C균주는 8시간째 샘플에서 약 164 mg/L의 1-hexanol이 검출되는 것을 확인하였다. 또한, pH 7.0에 각각 micro-aerobic과 oxygen limited 조건에서 galactose를 이용하여 발효하였다. micro-aerobic조건에서는 CYP균주는 4시간째 샘플에서 약162 mg/L, H6C균주는 4시간째 샘플에서 약 140 mg/L , H7C균주는 12시간째 샘플에서 약 150 mg/L의 1-hexanol이 검출되는 것을 확인하였다. 마지막으로 oxygen limited조건에서는 CYP균주는 4시간째 샘플에서 약 157 mg/L, H6C균주는 8시간째 샘플에서 약 130 mg/L , H7C균주는 4시간째 샘플에서 약 140 mg/L의 1-hexanol이 검출되는 것을 확인하였다. 이후 샘플들은 생산되는 양이 상기 검출시간째에 비해 줄어들거나 검출되지 않았다.
The analysis of the samples collected each time, only P450 CYP153A K. marxianus integration in the transformant strain CYP, AtoB, Crt, Hbd, Ter , bktB, phbA, CYP153A P450 reductase is the transformed random integration in K. marxianus Strain H6C, AtoB, Crt, Hbd, Ter, AdhE2, bktB, phbA, CYP153A P450 reductase randomly integrated into K. marxianus were fermented using glucose under micro-aerobic conditions at pH 7.0 . The CYP strain was found to be about 190 mg / L in the sample at 4 hours, the H6C strain was detected at about 159 mg / L in the sample at 4 hours, and the H7C strain was detected at about 164 mg / L 1-hexanol in the sample at 8 hours. It was. In addition, the fermentation was performed using galactose at pH 7.0 under micro-aerobic and oxygen limited conditions. Under micro-aerobic conditions, CYP strains were about 162 mg / L in the 4 hour sample, H6C strains were about 140 mg / L in the 4 hour sample, and H7C strains were about 150 mg / L 1-hexanol in the 12 hour sample. It confirmed that this was detected. Finally, under oxygen limited conditions, CYP strains were about 157 mg / L in the 4 hour sample, H6C strains were about 130 mg / L in the 8 hour sample, and H7C strains were about 140 mg / L in the 4 hour sample. It was confirmed that hexanol was detected. Thereafter, the amount produced was reduced or not detected compared to the detection time.
상기의 결과에 따르면, 실시예 1에 의해 제조된 균주들은 일정 조건하에서 1-Hexanol를 과량 생성하는 능력을 가지고 있음을 알 수 있다. 특히, 기존의 기술에서는 50시간에 걸친 발효를 통해 약 50 mg/L에 못미치는 1-Hexanol를 생성할 뿐이나(Dekishima Y et al; J Am Chem Soc . 2011 Aug 3;133(30):11399-401), 본 발명은 이의 1/12.5 내지 1/4에 해당하는 4 내지 12 시간의 발효만으로 약 130 내지 190 mg/L의 1-Hexanol를 생성하였다. 따라서, 상기 균주를 이용한 1-Hexanol 생산방법은 기존의 기술에 비해 시간상 4배 내지 12배의 효율 및 생산량 측면 2.6 내지 4배 가량의 우월한 효율을 가짐을 확인할 수 있었다.
According to the above results, it can be seen that the strains prepared by Example 1 have the ability to produce excessive 1-Hexanol under certain conditions. In particular, existing techniques only produce 1-Hexanol less than about 50 mg / L through fermentation over 50 hours (Dekishima Y et al; J Am). Chem Soc . 2011
이상의 설명으로부터, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
From the above description, it will be understood by those skilled in the art that the present invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. In this regard, it should be understood that the above-described embodiments are to be considered in all respects as illustrative and not restrictive. The scope of the present invention should be construed as being included in the scope of the present invention without departing from the scope of the present invention as defined by the appended claims.
<110> Research & Business Foundation SUNGKYUNKWAN UNIVERSITY <120> Recombinant micro-organisms for producing hexanol and the method for producing hexanol by using thereof <130> PA120771KR <160> 23 <170> KopatentIn 2.0 <210> 1 <211> 1185 <212> DNA <213> Ralstonia eutropha beta-KETOTHIOLASE II <400> 1 atgacgcgtg aagtggtagt ggtaagcggt gtccgtaccg cgatcgggac ctttggcggc 60 agcctgaagg atgtggcacc ggcggagctg ggcgcactgg tggtgcgcga ggcgctggcg 120 cgcgcgcagg tgtcgggcga cgatgtcggc cacgtggtat tcggcaacgt gatccagacc 180 gagccgcgcg acatgtatct gggccgcgtc gcggccgtca acggcggggt gacgatcaac 240 gcccccgcgc tgaccgtgaa ccgcctgtgc ggctcgggcc tgcaggccat tgtcagcgcc 300 gcgcagacca tcctgctggg cgataccgac gtcgccatcg gcggcggcgc ggaaagcatg 360 agccgcgcac cgtacctggc gccggcagcg cgctggggcg cacgcatggg cgacgccggc 420 ctggtcgaca tgatgctggg tgcgctgcac gatcccttcc atcgcatcca catgggcgtg 480 accgccgaga atgtcgccaa ggaatacgac atctcgcgcg cgcagcagga cgaggccgcg 540 ctggaatcgc accgccgcgc ttcggcagcg atcaaggccg gctacttcaa ggaccagatc 600 gtcccggtgg tgagcaaggg ccgcaagggc gacgtgacct tcgacaccga cgagcacgtg 660 cgccatgacg ccaccatcga cgacatgacc aagctcaggc cggtcttcgt caaggaaaac 720 ggcacggtca cggccggcaa tgcctcgggc ctgaacgacg ccgccgccgc ggtggtgatg 780 atggagcgcg ccgaagccga gcgccgcggc ctgaagccgc tggcccgcct ggtgtcgtac 840 ggccatgccg gcgtggaccc gaaggccatg ggcatcggcc cggtgccggc gacgaagatc 900 gcgctggagc gcgccggcct gcaggtgtcg gacctggacg tgatcgaagc caacgaagcc 960 tttgccgcac aggcgtgcgc cgtgaccaag gcgctcggtc tggacccggc caaggttaac 1020 ccgaacggct cgggcatctc gctgggccac ccgatcggcg ccaccggtgc cctgatcacg 1080 gtgaaggcgc tgcatgagct gaaccgcgtg cagggccgct acgcgctggt gacgatgtgc 1140 atcggcggcg ggcagggcat tgccgccatc ttcgagcgta tctga 1185 <210> 2 <211> 1182 <212> DNA <213> Ralstonia eutropha beta-ketothiolase I <400> 2 atgaccgatg tagtgatcgt atcggcggtc cgtaccgccg tgggcaagtt tggcggttcg 60 ctggcgaaaa tccccgcgcc ggagctgggt gcggccgtga tccgcgaagc gctgtcgcgc 120 gccaaggtgg cgccggatca ggtcagcgaa gtcatcatgg gccaggtgct gaccgcgggt 180 tcgggccaga acccggcgcg ccaggcgttg atcaaggccg gcctgcccga catggtgccg 240 ggcatgacca tcaacaaggt gtgcggctcg ggcctgaagg ccgtgatgct ggccgccaac 300 gccatcgtcg ccggggatgc cgacatcgtc gtggccggcg ggcaggagaa catgtccgcc 360 gcgccgcacg tgctgcccgg ctcgcgcgac ggtttccgca tgggcgacac caagctcatc 420 gactcgatga tcgtggatgg gctgtgggac gtctacaacc agtaccacat gggcatcacc 480 gccgagaatg tcgccaagca gtacggcatc acgcgcgagg cccaggacgc attcgccgtg 540 gcttcgcaga acaaggcgga agccgcgcag aagtccggtc gcttcaatga cgagatcgtt 600 cccatcctga ttccgcagcg caagggcgac ccgatcgcct tcgcgcagga cgagttcgtc 660 cgccatggcg ccacgctgga atcgatgacg ggcctgaagc cggcattcga caaagccggc 720 acggtgacgg ccgccaatgc ctcgggcctc aacgacggcg gcgccgccgt ggtggtcatg 780 tcggccgccc gcgccaagga actgggtctg accccgctgg ccaccatccg cgcctacgcc 840 aatgccggcg tggacccgaa ggtgatgggc atgggcccgg tgccggcttc caagcgctgc 900 ctgtcgcgcg ccggctggtc ggtgggcgac ctggacctga tggagatcaa cgaggcgttt 960 gccgcccagg cgctggccgt gcaccagcag atgggctggg ataccgccaa ggtcaacgtc 1020 aacggcggcg cgattgccat cggtcacccc atcggcgcgt cgggctgccg catcctggtg 1080 acgctgctgc acgagatgca gaagcgcgac gcgaagaagg gcctggcctc gctgtgcatc 1140 ggcggcggca tgggcgtggc gctggcggtc gagcgcccgt ga 1182 <210> 3 <211> 1185 <212> DNA <213> Escherichia coli acetyl-CoA acetyltransferase <400> 3 atgaaaaatt gtgtcatcgt cagtgcggta cgtactgcta tcggtagttt taacggttca 60 ctcgcttcca ccagcgccat cgacctgggg gcgacagtaa ttaaagccgc cattgaacgt 120 gcaaaaatcg attcacaaca cgttgatgaa gtgattatgg gtaacgtgtt acaagccggg 180 ctggggcaaa atccggcgcg tcaggcactg ttaaaaagcg ggctggcaga aacggtgtgc 240 ggattcacgg tcaataaagt atgtggttcg ggtcttaaaa gtgtggcgct tgccgcccag 300 gccattcagg caggtcaggc gcagagcatt gtggcggggg gtatggaaaa tatgagttta 360 gccccctact tactcgatgc aaaagcacgc tctggttatc gtcttggaga cggacaggtt 420 tatgacgtaa tcctgcgcga tggcctgatg tgcgccaccc atggttatca tatggggatt 480 accgccgaaa acgtggctaa agagtacgga attacccgtg aaatgcagga tgaactggcg 540 ctacattcac agcgtaaagc ggcagccgca attgagtccg gtgcttttac agccgaaatc 600 gtcccggtaa atgttgtcac tcgaaagaaa accttcgtct tcagtcaaga cgaattcccg 660 aaagcgaatt caacggctga agcgttaggt gcattgcgcc cggccttcga taaagcagga 720 acagtcaccg ctgggaacgc gtctggtatt aacgacggtg ctgccgctct ggtgattatg 780 gaagaatctg cggcgctggc agcaggcctt acccccctgg ctcgcattaa aagttatgcc 840 agcggtggcg tgccccccgc attgatgggt atggggccag tacctgccac gcaaaaagcg 900 ttacaactgg cggggctgca actggcggat attgatctca ttgaggctaa tgaagcattt 960 gctgcacagt tccttgccgt tgggaaaaac ctgggctttg attctgagaa agtgaatgtc 1020 aacggcgggg ccatcgcgct cgggcatcct atcggtgcca gtggtgctcg tattctggtc 1080 acactattac atgccatgca ggcacgcgat aaaacgctgg ggctggcaac actgtgcatt 1140 ggcggcggtc agggaattgc gatggtgatt gaacggttga attaa 1185 <210> 4 <211> 861 <212> DNA <213> Clostridium acetobutylicum Crotonase <400> 4 ggatccttga cggctagctc agtcctaggt acagtgctag ctcattctaa aaaaggagca 60 tctgtgatgg aactaaacaa tgtcatcctt gaaaaggaag gtaaagttgc tgtagttacc 120 attaacagac ctaaagcatt aaatgcgtta aatagtgata cactaaaaga aatggattat 180 gttataggtg aaattgaaaa tgatagcgaa gtacttgcag taattttaac tggagcagga 240 gaaaaatcat ttgtagcagg agcagatatt tctgagatga aggaaatgaa taccattgaa 300 ggtagaaaat tcgggatact tggaaataaa gtgtttagaa gattagaact tcttgaaaag 360 cctgtaatag cagctgttaa tggttttgct ttaggaggcg gatgcgaaat agctatgtct 420 tgtgatataa gaatagcttc aagcaacgca agatttggtc aaccagaagt aggtctcgga 480 ataacacctg gttttggtgg tacacaaaga ctttcaagat tagttggaat gggcatggca 540 aagcagctta tatttactgc acaaaatata aaggcagatg aagcattaag aatcggactt 600 gtaaataagg tagtagaacc tagtgaatta atgaatacag caaaagaaat tgcaaacaaa 660 attgtgagca atgctccagt agctgttaag ttaagcaaac aggctattaa tagaggaatg 720 cagtgtgata ttgatactgc tttagcattt gaatcagaag catttggaga atgcttttca 780 acagaggatc aaaaggatgc aatgacagct ttcatagaga aaagaaaaat tgaaggcttc 840 aaaaatagat agtgagtcga c 861 <210> 5 <211> 921 <212> DNA <213> Clostridium acetobutylicum 3-hydroxybutyryl-CoA dehydrogenase <400> 5 gtcgacttga cggctagctc agtcctaggt acagtgctag ctggcaagtc taaaggagca 60 tcacgaatga aaaaggtatg tgttataggt gcaggtacta tgggttcagg aattgctcag 120 gcatttgcag ctaaaggatt tgaagtagta ttaagagata ttaaagatga atttgttgat 180 agaggattag attttatcaa taaaaatctt tctaaattag ttaaaaaagg aaagatagaa 240 gaagctacta aagttgaaat cttaactaga atttccggaa cagttgacct taatatggca 300 gctgattgcg atttagttat agaagcagct gttgaaagaa tggatattaa aaagcagatt 360 tttgctgact tagacaatat atgcaagcca gaaacaattc ttgcatcaaa tacatcatca 420 ctttcaataa cagaagtggc atcagcaact aaaagacctg ataaggttat aggtatgcat 480 ttctttaatc cagctcctgt tatgaagctt gtagaggtaa taagaggaat agctacatca 540 caagaaactt ttgatgcagt taaagagaca tctatagcaa taggaaaaga tcctgtagaa 600 gtagcagaag caccaggatt tgttgtaaat agaatattaa taccaatgat taatgaagca 660 gttggtatat tagcagaagg aatagcttca gtagaagaca tagataaagc tatgaaactt 720 ggagctaatc acccaatggg accattagaa ttaggtgatt ttataggtct tgatatatgt 780 cttgctataa tggatgtttt atactcagaa actggagatt ctaagtatag accacataca 840 ttacttaaga agtatgtaag agcaggatgg cttggaagaa aatcaggaaa aggtttctac 900 gattattcaa aataactcga g 921 <210> 6 <211> 1286 <212> DNA <213> Treponema denticola trans-enoyl-CoA reductase <400> 6 ctcgagttga cggctagctc agtcctaggt acagtgctag ctacattaag gaggaagccg 60 atgatcgtca agccaatggt gcgcaataat atctgtctga acgctcaccc gcagggttgt 120 aaaaagggtg tagaagacca gattgaatac actaagaaac gcatcaccgc agaagttaaa 180 gcaggtgcca aagcaccgaa aaacgtcctg gtgctgggct gcagcaacgg ctacggtctg 240 gcaagccgca ttacggctgc attcggttac ggcgctgcta ctattggtgt tagcttcgaa 300 aaggcgggtt ctgaaaccaa atacggcact ccaggctggt acaacaacct ggcattcgac 360 gaagcagcga agcgtgaggg tctgtactct gttaccatcg acggtgacgc gttctctgac 420 gagatcaaag ctcaggttat cgaggaagct aaaaagaaag gtatcaaatt cgacctgatt 480 gtgtactccc tggcctctcc ggttcgtacc gacccggata ccggcatcat gcacaaaagc 540 gtactgaagc cgtttggcaa aaccttcact ggtaaaaccg ttgatccttt caccggcgag 600 ctgaaggaaa tctccgccga gccagctaac gatgaggagg ctgctgcgac cgttaaagtg 660 atgggtggcg aagactggga acgttggatc aaacaactgt ccaaggaagg tctgctggag 720 gagggctgta ttactctggc atattcttac atcggcccgg aggcgactca ggcactgtat 780 cgtaagggca ccatcggtaa agcgaaagaa catctggagg ccaccgctca ccgtctgaac 840 aaggaaaacc cgagcatccg tgctttcgtg tccgttaaca agggcctggt tacgcgcgct 900 tccgcagtaa ttccggtcat tccgctgtac ctggcttccc tgtttaaagt catgaaagaa 960 aaaggcaacc acgaaggttg tatcgaacaa attactcgcc tgtatgcgga gcgcctgtac 1020 cgtaaggatg gcactatccc ggttgatgaa gagaaccgca tccgcattga cgattgggaa 1080 ctggaagagg atgtacagaa agcggtttcc gcgctgatgg aaaaagtgac gggcgaaaac 1140 gcggaatccc tgacggatct ggcaggttac cgtcacgact ttctggcgtc taatggtttc 1200 gacgttgagg gtattaacta cgaggcagaa gttgaacgtt tcgatcgtat ttaatctaga 1260 acgccagggc atgagctctt aattaa 1286 <210> 7 <211> 2403 <212> DNA <213> Rhodococus ruber cytochrome P450 monooxygenase <400> 7 atgtcaacga gttcaagtac aagtaatgac atccaggcaa aaataattaa cgccacatcc 60 aaagtcgtgc caatgcatct acagatcaag gcactaaaaa acttgatgaa ggtgaagcgg 120 aagaccattg gcacttcccg ccctcaggtg cactttgttg aaaccgattt gcctgacgtc 180 aatgatttgg cgatagaaga tatcgatacg agtaaccctt ttttataccg acaaggtaag 240 gcgaatgcgt actttaagcg gttgcgtgat gaagcgccgg tgcactacca gaagaacagt 300 gctttcgggc cgttctggtc ggtaacacgc tacgaagata ttgtcttcgt ggacaagagc 360 catgatttgt tttccgccga accccaaatt atcttgggtg atcctccgga aggcctgtcg 420 gttgaaatgt tcatcgctat ggatcctccc aagcacgacg tacagcgtcg ggcagtccag 480 ggtgttgttg cgcccaagaa cctgaaagaa atggaaggac tgatccgcaa gcgcaccggg 540 gacgtactcg atagcctgcc gttggacact ccgttcaact gggtgccggt ggtgtcgaaa 600 gagctgaccg ggcgcatgct cgcctcactg ttagatttcc cgtatgacga acgcgaaaaa 660 ctggttggct ggtcggatcg attgtccggc gcgtcctcgg caaccggcgg cgagtttacg 720 aatgaagatg tgttttttga tgatgctgca gatatggcgt gggctttctc caagctttgg 780 cgtgataaag aagcccgtca aaaagcaggt gaagagccgg gtttcgattt gatcagcatg 840 cttcagtcca atgaagacac aaaagatctg atcaatcgtc ctttggaatt cattggtaat 900 ctcgcgttgt tgattgttgg cggtaatgac accacgcgta actcaatgag cgggggggtg 960 ctggctttaa atcagttccc agagcaattc gagaagctaa aggcgaaccc aaagcttatc 1020 cccaattggt ctctgaaata ttcgctggca acgccgcttg cgtatatgcg ccgggttgcc 1080 aagcaggatg tggagctgaa cggacagacc atcaagaagg gtgatcgcgt gctgatgtgg 1140 tatgcgtcgg gcaaccagga tgagagaaaa tttgagaatc ctgagcaatt catcatcgac 1200 cgcaaagata cgcgtaacca tgtgtcgttt ggttatgggg ttcaccgttg tatgggcaac 1260 cgccttgccg aactgcagct gcgtattctg tgggaagagc ttctccctcg ctttgaaaac 1320 atcgaagtga tcggtgagcc ggagcgcgtg caatcgaact ttgtgcgggg ctattccaag 1380 atgatggtta agttgacggc taaaaaacaa ttcgtgctgc accgccatca accggtcacc 1440 atcggagaac ccgccgcccg ggcggtgtcc cgcaccgtca ccgtcgagcg cctggaccgg 1500 atcgccgacg acgtgctgcg cctcgtcctg cgcgacgccg gcggaaagac attacccacg 1560 tggactcccg gcgcccatat cgacctcgac ctcggcgcgc tgtcgcgcca gtactccctg 1620 tgcggcgcgc ccgatgcgcc gagctacgag attgccgtgc acctggatcc cgagagccgc 1680 ggcggttcgc gctacatcca cgaacagctc gaggtgggaa gcccgctccg gatgcgcggc 1740 cctcggaacc atttcgcgct cgaccccggc gccgagcact acgtgttcgt cgccggcggc 1800 atcggcatca ccccagtcct ggccatggcc gaccacgccc gcgcccgggg gtggagctac 1860 gaactgcact actgcggccg aaaccgttcc ggcatggcct atctcgagcg tgtcgccggg 1920 cacggtgacc gggccgccct gcacgtgtcc gaggaaggca cccggatcga cctcgccgcc 1980 ctcctcgccg agcccgcccc cggcgtccag atctacgcgt gcgggcccgg gcggctgctc 2040 gccggactcg aggacgcgag ccggaactgg cccgacgggg cgctgcacgt cgagcacttc 2100 acctcgtccc tcgcggcgct cgatccggac gtcgagcacg ccttcgacct cgaactgcgt 2160 gactcggggc tgaccgtgcg ggtcgaaccc acccagaccg tcctcgacgc gttgcgcgcc 2220 aacaacatcg acgtgcccag cgactgcgag gaaggcctct gcggctcgtg cgaggtcgcc 2280 gtcctcgacg gcgaggtcga ccatcgcgac acggtgctga ccaaggccga gcgggcggcg 2340 aaccggcaga tgatgacctg ctgctcgcgt gcctgtggcg accgcctggc cctgcgcctc 2400 tga 2403 <210> 8 <211> 2589 <212> DNA <213> Clostridium acetobutylicum alcohol dehydrogenase <400> 8 tctagaatga aggttacaaa tcagaaggag ttgaagcaaa agttaaatga attgagagaa 60 gcacagaaga aattcgccac ttacactcag gaacaagtcg ataagatatt caagcaatgt 120 gcaatcgccg cagccaagga gcgtattaat cttgctaaac tagctgtcga agaaactggt 180 attggacttg tcgaagacaa gatcatcaag aaccatttcg ccgccgagta catctacaac 240 aagtataaga atgaaaagac ttgtggtata attgatcacg atgattcctt aggcatcact 300 aaggttgctg agcctattgg tattgttgct gccattgttc caaccaccaa cccaacatcc 360 actgctatct tcaagtcttt gatctccttg aaaactagaa acgcaatttt cttttctcca 420 catccaagag ctaagaagtc caccatcgca gctgcaaagt taattttgga tgctgccgtt 480 aaggctggtg cccctaagaa catcattggt tggattgatg agccatctat tgaattgtct 540 caagatctaa tgtccgaagc cgatattatc ttggcaactg gtggcccatc aatggtcaag 600 gctgcatata gtagtggtaa accagctatt ggtgttggtg ctggcaacac accagctatc 660 attgatgaat ctgctgatat cgacatggcc gtgtcatcta ttatattaag taagacatac 720 gacaacggcg ttatctgcgc ttccgaacaa tccatcctag ttatgaactc catctacgag 780 aaggtgaagg aagagttcgt gaagaggggt tcctacattt taaaccaaaa cgaaatagcc 840 aagatcaagg aaaccatgtt taaaaacggt gccatcaacg cagacatcgt gggtaaaagt 900 gcctacatca ttgccaaaat ggctggtatt gaagttccac agaccacaaa gatcttaatc 960 ggtgaggttc aatctgttga aaaatctgaa ttgttctcac atgaaaagtt gtcaccagtg 1020 cttgccatgt acaaagtcaa ggactttgat gaagccttga agaaggctca acgtttgata 1080 gagcttggtg gtagtggcca tacatcctca ttatacatcg actcacaaaa caacaaggat 1140 aaggtgaaag agttcggttt ggctatgaaa acctccagaa cattcattaa tatgccatcc 1200 tcacaaggtg cttctggtga tttgtacaat tttgccattg ccccttcttt cactctagga 1260 tgtggcacct ggggtggtaa ttctgtctct caaaacgtgg aaccaaagca cctattgaac 1320 atcaagtccg ttgctgaaag aagagaaaac atgctatggt tcaaggttcc tcaaaagatc 1380 tatttcaagt atggttgctt gagattcgct ttgaaggaat tgaaggacat gaacaaaaag 1440 agagcattta tcgtcaccga caaggacttg ttcaagttgg gatacgtcaa caaaataact 1500 aaggtgttgg acgagatcga catcaagtac tccatcttca ctgacatcaa atcagatcct 1560 actattgata gtgttaagaa gggtgctaaa gagatgttga actttgagcc agataccatt 1620 atttcaattg gtggtggttc tccaatggac gctgccaagg ttatgcactt attgtacgaa 1680 tacccagaag cagaaattga aaacttggcc atcaatttca tggatatccg taagagaatc 1740 tgtaattttc ctaagttggg aaccaaggca atatctgtgg ccatcccaac caccgctggt 1800 acaggttctg aagcaactcc atttgctgtt ataaccaacg acgagactgg tatgaagtac 1860 ccattgacct cttacgaatt gaccccaaac atggctatta tcgatactga attaatgctt 1920 aacatgccaa ggaagcttac cgctgctacc ggcattgatg ctttggtcca tgctatcgaa 1980 gcttatgtct ccgtcatggc tactgactat accgatgaat tggcccttag agctatcaag 2040 atgattttca agtacctacc tagagcttac aaaaacggta ctaatgatat tgaagctaga 2100 gaaaagatgg cacacgcctc taacatcgct ggaatggctt ttgctaacgc atttttgggt 2160 gtttgtcact ctatggcaca caagttgggt gctatgcacc atgtcccaca cggtattgca 2220 tgtgctgtct tgattgaaga agttatcaaa tacaacgcta cagactgtcc aaccaaacag 2280 actgctttcc cacagtataa gtcccctaat gccaagagaa aatacgctga gatcgccgaa 2340 tacttgaacc taaagggaac cagtgatacc gaaaaggtca ccgcccttat cgaggcaatt 2400 tccaagttga agattgactt gtccatccca caaaatattt ctgctgcagg tatcaacaag 2460 aaggacttct acaacacttt agacaaaatg tctgaactag cattcgacga ccaatgtaca 2520 accgctaatc ctcgttatcc attaatctct gaattgaaag acatttacat caagagtttc 2580 taactcgag 2589 <210> 9 <211> 1083 <212> DNA <213> Saccharomyces cerevisiae malonyl-CoA carrier protein <400> 9 atgaagctac taaccttccc aggtcaaggg acctccatct ccatttcgat attaaaagcg 60 ataataagaa acaaatcaag agaattccaa acaatactga gtcagaacgg caaggaatca 120 aatgatctat tgcagtacat cttccagaac ccttccagcc ccggaagcat tgcagtctgc 180 tccaaccttt tctatcaatt gtaccagata ctctcgaatc cttctgatcc tcaagatcaa 240 gcaccaaaaa atatgactaa gatcgattcc cccgacaaga aagacaatga acaatgttac 300 cttttgggtc actcgctagg cgagttaaca tgtctgagtg ttaattcact gttttcgtta 360 aaggatcttt ttgatattgc taattttaga aataagttaa tggtaacatc tactgaaaag 420 tacttagtag cccacaatat caacagatcc aacaaatttg aaatgtgggc actctcttct 480 ccgagggcca cagatttacc gcaagaagtg caaaaactac taaattcccc taatttatta 540 tcatcttcac aaaataccat ttctgtagca aatgcaaatt cagtaaagca atgtgtagtc 600 accggtctgg ttgatgattt agagtcctta agaacagaat tgaacttaag gttcccgcgt 660 ttaagaatta cagaattaac taacccatac aacatcccct tccataatag cactgtgttg 720 aggcccgttc aggaaccact ctatgactac atttgggata tattaaagaa aaacggaact 780 cacacgttga tggagttgaa ccatccaata atagctaact tagatggtaa tatatcttac 840 tatattcatc atgccctaga tagattcgtt aagtgttcaa gcaggactgt gcaattcacc 900 atgtgttatg ataccataaa ctctggaacc ccagtggaaa ttgataagag tatttgcttt 960 ggcccgggca atgtgattta taaccttatt cggagaaatt gtccccaagt ggacactata 1020 gaatacacct ctttagcaac tatagacgct tatcacaagg cggcagagga gaacaaagat 1080 tga 1083 <210> 10 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> K.marxianus AtoB 5'XbaI <400> 10 ctagtctaga atgaaaaatt gtgtcatcgt 30 <210> 11 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> K.marxianus AtoB 3'BamHI <400> 11 gatcggatcc ttaattcaac cgttcaatca 30 <210> 12 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> K.marxianus phbA 5'BamHI <400> 12 gatcggatcc gcactgacgt tgtcatcgta tc 32 <210> 13 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> K.marxianus phbA 3'XmaI <400> 13 ccggcccggg ttatttgcgc tcgactgcc 29 <210> 14 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> K.marxianus bktB 5'BamHI <400> 14 gatcggatcc acgcgtgaag tggtagtgg 29 <210> 15 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> K.marxianus bktB 3'XmaI <400> 15 ccggcccggg tcagatacgc tcgaagatgg 30 <210> 16 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> K.marxianus crt 5'BamHI <400> 16 gatcggatcc atggaactaa acaatgtcat 30 <210> 17 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> K.marxianus crt 3'EcoRI <400> 17 aattgaattc ctatctattt ttgaagcctt 30 <210> 18 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> K.marxianus hbd 5'BamHI <400> 18 gatcggatcc atgaaaaagg tatgtgttat 30 <210> 19 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> K.marxianus hbd 3'EcoRI <400> 19 aattgaattc ttattttgaa taatcgtaga 30 <210> 20 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> K.marxianus ter 5'BamHI <400> 20 gatcggatcc atgatcgtca agccaatggt gcg 33 <210> 21 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> K.marxianus ter 3'EcoRI <400> 21 aattgaattc ttaaatacga tcgaaacgtt caact 35 <210> 22 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> K.marxianus CYP 5'XbaI <400> 22 gatcggatcc atgatcgtca agccaatggt gcg 33 <210> 23 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> K.marxianus CYP 3'SpeI <400> 23 aattgaattc ttaaatacga tcgaaacgtt caact 35 <110> Research & Business Foundation SUNGKYUNKWAN UNIVERSITY <120> Recombinant micro-organisms for producing hexanol and the method for producing hexanol by using <130> PA120771KR <160> 23 <170> Kopatentin 2.0 <210> 1 <211> 1185 <212> DNA <213> Ralstonia eutropha beta-KETOTHIOLASE II <400> 1 atgacgcgtg aagtggtagt ggtaagcggt gtccgtaccg cgatcgggac ctttggcggc 60 agcctgaagg atgtggcacc ggcggagctg ggcgcactgg tggtgcgcga ggcgctggcg 120 cgcgcgcagg tgtcgggcga cgatgtcggc cacgtggtat tcggcaacgt gatccagacc 180 gagccgcgcg acatgtatct gggccgcgtc gcggccgtca acggcggggt gacgatcaac 240 gcccccgcgc tgaccgtgaa ccgcctgtgc ggctcgggcc tgcaggccat tgtcagcgcc 300 gcgcagacca tcctgctggg cgataccgac gtcgccatcg gcggcggcgc ggaaagcatg 360 agccgcgcac cgtacctggc gccggcagcg cgctggggcg cacgcatggg cgacgccggc 420 ctggtcgaca tgatgctggg tgcgctgcac gatcccttcc atcgcatcca catgggcgtg 480 accgccgaga atgtcgccaa ggaatacgac atctcgcgcg cgcagcagga cgaggccgcg 540 ctggaatcgc accgccgcgc ttcggcagcg atcaaggccg gctacttcaa ggaccagatc 600 gtcccggtgg tgagcaaggg ccgcaagggc gacgtgacct tcgacaccga cgagcacgtg 660 cgccatgacg ccaccatcga cgacatgacc aagctcaggc cggtcttcgt caaggaaaac 720 ggcacggtca cggccggcaa tgcctcgggc ctgaacgacg ccgccgccgc ggtggtgatg 780 atggagcgcg ccgaagccga gcgccgcggc ctgaagccgc tggcccgcct ggtgtcgtac 840 ggccatgccg gcgtggaccc gaaggccatg ggcatcggcc cggtgccggc gacgaagatc 900 gcgctggagc gcgccggcct gcaggtgtcg gacctggacg tgatcgaagc caacgaagcc 960 tttgccgcac aggcgtgcgc cgtgaccaag gcgctcggtc tggacccggc caaggttaac 1020 ccgaacggct cgggcatctc gctgggccac ccgatcggcg ccaccggtgc cctgatcacg 1080 gtgaaggcgc tgcatgagct gaaccgcgtg cagggccgct acgcgctggt gacgatgtgc 1140 atcggcggcg ggcagggcat tgccgccatc ttcgagcgta tctga 1185 <210> 2 <211> 1182 <212> DNA <213> Ralstonia eutropha beta-ketothiolase I <400> 2 atgaccgatg tagtgatcgt atcggcggtc cgtaccgccg tgggcaagtt tggcggttcg 60 ctggcgaaaa tccccgcgcc ggagctgggt gcggccgtga tccgcgaagc gctgtcgcgc 120 gccaaggtgg cgccggatca ggtcagcgaa gtcatcatgg gccaggtgct gaccgcgggt 180 tcgggccaga acccggcgcg ccaggcgttg atcaaggccg gcctgcccga catggtgccg 240 ggcatgacca tcaacaaggt gtgcggctcg ggcctgaagg ccgtgatgct ggccgccaac 300 gccatcgtcg ccggggatgc cgacatcgtc gtggccggcg ggcaggagaa catgtccgcc 360 gcgccgcacg tgctgcccgg ctcgcgcgac ggtttccgca tgggcgacac caagctcatc 420 gactcgatga tcgtggatgg gctgtgggac gtctacaacc agtaccacat gggcatcacc 480 gccgagaatg tcgccaagca gtacggcatc acgcgcgagg cccaggacgc attcgccgtg 540 gcttcgcaga acaaggcgga agccgcgcag aagtccggtc gcttcaatga cgagatcgtt 600 cccatcctga ttccgcagcg caagggcgac ccgatcgcct tcgcgcagga cgagttcgtc 660 cgccatggcg ccacgctgga atcgatgacg ggcctgaagc cggcattcga caaagccggc 720 acggtgacgg ccgccaatgc ctcgggcctc aacgacggcg gcgccgccgt ggtggtcatg 780 tcggccgccc gcgccaagga actgggtctg accccgctgg ccaccatccg cgcctacgcc 840 aatgccggcg tggacccgaa ggtgatgggc atgggcccgg tgccggcttc caagcgctgc 900 ctgtcgcgcg ccggctggtc ggtgggcgac ctggacctga tggagatcaa cgaggcgttt 960 gccgcccagg cgctggccgt gcaccagcag atgggctggg ataccgccaa ggtcaacgtc 1020 aacggcggcg cgattgccat cggtcacccc atcggcgcgt cgggctgccg catcctggtg 1080 acgctgctgc acgagatgca gaagcgcgac gcgaagaagg gcctggcctc gctgtgcatc 1140 ggcggcggca tgggcgtggc gctggcggtc gagcgcccgt ga 1182 <210> 3 <211> 1185 <212> DNA Escherichia coli acetyl-CoA acetyltransferase <400> 3 atgaaaaatt gtgtcatcgt cagtgcggta cgtactgcta tcggtagttt taacggttca 60 ctcgcttcca ccagcgccat cgacctgggg gcgacagtaa ttaaagccgc cattgaacgt 120 gcaaaaatcg attcacaaca cgttgatgaa gtgattatgg gtaacgtgtt acaagccggg 180 ctggggcaaa atccggcgcg tcaggcactg ttaaaaagcg ggctggcaga aacggtgtgc 240 ggattcacgg tcaataaagt atgtggttcg ggtcttaaaa gtgtggcgct tgccgcccag 300 gccattcagg caggtcaggc gcagagcatt gtggcggggg gtatggaaaa tatgagttta 360 gccccctact tactcgatgc aaaagcacgc tctggttatc gtcttggaga cggacaggtt 420 tatgacgtaa tcctgcgcga tggcctgatg tgcgccaccc atggttatca tatggggatt 480 accgccgaaa acgtggctaa agagtacgga attacccgtg aaatgcagga tgaactggcg 540 ctacattcac agcgtaaagc ggcagccgca attgagtccg gtgcttttac agccgaaatc 600 gtcccggtaa atgttgtcac tcgaaagaaa accttcgtct tcagtcaaga cgaattcccg 660 aaagcgaatt caacggctga agcgttaggt gcattgcgcc cggccttcga taaagcagga 720 acagtcaccg ctgggaacgc gtctggtatt aacgacggtg ctgccgctct ggtgattatg 780 gaagaatctg cggcgctggc agcaggcctt acccccctgg ctcgcattaa aagttatgcc 840 agcggtggcg tgccccccgc attgatgggt atggggccag tacctgccac gcaaaaagcg 900 ttacaactgg cggggctgca actggcggat attgatctca ttgaggctaa tgaagcattt 960 gctgcacagt tccttgccgt tgggaaaaac ctgggctttg attctgagaa agtgaatgtc 1020 aacggcgggg ccatcgcgct cgggcatcct atcggtgcca gtggtgctcg tattctggtc 1080 acactattac atgccatgca ggcacgcgat aaaacgctgg ggctggcaac actgtgcatt 1140 ggcggcggtc agggaattgc gatggtgatt gaacggttga attaa 1185 <210> 4 <211> 861 <212> DNA <213> Clostridium acetobutylicum Crotonase <400> 4 ggatccttga cggctagctc agtcctaggt acagtgctag ctcattctaa aaaaggagca 60 tctgtgatgg aactaaacaa tgtcatcctt gaaaaggaag gtaaagttgc tgtagttacc 120 attaacagac ctaaagcatt aaatgcgtta aatagtgata cactaaaaga aatggattat 180 gttataggtg aaattgaaaa tgatagcgaa gtacttgcag taattttaac tggagcagga 240 gaaaaatcat ttgtagcagg agcagatatt tctgagatga aggaaatgaa taccattgaa 300 ggtagaaaat tcgggatact tggaaataaa gtgtttagaa gattagaact tcttgaaaag 360 cctgtaatag cagctgttaa tggttttgct ttaggaggcg gatgcgaaat agctatgtct 420 tgtgatataa gaatagcttc aagcaacgca agatttggtc aaccagaagt aggtctcgga 480 ataacacctg gttttggtgg tacacaaaga ctttcaagat tagttggaat gggcatggca 540 aagcagctta tatttactgc acaaaatata aaggcagatg aagcattaag aatcggactt 600 gtaaataagg tagtagaacc tagtgaatta atgaatacag caaaagaaat tgcaaacaaa 660 attgtgagca atgctccagt agctgttaag ttaagcaaac aggctattaa tagaggaatg 720 cagtgtgata ttgatactgc tttagcattt gaatcagaag catttggaga atgcttttca 780 acagaggatc aaaaggatgc aatgacagct ttcatagaga aaagaaaaat tgaaggcttc 840 aaaaatagat agtgagtcga c 861 <210> 5 <211> 921 <212> DNA <213> Clostridium acetobutylicum 3-hydroxybutyryl-CoA dehydrogenase <400> 5 gtcgacttga cggctagctc agtcctaggt acagtgctag ctggcaagtc taaaggagca 60 tcacgaatga aaaaggtatg tgttataggt gcaggtacta tgggttcagg aattgctcag 120 gcatttgcag ctaaaggatt tgaagtagta ttaagagata ttaaagatga atttgttgat 180 agaggattag attttatcaa taaaaatctt tctaaattag ttaaaaaagg aaagatagaa 240 gaagctacta aagttgaaat cttaactaga atttccggaa cagttgacct taatatggca 300 gctgattgcg atttagttat agaagcagct gttgaaagaa tggatattaa aaagcagatt 360 tttgctgact tagacaatat atgcaagcca gaaacaattc ttgcatcaaa tacatcatca 420 ctttcaataa cagaagtggc atcagcaact aaaagacctg ataaggttat aggtatgcat 480 ttctttaatc cagctcctgt tatgaagctt gtagaggtaa taagaggaat agctacatca 540 caagaaactt ttgatgcagt taaagagaca tctatagcaa taggaaaaga tcctgtagaa 600 gtagcagaag caccaggatt tgttgtaaat agaatattaa taccaatgat taatgaagca 660 gttggtatat tagcagaagg aatagcttca gtagaagaca tagataaagc tatgaaactt 720 ggagctaatc acccaatggg accattagaa ttaggtgatt ttataggtct tgatatatgt 780 cttgctataa tggatgtttt atactcagaa actggagatt ctaagtatag accacataca 840 ttacttaaga agtatgtaag agcaggatgg cttggaagaa aatcaggaaa aggtttctac 900 gattattcaa aataactcga g 921 <210> 6 <211> 1286 <212> DNA <213> Treponema denticola trans-enoyl-CoA reductase <400> 6 ctcgagttga cggctagctc agtcctaggt acagtgctag ctacattaag gaggaagccg 60 atgatcgtca agccaatggt gcgcaataat atctgtctga acgctcaccc gcagggttgt 120 aaaaagggtg tagaagacca gattgaatac actaagaaac gcatcaccgc agaagttaaa 180 gcaggtgcca aagcaccgaa aaacgtcctg gtgctgggct gcagcaacgg ctacggtctg 240 gcaagccgca ttacggctgc attcggttac ggcgctgcta ctattggtgt tagcttcgaa 300 aaggcgggtt ctgaaaccaa atacggcact ccaggctggt acaacaacct ggcattcgac 360 gaagcagcga agcgtgaggg tctgtactct gttaccatcg acggtgacgc gttctctgac 420 gagatcaaag ctcaggttat cgaggaagct aaaaagaaag gtatcaaatt cgacctgatt 480 gtgtactccc tggcctctcc ggttcgtacc gacccggata ccggcatcat gcacaaaagc 540 gtactgaagc cgtttggcaa aaccttcact ggtaaaaccg ttgatccttt caccggcgag 600 ctgaaggaaa tctccgccga gccagctaac gatgaggagg ctgctgcgac cgttaaagtg 660 atgggtggcg aagactggga acgttggatc aaacaactgt ccaaggaagg tctgctggag 720 gagggctgta ttactctggc atattcttac atcggcccgg aggcgactca ggcactgtat 780 cgtaagggca ccatcggtaa agcgaaagaa catctggagg ccaccgctca ccgtctgaac 840 aaggaaaacc cgagcatccg tgctttcgtg tccgttaaca agggcctggt tacgcgcgct 900 tccgcagtaa ttccggtcat tccgctgtac ctggcttccc tgtttaaagt catgaaagaa 960 aaaggcaacc acgaaggttg tatcgaacaa attactcgcc tgtatgcgga gcgcctgtac 1020 cgtaaggatg gcactatccc ggttgatgaa gagaaccgca tccgcattga cgattgggaa 1080 ctggaagagg atgtacagaa agcggtttcc gcgctgatgg aaaaagtgac gggcgaaaac 1140 gcggaatccc tgacggatct ggcaggttac cgtcacgact ttctggcgtc taatggtttc 1200 gacgttgagg gtattaacta cgaggcagaa gttgaacgtt tcgatcgtat ttaatctaga 1260 acgccagggc atgagctctt aattaa 1286 <210> 7 <211> 2403 <212> DNA <213> Rhodococus ruber cytochrome P450 monooxygenase <400> 7 atgtcaacga gttcaagtac aagtaatgac atccaggcaa aaataattaa cgccacatcc 60 aaagtcgtgc caatgcatct acagatcaag gcactaaaaa acttgatgaa ggtgaagcgg 120 aagaccattg gcacttcccg ccctcaggtg cactttgttg aaaccgattt gcctgacgtc 180 aatgatttgg cgatagaaga tatcgatacg agtaaccctt ttttataccg acaaggtaag 240 gcgaatgcgt actttaagcg gttgcgtgat gaagcgccgg tgcactacca gaagaacagt 300 gctttcgggc cgttctggtc ggtaacacgc tacgaagata ttgtcttcgt ggacaagagc 360 catgatttgt tttccgccga accccaaatt atcttgggtg atcctccgga aggcctgtcg 420 gttgaaatgt tcatcgctat ggatcctccc aagcacgacg tacagcgtcg ggcagtccag 480 ggtgttgttg cgcccaagaa cctgaaagaa atggaaggac tgatccgcaa gcgcaccggg 540 gacgtactcg atagcctgcc gttggacact ccgttcaact gggtgccggt ggtgtcgaaa 600 gagctgaccg ggcgcatgct cgcctcactg ttagatttcc cgtatgacga acgcgaaaaa 660 ctggttggct ggtcggatcg attgtccggc gcgtcctcgg caaccggcgg cgagtttacg 720 aatgaagatg tgttttttga tgatgctgca gatatggcgt gggctttctc caagctttgg 780 cgtgataaag aagcccgtca aaaagcaggt gaagagccgg gtttcgattt gatcagcatg 840 cttcagtcca atgaagacac aaaagatctg atcaatcgtc ctttggaatt cattggtaat 900 ctcgcgttgt tgattgttgg cggtaatgac accacgcgta actcaatgag cgggggggtg 960 ctggctttaa atcagttccc agagcaattc gagaagctaa aggcgaaccc aaagcttatc 1020 cccaattggt ctctgaaata ttcgctggca acgccgcttg cgtatatgcg ccgggttgcc 1080 aagcaggatg tggagctgaa cggacagacc atcaagaagg gtgatcgcgt gctgatgtgg 1140 tatgcgtcgg gcaaccagga tgagagaaaa tttgagaatc ctgagcaatt catcatcgac 1200 cgcaaagata cgcgtaacca tgtgtcgttt ggttatgggg ttcaccgttg tatgggcaac 1260 cgccttgccg aactgcagct gcgtattctg tgggaagagc ttctccctcg ctttgaaaac 1320 atcgaagtga tcggtgagcc ggagcgcgtg caatcgaact ttgtgcgggg ctattccaag 1380 atgatggtta agttgacggc taaaaaacaa ttcgtgctgc accgccatca accggtcacc 1440 atcggagaac ccgccgcccg ggcggtgtcc cgcaccgtca ccgtcgagcg cctggaccgg 1500 atcgccgacg acgtgctgcg cctcgtcctg cgcgacgccg gcggaaagac attacccacg 1560 tggactcccg gcgcccatat cgacctcgac ctcggcgcgc tgtcgcgcca gtactccctg 1620 tgcggcgcgc ccgatgcgcc gagctacgag attgccgtgc acctggatcc cgagagccgc 1680 ggcggttcgc gctacatcca cgaacagctc gaggtgggaa gcccgctccg gatgcgcggc 1740 cctcggaacc atttcgcgct cgaccccggc gccgagcact acgtgttcgt cgccggcggc 1800 atcggcatca ccccagtcct ggccatggcc gaccacgccc gcgcccgggg gtggagctac 1860 gaactgcact actgcggccg aaaccgttcc ggcatggcct atctcgagcg tgtcgccggg 1920 cacggtgacc gggccgccct gcacgtgtcc gaggaaggca cccggatcga cctcgccgcc 1980 ctcctcgccg agcccgcccc cggcgtccag atctacgcgt gcgggcccgg gcggctgctc 2040 gccggactcg aggacgcgag ccggaactgg cccgacgggg cgctgcacgt cgagcacttc 2100 acctcgtccc tcgcggcgct cgatccggac gtcgagcacg ccttcgacct cgaactgcgt 2160 gactcggggc tgaccgtgcg ggtcgaaccc acccagaccg tcctcgacgc gttgcgcgcc 2220 aacaacatcg acgtgcccag cgactgcgag gaaggcctct gcggctcgtg cgaggtcgcc 2280 gtcctcgacg gcgaggtcga ccatcgcgac acggtgctga ccaaggccga gcgggcggcg 2340 aaccggcaga tgatgacctg ctgctcgcgt gcctgtggcg accgcctggc cctgcgcctc 2400 tga 2403 <210> 8 <211> 2589 <212> DNA <213> Clostridium acetobutylicum alcohol dehydrogenase <400> 8 tctagaatga aggttacaaa tcagaaggag ttgaagcaaa agttaaatga attgagagaa 60 gcacagaaga aattcgccac ttacactcag gaacaagtcg ataagatatt caagcaatgt 120 gcaatcgccg cagccaagga gcgtattaat cttgctaaac tagctgtcga agaaactggt 180 attggacttg tcgaagacaa gatcatcaag aaccatttcg ccgccgagta catctacaac 240 aagtataaga atgaaaagac ttgtggtata attgatcacg atgattcctt aggcatcact 300 aaggttgctg agcctattgg tattgttgct gccattgttc caaccaccaa cccaacatcc 360 actgctatct tcaagtcttt gatctccttg aaaactagaa acgcaatttt cttttctcca 420 catccaagag ctaagaagtc caccatcgca gctgcaaagt taattttgga tgctgccgtt 480 aaggctggtg cccctaagaa catcattggt tggattgatg agccatctat tgaattgtct 540 caagatctaa tgtccgaagc cgatattatc ttggcaactg gtggcccatc aatggtcaag 600 gctgcatata gtagtggtaa accagctatt ggtgttggtg ctggcaacac accagctatc 660 attgatgaat ctgctgatat cgacatggcc gtgtcatcta ttatattaag taagacatac 720 gacaacggcg ttatctgcgc ttccgaacaa tccatcctag ttatgaactc catctacgag 780 aaggtgaagg aagagttcgt gaagaggggt tcctacattt taaaccaaaa cgaaatagcc 840 aagatcaagg aaaccatgtt taaaaacggt gccatcaacg cagacatcgt gggtaaaagt 900 gcctacatca ttgccaaaat ggctggtatt gaagttccac agaccacaaa gatcttaatc 960 ggtgaggttc aatctgttga aaaatctgaa ttgttctcac atgaaaagtt gtcaccagtg 1020 cttgccatgt acaaagtcaa ggactttgat gaagccttga agaaggctca acgtttgata 1080 gagcttggtg gtagtggcca tacatcctca ttatacatcg actcacaaaa caacaaggat 1140 aaggtgaaag agttcggttt ggctatgaaa acctccagaa cattcattaa tatgccatcc 1200 tcacaaggtg cttctggtga tttgtacaat tttgccattg ccccttcttt cactctagga 1260 tgtggcacct ggggtggtaa ttctgtctct caaaacgtgg aaccaaagca cctattgaac 1320 atcaagtccg ttgctgaaag aagagaaaac atgctatggt tcaaggttcc tcaaaagatc 1380 tatttcaagt atggttgctt gagattcgct ttgaaggaat tgaaggacat gaacaaaaag 1440 agagcattta tcgtcaccga caaggacttg ttcaagttgg gatacgtcaa caaaataact 1500 aaggtgttgg acgagatcga catcaagtac tccatcttca ctgacatcaa atcagatcct 1560 actattgata gtgttaagaa gggtgctaaa gagatgttga actttgagcc agataccatt 1620 atttcaattg gtggtggttc tccaatggac gctgccaagg ttatgcactt attgtacgaa 1680 tacccagaag cagaaattga aaacttggcc atcaatttca tggatatccg taagagaatc 1740 tgtaattttc ctaagttggg aaccaaggca atatctgtgg ccatcccaac caccgctggt 1800 acaggttctg aagcaactcc atttgctgtt ataaccaacg acgagactgg tatgaagtac 1860 ccattgacct cttacgaatt gaccccaaac atggctatta tcgatactga attaatgctt 1920 aacatgccaa ggaagcttac cgctgctacc ggcattgatg ctttggtcca tgctatcgaa 1980 gcttatgtct ccgtcatggc tactgactat accgatgaat tggcccttag agctatcaag 2040 atgattttca agtacctacc tagagcttac aaaaacggta ctaatgatat tgaagctaga 2100 gaaaagatgg cacacgcctc taacatcgct ggaatggctt ttgctaacgc atttttgggt 2160 gtttgtcact ctatggcaca caagttgggt gctatgcacc atgtcccaca cggtattgca 2220 tgtgctgtct tgattgaaga agttatcaaa tacaacgcta cagactgtcc aaccaaacag 2280 actgctttcc cacagtataa gtcccctaat gccaagagaa aatacgctga gatcgccgaa 2340 tacttgaacc taaagggaac cagtgatacc gaaaaggtca ccgcccttat cgaggcaatt 2400 tccaagttga agattgactt gtccatccca caaaatattt ctgctgcagg tatcaacaag 2460 aaggacttct acaacacttt agacaaaatg tctgaactag cattcgacga ccaatgtaca 2520 accgctaatc ctcgttatcc attaatctct gaattgaaag acatttacat caagagtttc 2580 taactcgag 2589 <210> 9 <211> 1083 <212> DNA <213> Saccharomyces cerevisiae malonyl-CoA carrier protein <400> 9 atgaagctac taaccttccc aggtcaaggg acctccatct ccatttcgat attaaaagcg 60 ataataagaa acaaatcaag agaattccaa acaatactga gtcagaacgg caaggaatca 120 aatgatctat tgcagtacat cttccagaac ccttccagcc ccggaagcat tgcagtctgc 180 tccaaccttt tctatcaatt gtaccagata ctctcgaatc cttctgatcc tcaagatcaa 240 gcaccaaaaa atatgactaa gatcgattcc cccgacaaga aagacaatga acaatgttac 300 cttttgggtc actcgctagg cgagttaaca tgtctgagtg ttaattcact gttttcgtta 360 aaggatcttt ttgatattgc taattttaga aataagttaa tggtaacatc tactgaaaag 420 tacttagtag cccacaatat caacagatcc aacaaatttg aaatgtgggc actctcttct 480 ccgagggcca cagatttacc gcaagaagtg caaaaactac taaattcccc taatttatta 540 tcatcttcac aaaataccat ttctgtagca aatgcaaatt cagtaaagca atgtgtagtc 600 accggtctgg ttgatgattt agagtcctta agaacagaat tgaacttaag gttcccgcgt 660 ttaagaatta cagaattaac taacccatac aacatcccct tccataatag cactgtgttg 720 aggcccgttc aggaaccact ctatgactac atttgggata tattaaagaa aaacggaact 780 cacacgttga tggagttgaa ccatccaata atagctaact tagatggtaa tatatcttac 840 tatattcatc atgccctaga tagattcgtt aagtgttcaa gcaggactgt gcaattcacc 900 atgtgttatg ataccataaa ctctggaacc ccagtggaaa ttgataagag tatttgcttt 960 ggcccgggca atgtgattta taaccttatt cggagaaatt gtccccaagt ggacactata 1020 gaatacacct ctttagcaac tatagacgct tatcacaagg cggcagagga gaacaaagat 1080 tga 1083 <210> 10 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> K.marxianus AtoB 5'XbaI <400> 10 ctagtctaga atgaaaaatt gtgtcatcgt 30 <210> 11 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> K.marxianus AtoB 3'BamHI <400> 11 gatcggatcc ttaattcaac cgttcaatca 30 <210> 12 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> K.marxianus phbA 5'BamHI <400> 12 gatcggatcc gcactgacgt tgtcatcgta tc 32 <210> 13 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> K.marxianus phbA 3'XmaI <400> 13 ccggcccggg ttatttgcgc tcgactgcc 29 <210> 14 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> K.marxianus bktB 5'BamHI <400> 14 gatcggatcc acgcgtgaag tggtagtgg 29 <210> 15 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> K.marxianus bktB 3'XmaI <400> 15 ccggcccggg tcagatacgc tcgaagatgg 30 <210> 16 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> K.marxianus crt 5'BamHI <400> 16 gatcggatcc atggaactaa acaatgtcat 30 <210> 17 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> K.marxianus crt 3 'EcoCo <400> 17 aattgaattc ctatctattt ttgaagcctt 30 <210> 18 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> K.marxianus hbd 5'BamHI <400> 18 gatcggatcc atgaaaaagg tatgtgttat 30 <210> 19 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> K.marxianus hbd 3'EcoRI <400> 19 aattgaattc ttattttgaa taatcgtaga 30 <210> 20 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> K.marxianus ter 5'BamHI <400> 20 gatcggatcc atgatcgtca agccaatggt gcg 33 <210> 21 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> K.marxianus ter 3 'EcoRI <400> 21 aattgaattc ttaaatacga tcgaaacgtt caact 35 <210> 22 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> K.marxianus CYP 5'XbaI <400> 22 gatcggatcc atgatcgtca agccaatggt gcg 33 <210> 23 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> K.marxianus CYP 3'SpeI <400> 23 aattgaattc ttaaatacga tcgaaacgtt caact 35
Claims (18)
A microorganism for producing hexanol, in which the activity of cytochrome P450 monooxygenase is enhanced.
The microorganism of claim 1, wherein the microorganism is Accession Number KACC 93152B.
The method of claim 1, further comprising acetyl-CoA acetyltransferase, beta-ketothiolase I, beta-ketothiolase II, croto Microorganisms having enhanced activity of Crotonase, 3-hydroxybutyryl-CoA dehydrogenase, and trans-enoyl-CoA reductase.
The microorganism according to claim 3, wherein the activity of alcohol dehydrogenase is further enhanced.
The microorganism according to claim 4, wherein the microorganism is Accession Number KACC 93154B.
The method according to claim 1, 3 or 4, wherein the enhancing activity of the enzyme comprises 1) an increase in the number of copies of the polynucleotide encoding the enzyme, 2) a modification of the expression control sequence to increase the expression of the polynucleotide, 3) a microorganism carried out by a method selected from the group consisting of a modification of said polynucleotide sequence on a chromosome and a combination thereof 4) to enhance the activity of said enzyme.
The microorganism of claim 6, wherein the copy number increase of the polynucleotide encoding the enzyme is performed by introducing a vector expressing the enzyme into the microorganism.
The microorganism of claim 1, wherein the microorganism is yeast.
The microorganism of claim 8, wherein the yeast is Saccharomyces, Candida, Kluyveromyces, or Torulaspora.
10. The microorganism according to claim 9, wherein the genus yeast of Kluyveromyces is Klluyveromyces marxianus.
The method according to claim 1, 3 or 4, wherein beta-ketothiolase I and beta-ketothiolase II are derived from Ralstonia eutropha; Acetyl CoA Acetyltransferase is derived from Escherichia coli; Alcohol dehydrogenase, crotonase and 3-hydroxybutyryl-CoA dehydrogenase are derived from Clostridium acetobutylicum; Trans-inoyl-CoA reductase is from Treponema denticola; Cytochrome p450 monooxidant is a microorganism derived from Rhodococus ruber (Rhodococus ruber).
A method for producing a microorganism according to claim 1, comprising introducing into a microorganism a vector expressing a cytochrome p450 monooxidant.
13. Acetyl CoA acetyltransferase, beta-ketothiolase I, beta-ketothiolase II, crotonase, 3-hydroxybutyryl-CoA dehydrogenase, and trans-inoyl-CoA Further comprising introducing into the microorganism a vector expressing a reductase.
The method of claim 13, further comprising introducing the vector expressing an alcohol dehydrogenase into the microorganism.
Culturing the microorganism of any one of claims 1 to 5 or 7 to 10; And recovering hexanol from the culture or microorganism.
The method of claim 15, wherein the hexanol is 1-hexanol (1-Hexanol) having 6 carbon atoms.
Hexanol prepared by the method of claim 15.
The hexanol of claim 17, wherein the hexanol is 1-hexanol having 1 to 6 carbon atoms.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120093322A KR101985021B1 (en) | 2012-08-24 | 2012-08-24 | Recombinant micro-organisms for producing hexanol and the method for producing hexanol by using thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120093322A KR101985021B1 (en) | 2012-08-24 | 2012-08-24 | Recombinant micro-organisms for producing hexanol and the method for producing hexanol by using thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20140026207A true KR20140026207A (en) | 2014-03-05 |
KR101985021B1 KR101985021B1 (en) | 2019-05-31 |
Family
ID=50641025
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020120093322A KR101985021B1 (en) | 2012-08-24 | 2012-08-24 | Recombinant micro-organisms for producing hexanol and the method for producing hexanol by using thereof |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101985021B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160131239A (en) | 2015-05-06 | 2016-11-16 | 한양대학교 산학협력단 | Novel genes involved in production of hexanoic acid, microorganism transformed with the genes, method for producing hexanoic acid using the microorganism, and method for producing hexanol using the same |
KR20230041344A (en) | 2021-09-17 | 2023-03-24 | 한국과학기술연구원 | Medium composition for producing alcohol from synthetic gas comprising ethanol and method for producing alcohol using the same |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080220419A1 (en) * | 2004-11-10 | 2008-09-11 | Marine Biotechnology Institute Co., Ltd. | Method of Isolating P450 Gene |
-
2012
- 2012-08-24 KR KR1020120093322A patent/KR101985021B1/en active IP Right Grant
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080220419A1 (en) * | 2004-11-10 | 2008-09-11 | Marine Biotechnology Institute Co., Ltd. | Method of Isolating P450 Gene |
Non-Patent Citations (1)
Title |
---|
Metabolic Engineering. Vol. 14, No. 5, 페이지 504-511 (2012.07.20.)* * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160131239A (en) | 2015-05-06 | 2016-11-16 | 한양대학교 산학협력단 | Novel genes involved in production of hexanoic acid, microorganism transformed with the genes, method for producing hexanoic acid using the microorganism, and method for producing hexanol using the same |
KR20230041344A (en) | 2021-09-17 | 2023-03-24 | 한국과학기술연구원 | Medium composition for producing alcohol from synthetic gas comprising ethanol and method for producing alcohol using the same |
US11932895B2 (en) | 2021-09-17 | 2024-03-19 | Korea Institute Of Science And Technology | Medium composition for producing alcohol from synthetic gas comprising ethanol and method for producing alcohol using the same |
Also Published As
Publication number | Publication date |
---|---|
KR101985021B1 (en) | 2019-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bae et al. | Valorization of C1 gases to value-added chemicals using acetogenic biocatalysts | |
Garrigues et al. | Isopropanol production from carbon dioxide in Cupriavidus necator in a pressurized bioreactor | |
JP2021166530A (en) | Genetically engineered bacterium comprising energy-generating fermentation pathway | |
EP2505656A1 (en) | Method of producing 3-hydroxypropionic acid using malonic semialdehyde reducing pathway | |
KR101643429B1 (en) | Production of butanediol by anaerobic microbial fermentation | |
US11060079B2 (en) | Methods and microorganisms for producing flavors and fragrance chemicals | |
KR101686900B1 (en) | Novel Pichia kudriavzevii NG7 and use thereof | |
US20080293125A1 (en) | Engineered microorganisms for producing isopropanol | |
CN103540559A (en) | Biofuel production by recombinant microorganisms | |
CN104508136A (en) | Recombinant microorganisms and uses therefor | |
CN105051179A (en) | Recombinant microorganisms and uses therefor | |
JP4573365B2 (en) | Transformed microorganisms with improved properties | |
US10676762B2 (en) | Two-stage production of higher alcohols | |
WO2009089457A1 (en) | Methods for producing 3-hydroxypropionic acid and compounds thereof | |
WO2010057022A1 (en) | Microorganisms for the production of methyl ethyl ketone and 2-butanol | |
JP2012506716A (en) | Microaerobic culture for converting glycerol to chemicals | |
JP2012506716A5 (en) | ||
Song et al. | Enhanced isobutanol production by co-production of polyhydroxybutyrate and cofactor engineering | |
Yoon et al. | Poly-3-hydroxybutyrate production in acetate minimal medium using engineered Methylorubrum extorquens AM1 | |
KR101985021B1 (en) | Recombinant micro-organisms for producing hexanol and the method for producing hexanol by using thereof | |
KR20150006412A (en) | Microbial production of n-butyraldehyde | |
EP2770062B1 (en) | PRODUCTION METHOD FOR ORGANIC ACID USING CoA-TRANSFERASE | |
KR101974221B1 (en) | Recombinant micro-organisms for producing organic aicd and the method for producing organic acid by using thereof | |
Tan et al. | Production of photosynthetic biofuels by genetically engineering cyanobacteria | |
KR102177736B1 (en) | Transformed recombinant microorganism producing polyhydroxyalkanoate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AMND | Amendment | ||
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
AMND | Amendment | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
X701 | Decision to grant (after re-examination) | ||
GRNT | Written decision to grant |