Nothing Special   »   [go: up one dir, main page]

KR20120078637A - Coating composition and uses thereof - Google Patents

Coating composition and uses thereof Download PDF

Info

Publication number
KR20120078637A
KR20120078637A KR1020110146322A KR20110146322A KR20120078637A KR 20120078637 A KR20120078637 A KR 20120078637A KR 1020110146322 A KR1020110146322 A KR 1020110146322A KR 20110146322 A KR20110146322 A KR 20110146322A KR 20120078637 A KR20120078637 A KR 20120078637A
Authority
KR
South Korea
Prior art keywords
coating composition
photocatalytic
photocatalyst
composite
zinc oxide
Prior art date
Application number
KR1020110146322A
Other languages
Korean (ko)
Inventor
쉥-웨이 린
마오-정 예
Original Assignee
이터널 케미칼 컴퍼니 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이터널 케미칼 컴퍼니 리미티드 filed Critical 이터널 케미칼 컴퍼니 리미티드
Publication of KR20120078637A publication Critical patent/KR20120078637A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/32Radiation-absorbing paints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0219Coating the coating containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/14Paints containing biocides, e.g. fungicides, insecticides or pesticides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1606Antifouling paints; Underwater paints characterised by the anti-fouling agent
    • C09D5/1612Non-macromolecular compounds
    • C09D5/1618Non-macromolecular compounds inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/14Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of germanium, tin or lead
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/90Passive houses; Double facade technology
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Plant Pathology (AREA)
  • Paints Or Removers (AREA)
  • Catalysts (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE: A coating composition is provided to efficiently prevent infrared ray, thereby capable of materially decreasing indoor temperature, and reducing power consumption. CONSTITUTION: A coating composition comprises 1-70 weight% of optical catalyst composite, and silicon resin. The optical composite comprises an insulative material, and a photocatalytic material. The insulative material is selected from a group consisting of an antimony tin-oxide(ATO), indium tin oxide(ITO), aluminum zinc oxide(AZO), indium zinc oxide(IZO), gallium zinc oxidate(GZO), and a mixture. The photocatalytic material is selected from a group consisting of titanium dioxide, zinc oxide, strontium titanate, tin oxide, and mixtures thereof. The content of the photocatalytic material is about 10-90 weight% based on the total weight of the photocatalytic composite. The silicon resin is manufactured through a sol-gel method. The coating composition additionally comprises organic solvent.

Description

코팅 조성물 및 그의 용도{COATING COMPOSITION AND USES THEREOF}Coating Compositions and Their Uses {COATING COMPOSITION AND USES THEREOF}

본 발명은 기재의 표면이 자가 세정(self-cleaning) 및 단열(heat insulation) 효과를 가질 수 있도록 하기 위하여, 기재에 코팅될 수 있는 코팅 조성물에 관한 것이다. 본 발명은 또한 본 발명의 코팅 조성물로 형성된 필름을 함유하는 에너지 절약 물질(energy-saving material)에 관한 것이다.
The present invention relates to a coating composition that can be coated on a substrate so that the surface of the substrate can have self-cleaning and heat insulation effects. The invention also relates to an energy-saving material containing a film formed from the coating composition of the invention.

예를 들어, 건물의 유리 커튼, 자동차 유리 및 단열 종이와 같은 시장에서 입수가능한 적외선의 열 효과를 차단하기 위한 많은 물질들이 있다. 요컨대, 이 물질들은 태양광을 통과시켜 빛을 공급하도록 하고, 반면에 열원(즉, 적외선의 열 효과)은 단열되도록 하는 목적을 위하여 제공된다. 그러나, 예로써, 현재의 적외선 차단 특성을 갖는 유리로는, 제조 비용이 너무 비싸고, 효과가 덜 만족스럽다. 예를 들어, 적외선을 차단하기 위하여 극박 적외선 흡수 은 필름이 유리 내에 삽입될 수 있는 것으로 알려져 있다; 그러나, 제조 비용이 비싸고, 은이 쉽게 산화되어 적외선 차단 효과가 손실된다.For example, there are many materials to block the thermal effects of infrared radiation available on the market such as glass curtains of automobiles, automotive glass and insulating paper. In short, these materials are provided for the purpose of allowing sunlight to pass through and supply light, while a heat source (ie, the thermal effect of infrared light) is insulated. However, for example, with glass having current infrared blocking properties, the manufacturing cost is too expensive and the effect is less satisfactory. For example, it is known that ultra-thin infrared absorption silver films can be inserted into glass to block infrared light; However, the manufacturing cost is high, and the silver is easily oxidized and the infrared blocking effect is lost.

또한, 적외선을 차단할 수 있는 필름을 형성하기 위하여, 적외선을 차단할 수 있는 물질(예를 들어, 고굴절률의 이산화티타늄 및 저굴절률의 실리카)이 진공 증착에 의하여 유리 또는 렌즈에 적용될 수 있다. 그러나, 이와 같이 제조된 필름은 고비용, 복잡한 제조 공정 및 만족스럽지 않은 효과라는 단점을 가지므로, 경제적 이점의 요구를 만족하지 못한다.In addition, in order to form a film capable of blocking infrared rays, materials capable of blocking infrared rays (for example, high refractive index titanium dioxide and low refractive index silica) may be applied to the glass or the lens by vacuum deposition. However, the film thus produced has disadvantages of high cost, complicated manufacturing process and unsatisfactory effect, and thus does not satisfy the demand of economic advantage.

전술한 2종의 방법에 더하여, 대안적인 저비용 해결방안이 제안되었으며, 이 방안에서는 태양광 중의 적외선을 흡수하기 위하여 안료 또는 염료를 유리에 혼합한다. 그러나, 강한 태양광이나 산란광이 조사되는 경우, 안료 또는 염료를 함유하는 이러한 종류의 유리에 연기와 유사한 헤이즈가 발생하여, 적외선 흡수 성능이 영향을 받게 되고, 장시간 사용 후에는 안료 또는 염료가 분해되어 해당 효과를 잃게 된다.In addition to the two methods described above, alternative low cost solutions have been proposed, in which a pigment or dye is mixed into the glass to absorb infrared light in the sun. However, when strong sunlight or scattered light is irradiated, this kind of glass containing pigments or dyes generates smoke-like haze, and infrared absorption performance is affected, and after a long time of use, the pigment or dye decomposes. The effect will be lost.

또한, 광촉매가 빛(특히, UV광)을 흡수하여 전자를 여기하는 기능을 가져, 광촉매 성능을 갖는 것으로 알려져 있다. 광촉매 물질은 빛에 의하여 여기된 후, 공기 중의 물 분자 또는 산소 분자를 활성화시켜, 산화 환원 반응을 위한 하이드록실 라디칼 또는 산소 음이온을 형성하여, 환경 중의 오염물을 분해한다. 이에 의하여, 광촉매 물질은 공기 또는 폐수 중의 오염물을 제거하는데 이용될 수 있으며, 표면에 박테리아가 부착되는 것을 억제할 수 있어, 항균 효과를 나타낸다. 더욱이, 빛이 조사될 때, 수소 원자의 존재에 기인하여, 광촉매 표면으로부터 자유 라디칼 또는 산소 음이온이 형성되어 배출되고, 원래 산소에 의해 점유된 위치에 빈 위치가 형성된다. 이 경우, 만약에 있다면, 환경 중의 물 분자가 빈 위치를 차지하고 양성자를 잃어, 하이드록실기를 형성하여, 광촉매 물질은 초친수성(superhydrophilic) 특성을 나타냄으로써, 자가 세정 및 흐림 방지(anti-fog) 효과를 얻게 된다.It is also known that the photocatalyst has a function of absorbing light (especially UV light) to excite electrons and having photocatalytic performance. The photocatalytic material is excited by light and then activates water or oxygen molecules in the air to form hydroxyl radicals or oxygen anions for redox reactions, thereby degrading contaminants in the environment. Thereby, the photocatalytic material can be used to remove contaminants in air or waste water, and can suppress the adhesion of bacteria to the surface, thereby exhibiting an antibacterial effect. Moreover, when light is irradiated, due to the presence of hydrogen atoms, free radicals or oxygen anions are formed and released from the photocatalyst surface, and empty positions are formed at positions originally occupied by oxygen. In this case, if present, water molecules in the environment occupy empty positions and lose protons, forming hydroxyl groups, so that the photocatalytic material exhibits superhydrophilic properties, thereby self-cleaning and anti-fog You get an effect.

일반적으로, 적외선 차단 및 UV광 흡수 기능을 갖는 단열 필름 또는 창 유리 코팅에 있어서, 복합 필름을 형성하기 위하여 다층 공정이 필요하며, 제조 공정이 복잡하고, 제조 비용이 비싸다. 따라서, 현재 적외선 차단 및 UV광 흡수 기능을 갖는 물질을 제공하기 위하여 계속적인 노력이 이루어지고 있다.
In general, in a heat insulating film or window glass coating having infrared blocking and UV light absorption functions, a multilayer process is required to form a composite film, the manufacturing process is complicated, and the manufacturing cost is expensive. Therefore, continuous efforts are currently made to provide materials having infrared blocking and UV light absorbing functions.

전술한 목적을 달성하기 위하여, 본 발명은 광촉매 복합체(photocatalyst composite) 및 실리콘 수지를 포함하는 코팅 조성물을 제공하며, 여기에서, 상기 광촉매 복합체의 함량은 조성물 총중량을 기준으로 약 1 내지 70 중량%이며, 광촉매 복합체는 하기를 포함한다:In order to achieve the above object, the present invention provides a coating composition comprising a photocatalyst composite and a silicone resin, wherein the content of the photocatalyst composite is about 1 to 70% by weight based on the total weight of the composition , Photocatalytic complexes include:

(1) 안티몬 주석 산화물 (ATO), 인듐 주석 산화물 (ITO), 알루미늄 아연 산화물 (AZO), 인듐 아연 산화물 (IZO), 갈륨 아연 산화물 (GZO), 및 그 혼합물로 이루어진 군으로부터 선택되는 단열 물질; 및(1) an insulating material selected from the group consisting of antimony tin oxide (ATO), indium tin oxide (ITO), aluminum zinc oxide (AZO), indium zinc oxide (IZO), gallium zinc oxide (GZO), and mixtures thereof; And

(2) 이산화티타늄, 산화아연, 스트론튬 티타네이트, 산화주석, 및 그 혼합물로 이루어진 군으로부터 선택되는 광촉매 물질, 여기에서, 상기 광촉매 물질의 함량은 광촉매 복합체 총중량을 기준으로 약 10 내지 90 중량%이다.(2) a photocatalytic material selected from the group consisting of titanium dioxide, zinc oxide, strontium titanate, tin oxide, and mixtures thereof, wherein the content of the photocatalytic material is about 10 to 90% by weight based on the total weight of the photocatalyst composite. .

본 발명은 또한 기재 및 상기 상기 기재의 표면 중 적어도 하나에 적용된 필름을 포함하는 에너지 절약 물질(energy-saving material)을 제공하며, 여기에서, 상기 필름은 본 발명의 코팅 조성물로 형성되며, 자가 세정 및 단열 효과를 갖는다.The present invention also provides an energy-saving material comprising a substrate and a film applied to at least one of the surfaces of the substrate, wherein the film is formed from the coating composition of the present invention and is self-cleaning And an insulating effect.

본 발명의 코팅 조성물은 열을 일으키는(heat-causing) 적외선을 효과적으로 단열하거나 반사함으로써 적외선의 투과율(transmittance)을 크게 감소시킨다. 이 광촉매 물질은 UV광 흡수 능력, 자가 세정 기능, 및 흐림 방지(anti-fog), 항균, 및 탈취 효과를 발휘한다. 또한, 본 발명의 코팅 조성물은 통상적인 코팅 방법을 통하여 기재에 적용될 수 있으므로, 제조공정이 상대적으로 간단하고 비용이 적게 든다.
The coating composition of the present invention significantly reduces the transmittance of infrared rays by effectively insulating or reflecting heat-causing infrared rays. This photocatalyst material exhibits UV light absorbing ability, self cleaning function, and anti-fog, antibacterial, and deodorizing effect. In addition, since the coating composition of the present invention can be applied to the substrate through a conventional coating method, the manufacturing process is relatively simple and inexpensive.

도 1은 실시예 1에 따른 광 투과율의 비교 차트이다.
도 2는 코팅 조성물의 광촉매 특성을 나타내는, 메틸렌 블루에 대한 본 발명의 코팅 조성물의 분해속도를 나타낸다.
도 3은 UV광 조사 시에 본 발명의 코팅 조성물과 물의 접촉각의 측정값을 나타낸다.
1 is a comparative chart of light transmittance according to Example 1. FIG.
2 shows the degradation rate of the coating composition of the present invention against methylene blue, which shows the photocatalytic properties of the coating composition.
Figure 3 shows the measured value of the contact angle of the coating composition of the present invention and water at the time of UV light irradiation.

본 명세서에 사용된 용어 "약"은 표시된 값의 ±10%의 변화를 의미한다.As used herein, the term "about" means a change of ± 10% of the indicated value.

본 발명의 코팅 조성물은 광촉매 복합체 및 실리콘 수지를 포함하며, 여기에서, 광촉매 복합체의 함량은 조성물 총중량을 기준으로, 약 1 중량% 내지 약 70 중량%, 바람직하게는 약 40 중량% 내지 약 60 중량%이다. 광촉매 복합체의 함량이 1 중량%보다 적으면, 조성물의 적외선 차단 및 UV 광 흡수 효과가 충분하지 않으며, 함량이 약 70 중량%보다 많으면, 수지에서 광촉매 복합체의 분산도가 급격하게 저하되고, 코팅된 조성물의 품질이 저하될 우려가 있다.The coating composition of the present invention comprises a photocatalyst composite and a silicone resin, wherein the content of the photocatalytic composite is about 1% to about 70% by weight, preferably about 40% to about 60% by weight based on the total weight of the composition %to be. If the content of the photocatalytic composite is less than 1% by weight, the infrared blocking and UV light absorbing effects of the composition are not sufficient, and if the content is more than about 70% by weight, the dispersion of the photocatalytic complex in the resin is sharply lowered and coated. There is a fear that the quality of the composition is degraded.

광촉매 복합체는 단열 물질 및 광촉매 물질을 포함하며, 여기에서, 광촉매 물질의 함량은 광촉매 복합체 총중량을 기준으로, 약 10 중량% 내지 약 90 중량%, 바람직하게는 약 40 중량% 내지 약 85 중량%이다.The photocatalytic composite includes an insulating material and a photocatalytic material, wherein the content of the photocatalytic material is about 10 wt% to about 90 wt%, preferably about 40 wt% to about 85 wt%, based on the total weight of the photocatalyst composite. .

광촉매 복합체는 일반적으로 약 2 내지 약 100 ㎚, 바람직하게는 약 5 내지 약 45 ㎚, 더욱 바람직하게는 10 내지 35 ㎚의 입자 크기를 갖는다. 입자 크기가 2 ㎚보다 작으면, 광촉매 복합체를 제조하기가 쉽지 않고 실용적이지 못하며, 입자 크기가 100 ㎚보다 크면, 전체 표면적이 작아져서 가시광의 투과율이 낮아지고, 단열 효과가 좋지 않다. 본 발명의 광촉매 복합체의 입자 크기는 가시광의 파장(약 380 ㎚ 내지 약 780 ㎚)보다 작기 때문에, 광촉매 복합체에 빛이 조사될 때, 투과광이 심하게 산란되지 않음으로써 투과광의 품질에 대한 유해한 영향을 방지한다.The photocatalytic composite generally has a particle size of about 2 to about 100 nm, preferably about 5 to about 45 nm, more preferably 10 to 35 nm. If the particle size is smaller than 2 nm, it is not easy and practical to manufacture the photocatalytic composite. If the particle size is larger than 100 nm, the total surface area is small, the transmittance of visible light is low, and the thermal insulation effect is not good. Since the particle size of the photocatalytic composite of the present invention is smaller than the wavelength of visible light (about 380 nm to about 780 nm), when light is irradiated onto the photocatalytic composite, the transmitted light is not scattered severely, thereby preventing a detrimental effect on the quality of the transmitted light. do.

본 발명의 광촉매 복합체의 단열 물질은 약 70% 이상의 적외선 반사율을 가질 것이 요구되며, 안티몬 주석 산화물 (ATO), 인듐 주석 산화물 (ITO), 알루미늄 아연 산화물 (AZO), 인듐 아연 산화물 (IZO), 갈륨 아연 산화물 (GZO), 및 그 혼합물로 이루어진 군으로부터 선택될 수 있다.The thermal insulation material of the photocatalytic composite of the present invention is required to have an infrared reflectance of about 70% or more, antimony tin oxide (ATO), indium tin oxide (ITO), aluminum zinc oxide (AZO), indium zinc oxide (IZO), gallium Zinc oxide (GZO), and mixtures thereof.

본 발명의 바람직한 형태에 따르면, 광촉매 복합체의 단열 물질로 ITO 또는 ATO를 이용하는 경우, 다른 물질과 비교하여 더 적은 물질량으로 실질적으로 동일한 단열 효과를 얻을 수 있으므로, 광촉매 복합체가 더욱 비율 효율적이다. 또한, 코팅 조성물이 ITO를 포함하는 경우, 적외선을 효과적으로 반사할 뿐 아니라, 더 우수한 가시광 투과율을 나타내어, 투명 단열 물질로 유리하게 이용될 수 있는 것으로 밝혀졌다.According to a preferred embodiment of the present invention, when ITO or ATO is used as the heat insulating material of the photocatalyst composite, the photocatalytic composite is more ratio efficient since substantially the same heat insulating effect can be obtained with a smaller amount of material compared with other materials. It has also been found that when the coating composition comprises ITO, it not only effectively reflects infrared rays but also exhibits better visible light transmittance, which can be advantageously used as a transparent insulating material.

본 발명의 바람직한 형태에 따르면, 광촉매 복합체의 단열 물질로 ITO가 이용되는 경우, 바람직한 투명도(transparency)가 얻어질 수 있다. 또한, 본 발명의 코팅 조성물에 ITO를 이용하는 경우, 적외선이 효과적으로 반사되고, 다른 물질과 비교하여 더 적은 물질량으로 실질적으로 동일한 단열 효과를 얻을 수 있어, 더욱 비용 효율적인 것으로 밝혀졌다.According to a preferred embodiment of the present invention, when ITO is used as the heat insulating material of the photocatalyst composite, a preferable transparency can be obtained. In addition, it has been found that when ITO is used in the coating composition of the present invention, infrared rays are effectively reflected and substantially the same thermal insulation effect can be obtained with a lower amount of material compared to other materials, thereby making it more cost effective.

적외선을 차단하거나 반사할 수 있는 단열 물질에 더하여, 본 발명의 코팅 조성물의 광촉매 복합체는 광촉매 물질을 더 포함한다. 광촉매 물질은 UV광을 흡수하여 전자를 여기시키는 기능을 가져, 광촉매 특성을 갖는다. 빛에 의해 여기될 때, 광촉매 물질은 공기 중의 물 또는 산소 분자를 활성화시켜 산화 환원 반응을 위하여 하이드록실 자유 라디칼 또는 산소 음이온을 형성함으로써, 환경 중의 오염물을 분해한다. 따라서, 광촉매 물질은 공기 또는 폐수 중의 오염물 제거에 이용될 수 있으며, 표면에 박테리아가 부착하는 것을 억제할 수 있어 항균 효과를 발휘한다. 더욱이, 광촉매 물질은 초친수성 특성을 나타내며, 습기가 부착물과 광촉매 물질 사이에 수성 필름으로 형성될 수 있어 부착물의 부착이 감소되고, 수성 필름 상의 부착물은 물 또는 빗물로 세척한 후에 쉽게 제거될 수 있다. 이와 같이, 광촉매 물질은 UV광 흡수 능력 및 자가 세정 기능을 갖고, 흐림 방지, 항균 및 탈취 효과를 나타낸다.In addition to the insulating material capable of blocking or reflecting infrared light, the photocatalytic composite of the coating composition of the present invention further comprises a photocatalytic material. The photocatalytic material has a function of absorbing UV light to excite electrons and thus has photocatalytic properties. When excited by light, the photocatalytic material decomposes contaminants in the environment by activating water or oxygen molecules in the air to form hydroxyl free radicals or oxygen anions for redox reactions. Therefore, the photocatalytic material can be used to remove contaminants in air or wastewater, and can suppress the adhesion of bacteria to the surface, thereby exerting an antibacterial effect. Moreover, the photocatalytic material exhibits superhydrophilic properties, and moisture can form into the aqueous film between the deposit and the photocatalytic material, reducing the adhesion of the deposit, and deposits on the aqueous film can be easily removed after washing with water or rainwater. . As such, the photocatalytic material has UV light absorbing ability and self-cleaning function, and exhibits antifogging, antibacterial and deodorizing effect.

본 발명의 광촉매 복합체에 적합한 광촉매 물질은 기술분야의 통상의 기술자에게 잘 알려져 있는 것일 수 있으며, 예를 들어, 이산화티타늄, 산화아연, 스트론튬 티타네이트 (SrTiO3), 산화주석, 또는 그 혼합물일 수 있고, 바람직하게는 환경 또는 인체에 상대적으로 무해한 이산화티타늄이다. 촉매 성능 측면에서, 아나타제 결정구조(anatase crystal structure)의 이산화티타늄이 바람직하다. 또한, 광촉매 효과를 발휘하기 위하여, 광촉매 물질의 입자 크기는 약 100 ㎚보다 적을 것이 요구된다. 예를 들어, 이산화티타늄의 입자 크기는 적합하게는 약 1 내지 약 100 ㎚이며, 바람직하게는 약 5 내지 약 30 ㎚이다; 입자 크기가 1 ㎚보다 작으면, 이산화티타늄을 제조하기가 어렵고 분산시키는 것이 쉽지 않으며, 입자 크기가 100 ㎚보다 크면 촉매 효과가 크게 저하된다.Suitable photocatalytic materials for the photocatalytic composite of the present invention may be those well known to those skilled in the art, for example, titanium dioxide, zinc oxide, strontium titanate (SrTiO 3 ), tin oxide, or mixtures thereof. And, preferably, titanium dioxide, which is relatively harmless to the environment or human body. In terms of catalyst performance, titanium dioxide having an anatase crystal structure is preferred. In addition, in order to exert the photocatalytic effect, the particle size of the photocatalytic material is required to be less than about 100 nm. For example, the particle size of titanium dioxide is suitably about 1 to about 100 nm, preferably about 5 to about 30 nm; If the particle size is smaller than 1 nm, it is difficult to produce titanium dioxide and not easy to disperse. If the particle size is larger than 100 nm, the catalytic effect is greatly reduced.

본 발명의 코팅 조성물은 예를 들어 아크릴 수지, 탄화불소 수지 또는 실리콘 수지일 수 있으나, 이에 제한되는 것은 아닌 바인더를 포함한다. 광촉매가 산화 및 분해되는 것을 방지하기 위하여, 바인더는 실리콘 수지인 것이 바람직하다. 본 발명의 코팅 조성물에 함유된 실리콘 수지는 코팅 조성물 총중량을 기준으로, 약 30 중량% 내지 약 99 중량%, 바람직하게는 약 40 중량% 내지 약 60 중량%의 양으로 존재한다.The coating composition of the present invention may be, for example, an acrylic resin, a fluorocarbon resin or a silicone resin, but includes a binder, but is not limited thereto. In order to prevent the photocatalyst from being oxidized and decomposed, the binder is preferably a silicone resin. The silicone resin contained in the coating composition of the present invention is present in an amount of about 30% to about 99% by weight, preferably about 40% to about 60% by weight, based on the total weight of the coating composition.

본 발명에 이용되는 실리콘 수지는 특히 제한되지 않으며, 기술분야의 통상의 기술자에게 잘 알려진 것, 즉 수소 원자 또는 유기 라디칼이 실리콘 원자에 직접적으로 결합된, 반복되는 Si-O 결합으로 이루어진 주사슬을 갖고, 화학식 [RnSiO4-n/2]m (상기 식에서, R은 수소 또는 유기 라디칼을 나타내며 독립적으로 수소, C1 -6 알킬, C2 -5 에폭시, 또는 C6 -14 아릴이고, 바람직하게는 수소, 메틸, 에틸,

Figure pat00001
, 또는 페닐이며; n은 실리콘 원자에 결합된 수소 원자 또는 유기라디칼의 수로, 0 내지 3의 범위이며; m은 중합도를 나타내며 2 이상의 정수이다]의 유기 폴리실록산 수지이다. 폴리실록산의 화학 구조를 구성하는 단계는 중합 사슬의 길이를 결정하는 단계, 가지화 단계 및 수소 또는 유기기를 부착하기 위한 위치를 정하는 단계를 포함한다. 화학 구조 측면에서, 문자 M (단관능기를 나타냄), D (이관능기), T (삼관능기), 및 Q (사관능기)가 중합 분자 내에 도입된 구조적 관능기를 나타내는데 이용될 수 있다.The silicone resin used in the present invention is not particularly limited, and is well known to those skilled in the art, that is, a main chain composed of repeated Si-O bonds in which a hydrogen atom or an organic radical is directly bonded to a silicon atom. have, the general formula [R n SiO 4-n / 2] m ( wherein, R is a hydrogen or an organic radical independently selected from the group consisting of hydrogen, C 1 -6 alkyl, C 2 -5 epoxy, or C 6 -14 aryl, Preferably hydrogen, methyl, ethyl,
Figure pat00001
Or phenyl; n is the number of hydrogen atoms or organic radicals bonded to silicon atoms, in the range of 0 to 3; m represents a degree of polymerization and is an integer of 2 or more]. Constructing the chemical structure of the polysiloxane includes determining the length of the polymerization chain, branching and positioning the hydrogen or organic groups. In terms of chemical structure, the letters M (which represent monofunctional groups), D (bifunctional groups), T (trifunctional groups), and Q (tetrafunctional groups) can be used to denote the structural functional groups introduced into the polymerization molecule.

상업적으로 구입가능한 실리콘 수지의 예는 Shin Etsu Company에 의해 제조되는 KBM-1003, KBE-402, KBE-403, KBM-502, KBM-04, KBE-13, 및 KBE-103; 및 Dow Corning Company에 의해 제조되는 Z-6018 및 3037을 포함하나, 이에 제한되는 것은 아니다.Examples of commercially available silicone resins include KBM-1003, KBE-402, KBE-403, KBM-502, KBM-04, KBE-13, and KBE-103 manufactured by Shin Etsu Company; And Z-6018 and 3037, manufactured by Dow Corning Company.

실리콘 수지는 단독으로 및 2 이상 종류의 조합으로 이용될 수 있다. 본 발명에 이용될 수 있는 실리콘 수지는 화학식 R1O-[SiR2O]w-SiR2(OR1)의 올리고머일 수 있으며, 상기 식에서, w는 1 내지 1000의 정수이며, R은 상기 정의된 바와 같으며, R1은 독립적으로 H, C1 -3 알킬 또는 C2 -5 에폭시이고, 바람직하게는 메틸, 에틸, 또는

Figure pat00002
이다. 이러한 올리고머는 본 발명의 코팅 조성물에 더 우수한 필름 형성 특성, 분산도 및 연성, 및 경화된 후 높은 표면 경도를 부여한다.Silicone resins may be used alone and in combination of two or more kinds. Silicone resins that may be used in the present invention may be an oligomer of the formula R 1 O— [SiR 2 O] w —SiR 2 (OR 1 ), wherein w is an integer from 1 to 1000, R is the definition above a the same as, R 1 are independently H, C 1 -3 alkyl, C 2 -5 epoxy, preferably methyl, ethyl, or
Figure pat00002
to be. Such oligomers impart better film forming properties, dispersion and ductility, and high surface hardness after curing to the coating compositions of the present invention.

본 발명의 실리콘 수지에 대한 적합한 제조방법은 특히 제한되지 않는다. 본 발명의 바람직한 형태에서, 실리콘 수지는 졸-겔(sol-gel) 공정을 통하여 형성된다. 졸-겔 공정은 액체에 크기가 약 수백 나노미터인 고체 입자의 원료(일반적으로 무기 금속 염)을 현탁시키는 것을 포함한다. 대표적인 졸-겔 공정에서, 반응물은 콜로이드성 현탁액을 생성하기 위하여 일련의 가수분해 및 중합반응을 거치며, 여기에서 콜로이드성 현탁액 중에 수득된 물질은 고체 폴리머 함유 용액의 새로운 상, 즉 겔로 응결된다. 제조된 졸-겔의 특성은 원료의 종류, 촉매의 종류 및 농도, pH 값, 온도, 용매의 양, 알코올 및 염의 종류 및 농도에 따라 달라진다.Suitable production methods for the silicone resin of the present invention are not particularly limited. In a preferred form of the invention, the silicone resin is formed through a sol-gel process. The sol-gel process involves suspending a raw material (generally an inorganic metal salt) of solid particles about 100 nanometers in size in a liquid. In a representative sol-gel process, the reactants undergo a series of hydrolysis and polymerization reactions to produce a colloidal suspension, wherein the material obtained in the colloidal suspension is condensed into a new phase of the solid polymer containing solution, ie gel. The properties of the prepared sol-gel depend on the kind of raw material, the kind and concentration of catalyst, pH value, temperature, the amount of solvent, the kind and concentration of alcohol and salt.

본 발명의 코팅 조성물은 코팅 조성물이 기재의 표면에 코팅될 때 광촉매와기재의 직접적인 접촉을 방지하고, 광촉매의 산화 특성에 기인하여 쉽게 발생될 수 있는 기재의 열화를 방지하기 위하여, 광촉매 복합체의 표면이 무기 미립자의 층으로 코팅되도록 나노 크기의 무기 미립자를 선택적으로 포함할 수 있다. 존재하는경우, 무기 미립자의 양은 복합체 물질의 총중량을 기준으로, 약 0.1 중량% 내지 약 40 중량%이다. 본 발명에 이용될 수 있는 무기 미립자는 특히 제한되지 않으며, 일반적으로 실리카 (SiO2), 알루미나 (Al2O3), 카드뮴 설파이드 (CdS), 지르코니아 (ZrO2), 칼슘 포스페이트 (Ca3(PO4)2), 칼슘 옥사이드 (CaO), 및 그 혼합물로부터 선택될 수 있으며, SiO2가 바람직하다. 본 발명의 바람직한 형태에 따르면, 광촉매 복합체는 다공성 무기 미립자의 층으로 코팅된다. 특히, 본 발명의 복합체 물질 중의 광촉매 복합체는 다공성 무기 미립자의 층으로 코팅됨으로써, 기재와 직접적으로 접촉하지 않고 기재를 파괴하지 않으며, 외부 불순물(예를 들어, 냄새 분자 및 박테리아)이 확산을 통하여 다공성 무기 입자에 침투하여 광촉매 물질에 도달하여 이에 흡수될 수 있으며, 광촉매적으로 분해됨으로써 세정, 항균 및 탈취 목적을 달성하게 된다.The coating composition of the present invention has a surface of the photocatalyst composite in order to prevent direct contact between the photocatalyst and the substrate when the coating composition is coated on the surface of the substrate, and to prevent degradation of the substrate, which may easily occur due to the oxidizing properties of the photocatalyst. Nano-sized inorganic fine particles may be optionally included to be coated with a layer of the inorganic fine particles. If present, the amount of inorganic particulates is from about 0.1% to about 40% by weight based on the total weight of the composite material. The inorganic fine particles that can be used in the present invention are not particularly limited, and generally silica (SiO 2 ), alumina (Al 2 O 3 ), cadmium sulfide (CdS), zirconia (ZrO 2 ), calcium phosphate (Ca 3 (PO) 4 ) 2 ), calcium oxide (CaO), and mixtures thereof, with SiO 2 being preferred. According to a preferred form of the invention, the photocatalytic composite is coated with a layer of porous inorganic fine particles. In particular, the photocatalytic composite in the composite material of the present invention is coated with a layer of porous inorganic fine particles so that it is not in direct contact with the substrate and does not destroy the substrate, and external impurities (eg odor molecules and bacteria) are porous through diffusion. It can penetrate into the inorganic particles to reach and absorb the photocatalytic material, and can be decomposed photocatalytically to achieve cleaning, antibacterial and deodorizing purposes.

적용상의 요구에 따라 본 발명의 코팅 조성물에 유기 용매가 더 첨가될 수 있다. 유기 용매가 본 발명의 코팅 조성물에 이용되는 경우, 그 양은 코팅 조성물 총중량을 기준으로, 약 1 중량% 내지 약 95 중량%, 바람직하게는 약 65 중량% 내지 약 90 중량%이다. 유기 용매는 기술분야의 통상의 기술자에게 잘 알려진 임의의 것일 수 있으며, 예를 들어, 알칸, 방향족 탄화수소, 에스테르, 케톤, 알코올, 또는 에테르 알코올일 수 있으나, 이에 제한되는 것은 아니다. 본 발명에 이용될 수 있는 알칸 용매는 n-헥산, n-헵탄, 이소-헵탄, 및 그 혼합물로 이루어진 군으로부터 선택될 수 있다. 본 발명에 이용될 수 있는 방향족 탄화수소 용매는 벤젠, 톨루엔, 크실렌, 및 그 혼합물로 이루어진 군으로부터 선택될 수 있다. 본 발명에 이용될 수 있는 케톤 용매는 메틸 에틸 케톤 (MEK), 아세톤, 메틸 이소부틸 케톤, 사이클로헥산온, 4-하이드록시-4-메틸-2-펜탄온, 및 그 혼합물로 이루어진 군으로부터 선택될 수 있다. 본 발명에 이용될 수 있는 에스테르 용매는 이소부틸 아세테이트 (IBAC), 에틸 아세테이트 (EAC), 부틸 아세테이트 (BAC), 에틸 포르메이트, 메틸 아세테이트, 에톡시에틸 아세테이트, 에톡시프로필 아세테이트, 에틸 이소-부티레이트, 프로필렌 글리콜 모노메틸 에테르 아세테이트, 펜틸 아세테이트, 및 그 혼합물로 이루어진 군으로부터 선택될 수 있다. 본 발명에 이용될 수 있는 알코올 용매는 에탄올, 이소-프로판올, n-부탄올, 및 이소-펜탄올, 및 그 혼합물로 이루어진 군으로부터 선택될 수 있다. 본 발명에 이용될 수 있는 에테르 알코올 용매는 에틸렌 글리콜 모노부틸 에테르 (BCS), 에틸렌 글리콜 모노에틸 에테르 아세테이트 (CAC), 에틸렌 글리콜 모노에틸 에테르 (ECS), 프로필렌 글리콜 모노메틸 에테르, 프로필렌 글리콜 모노메틸 에테르 아세테이트 (PMA), 프로필렌 글리콜 모노메틸 프로피오네이트 (PMP), 및 그 혼합물로 이루어진 군으로부터 선택될 수 있다.Depending on the requirements of the application, an organic solvent may be further added to the coating composition of the present invention. When an organic solvent is used in the coating composition of the present invention, the amount is about 1% to about 95% by weight, preferably about 65% to about 90% by weight based on the total weight of the coating composition. The organic solvent may be any that is well known to those skilled in the art, for example, but may not be limited to, alkanes, aromatic hydrocarbons, esters, ketones, alcohols, or ether alcohols. Alkanes solvents that may be used in the present invention may be selected from the group consisting of n-hexane, n-heptane, iso-heptane, and mixtures thereof. The aromatic hydrocarbon solvent that can be used in the present invention can be selected from the group consisting of benzene, toluene, xylene, and mixtures thereof. Ketone solvents that may be used in the present invention are selected from the group consisting of methyl ethyl ketone (MEK), acetone, methyl isobutyl ketone, cyclohexanone, 4-hydroxy-4-methyl-2-pentanone, and mixtures thereof Can be. Ester solvents that may be used in the present invention are isobutyl acetate (IBAC), ethyl acetate (EAC), butyl acetate (BAC), ethyl formate, methyl acetate, ethoxyethyl acetate, ethoxypropyl acetate, ethyl iso-butyrate , Propylene glycol monomethyl ether acetate, pentyl acetate, and mixtures thereof. Alcohol solvents that may be used in the present invention may be selected from the group consisting of ethanol, iso-propanol, n-butanol, and iso-pentanol, and mixtures thereof. Ether alcohol solvents that may be used in the present invention include ethylene glycol monobutyl ether (BCS), ethylene glycol monoethyl ether acetate (CAC), ethylene glycol monoethyl ether (ECS), propylene glycol monomethyl ether, propylene glycol monomethyl ether Acetate (PMA), propylene glycol monomethyl propionate (PMP), and mixtures thereof.

본 발명은 기재, 및 기재의 적어도 일 표면에 전술한 바와 같은 코팅 조성물로부터 형성된 필름을 포함하는, 에너지 절약 물질(energy-savng material)을 제공한다. 본 발명의 코팅 조성물은 예를 들어, 코팅, 분사 또는 침지 후 건조시켜 매끈한 필름을 형성하는, 통상적인 적용 방법에 의하여 기재의 적어도 일 표면에 적용될 수 있다. 현존하는 에너지 절약 물질은 낮은 코팅 경도 및 스크래치가 쉽게 발생한다는 단점을 갖는 것이 일반적이어서, 장시간 후 코팅에 스크래치가 발생하기 매우 쉽고, 이렇게 스크래치가 발생된 코팅은 창과 같은 물품의 심미적 외관에도 심각한 영향을 미치게 된다. 본 발명의 바람직한 형태에 따르면, 에너지 절약 물질의 필름은 JIS K5400 표준 방법에 따라 측정된 H 이상, 바람직하게는 3H 이상의 연필 경도를 가지며, 전술한 문제점을 효과적으로 해결할 수 있다.The present invention provides an energy-savng material comprising a substrate and a film formed from the coating composition as described above on at least one surface of the substrate. The coating composition of the present invention may be applied to at least one surface of the substrate by conventional application methods, for example by drying after coating, spraying or dipping to form a smooth film. Existing energy-saving materials generally have the disadvantage of low coating hardness and easy scratching, which is very susceptible to scratching the coating after a long time, and such scratched coatings have a serious effect on the aesthetic appearance of articles such as windows. Go crazy. According to a preferred aspect of the present invention, the film of energy saving material has a pencil hardness of H or higher, preferably 3H or higher, measured according to the JIS K5400 standard method, and can effectively solve the above-mentioned problems.

전술한 기재는 유리, 플라스틱, 건물용 단열판, 금속, 세라믹 타일, 나무, 가죽, 돌, 콘크리트, 벽(mural), 섬유, 면 직물(cotton fabric), 가전 제품(appliances), 조명장치, 및 컴퓨터 케이싱을 포함하나, 이에 제한되는 것은 아니며, 빌딩용 단열판이 바람직하다.The above-mentioned substrates include glass, plastic, building insulation plates, metals, ceramic tiles, wood, leather, stones, concrete, walls, fibers, cotton fabrics, appliances, lighting devices, and computers. Including, but not limited to, casings, building insulation plates are preferred.

본 발명의 특정 형태에 따르면, 에너지 절약 물질은 유리, 및 유리의 적어도 일 표면에 코팅, 분사 또는 침지에 의하여 전술한 코팅 조성물을 적용함으로써 형성된 필름을 포함한다. 필름은 약 0.5 내지 약 50 마이크로미터의 두께를 갖는다. 본 발명에 따른 에너지 절약 물질은 약 70% 이상, 바람직하게는 약 90% 이상의, 550 ㎚ 파장의 가시광 투과율을 갖는다. 본 발명의 에너지 절약 물질은 우수한 시각 효과(visual effect) 및 약 70% 이상의 적외선(열 복사) 반사율을 갖고, 우수한 단열 효과를 나타내므로, 실내 온도를 실질적으로 낮출 수 있고 에너지 소비를 감소시킬 수 있으며, 시장에서 입수 가능한 전통적인 단열 필름이 부착된 유리와 비교하여 더 우수한 에너지 절약 효과와 높은 가시광 투과율을 가짐으로써, 크게 감소된 비용, 간단한 적용 및 빌딩 또는 자동차 유리용의 유리 커튼에서의 광범위한 적용이라는 이점을 갖는다. 더욱이, 시장에서 입수가능한 에너지 절약 물질용 코팅 조성물에 함유된 거의 모든 단열 물질(란탄 헥사보라이드(lanthanum hexaboride) 등)은 태양광 중의 적외선을 반사하기보다는 흡수하고, 흡수된 적외선은 열 에너지로 변환되고 유리에 저장되어, 유리의 표면 온도가 올라감으로써 유리에 금이 가는 위험이 존재하게 된다.According to a particular aspect of the present invention, the energy saving material comprises glass and a film formed by applying the aforementioned coating composition by coating, spraying or dipping on at least one surface of the glass. The film has a thickness of about 0.5 to about 50 micrometers. The energy saving material according to the invention has a visible light transmittance of at least about 70%, preferably at least about 90%, at a wavelength of 550 nm. The energy saving material of the present invention has an excellent visual effect and an infrared (heat radiation) reflectance of about 70% or more, and exhibits an excellent thermal insulation effect, which can substantially lower room temperature and reduce energy consumption. The advantages of greater energy savings and higher visible light transmission compared to glass with conventional insulating films available on the market, resulting in significantly reduced costs, simple application and wide application in glass curtains for building or automotive glass Has Moreover, almost all thermally insulating materials (such as lanthanum hexaboride) contained in the coating compositions for energy saving materials available on the market absorb rather than reflect infrared light in the sun, and the absorbed infrared light is converted into thermal energy. And stored in the glass, there is a risk of cracking the glass as the surface temperature of the glass rises.

또한, 본 발명의 코팅 조성물의 광촉매 복합체는 초친수성 특성을 가져, 공기 중의 습기를 끌어당겨 부착물과 광촉매 복합체 사이에 극박 수성 필름을 형성하고, 부착물의 부착을 감소시킨다. 또한, 광촉매는 유기 부착물 입자를 산화하여 그 구조를 파괴할 수 있어, 입자가 유리 표면에 부착되지 않게 된다. 강우 시에, 초친수성 특성의 효과에 기인하여, 빗물이 부착물과 광촉매 사이의 접점에 고르게 침투하고, 빗물이 충분한 양으로 축적될 때 수성 필름 상의 부착물은 쉽게 씻겨 없어질 수 있어, 인력의 도움으로 통상적인 유리의 표면을 깨끗하게 유지하는 빈도가 낮아지고, 자가 세정 효과가 얻어진다.In addition, the photocatalytic composite of the coating composition of the present invention has superhydrophilic properties, attracts moisture in the air to form an ultrathin aqueous film between the deposit and the photocatalyst composite, and reduces the adhesion of the deposit. In addition, the photocatalyst may oxidize the organic deposit particles and destroy their structure, so that the particles do not adhere to the glass surface. At rainfall, due to the effect of the superhydrophilic properties, the rainwater penetrates evenly at the contact point between the deposit and the photocatalyst, and when the rainwater accumulates in a sufficient amount, the deposit on the aqueous film can be easily washed away, with the aid of manpower The frequency of keeping the surface of conventional glass clean is low, and a self-cleaning effect is obtained.

과거에, 에너지 절약 물질을 얻기 위해서는, 적외선을 차단하기 위한 처리 및 UV광을 흡수하기 위한 처리가 기재 상에 수행되어야 할 필요가 있었으며, 적외선 차단 및 UV광 흡수 효과는 기재 상에 다층 공정이 수행된 후에서야 얻어질 수 있었다. 그러나, 본 발명의 코팅 조성물을 이용함으로써, 적외선 차단 및 UV광 흡수 효과를 갖는 에너지 절약 물질이 기재의 표면에 대한 1회의 적용 처리를 통하여 얻어질 수 있다. 기재 상에 적용된 필름이 광촉매 물질을 함유하기 때문에, UV광을 흡수할 수 있어, 자가 세정, 흐림 방지, 항균, 및 탈취 효능을 제공할 수 있으며; 단열 물질의 존재에 의하여, 필름은 효과적으로 적외선을 반사할 수 있어, 적외선을 투과율을 감소시키면서 가시광은 통과하도록 할 수 있다. 또한, 필름에 함유된 입자의 크기가 가시광의 파장보다 작기 때문에, 입자는 투과광을 산란하지 않으며, 투과광의 품질에 영향을 미치지 않고, 기재의 투명도가 유지될 수 있다.In the past, in order to obtain an energy saving material, a treatment for blocking infrared rays and a treatment for absorbing UV light had to be performed on the substrate, and the infrared blocking and UV light absorption effects were performed on a substrate by a multilayer process. It could only be obtained afterwards. However, by using the coating composition of the present invention, energy saving materials having infrared blocking and UV light absorbing effects can be obtained through one application treatment to the surface of the substrate. Since the film applied on the substrate contains a photocatalytic material, it can absorb UV light, providing self cleaning, antifogging, antibacterial, and deodorizing efficacy; By the presence of the insulating material, the film can effectively reflect infrared light, allowing infrared light to pass while reducing the transmission. In addition, since the size of the particles contained in the film is smaller than the wavelength of visible light, the particles do not scatter transmitted light, do not affect the quality of the transmitted light, and the transparency of the substrate can be maintained.

본 발명은 코팅 조성물의 제조방법을 제공하며, 이 방법은 티타늄 테트라클로라이드의 가수분해를 통하여 티타늄 설페이트의 중간 생성물을 얻은 후, 단열 물질을 첨가하여, 저온에서 광촉매 복합체 분말을 얻은 후, 수득된 광촉매 복합체 분말과 실리콘 수지를 혼합 및 분쇄하여, 본 발명의 코팅 조성물을 얻는 것을 포함한다.The present invention provides a method for preparing a coating composition, wherein the method obtains an intermediate product of titanium sulfate through hydrolysis of titanium tetrachloride, and then adds an insulating material to obtain a photocatalytic composite powder at low temperature, and then the obtained photocatalyst. Mixing and pulverizing the composite powder and the silicone resin to obtain the coating composition of the present invention.

본 발명의 바람직한 특정 형태에 따르면, 적절한 비율의 졸-겔 실리콘 수지 및 광촉매 복합체 분말을 혼합하고, 선택적으로 용매를 첨가한 후, 분쇄하여 본 발명의 코팅 조성물을 얻는다. 전술한 광촉매 복합체 분말은 하기 단계를 포함하는 공정에 의하여 얻어질 수 있다:According to certain preferred embodiments of the present invention, an appropriate proportion of the sol-gel silicone resin and the photocatalyst composite powder are mixed, optionally added with a solvent and then ground to obtain a coating composition of the present invention. The photocatalyst composite powder described above can be obtained by a process comprising the following steps:

(a) 티타늄 테트라클로라이드의 가수분해를 통하여 흰색 겔 수화물(gel hydrate)을 얻는 단계;(a) obtaining a white gel hydrate through hydrolysis of titanium tetrachloride;

(b) 농황산을 반응기 내의 수득된 수화물에 첨가하고, 10~50분 동안 교반하여 티타늄 설페이트 용액을 얻는 단계;(b) adding concentrated sulfuric acid to the obtained hydrate in the reactor and stirring for 10-50 minutes to obtain a titanium sulfate solution;

(c) 티타늄 설페이트 용액을 충분히 혼합하고, 상온(normal temperature)에서 0.5~5시간 동안 교반하는 단계;(c) sufficiently mixing the titanium sulfate solution and stirring at normal temperature for 0.5 to 5 hours;

(d) 80~100℃로 가열하고, 항온(constant temperature)에서 2~7시간 동안 반응시키는 단계; 및(d) heating to 80-100 ° C. and reacting at constant temperature for 2-7 hours; And

(e) ITO 분말을 적절한 비율로 첨가하고, 1~4시간 동안 교반하여 혼합하고, 4~6 M 수산화나트륨 수용액을 적하하고, 여과, 세척 및 실온에서 건조하여 광촉매 복합체 분말(TiO2+ITO)을 얻는 단계.
(e) ITO powder was added in an appropriate ratio, stirred and mixed for 1 to 4 hours, 4 to 6 M aqueous sodium hydroxide solution was added dropwise, filtered, washed and dried at room temperature to form a photocatalytic composite powder (TiO 2 + ITO). Step to get it.

본 발명은 하기 실시예를 통하여 더욱 설명된다. 하기 실시예는 단지 본 발명을 예시하기 위하여 이용된 것일 뿐이며, 본 발명의 범위를 제한하는 것이 아님을 이해하여야 한다. 기술분야의 통상의 기술자에게 자명하고, 본 발명의 정신 및 원칙으로부터 벗어나지 않고 이루어지는 어떠한 변경 또는 변형은 본 발명의 범위 내에서 속하여야 한다.
The invention is further illustrated through the following examples. It is to be understood that the following examples are merely used to illustrate the invention and are not intended to limit the scope of the invention. Any change or modification which is obvious to those skilled in the art and made without departing from the spirit and principles of the present invention should fall within the scope of the present invention.

실시예Example

하기 실시예 및 비교예에서, 다르게 언급되지 않으면 중량%이다.
In the following examples and comparative examples, by weight unless otherwise indicated.

실시예Example 1 One

200 ㎖의 3.9 M 티타늄 테트라클로라이드 용액을 물로 희석하여, 2000 ㎖의 총부피로 한 후, 500 ㎖ (5 M)의 수성 암모니아를 적하하여, 흰색 티타늄 하이드록사이드 침전을 생성하였으며, 이를 여과하고, 탈이온수 (200 ㎖ x 3)로 세척하여 잔류하는 물을 제거함으로써, 흰색 겔로 티타늄 하이드록사이드 [Ti(OH)4]를 얻었다.200 ml of 3.9 M titanium tetrachloride solution was diluted with water to a total volume of 2000 ml and then 500 ml (5 M) of aqueous ammonia was added dropwise to produce a white titanium hydroxide precipitate which was filtered off, Titanium hydroxide [Ti (OH) 4 ] was obtained with a white gel by washing with deionized water (200 mL × 3) to remove residual water.

100-150 g의 농황산 (18M)을 250 g의 상기 티타늄 하이드록사이드에 첨가하고, 30분 동안 교반하여, 투명하고 맑은 티타늄 설페이트 용액을 얻었다. 티타늄 설페이트 용액을 반응기에 넣고, 32.2 g의 SiO2 수용액 (20%)을 첨가하고, 상온에서 4시간 동안 교반한 후, 100℃로 가열하여 2시간 동안 반응시켰다. 100 g의 ITO 수용액 (10%)을 첨가하고, 2시간 동안 상온에서 반응물을 교반하여, 혼합물을 얻었다.100-150 g of concentrated sulfuric acid (18M) was added to 250 g of the titanium hydroxide and stirred for 30 minutes to obtain a clear and clear titanium sulfate solution. The titanium sulfate solution was added to the reactor, 32.2 g of SiO 2 aqueous solution (20%) was added thereto, stirred at room temperature for 4 hours, and then heated to 100 ° C. for 2 hours. 100 g of aqueous solution of ITO (10%) were added and the reaction was stirred at room temperature for 2 hours to give a mixture.

600 ㎖ (5 M)의 수산화나트륨 수용액을 적하한 후, 얻어진 용액을 중성 pH로 조절하고, 수득된 침전을 여과, 세척 및 실온에서 건조함으로써 회색이 도는 청색의 분말을 얻었으며, 이는 XRD를 통하여 아나타제형 광촉매 및 ITO의 광촉매 복합체인 것으로 검출되었다.After dropping 600 mL (5 M) aqueous sodium hydroxide solution, the obtained solution was adjusted to neutral pH, and the obtained precipitate was filtered, washed and dried at room temperature to obtain a grayish blue powder, which was obtained through XRD. It was detected to be a photocatalytic complex of anatase type photocatalyst and ITO.

수득된 광촉매 복합체를 광촉매 복합체:수지 = 1:3의 비율(중량비)로 실리콘 수지(27%의 고체 함량을 가짐)에 첨가하고, 교반, 분쇄, 분산 및 유리판 위에 적용하여 5 마이크로미터 두께를 갖는 코팅을 형성하였다. 광 투과율 측정, 유기물 (메틸렌 블루) 분해 시험, 친수성 특성 시험, 및 단열 시험을 수행하였다.The obtained photocatalytic composite was added to the silicone resin (having a solid content of 27%) in a ratio of photocatalytic composite: resin = 1: 3 (weight ratio), and stirred, pulverized, dispersed and applied on a glass plate to have a thickness of 5 micrometers. A coating was formed. Light transmittance measurements, organic (methylene blue) decomposition tests, hydrophilic property tests, and adiabatic tests were performed.

블랭크 유리판 및 코팅을 각각 UV/가시광/근적외선 분광계(JASCO Incorporation 제조, Model V-570)에 넣고, UV광 내지 근적외선 범위에서 광 투과율을 측정하였다. 시험 결과를 도 1에 나타낸다(여기에서, 2개의 세로선 사이의 범위는 가시광을 나타낸다). 지그재그선은 코팅되지 않은 유리판의 투과율 값(투과율이 약 100%)을 나타내고, 연속선은 일 표면에 단일 코팅이 된 유리판의 투과율 값을 나타내며, 점선은 양 표면에 코팅이 된 유리판의 투과율 값을 나타낸다. 시험 결과로부터, 본 발명의 코팅은 UV광 및 근적외선의 투과율을 크게 감소시킬 수 있으며, UV광 및 근적외선을 효과적으로 차단할 수 있음을 확인할 수 있다.The blank glass plate and the coating were put in a UV / visible / near infrared spectrometer (manufactured by JASCO Incorporation, Model V-570), respectively, and the light transmittance was measured in the UV to near infrared range. The test results are shown in FIG. 1 (wherein the range between the two vertical lines represents visible light). The zigzag line shows the transmittance value of the uncoated glass plate (transmittance is about 100%), the continuous line shows the transmittance value of the glass plate coated on one surface, and the dotted line shows the transmittance value of the glass plate coated on both surfaces. Indicates. From the test results, it can be seen that the coating of the present invention can greatly reduce the transmittance of UV light and near infrared rays, and can effectively block UV light and near infrared rays.

(35±0.3) ㎖의 메틸렌 블루를 내부 직경 40 ㎜ 및 높이 30 ㎜인 원통형 시험 컬럼에 첨가한 후, 측면 길이가 (60±2) ㎜이고, 코팅을 갖는 사각형 유리를 그 위에 놓았다. (1.00±0.05) ㎽/㎠의 UV광을 총 6시간 동안 코팅에 조사하고, 메틸렌 블루의 분해속도를 매 1시간 마다 측정하였다. 시험 결과를 도 2에 나타낸다. 시험 결과로부터, UV광 조사 시에, 본 발명의 코팅은 유기물(메틸렌 블루)를 효과적으로 분해할 수 있어, 광촉매 특성을 가짐을 확인할 수 있다.(35 ± 0.3) ml of methylene blue was added to a cylindrical test column with an inner diameter of 40 mm and a height of 30 mm, then a rectangular glass with a side length of (60 ± 2) mm and a coating was placed thereon. UV light of (1.00 ± 0.05) μs / cm 2 was irradiated to the coating for a total of 6 hours and the decomposition rate of methylene blue was measured every 1 hour. The test results are shown in FIG. From the test results, it can be confirmed that, upon UV light irradiation, the coating of the present invention can effectively decompose organic matter (methylene blue), and has photocatalytic properties.

시험판으로 코팅을 갖는 측면 길이 (100±2) ㎜의 사각형 유리를 취하여, 1 ㎕의 물을 시험판에 접촉시키고, 이미지를 캡처하여 접촉각 시험기로 접촉각을 측정하였다. (1.0±0.1) ㎽/㎠의 UV광을 코팅에 조사하고, 매 50시간마다 접촉각을 측정하였다. 시험 결과를 도 3에 나타낸다. 시험 결과로부터, 본 발명의 코팅이 UV광 조사 시에 초친수성 특성을 갖는 것을 확인할 수 있다.A square plate of side length (100 ± 2) mm with a coating was taken into the test plate, 1 μl of water was contacted to the test plate, the image was captured and the contact angle was measured with a contact angle tester. UV light of (1.0 ± 0.1) dB / cm 2 was irradiated to the coating and the contact angle was measured every 50 hours. The test results are shown in FIG. From the test results, it can be seen that the coating of the present invention has superhydrophilic properties upon UV light irradiation.

적외선 전구(PHILIPS Corporation) 아래 약 20 ㎝의 위치에 코팅을 놓고, 100 g의 물이 담긴 비커를 유리 코팅 아래 약 15 ㎝의 위치에 놓고, 적외선 전구로 조사하여, 적외선 온도계(TES series, TES Electrical Electronic Corp.)로 표면 온도를 매 5분마다 규칙적으로 측정하였다. 시험 결과를 하기 표 1에 나타내며, 조사 30분 후 코팅의 표면 온도는 하기 표 2에 나타낸다.
Place the coating at approximately 20 cm below the infrared bulb (PHILIPS Corporation), place a beaker containing 100 g of water at approximately 15 cm below the glass coating, and irradiate with an infrared bulb to illuminate the infrared thermometer (TES series, TES Electrical Electronic Corp.) regularly measured the surface temperature every 5 minutes. The test results are shown in Table 1 below, and the surface temperature of the coating after 30 minutes of irradiation is shown in Table 2 below.

실시예Example 2 2

200 ㎖의 3.9 M 티타늄 테트라클로라이드 용액을 물로 희석하여 2000 ㎖의 총부피로 한 후, 500 ㎖ (5 M)의 수성 암모니아를 적하하여 흰색 티타늄 하이드록사이드 침전을 생성하였고, 이를 여과하고, 탈이온수 (200 ㎖ x 3)로 세척하여 잔류하는 물을 제거함으로써 흰색 겔로 티타늄 하이드록사이드 [Ti(OH)4]를 얻었다.200 ml of 3.9 M titanium tetrachloride solution was diluted with water to 2000 ml total volume, and then 500 ml (5 M) of aqueous ammonia was added dropwise to produce a white titanium hydroxide precipitate which was filtered off and deionized water. Titanium hydroxide [Ti (OH) 4 ] was obtained with a white gel by washing with (200 mL × 3) to remove residual water.

100~150 g의 농황산 (18M)을 250 g의 전술한 티타늄 하이드록사이드에 첨가하고 30분 동안 교반하여, 투명하고 맑은 티타늄 설페이트 용액을 얻었다. 티타늄 설페이트 용액을 반응기에 넣고, 32.2 g의 SiO2 수용액 (20%)을 첨가하고, 상온에서 4시간 동안 교반한 후, 100℃로 가열하여 2시간 동안 반응시켰다. 100 g 의 ATO 수용액 (15%)을 첨가하고, 반응물을 2시간 동안 상온에서 교반하여, 혼합물을 얻었다.100-150 g of concentrated sulfuric acid (18M) was added to 250 g of the aforementioned titanium hydroxide and stirred for 30 minutes to give a clear and clear titanium sulfate solution. The titanium sulfate solution was added to the reactor, 32.2 g of SiO 2 aqueous solution (20%) was added thereto, stirred at room temperature for 4 hours, and then heated to 100 ° C. for 2 hours. 100 g of aqueous ATO solution (15%) was added and the reaction was stirred at room temperature for 2 hours to give a mixture.

600 ㎖ (5 M)의 수산화나트륨 수용액을 적하한 후, 수득된 용액을 중성 pH로 조절하고, 수득된 침전을 여과, 세척 및 실온에서 건조하여, 진한 청색 분말을 얻었으며, 이것은 XRD를 통하여 아나타제형 광촉매 및 ATO의 광촉매 복합체인 것으로 검출되었다.After dropping 600 mL (5 M) aqueous sodium hydroxide solution, the obtained solution was adjusted to neutral pH, and the obtained precipitate was filtered, washed and dried at room temperature to obtain a dark blue powder, which was obtained through anatase through XRD. It was detected to be a photocatalyst complex of fluorescent photocatalyst and ATO.

수득된 광촉매 복합체를 광촉매 복합체:수지 = 1:3의 비율(중량비)로 실리콘 수지(27%의 고체 함량을 가짐)에 첨가하고, 교반, 분쇄, 분산 및 유리판 위에 적용함으로써, 5 마이크로미터의 두께를 갖는 코팅을 형성하였다. 단열 시험을 수행하였다.The obtained photocatalytic composite was added to the silicone resin (having a solid content of 27%) in a ratio of photocatalytic composite: resin = 1: 3 (weight ratio), and was stirred, pulverized, dispersed and applied on a glass plate to have a thickness of 5 micrometers. A coating with was formed. Insulation test was performed.

코팅을 적외선 전구 (PHILIPS Corporation) 아래 약 20 ㎝의 위치에 놓고, 100 g의 물이 담긴 비커를 유리 코팅 아래 약 15 ㎝의 위치에 놓고, 적외선 전구로 조사하고, 표면 온도를 매 5분마다 적외선 온도계 (TES series, TES Electrical Electronic Corp.)로 규칙적으로 측정하였다. 시험 결과를 하기 표 1에 나타내며, 조사 30분 후 코팅의 표면 온도를 하기 표 2에 나타낸다.
The coating is placed about 20 cm below an infrared bulb (PHILIPS Corporation), a beaker containing 100 g of water is placed about 15 cm below a glass coating, irradiated with an infrared bulb and the surface temperature is irradiated every 5 minutes. Regular measurements were taken with a thermometer (TES series, TES Electrical Electronic Corp.). The test results are shown in Table 1 below, and the surface temperature of the coating after 30 minutes of irradiation is shown in Table 2 below.

비교예Comparative example 1 One

200 ㎖의 3.9 M 티타늄 테트라클로라이드 용액을 물로 희석하여 2000 ㎖의 총부피로 한 후, 500 ㎖ (5 M)의 수성 암모니아를 적하하여, 흰색 티타늄 하이드록사이드 침전을 생성하였으며, 이를 여과하고 탈이온수 (200 ㎖ x 3)로 세척하여 잔류하는 물을 제거함으로써 흰색 겔로 티타늄 하이드록사이드 [Ti(OH)4]를 얻었다.200 ml of 3.9 M titanium tetrachloride solution was diluted with water to 2000 ml total volume, and then 500 ml (5 M) of aqueous ammonia was added dropwise to produce white titanium hydroxide precipitate, which was filtered and deionized water. Titanium hydroxide [Ti (OH) 4 ] was obtained with a white gel by washing with (200 mL × 3) to remove residual water.

100~150 g의 농황산 (18M)을 250 g의 전술한 티타늄 하이드록사이드에 첨가하고, 30분 동안 교반하여, 투명하고 맑은 티타늄 설페이트 용액을 얻었다. 티타늄 설페이트 용액을 반응기에 넣고, 32.2 g의 SiO2 수용액 (20%)을 첨가하고, 상온에서 4시간 동안 교반한 후, 100℃로 가열하여 2시간 동안 반응시켰다. 100 g의 란탄 헥사보라이드(lanthanum hexaboride) 수용액 (10%)을 첨가하고, 반응물을 1시간 동안 상온에서 교반하여, 혼합물을 얻었다.100-150 g of concentrated sulfuric acid (18M) was added to 250 g of the aforementioned titanium hydroxide and stirred for 30 minutes to give a clear and clear titanium sulfate solution. The titanium sulfate solution was added to the reactor, 32.2 g of SiO 2 aqueous solution (20%) was added thereto, stirred at room temperature for 4 hours, and then heated to 100 ° C. for 2 hours. 100 g of lanthanum hexaboride aqueous solution (10%) was added, and the reaction was stirred at room temperature for 1 hour to obtain a mixture.

600 ㎖ (5 M)의 수산화나트륨 수용액을 적하하고, 수득된 침전을 여과, 세척 및 실온에서 건조하여, 회청색(gray blue) 분말을 얻었으며, 이는 XRD를 통하여 아나타제형 광촉매 및 란탄 헥사보라이드의 광촉매 복합체인 것으로 검출되었다.600 mL (5 M) aqueous sodium hydroxide solution was added dropwise, and the obtained precipitate was filtered, washed and dried at room temperature to obtain a gray blue powder, which was obtained through XRD of the anatase type photocatalyst and lanthanum hexaboride. It was detected to be a photocatalytic complex.

수득된 광촉매 복합체를 광촉매 복합체:수지 = 1:3의 비율(중량비)로 실리콘 수지(27%의 고체 함량을 가짐)에 첨가하고, 교반, 분산 및 유리판 위에 적용함으로써, 5 마이크로미터의 두께를 갖는 코팅을 형성하였다. 단열 시험(적외선 전구 이용, PHILIPS Corporation)을 수행하였다.The obtained photocatalyst composite was added to the silicone resin (having a solid content of 27%) in a ratio of photocatalytic composite: resin = 1: 3 (weight ratio), and stirred, dispersed and applied on a glass plate to have a thickness of 5 micrometers. A coating was formed. Insulation test (using an infrared bulb, PHILIPS Corporation) was performed.

코팅을 적외선 전구 아래 약 20 ㎝의 위치에 놓고, 100 g의 물을 담긴 비커를 유리 코팅 아래 15 ㎝의 위치에 놓고, 적외선 전구로 조사하고, 표면 온도를 매 5분마다 적외선 온도계 (TES series, TES Electrical Electronic Corp.)로 규칙적으로 측정하였다. 시험 결과를 하기 표 1에 나타내고, 조사 30분 후 코팅의 표면 온도를 하기 표 2에 나타낸다.
The coating is placed at about 20 cm below the infrared bulb, a beaker containing 100 g of water is placed at 15 cm below the glass coating, irradiated with an infrared bulb and the surface temperature is measured every 5 minutes with an infrared thermometer (TES series, TES Electrical Electronic Corp.) was regularly measured. The test results are shown in Table 1 below, and the surface temperature of the coating after 30 minutes of irradiation is shown in Table 2 below.

비교예Comparative example 2 2

시판되는 단열 종이(Top Color Film Co. Ltd.제조, 상표명; SD series Top Colour)를 유리 표면에 부착하고, 적외선 전구 아래 약 20 ㎝의 위치에 놓고, 100 g의 물이 담긴 비커를 유리 부착물 아래 약 15 ㎝의 위치에 놓고, 적외선 전구로 조사하고, 표면 온도를 매 5분마다 적외선 온도계 (TES series, TES Electrical Electronic Corp.)로 규칙적으로 측정하였다. 시험 결과를 하기 표 1에 나타내며, 조사 30분 후 부착물의 표면 온도를 하기 표 2에 나타낸다.Commercially available insulating paper (manufactured by Top Color Film Co. Ltd., trade name; SD series Top Color) is affixed to the glass surface, placed about 20 cm below the infrared bulb, and a beaker containing 100 g of water is placed under the glass attachment. Placed at a position of about 15 cm, irradiated with an infrared bulb, the surface temperature was measured regularly by an infrared thermometer (TES series, TES Electrical Electronic Corp.) every 5 minutes. The test results are shown in Table 1 below, and the surface temperature of the deposit after 30 minutes of irradiation is shown in Table 2 below.

온도 시험(℃)Temperature test (℃) 시간(분)Time (minutes) 유리Glass 실시예 1Example 1 실시예 2Example 2 비교예 1Comparative Example 1 비교예 2Comparative Example 2 00 2424 2424 2424 2424 2424 55 3434 3434 33.833.8 3434 34.834.8 1010 39.839.8 35.335.3 34.734.7 38.338.3 39.339.3 1515 42.642.6 39.839.8 38.538.5 40.140.1 40.940.9 2020 4545 42.342.3 39.839.8 43.143.1 44.144.1 2525 46.146.1 43.643.6 4242 45.845.8 44.844.8 3030 48.648.6 43.643.6 4343 46.546.5 45.145.1

조사 30분 후 유리의 온도(℃)30 minutes after irradiation temperature of glass 시간(분)Time (minutes) 유리Glass 실시예 1Example 1 실시예 2Example 2 비교예 1Comparative Example 1 비교예 2Comparative Example 2 3030 70.870.8 6060 61.461.4 8686 68.468.4

표 1의 결과 비교로부터, 본 발명의 코팅 조성물을 갖는 코팅을 유리 표면에 적용하면 효과적으로 단열이 이루어지는 것을 확인할 수 있다.From the comparison of the results of Table 1, it can be confirmed that the thermal insulation is effectively applied when the coating having the coating composition of the present invention is applied to the glass surface.

실시예 1, 2 및 비교예 1의 비교로부터, 본 발명의 코팅 조성물이 적외선을 효과적으로 반사할 수 있어, 유리의 표면 온도가 더 낮아짐으로써, 유리에 금이 가는 위험을 방지할 수 있음을 확인할 수 있다.From the comparison of Examples 1, 2 and Comparative Example 1, it can be seen that the coating composition of the present invention can effectively reflect the infrared rays, thereby lowering the surface temperature of the glass, thereby preventing the risk of cracking the glass. have.

실시예 1, 2 및 비교예 2의 비교로부터, 본 발명의 코팅 조성물이 단열 종이에 비하여, 유리 코팅의 더 낮은 표면 온도를 제공하는 것을 확인할 수 있다. 본 코팅 조성물은 단열 종이보다 더 쉽게 적용될 수 있으며, 열에너지의 축적이나 열 대류의 생성 가능성이 더 적기 때문에, 더 우수한 단열 효과를 제공할 수 있다.From the comparison of Examples 1, 2 and Comparative Example 2, it can be seen that the coating composition of the present invention provides a lower surface temperature of the glass coating as compared to the insulating paper. The present coating composition can be applied more easily than thermally insulating paper and can provide a better thermal insulation effect because of less chance of accumulation of thermal energy or generation of thermal convection.

Claims (11)

광촉매 복합체 및 실리콘 수지를 포함하는 코팅 조성물로서,
상기 광촉매 복합체의 함량은 조성물 총중량을 기준으로 약 1 내지 70 중량%이며,
상기 광촉매 복합체는,
(1) 안티몬 주석 산화물 (ATO), 인듐 주석 산화물 (ITO), 알루미늄 아연 산화물 (AZO), 인듐 아연 산화물 (IZO), 갈륨 아연 산화물 (GZO), 및 그 혼합물로 이루어진 군으로부터 선택되는 단열 물질; 및
(2) 이산화티타늄, 산화아연, 스트론튬 티타네이트, 산화주석, 및 그 혼합물로 이루어진 군으로부터 선택되는 광촉매 물질을 포함하며,
상기 광촉매 물질의 함량은 광촉매 복합체 총중량을 기준으로 약 10 내지 90 중량%인
코팅 조성물.
A coating composition comprising a photocatalyst composite and a silicone resin,
The content of the photocatalyst complex is about 1 to 70% by weight based on the total weight of the composition,
The photocatalyst complex,
(1) an insulating material selected from the group consisting of antimony tin oxide (ATO), indium tin oxide (ITO), aluminum zinc oxide (AZO), indium zinc oxide (IZO), gallium zinc oxide (GZO), and mixtures thereof; And
(2) a photocatalyst material selected from the group consisting of titanium dioxide, zinc oxide, strontium titanate, tin oxide, and mixtures thereof,
The content of the photocatalytic material is about 10 to 90% by weight based on the total weight of the photocatalyst composite.
Coating composition.
제1항에 있어서,
상기 실리콘 수지는 졸-겔 공정을 통하여 제조되는
코팅 조성물.
The method of claim 1,
The silicone resin is prepared through a sol-gel process
Coating composition.
제1항에 있어서,
유기 용매를 더 포함하는
코팅 조성물.
The method of claim 1,
Containing more organic solvent
Coating composition.
제1항에 있어서,
상기 단열 물질은 ATO 또는 ITO인
코팅 조성물.
The method of claim 1,
The insulating material is ATO or ITO
Coating composition.
제1항에 있어서,
상기 광촉매 물질의 함량은 광촉매 복합체 총중량을 기준으로 약 40 내지 85 중량%인
코팅 조성물.
The method of claim 1,
The content of the photocatalytic material is about 40 to 85% by weight based on the total weight of the photocatalyst composite.
Coating composition.
제1항에 있어서,
상기 광촉매 물질은 이산화티타늄인
코팅 조성물.
The method of claim 1,
The photocatalyst material is titanium dioxide
Coating composition.
제1항에 있어서,
상기 광촉매 복합체는 약 2 내지 100 ㎚의 입자 크기를 갖는
코팅 조성물.
The method of claim 1,
The photocatalytic composite has a particle size of about 2 to 100 nm.
Coating composition.
제1항에 있어서,
실리카 (SiO2), 알루미나 (Al2O3), 카드뮴 설파이드 (CdS), 지르코니아 (ZrO2), 칼슘 포스페이트 (Ca3(PO4)2), 칼슘 옥사이드 (CaO), 및 그 혼합물로 이루어진 군으로부터 선택되는 무기 미립자를 더 포함하는
코팅 조성물.
The method of claim 1,
Group consisting of silica (SiO 2 ), alumina (Al 2 O 3 ), cadmium sulfide (CdS), zirconia (ZrO 2 ), calcium phosphate (Ca 3 (PO 4 ) 2 ), calcium oxide (CaO), and mixtures thereof Further comprising inorganic fine particles selected from
Coating composition.
기재; 및
상기 기재의 적어도 일 표면 상의 제1항에 따른 코팅 조성물로부터 형성된 필름을 포함하는
에너지 절약 물질.
materials; And
A film formed from the coating composition of claim 1 on at least one surface of the substrate.
Energy saving materials.
제9항에 있어서,
상기 필름은 상기 기재의 적어도 일 표면 상에 제1항에 따른 코팅 조성물을 코팅, 분사 또는 침지함으로써 형성되는
에너지 절약 물질.
10. The method of claim 9,
The film is formed by coating, spraying or dipping the coating composition of claim 1 on at least one surface of the substrate.
Energy saving materials.
제9항에 있어서,
상기 필름은 JIS K5400 표준 방법에 따라 측정된 H 이상의 연필 경도를 갖는
에너지 절약 물질.
10. The method of claim 9,
The film has a pencil hardness of at least H measured according to the JIS K5400 standard method
Energy saving materials.
KR1020110146322A 2010-12-31 2011-12-29 Coating composition and uses thereof KR20120078637A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW099147427 2010-12-31
TW099147427A TWI513780B (en) 2010-12-31 2010-12-31 Coating composition and uses thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR20150024983A Division KR20150028979A (en) 2010-12-31 2015-02-23 Coating composition and uses thereof

Publications (1)

Publication Number Publication Date
KR20120078637A true KR20120078637A (en) 2012-07-10

Family

ID=44489276

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020110146322A KR20120078637A (en) 2010-12-31 2011-12-29 Coating composition and uses thereof
KR20150024983A KR20150028979A (en) 2010-12-31 2015-02-23 Coating composition and uses thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR20150024983A KR20150028979A (en) 2010-12-31 2015-02-23 Coating composition and uses thereof

Country Status (5)

Country Link
US (1) US20120168666A1 (en)
JP (1) JP5784481B2 (en)
KR (2) KR20120078637A (en)
CN (1) CN102167954B (en)
TW (1) TWI513780B (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103059720B (en) * 2011-10-20 2015-07-08 无锡灵煌科技有限公司 Preparation method of transparent thermal insulation self-cleaning coating
KR101860765B1 (en) * 2012-03-22 2018-05-24 니혼 도쿠슈 도료 가부시키가이샤 Frost preventive coating composition
CN102747786B (en) * 2012-03-31 2014-06-18 常熟南师大发展研究院有限公司 Building insulation plate
CN103904126B (en) * 2012-12-26 2016-08-24 深圳市金誉半导体有限公司 Thin film transistor (TFT)
EP2958964A4 (en) * 2013-02-21 2016-08-10 Cleanspot Inc Treatment of frequently touched surfaces to improve hygiene
CN103283532B (en) * 2013-06-17 2014-11-19 湖北天瑞博能科技有限公司 Nanometer self-assembly thermal insulation agricultural film
CN103468094B (en) * 2013-09-26 2015-12-02 广州科技职业技术学院 A kind of housing outer surface sealing, heat-proof coating material and preparation method thereof
JP6281395B2 (en) * 2013-11-26 2018-02-21 ソニー株式会社 Image sensor
JP6270767B2 (en) * 2015-03-30 2018-01-31 ニチハ株式会社 Building materials
CN105111869A (en) * 2015-10-13 2015-12-02 江苏久诺建材科技有限公司 Reflective thermal-insulation coating
CN106746759B (en) * 2016-11-29 2018-03-23 何新桥 The heat-insulated of nano-silicon gallium, implosion guard and preparation method thereof
CN111763476A (en) * 2020-07-04 2020-10-13 上海灿达建材科技有限公司 Water-based siloxane coating for glass heat insulation coating and preparation process thereof
CN111944355B (en) * 2020-07-17 2022-07-15 河海大学 Preparation method, preparation and application of fluorocarbon coating modifier
CN116102916A (en) * 2021-09-16 2023-05-12 长沙民德消防工程涂料有限公司 Indium tin oxide/titanium dioxide composite material and preparation method thereof, and automotive glass heat insulation coating and preparation method thereof
CN114181578A (en) * 2021-11-18 2022-03-15 中冶武汉冶金建筑研究院有限公司 External wall heat-preservation and heat-insulation composite building coating and preparation method thereof
CN116948492A (en) * 2023-08-29 2023-10-27 优美特(北京)环境材料科技股份公司 Double-component heat-insulating water-based paint and preparation method and application thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10194780A (en) * 1996-12-26 1998-07-28 Central Glass Co Ltd Glass having performance for cutting ultraviolet ray and heat ray and having antifouling performance and its production
JPH11209695A (en) * 1998-01-27 1999-08-03 Jsr Corp Coating composition and cured article
KR100380550B1 (en) * 1999-12-17 2003-04-16 엘지건설 주식회사 Photocatalytic coating composition containing silicon adhesive
JP2005272270A (en) * 2004-03-26 2005-10-06 Fuji Photo Film Co Ltd Conductive titanium dioxide fine particle, high refractive index coating, composition for forming high refractive index coating, and method for manufacturing these
KR100948803B1 (en) * 2005-12-13 2010-03-24 아사히 가세이 케미칼즈 가부시키가이샤 Aqueous organic-inorganic hybrid composition
TWI370014B (en) * 2007-06-06 2012-08-11 Eternal Chemical Co Ltd Composite materials and composition containing the same
JP5142617B2 (en) * 2007-07-31 2013-02-13 日揮触媒化成株式会社 Surface treatment method for metal oxide particles, dispersion containing the surface treated metal oxide particles, coating liquid for forming a transparent film, and substrate with transparent film
CN101265374A (en) * 2008-01-24 2008-09-17 复旦大学 Intelligent heat-insulating film and its preparing process
BRPI1009429B1 (en) * 2009-03-11 2019-06-18 Asahi Kasei E-Materials Corporation COATING COMPOSITION, COATING FILM, LAMINATE, METHOD FOR MANUFACTURING THE SAME, SOLAR CELL MODULE, REFLECTOR DEVICE, AND, SOLAR THERMAL ENERGY GENERATION SYSTEM
US8932397B2 (en) * 2009-06-12 2015-01-13 Ishihara Sangyo Kaisha. Ltd. Near-infrared shielding coating agent curable at ordinary temperatures, near infrared shielding film using same, and manufacturing method therefor
CN101602580B (en) * 2009-06-19 2012-07-11 深圳市多纳科技有限公司 Laminated glass with nanometer thermal insulation coating and product thereof
JP4500915B1 (en) * 2009-09-17 2010-07-14 有限会社ケイ・ビー・エル営繕センター Photocatalytic coating for shielding heat rays
US8889801B2 (en) * 2009-10-28 2014-11-18 Momentive Performance Materials, Inc. Surface protective coating and methods of use thereof

Also Published As

Publication number Publication date
JP2012140621A (en) 2012-07-26
US20120168666A1 (en) 2012-07-05
KR20150028979A (en) 2015-03-17
TW201226485A (en) 2012-07-01
CN102167954A (en) 2011-08-31
CN102167954B (en) 2014-01-22
TWI513780B (en) 2015-12-21
JP5784481B2 (en) 2015-09-24

Similar Documents

Publication Publication Date Title
KR20120078637A (en) Coating composition and uses thereof
KR100318109B1 (en) Photocatalyst Coating Composition and Photocatalyst Support Structure
EP1712530B1 (en) Method of cleaning a substrate having an ultrahydrophilic and photocatalytic surface
US7449245B2 (en) Substrates comprising a photocatalytic TiO2 layer
AU676299B2 (en) Photocatalyst composite and process for producing the same
JP3690864B2 (en) Production method of photocatalyst
EP2343125B1 (en) Hydrophilic films and components and structures using same
JP4665221B2 (en) Titanium dioxide photocatalyst carrier and production method thereof
JP3291563B2 (en) Photocatalytic paint and its production method and use
JP3755852B2 (en) Coating liquid for forming transparent film having photocatalytic activity and substrate with transparent film
WO2001023483A1 (en) Photocatalytic coating composition and product having thin photocatalytic film
JP4738736B2 (en) Photocatalyst composite, coating solution for forming photocatalyst layer, and photocatalyst carrying structure
KR20140061842A (en) Preparation of photocatalytic water system having anti-reflection effect, super-hydrophilicity action and uv-cut character, and the glass substrate coated with the composition
JPH10167727A (en) Modified titanium oxide sol, photocatalyst composition and its forming agent
JP3291561B2 (en) Photocatalytic paint, method for producing the same, photocatalytic film coated with the same, and base material having the photocatalytic film
JPH11323192A (en) Photocatalytic membrane having antistatic effect and photocatalytic coating for forming same
KR20080004723A (en) Photocatalyst coating solution
KR100731545B1 (en) Photocatalyst sol, and the manufacturing method of the same
JPH11319709A (en) Formation of photocatalyst film on organic substrate and its use
JPH09217028A (en) Coating composition for forming transparent coating membrane having photocatalytic activity and base material with transparent coating membrane
JPH11323188A (en) Photocatalytic film, method for forming it and photocatalytic coating
JP2002320917A (en) Production method for photocatalytic coating film and photocatalytic material
JP4553439B2 (en) Application method
TW313630B (en) The surface substrate with light catalyst and hydrophilicity and its manufacturing method
JP2002356650A (en) Photocatalytic film-forming composition and photocatalytic member obtained by applying it

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E601 Decision to refuse application
J201 Request for trial against refusal decision
A107 Divisional application of patent
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20150217

Effective date: 20150722