KR20090091784A - Latch-up free vertical tvs diode array structure using trench isolation - Google Patents
Latch-up free vertical tvs diode array structure using trench isolation Download PDFInfo
- Publication number
- KR20090091784A KR20090091784A KR1020097012853A KR20097012853A KR20090091784A KR 20090091784 A KR20090091784 A KR 20090091784A KR 1020097012853 A KR1020097012853 A KR 1020097012853A KR 20097012853 A KR20097012853 A KR 20097012853A KR 20090091784 A KR20090091784 A KR 20090091784A
- Authority
- KR
- South Korea
- Prior art keywords
- tvs
- array
- transient voltage
- body region
- device isolation
- Prior art date
Links
- 238000002955 isolation Methods 0.000 title claims abstract description 36
- 230000001052 transient effect Effects 0.000 claims abstract description 33
- 239000000758 substrate Substances 0.000 claims abstract description 32
- 239000004065 semiconductor Substances 0.000 claims abstract description 25
- 230000003071 parasitic effect Effects 0.000 claims abstract description 24
- 210000000746 body region Anatomy 0.000 claims abstract description 23
- 238000000034 method Methods 0.000 claims abstract description 15
- 238000004519 manufacturing process Methods 0.000 claims abstract description 13
- 230000001629 suppression Effects 0.000 claims description 22
- 239000002019 doping agent Substances 0.000 claims description 11
- 230000008569 process Effects 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims 3
- 239000007943 implant Substances 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 13
- 230000015556 catabolic process Effects 0.000 description 5
- 238000003491 array Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/86—Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
- H01L29/861—Diodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66674—DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
- H01L29/66712—Vertical DMOS transistors, i.e. VDMOS transistors
- H01L29/66727—Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the source electrode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/402—Field plates
- H01L29/407—Recessed field plates, e.g. trench field plates, buried field plates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66674—DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
- H01L29/66712—Vertical DMOS transistors, i.e. VDMOS transistors
- H01L29/66734—Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7801—DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
- H01L29/7802—Vertical DMOS transistors, i.e. VDMOS transistors
- H01L29/7811—Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7801—DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
- H01L29/7816—Lateral DMOS transistors, i.e. LDMOS transistors
- H01L29/7817—Lateral DMOS transistors, i.e. LDMOS transistors structurally associated with at least one other device
- H01L29/782—Lateral DMOS transistors, i.e. LDMOS transistors structurally associated with at least one other device the other device being a Schottky barrier diode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0603—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
- H01L29/0607—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
- H01L29/0611—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
- H01L29/0615—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
- H01L29/0619—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
- H01L29/0623—Buried supplementary region, e.g. buried guard ring
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/10—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/1095—Body region, i.e. base region, of DMOS transistors or IGBTs
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Semiconductor Integrated Circuits (AREA)
- Bipolar Integrated Circuits (AREA)
- Element Separation (AREA)
Abstract
Description
발명의 분야Field of invention
본 발명은 개괄적으로 과도전압억제기(TVS)를 제조하는 회로 설정과 방법에 관한 것이다. 좀 더 구체적으로, 본 발명은 트렌치 소자분리를 응용하여 래치업의 기술적인 어려움을 해결한 버티컬 TVS 어레이에 관한 것이다.The present invention relates generally to a circuit setup and method for manufacturing a transient voltage suppressor (TVS). More specifically, the present invention relates to a vertical TVS array that solves the technical difficulties of latchup by applying trench isolation.
관련기술의 서술Description of related technology
과도전압억제기(TVS) 어레이(array)를 설계하고 제조하는 종래 기술은 여전히 다중 PN 접합 다이오드가 표준 COMS 처리 단계를 적용함으로써 반도체 기판 내부에서 제조되는 TVS 어레이 내부의 기술적인 어려움에 직면에 있고, 고유 PNP와 NPN 기생 트랜지스터들이 있다. ESD 나 과도전압이 일어나는 경우, 이 TVS 어레이에 높은 전압이 인가되어, 기생 PNP 또는 NPN 기생 트랜지스터들은 턴온(turn on)되고 래치업(latch-up) 되며, 따라서 갑작스럽고 강한 큰 스냅백(snapback)을 유발한다. 갑작스럽고 큰 스냅백은 시스템 불안정 또는 손상의 원치 않는 효과를 유발할 수 있다. 또한, TVS 어레이 내의 기생 NPN 또는 PNP 트랜지스터는 다른 예상치 못하거나 원치 않는 과도 전압-전류 상태를 더 유발할 수 있다. TVS 어레이 내의 기생 PNP 또는 NPN 래치업에 의해 유발된 기술적인 문제점은 쉽게 해결될 수 없다.The prior art of designing and manufacturing transient voltage suppressor (TVS) arrays still faces technical difficulties inside TVS arrays where multiple PN junction diodes are fabricated inside semiconductor substrates by applying standard COMS processing steps, There are inherent PNP and NPN parasitic transistors. In the event of an ESD or transient voltage, a high voltage is applied to this TVS array so that parasitic PNP or NPN parasitic transistors are turned on and latched up, thus causing a sudden and strong large snapback. Cause. Sudden, large snapbacks can cause unwanted effects of system instability or damage. In addition, parasitic NPN or PNP transistors in the TVS array may further cause other unexpected or unwanted transient voltage-current states. Technical problems caused by parasitic PNP or NPN latchup in the TVS array cannot be easily solved.
특히, 과도전압억제기(TVS)는 의도하지 않은 집적 회로 위에 인가된 과전압에 기인한 손상으로부터 집적 회로를 보호하기 위해 공통적으로 적용된다. 집적 회로는 일반적인 범위의 전압을 운영하기 위해 설계되었다. 하지만, 정전기 방전(ESD), 전기 급속 과도와 번개, 예측과 제어가 불가능한 높은 전압은 사고로 회로에 충격을 줄 수 있다. TVS 장치는 이러한 과전압 상태가 일어날 때 집적 회로에 일어나려고 하는 손상을 회피하기 위해 보호 기능을 제공할 필요가 있다. 점점 증가하는 수의 장치들이 과전압의 손상에 취약함에 따라, TVS 보호에 대한 요구 또한 증가하였다. TVS의 대표적인 장치들은 USB 파워와 데이터 선의 보호, 디지털 비디오 인터페이스, 고속 이더넷, 노트북 컴퓨터, 모니터 및 평판 디스플레이에서 찾을 수 있다.In particular, transient voltage suppressors (TVS) are commonly applied to protect integrated circuits from damage due to overvoltages applied on unintended integrated circuits. Integrated circuits are designed to operate a general range of voltages. However, electrostatic discharge (ESD), electrical rapid transients and lightning, and unpredictable and uncontrollable voltages can accidentally impact circuits. TVS devices need to provide protection to avoid damage that would occur to the integrated circuits when such an overvoltage condition occurs. As an increasing number of devices are vulnerable to damage from overvoltage, the demand for TVS protection has also increased. Typical TVS devices can be found in USB power and data line protection, digital video interfaces, Fast Ethernet, notebook computers, monitors and flat panel displays.
제1A도와 제1B도는 각각 TVS 장치의 회로도와 전류-전압 다이어그램을 도시한다. 이상적인 TVS는 전류를 완전히 차단한다. 즉, 입력 전압 Vin이 누설전류를 최소화하기 위해 항복전압 Vb 이하일 때 영전류이다. 그리고, 이상적으로, TVS는 과도전압이 효과적으로 클램프(clamp) 되도록 Vin이 항복전압 Vb보다 훨씬 큰 경우에는 영저항에 근접한다. TVS는 과도 입력 전압이 과도 전압 보호를 달성하기 위해 항복전압을 초과할 때 전류 전도를 허용하는 항복전압을 가진 PN 접합 장치로 구현된다. 하지만, TVS의 PN 접합 타입은 제1B도에 도시된 바와 같이 높은 저항 때문에 소수 담체(minority carrier)를 갖지 않고 낮은 클램핑 성능을 갖는다. 바이폴라 트랜지스터의 애벌런치 트리거된(avalanche-triggered) 터닝온(turning-on)을 갖는 바이폴라 NPN/PNP에 의한 대체 TVS의 구현이 있다. 베이스는 소수 담체로 플로드(flood)되고 애벌런치 전류가 바이폴라 이득에 의해 증폭함에 따라 바이폴라 TVS는 향상된 클램핑 전압을 달성할 수 있다.1A and 1B show a circuit diagram and a current-voltage diagram of a TVS device, respectively. The ideal TVS shuts off the current completely. That is, it is zero current when the input voltage Vin is below the breakdown voltage Vb to minimize leakage current. Ideally, the TVS is close to zero resistance when Vin is much greater than the breakdown voltage Vb so that the transient voltage is effectively clamped. TVS is implemented as a PN junction with breakdown voltage that allows current conduction when the transient input voltage exceeds the breakdown voltage to achieve transient voltage protection. However, the PN junction type of TVS does not have a minority carrier due to the high resistance as shown in FIG. 1B and has a low clamping performance. There is an implementation of alternative TVS by bipolar NPN / PNP with avalanche-triggered turning-on of bipolar transistors. Bipolar TVS can achieve improved clamping voltage as the base is floated with a minority carrier and the avalanche current is amplified by bipolar gain.
전자 기술의 발전과 함께, ESD 보호를 위한 TVS 다이오드 어레이가 필요한 장치들이 점차 증가되고 있고, 특히 높은 대역폭(bandwidth) 데이터 버스를 보호하는 장치들의 필요성이 증가되고 있다. 4채널 TVS 회로도를 도시하는 제2A도와 TVS 어레이 장치 구현의 단면도를 도시하는 제2B도는 어레이 장치의 코어만을 나타낸다. 제2A도와 제2B도에 도시된 TVS 어레이는 복수의 상측 스티어링(steering) 다이오드는 Vcc에 연결되고 하측 스티어링 다이오드는 접지 전극에 연결되어 있는 복수개의 직렬로 연결된 상측과 하측 스티어링 다이오드들을 포함한다. 또한, 이 상측과 하측 스티어링 다이오드들은 메인 지너 다이오드(Zener diode)에 병렬로 연결되어 있고 스티어링 다이오드들은 훨씬 작고 작은 접합 커피시턴스(capacitance)를 갖는다. 또한, 도2C가 도시하듯, 이러한 구현은 기생 PNP와 NPN 트랜지스터에 의해 유도된 SCR 액션에 의한 래치업의 다른 문제점을 발생시킨다. 메인 지너 다이오드 항복은 SCR이 일으키는 래치업을 더 턴온하는 NPN을 트리거(trigger)한다. 고온에서, 기생 NPN의 NP 접합을 통한 높은 리키지(leakage) 전류는 NPN이 턴온되지 않았을지라도 래치업을 일으키는 SCR을 턴온할 수 있다. 기생 PNP와 NPN 트랜지스터에 의해 유도된 SCR 액션에 의한 억제된 래치업을 위해, 반도체 기판 위의 실제 장치의 구현은 도2B에 도시된 바와 같이 100 마이크로미터 이상의 수평 거리가 필요하고 억제는 보통 효과적이지 않다.With the development of electronic technology, devices that require TVS diode arrays for ESD protection are increasingly increasing, and in particular, the need for devices that protect high bandwidth data buses. Figure 2A showing a four-channel TVS circuit diagram and Figure 2B showing a cross-sectional view of a TVS array device implementation show only the core of the array device. The TVS array shown in FIGS. 2A and 2B includes a plurality of series connected upper and lower steering diodes having a plurality of upper steering diodes connected to Vcc and a lower steering diode connected to a ground electrode. In addition, these upper and lower steering diodes are connected in parallel to the main Zener diode and the steering diodes are much smaller and have a smaller junction coffee capacitance. In addition, as shown in FIG. 2C, this implementation introduces another problem of latch-up due to SCR actions induced by parasitic PNP and NPN transistors. The main zener diode breakdown triggers the NPN, which further turns on the latchup caused by the SCR. At high temperatures, high leakage current through the NP junction of the parasitic NPN can turn on the SCR causing latchup even though the NPN is not turned on. For suppressed latchup by SCR actions induced by parasitic PNP and NPN transistors, the implementation of a real device on a semiconductor substrate requires a horizontal distance of more than 100 micrometers as shown in FIG. 2B and suppression is usually effective. not.
제3A도와 제3B도는 이더넷 특이 보호 회로내의 기생 PNP 트랜지스터를 통한 래치업에 의해 유발된 특별한 문제점을 도시한다. 이 이더넷 보호 회로 내에서는, Vcc와 접지 핀 모두 유동적이다. 하지만, 기생 SCR 구조는 제3B도에 도시된 바와 같이 갑작스런 전압 스냅백(snap back)을 유발하는 설계 내에서는 충분히 약하지 않다. 이러한 갑작스럽고 강한 스냅백은 시스템 불안정이나 심지어는 손상을 일으키는 원치않는 효과를 일으킬 수 있다. 이러한 문제점들은 쉽게 해결될 수 없다. 왜냐하면 기생 PNP 트랜지스터는 표준 CMOS 과정에 고유하고 Vcc와 접지 핀 모두 유동적이라는 사실은 래치업의 효과를 악화시키기 때문이다. 추가적인 매장된 층은 복잡한 장치 설정과 고생산 비용을 유발하는 기생 PNP 트랜지스터의 이득을 억제할 필요가 있다.3A and 3B illustrate particular problems caused by latchup through parasitic PNP transistors in Ethernet specific protection circuitry. Within this Ethernet protection circuit, both Vcc and ground pins are floating. However, the parasitic SCR structure is not sufficiently weak in a design that causes a sudden voltage snap back as shown in FIG. 3B. Such sudden, strong snapbacks can cause unwanted effects that cause system instability or even damage. These problems cannot be easily solved. Because the parasitic PNP transistors are unique to the standard CMOS process and both Vcc and ground pins are floating, the effect of latchup is exacerbated. Additional buried layers need to suppress the gains of parasitic PNP transistors that lead to complex device setups and high production costs.
따라서, 상기 논의한 문제점들을 해결하기 위한 새롭고 개선된 회로 설정과 제조 방법을 제공하는 회로 설계와 장치 제조 분야의 필요성은 여전히 존재한다. 특히, 기생 PNP/NPN 트랜지스터 래치업을 효과적이고 편리하게 방지할 수 있는 새롭고 개선된 TVS 회로를 제공할 필요성이 여전히 존재한다.Thus, there is still a need in the field of circuit design and device fabrication to provide new and improved circuit setup and fabrication methods for solving the problems discussed above. In particular, there is still a need to provide new and improved TVS circuits that can effectively and conveniently prevent parasitic PNP / NPN transistor latch-ups.
발명의 요약Summary of the Invention
따라서 본 발명의 특징은 상기 논의한 종래 TVS 어레이가 가지고 있는 문제점과 한계를 극복할 수 있는 기생 PNP-NPN 트랜지스터의 래치업을 방지하기 위한 래치업 소자분리를 구현하기 위한 TVS 어레이의 새롭고 개선된 구조를 제공하는 것이다.Therefore, a feature of the present invention is a novel and improved structure of a TVS array for implementing latch-up device isolation to prevent latch-up of parasitic PNP-NPN transistors that can overcome the problems and limitations of the conventional TVS array discussed above. To provide.
본 발명의 또 다른 특징은 래치업의 걱정 없이 인접한 다이오드들 사이의 수평 거리를 줄일 수 있는 다이오드들 사이의 소자분리 트렌치로 구현한 TVS 어레이를 제공하는 것이다.Another feature of the present invention is to provide a TVS array implemented with device isolation trenches between diodes that can reduce the horizontal distance between adjacent diodes without worrying about latchup.
본 발명의 바람직한 구체예의 일례를 요약하면 반도체 기판 내의 PN 접합을 포함하는 다른 도전 타입의 도펀트 영역으로 형성된 복수의 다이오드를 포함한 TVS 어레이를 개시한다. 상기 TVS 어레이는 기생 PNP 또는 NPN 트랜지스터의 래치업을 분리하고 예방하는 도펀트 영역들 사이의 소자분리 트렌치를 포함한다.Summary of one preferred embodiment of the present invention discloses a TVS array comprising a plurality of diodes formed from dopant regions of another conductivity type including PN junctions in a semiconductor substrate. The TVS array includes device isolation trenches between dopant regions that isolate and prevent latchup of parasitic PNP or NPN transistors.
본 발명은 통합된 과도전압억제(TVS) 어레이를 구비한 전자 장치를 제조하는 방법을 더 개시한다. 상기 방법은 반도체 기판 내에서 이 도펀트 영역들 사이의 PN 접합들 사이에서 다이오드들을 형성하기 위해 다른 도전 타입의 복수의 도펀트 영역들을 도프(dope)함으로써 TVS 어레이를 생산하는 단계를 포함한다. 상기 방법은 서로 다른 도전 타입의 도펀트 영역들 사이의 기생 PNP 또는 NPN 트랜지스터들의 래치업을 분리하고 방지하기 위한 도펀트 영역들 사이의 소자분리 트렌치를 형성하는 단계를 더 포함한다.The invention further discloses a method of manufacturing an electronic device having an integrated transient voltage suppression (TVS) array. The method includes producing a TVS array by doping a plurality of dopant regions of different conductivity type to form diodes between PN junctions between these dopant regions in a semiconductor substrate. The method further includes forming a device isolation trench between the dopant regions to isolate and prevent latchup of parasitic PNP or NPN transistors between dopant regions of different conductivity type.
본 발명의 상기 목적 및 다른 목적들은 하기의 다양한 도면과 함께 첨부된 바람직한 구체예에 대한 상세한 설명을 읽고 난 당해 기술 분야에 속하는 숙련된 자들에게 자명함은 분명하다.The above and other objects of the present invention are apparent to those skilled in the art after reading the detailed description of the preferred embodiments with accompanying drawings.
도면의 간단한 설명Brief description of the drawings
제1A도는 종래 TVS 장치를 도시하는 회로도이고 제1B도는 I-V 다이어그램, 즉, TVS 장치의 역 특성을 설명하는 전류대 전압 다이어그램이다.FIG. 1A is a circuit diagram showing a conventional TVS device and FIG. 1B is an I-V diagram, i.e., a current-to-voltage diagram illustrating the inverse characteristics of the TVS device.
제2A도는 상측 및 하측 다이오드에 병렬로 연결되어 있는 메인 지너 다이오드들을 구비한 복수의 IO 패드에 연결된 복수의 상측 및 하측 다이오드들을 포함하는 TVS 어레이의 회로도를 도시한다.FIG. 2A shows a circuit diagram of a TVS array including a plurality of top and bottom diodes connected to a plurality of IO pads having main zener diodes connected in parallel to the top and bottom diodes.
제2B도는 종래 장치 설정에 따른 제2A도의 TVS 어레이의 장치 구현을 묘사하는 측단면도이다.FIG. 2B is a side cross-sectional view depicting a device implementation of the TVS array of FIG. 2A in accordance with a conventional device setup.
제2C도는 제2B도에 구현된 장치의 잠재적인 래치업을 묘사하는 등가회로도이다.FIG. 2C is an equivalent circuit diagram depicting potential latchup of the device implemented in FIG. 2B.
제3A도는 플로트(float)하기 위한 Vcc와 GND 핀을 필요로 하고 제2B도에 도시된 구조에 따라 설정된 보호 회로를 구비한 기생 SCR의 이득을 억제하기 위한 매장된 층을 필요로 하는 이더넷 특이 보호 회로의 회로도이다.Fig. 3A requires Vcc and GND pins to float and Ethernet specific protection requiring buried layers to suppress the gain of parasitic SCRs with protection circuits set according to the structure shown in Fig. 2B. A circuit diagram of the circuit.
제3B도는 종래 TVS 어레이가 원하지 않는 갑작스럽고 상당한 스냅백의 사건을 불러일으키도록 적용될 때 ESD 보호 또는 TVS 작동을 설명하는 I-V 다이어그램을 도시한다.FIG. 3B shows an I-V diagram illustrating ESD protection or TVS operation when a conventional TVS array is applied to cause an unexpected sudden and significant snapback event.
제4도는 기생 PNP 또는 NPN 트랜지스터의 래치업을 상당히 줄인 본 발명의 소자분리 트랜치로 구현된 TVS 어레이의 측단면도이다.4 is a side cross-sectional view of a TVS array implemented with the device isolation trench of the present invention which significantly reduces latchup of parasitic PNP or NPN transistors.
제5도는 기생 PNP 또는 NPN 트랜지스터의 래치업을 상당히 줄인 본 발명의 소자분리 트랜치로 구현된 또 다른 TVS 어레이의 측단면도이다.5 is a side cross-sectional view of another TVS array implemented with the device isolation trench of the present invention which significantly reduces latchup of parasitic PNP or NPN transistors.
제6도는 래치업이 소멸되었기 때문에 스냅백이 상당히 줄어든 ESD 보호 또는 TVS 작동의 동작을 설명하는 I-V 다이어그램이다.FIG. 6 is an I-V diagram illustrating the operation of ESD protection or TVS operation with significantly reduced snapback because latchup is extinguished.
본 발명의 TVS 어레이의 일부분을 새롭고 개선하여 구현한 측단면도인 제4도를 참조하자. 두개의 채널과 함께 도시된 부분적인 TVS 어레이(100)는 바닥면은 Vcc 전압에서 양극 터미널(110)에 연결된 N+ 기판(101) 위의 N-에피 층(105) 위에 떠받쳐 있다. TVS 어레이는 바닥면에 배치된 양극(110)과 접지 전압에 연결된 최상위면에 배치된 음극 터미널(120) 사이에 연결되어 있다. TVS 어레이(100)는 제1 상측 다이오드(125)와 IO 터미널(135)에 연결된 제1 하측 다이오드(130)를 더 포함한다. TVS 어레이(100)는 제2 상측 다이오드(140)와 제2 IO 터미널(150)에 연결된 제2 하측 다이오드(145)를 더 포함한다. 제1 상측 다이오드(125)는 P+ 도프된 영역(125-P)와 N-에피(105) 사이에서 PN 접합으로써 형성된다. 제1 하측 다이오드(130)는 N+ 영역(135-N)과 제1 하측 다이오드(130)의 N+ 도펀트 영역(135-N)과 제1 상측 다이오드(125)의 P+ 도펀트 영역(125-P)에 연결된 제1 IO 패드(135)를 구비한 음극 터미널(120) 아래에 배치된 P 바디 영역(160) 사이에 PN 접합으로써 형성된다. 제2 하측 다이오드(145)는 N+ 영역(145-N)과 제2 하측 다이오드(145)의 N+ 도펀트 영역(145-N)과 제2 상측 다이오드(140)의 P+ 도펀트 영역(140-P)에 연결된 제2 IO 패드(150)를 구비한 음극 터미널(120) 아래 배치된 P 바디 영역(160) 사이에 PN 접합으로써 형성된다. 더 큰 공간의 지너 다이오드(170)는 P 바디(160)와 N-에피 사이에 PN 접합과 합께 형성된다. 지너 다이오드(170)에 의해 트리거될 수 있는 NPN 트랜지스터는 심한 저항 없이 큰 과도 전류를 전도하기 위해 N+ 이미터 영역(155), P 바디 영역(160) 및 N+ 기판(101)에 의해 형성된다. TVS 어레이(100)는 제1 상측 다이오드(125)와 제1 하측 다이오드(130) 사이에 형성된 제1 소자분리 트렌치(180-1)를 더 포함한다. TVS 어레이(100)는 제2 상측 다이오드(140)와 제2 하측 다이오드(145) 사이에 형성된 제2 소자분리 트렌치(180-2)를 더 포함한다. 소자분리 트렌치는 상측 및 하측 다이오드에 의해 형성된 다중 PN 접합들 사이에 고유하게 형성된 기생 NPN 또는 PNP 트랜지스터들의 래치업을 방지한다.See Figure 4, which is a side cross-sectional view of a new and improved implementation of a portion of the TVS array of the present invention. The
제5도는 본 발명의 또 다른 TVS 어레이의 새롭고 향상된 구현의 측단면도이다. 제5도 내의 장치(100')는 더 나은 소자분리를 제공하기 위해 장치(100')내에 여분의 트렌치가 있는 것을 제외하고는 제4도 내의 장치(100)와 유사하다. 트렌치들(180'-1, 180'-2)은 메인 지너 다이오드 영역으로부터 하측 다이오드들을 분리하기 때문에 N+ 영역(155), P 바디(160) 및 하측 다이오드 음극 영역들(135-N, 145-N)에 의해 설정된 수평 NPN을 항복시킨다.5 is a cross-sectional side view of a new and improved implementation of another TVS array of the present invention. Device 100 'in FIG. 5 is similar to
제6도는 래치업이 소멸되었기 때문에 스냅백이 상당히 줄어든 ESD 보호 또는 TVS 작동의 동작을 도시하는 I-V 다이어그램이다. I-V 다이어그램에 도시되어 있듯, I-V 곡선(210)은 TVS 어레이 내에 있는 기판 내의 다른 도프된 영역들 사이의 높은 전압과 전류로 턴온하려고 하는 기생 NPN 또는 PNP 트랜지스터의 래치업에 기인한 갑작스런 스냅백을 나타낸다. 소자분리 트렌치들(180-1, 180-2)과 함께, 래치업은 소멸되고 스냅백은 상당히 줄어든다. 곡선(210)에 도시된 하나의 I-V 곡선은 스냅백이 일어날 때의 갑작스런 전압 변화에 기인한 과도한 시스템 불안정 상태로 달성된다.FIG. 6 is an I-V diagram showing the operation of ESD protection or TVS operation with significantly reduced snapback since latchup is extinguished. As shown in the IV diagram, the
본 발명이 현재 바람직한 실시예로써 기술되었더라도, 상기의 개시를 읽고서 다양한 변형 및 수정들이 당해 기술 분야에 속하는 숙련된 자들에게 명백할 것이다. 따라서 첨부된 청구항들은 본 발명의 실질적 사상과 범위에 포함되는 것으로 모든 변경과 수정을 커버하여 해석되는 것으로 의도된다.Although the present invention has been described as the presently preferred embodiment, various modifications and alterations will become apparent to those skilled in the art upon reading the above disclosure. Accordingly, the appended claims are intended to be interpreted to cover all changes and modifications that fall within the true spirit and scope of the present invention.
Claims (21)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/606,602 | 2006-11-30 | ||
US11/606,602 US7880223B2 (en) | 2005-02-11 | 2006-11-30 | Latch-up free vertical TVS diode array structure using trench isolation |
PCT/US2007/024621 WO2008066903A2 (en) | 2006-11-30 | 2007-11-30 | Latch-up free vertical tvs diode array structure using trench isolation |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20090091784A true KR20090091784A (en) | 2009-08-28 |
KR101394913B1 KR101394913B1 (en) | 2014-05-27 |
Family
ID=39468519
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020097012853A KR101394913B1 (en) | 2006-11-30 | 2007-11-30 | Latch-Up Free Vertical TVS Diode Array Structure Using Trench Isolation |
Country Status (7)
Country | Link |
---|---|
US (3) | US7880223B2 (en) |
EP (1) | EP2089903A2 (en) |
JP (1) | JP5333857B2 (en) |
KR (1) | KR101394913B1 (en) |
CN (1) | CN101506974B (en) |
TW (1) | TWI405323B (en) |
WO (1) | WO2008066903A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101522455B1 (en) * | 2012-12-04 | 2015-05-21 | 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 | Apparatus for esd protection |
Families Citing this family (83)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7781826B2 (en) * | 2006-11-16 | 2010-08-24 | Alpha & Omega Semiconductor, Ltd. | Circuit configuration and manufacturing processes for vertical transient voltage suppressor (TVS) and EMI filter |
US8218276B2 (en) * | 2006-05-31 | 2012-07-10 | Alpha and Omega Semiconductor Inc. | Transient voltage suppressor (TVS) with improved clamping voltage |
US9793256B2 (en) * | 2006-11-30 | 2017-10-17 | Alpha And Omega Semiconductor Incorporated | Optimized configurations to integrate steering diodes in low capacitance transient voltage suppressor (TVS) |
US9202938B2 (en) * | 2006-11-30 | 2015-12-01 | Alpha And Omega Semiconductor Incorporated | Latch-up free vertical TVS diode array structure using trench isolation |
DE102007024355B4 (en) * | 2007-05-24 | 2011-04-21 | Infineon Technologies Ag | Method for producing a protective structure |
US8217419B2 (en) * | 2007-06-15 | 2012-07-10 | Rohm Co., Ltd. | Semiconductor device |
US7538395B2 (en) * | 2007-09-21 | 2009-05-26 | Semiconductor Components Industries, L.L.C. | Method of forming low capacitance ESD device and structure therefor |
US7579632B2 (en) * | 2007-09-21 | 2009-08-25 | Semiconductor Components Industries, L.L.C. | Multi-channel ESD device and method therefor |
US7666751B2 (en) | 2007-09-21 | 2010-02-23 | Semiconductor Components Industries, Llc | Method of forming a high capacitance diode and structure therefor |
JP5365019B2 (en) * | 2008-02-08 | 2013-12-11 | 富士電機株式会社 | Semiconductor device |
US7911015B2 (en) * | 2008-04-03 | 2011-03-22 | Mitsubishi Electric Corporation | Infrared detector and infrared solid-state imaging device |
US7842969B2 (en) * | 2008-07-10 | 2010-11-30 | Semiconductor Components Industries, Llc | Low clamp voltage ESD device and method therefor |
US7955941B2 (en) * | 2008-09-11 | 2011-06-07 | Semiconductor Components Industries, Llc | Method of forming an integrated semiconductor device and structure therefor |
US8089095B2 (en) | 2008-10-15 | 2012-01-03 | Semiconductor Components Industries, Llc | Two terminal multi-channel ESD device and method therefor |
US7812367B2 (en) * | 2008-10-15 | 2010-10-12 | Semiconductor Components Industries, Llc | Two terminal low capacitance multi-channel ESD device |
CN101826716B (en) * | 2009-03-05 | 2014-05-21 | 万国半导体股份有限公司 | Low voltage transient voltage suppresser with potential barrier Zener diode |
US8288839B2 (en) * | 2009-04-30 | 2012-10-16 | Alpha & Omega Semiconductor, Inc. | Transient voltage suppressor having symmetrical breakdown voltages |
US8558276B2 (en) * | 2009-06-17 | 2013-10-15 | Alpha And Omega Semiconductor, Inc. | Bottom source NMOS triggered zener clamp for configuring an ultra-low voltage transient voltage suppressor (TVS) |
FR2953062B1 (en) * | 2009-11-24 | 2011-12-16 | St Microelectronics Tours Sas | LOW VOLTAGE BIDIRECTIONAL PROTECTION DIODE |
US8237193B2 (en) * | 2010-07-15 | 2012-08-07 | Amazing Microelectronic Corp. | Lateral transient voltage suppressor for low-voltage applications |
US8169000B2 (en) * | 2010-07-15 | 2012-05-01 | Amazing Microelectronic Corp. | Lateral transient voltage suppressor with ultra low capacitance |
CN102376702B (en) | 2010-08-20 | 2014-09-17 | 半导体元件工业有限责任公司 | Two-terminal multi-channel ESD device and method thereof |
US8431999B2 (en) * | 2011-03-25 | 2013-04-30 | Amazing Microelectronic Corp. | Low capacitance transient voltage suppressor |
US8664080B2 (en) * | 2011-05-25 | 2014-03-04 | Texas Instruments Incorporated | Vertical ESD protection device |
US8710627B2 (en) | 2011-06-28 | 2014-04-29 | Alpha And Omega Semiconductor Incorporated | Uni-directional transient voltage suppressor (TVS) |
US8698196B2 (en) * | 2011-06-28 | 2014-04-15 | Alpha And Omega Semiconductor Incorporated | Low capacitance transient voltage suppressor (TVS) with reduced clamping voltage |
US8304838B1 (en) * | 2011-08-23 | 2012-11-06 | Amazing Microelectronics Corp. | Electrostatic discharge protection device structure |
CN102290417B (en) * | 2011-08-24 | 2012-10-24 | 浙江大学 | Transient voltage suppressor based on DTSCR (Dual Triggered Silicon Controlled Rectifier) |
CN102290419B (en) * | 2011-08-24 | 2013-02-13 | 浙江大学 | Transient voltage suppressor based on Zener diode |
JP5749616B2 (en) * | 2011-09-27 | 2015-07-15 | セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー | Semiconductor device |
CN102332466B (en) * | 2011-10-18 | 2012-10-31 | 宜兴市环洲微电子有限公司 | Double-mesa silicon chip for manufacturing chip |
TWI456736B (en) * | 2011-11-25 | 2014-10-11 | Amazing Microelectronic Corp | Transient voltage suppressor without leakage current |
CN102437156B (en) * | 2011-12-13 | 2014-02-26 | 杭州士兰集成电路有限公司 | Ultralow capacitance transient voltage suppression device and manufacturing method thereof |
CN102593155B (en) * | 2012-03-01 | 2014-03-12 | 浙江大学 | Multi-porous channel current equalizing-based transient voltage suppressor |
CN103367393B (en) * | 2012-03-28 | 2016-04-13 | 上海华虹宏力半导体制造有限公司 | Packet routing device and method of manufacturing technology |
US9337178B2 (en) | 2012-12-09 | 2016-05-10 | Semiconductor Components Industries, Llc | Method of forming an ESD device and structure therefor |
WO2014132938A1 (en) | 2013-02-28 | 2014-09-04 | 株式会社村田製作所 | Semiconductor device |
CN206250192U (en) | 2013-02-28 | 2017-06-13 | 株式会社村田制作所 | ESD protection circuit semiconductor devices |
CN205081096U (en) * | 2013-02-28 | 2016-03-09 | 株式会社村田制作所 | ESD protection device |
CN205104477U (en) | 2013-04-05 | 2016-03-23 | 株式会社村田制作所 | ESD protection device |
US9508841B2 (en) | 2013-08-01 | 2016-11-29 | General Electric Company | Method and system for a semiconductor device with integrated transient voltage suppression |
CN103474427B (en) * | 2013-09-16 | 2016-01-06 | 杭州士兰集成电路有限公司 | Integrated form one-way ultra-low capacitance TVS device and manufacture method thereof |
CN104465643A (en) * | 2013-09-17 | 2015-03-25 | 立锜科技股份有限公司 | Instantaneous voltage straining element and making method thereof |
KR101592232B1 (en) | 2014-02-17 | 2016-02-05 | 주식회사 시지트로닉스 | Method of manufacturing low capacitance TVS and Devices using the method |
US10103540B2 (en) * | 2014-04-24 | 2018-10-16 | General Electric Company | Method and system for transient voltage suppression devices with active control |
TWI563627B (en) * | 2014-06-13 | 2016-12-21 | Richtek Technology Corp | Transient voltage suppression device and manufacturing method thereof |
CN105185782B (en) * | 2015-08-20 | 2018-05-11 | 北京燕东微电子有限公司 | Capacitive diode assembly and its manufacture method |
CN105185783B (en) * | 2015-08-20 | 2018-08-24 | 北京燕东微电子有限公司 | Capacitive diode assembly and its manufacturing method |
TWI580002B (en) * | 2015-08-26 | 2017-04-21 | 立錡科技股份有限公司 | Transient Voltage Suppression Device and Manufacturing Method Thereof |
US9640523B2 (en) | 2015-09-08 | 2017-05-02 | Hong Kong Applied Science and Technology Research Institute Company Limited | Lateral-diode, vertical-SCR hybrid structure for high-level ESD protection |
US10217733B2 (en) | 2015-09-15 | 2019-02-26 | Semiconductor Components Industries, Llc | Fast SCR structure for ESD protection |
CN105489612B (en) * | 2015-12-07 | 2019-07-23 | 上海长园维安微电子有限公司 | Low dark curient low-capacitance TVS array based on SOI substrate and preparation method thereof |
TWI584382B (en) * | 2016-02-01 | 2017-05-21 | 力祥半導體股份有限公司 | Diode device of transient voltage suppressor and manufacturing method thereof |
US10043793B2 (en) * | 2016-02-03 | 2018-08-07 | Taiwan Semiconductor Manufacturing Company Ltd. | Semiconductor device and circuit |
TWI675448B (en) | 2016-04-14 | 2019-10-21 | 力智電子股份有限公司 | Multi-channel transient voltage suppressors |
CN107346791B (en) * | 2016-05-06 | 2020-10-16 | 北大方正集团有限公司 | Transient voltage suppression diode and preparation method thereof |
CN105932010B (en) * | 2016-05-10 | 2018-09-18 | 北京燕东微电子有限公司 | Transient Voltage Suppressor |
US10388781B2 (en) | 2016-05-20 | 2019-08-20 | Alpha And Omega Semiconductor Incorporated | Device structure having inter-digitated back to back MOSFETs |
CN106169508B (en) * | 2016-08-31 | 2022-12-20 | 北京燕东微电子有限公司 | Bidirectional ultra-low capacitance transient voltage suppressor and manufacturing method thereof |
US10347621B2 (en) * | 2016-10-12 | 2019-07-09 | Texas Instruments Incorporated | Electrostatic discharge guard ring with snapback protection |
US10211199B2 (en) | 2017-03-31 | 2019-02-19 | Alpha And Omega Semiconductor (Cayman) Ltd. | High surge transient voltage suppressor |
US10062682B1 (en) | 2017-05-25 | 2018-08-28 | Alpha And Omega Semiconductor (Cayman) Ltd. | Low capacitance bidirectional transient voltage suppressor |
US10157904B2 (en) | 2017-03-31 | 2018-12-18 | Alpha And Omega Semiconductor (Cayman) Ltd. | High surge bi-directional transient voltage suppressor |
CN107316863B (en) * | 2017-07-12 | 2019-05-07 | 新昌县佳良制冷配件厂 | Transient Voltage Suppressor and preparation method thereof |
US10141300B1 (en) | 2017-10-19 | 2018-11-27 | Alpha And Omega Semiconductor (Cayman) Ltd. | Low capacitance transient voltage suppressor |
TWI737915B (en) | 2018-06-05 | 2021-09-01 | 源芯半導體股份有限公司 | Transient voltage suppression device |
CN109065541B (en) * | 2018-07-17 | 2021-04-13 | 张辉 | Bidirectional transient voltage suppressor and preparation method thereof |
JP6968042B2 (en) * | 2018-07-17 | 2021-11-17 | 三菱電機株式会社 | SiC-SOI device and its manufacturing method |
US10573635B2 (en) | 2018-07-23 | 2020-02-25 | Amazing Microelectronics Corp. | Transient voltage suppression device with improved electrostatic discharge (ESD) robustness |
US10825805B2 (en) * | 2018-10-26 | 2020-11-03 | Alpha & Omega Semiconductor (Cayman) Ltd. | Low capacitance transient voltage suppressor including a punch-through silicon controlled rectifier as low-side steering diode |
CN109326592B (en) * | 2018-10-26 | 2020-08-28 | 南京溧水高新创业投资管理有限公司 | Transient voltage suppressor and method of manufacturing the same |
CN111446691B (en) * | 2019-01-17 | 2023-12-01 | 源芯半导体股份有限公司 | Transient voltage suppression element |
RU2698741C1 (en) * | 2019-01-30 | 2019-08-29 | Акционерное общество "Научно-исследовательский институт молекулярной электроники" | Manufacturing method of vertical low-voltage voltage limiter |
TWI765166B (en) * | 2019-07-16 | 2022-05-21 | 源芯半導體股份有限公司 | Transient voltage suppression device |
CN111696982B (en) * | 2020-06-09 | 2023-10-03 | 深圳能芯半导体有限公司 | Substrate separation N-type power tube ESD circuit and setting method |
US11349017B2 (en) | 2020-06-23 | 2022-05-31 | Amazing Microelectronic Corp. | Bidirectional electrostatic discharge (ESD) protection device |
US12087759B2 (en) | 2021-06-30 | 2024-09-10 | Alpha And Omega Semiconductor International Lp | Low capacitance two channel and multi-channel TVS with effective inter-connection |
US20230168298A1 (en) * | 2021-11-29 | 2023-06-01 | Amazing Microelectronic Corp. | Diode test module for monitoring leakage current and its method thereof |
CN114334956B (en) * | 2022-03-15 | 2022-06-07 | 成都市易冲半导体有限公司 | Isolation protection structure of alternating current power switch with extreme negative voltage resistant high-voltage pin |
CN114759026B (en) * | 2022-04-21 | 2023-04-28 | 电子科技大学 | Novel double-hysteresis electrostatic protection device |
CN117174761B (en) * | 2023-11-02 | 2024-01-05 | 富芯微电子有限公司 | Voltage asymmetric bidirectional TVS device and manufacturing method thereof |
CN117558727B (en) * | 2023-11-13 | 2024-10-08 | 深圳市创飞芯源半导体有限公司 | Medium-voltage NMOS power device with ESD protection and manufacturing method |
CN118412276B (en) * | 2024-06-28 | 2024-09-06 | 江西萨瑞微电子技术有限公司 | Bidirectional TVS chip and preparation method thereof |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0685441B2 (en) * | 1986-06-18 | 1994-10-26 | 日産自動車株式会社 | Semiconductor device |
FR2689317B1 (en) * | 1992-03-26 | 1994-06-17 | Sgs Thomson Microelectronics | INTEGRATED CIRCUIT CONSTITUTING A NETWORK OF PROTECTION DIODES. |
JPH06291337A (en) * | 1993-03-31 | 1994-10-18 | Nec Kansai Ltd | Voltage regulation |
FR2708145B1 (en) * | 1993-07-21 | 1995-10-06 | Sgs Thomson Microelectronics | Monolithic component comprising a protective diode in parallel with a plurality of pairs of diodes in series. |
EP0864178A4 (en) * | 1995-10-02 | 2001-10-10 | Siliconix Inc | Trench-gated mosfet including integral temperature detection diode |
JP3904676B2 (en) * | 1997-04-11 | 2007-04-11 | 株式会社ルネサステクノロジ | Method for manufacturing trench type element isolation structure and trench type element isolation structure |
JP4256544B2 (en) * | 1998-08-25 | 2009-04-22 | シャープ株式会社 | Static protection device for semiconductor integrated circuit, manufacturing method thereof, and static protection circuit using electrostatic protection device |
US7345342B2 (en) * | 2001-01-30 | 2008-03-18 | Fairchild Semiconductor Corporation | Power semiconductor devices and methods of manufacture |
US6515345B2 (en) * | 2001-02-21 | 2003-02-04 | Semiconductor Components Industries Llc | Transient voltage suppressor with diode overlaying another diode for conserving space |
US6683334B2 (en) * | 2002-03-12 | 2004-01-27 | Microsemi Corporation | Compound semiconductor protection device for low voltage and high speed data lines |
TW561608B (en) * | 2002-11-01 | 2003-11-11 | Silicon Integrated Sys Corp | Electrostatic discharge protection apparatus for too-high or too-low input voltage reference level |
US6891207B2 (en) * | 2003-01-09 | 2005-05-10 | International Business Machines Corporation | Electrostatic discharge protection networks for triple well semiconductor devices |
US6867436B1 (en) * | 2003-08-05 | 2005-03-15 | Protek Devices, Lp | Transient voltage suppression device |
DE102004041622A1 (en) * | 2003-08-29 | 2005-03-24 | Fuji Electric Holdings Co. Ltd., Kawasaki | Semiconductor component comprises lateral trench insulated gate bipolar transistor for power information technology and has control electrode in trench with isolation layers |
JP4423466B2 (en) * | 2004-02-17 | 2010-03-03 | 富士電機システムズ株式会社 | Semiconductor device |
-
2006
- 2006-11-30 US US11/606,602 patent/US7880223B2/en active Active
-
2007
- 2007-10-26 TW TW096140392A patent/TWI405323B/en active
- 2007-11-30 EP EP07867586A patent/EP2089903A2/en not_active Withdrawn
- 2007-11-30 CN CN2007800317560A patent/CN101506974B/en not_active Expired - Fee Related
- 2007-11-30 KR KR1020097012853A patent/KR101394913B1/en active IP Right Grant
- 2007-11-30 JP JP2009539339A patent/JP5333857B2/en active Active
- 2007-11-30 WO PCT/US2007/024621 patent/WO2008066903A2/en active Application Filing
-
2011
- 2011-02-01 US US12/931,434 patent/US20110127577A1/en not_active Abandoned
-
2012
- 2012-03-15 US US13/421,608 patent/US8461644B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101522455B1 (en) * | 2012-12-04 | 2015-05-21 | 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 | Apparatus for esd protection |
Also Published As
Publication number | Publication date |
---|---|
EP2089903A2 (en) | 2009-08-19 |
CN101506974B (en) | 2013-04-10 |
JP5333857B2 (en) | 2013-11-06 |
TW200828569A (en) | 2008-07-01 |
US8461644B2 (en) | 2013-06-11 |
US20070073807A1 (en) | 2007-03-29 |
US20120168900A1 (en) | 2012-07-05 |
WO2008066903A2 (en) | 2008-06-05 |
CN101506974A (en) | 2009-08-12 |
US20110127577A1 (en) | 2011-06-02 |
TWI405323B (en) | 2013-08-11 |
JP2010512003A (en) | 2010-04-15 |
KR101394913B1 (en) | 2014-05-27 |
WO2008066903A3 (en) | 2008-07-31 |
US7880223B2 (en) | 2011-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101394913B1 (en) | Latch-Up Free Vertical TVS Diode Array Structure Using Trench Isolation | |
US9461031B1 (en) | Latch-up free vertical TVS diode array structure using trench isolation | |
TWI382627B (en) | Transient voltage suppressor manufactured in silicon on oxide (soi) layer | |
US8338854B2 (en) | TVS with low capacitance and forward voltage drop with depleted SCR as steering diode | |
US8455315B2 (en) | Symmetric blocking transient voltage suppressor (TVS) using bipolar transistor base snatch | |
US8633509B2 (en) | Apparatus and method for transient electrical overstress protection | |
US8835977B2 (en) | TVS with low capacitance and forward voltage drop with depleted SCR as steering diode | |
US9793256B2 (en) | Optimized configurations to integrate steering diodes in low capacitance transient voltage suppressor (TVS) | |
US20090045457A1 (en) | Optimized configurations to integrate steering diodes in low capacitance transient voltage suppressor (TVS) | |
US20140319598A1 (en) | Optimized configurations to integrate steering diodes in low capacitance transient voltage suppressor (TVS) | |
US8859361B1 (en) | Symmetric blocking transient voltage suppressor (TVS) using bipolar NPN and PNP transistor base snatch | |
JP5529436B2 (en) | ESD protection circuit | |
US20220254771A1 (en) | Semiconductor circuit and manufacturing method for the same | |
JP2021150355A (en) | Semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application | ||
J201 | Request for trial against refusal decision | ||
S901 | Examination by remand of revocation | ||
E902 | Notification of reason for refusal | ||
GRNO | Decision to grant (after opposition) | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20170317 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20180322 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20190314 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20200311 Year of fee payment: 7 |