Nothing Special   »   [go: up one dir, main page]

KR20020059420A - Temperature detector which is resistant to high temperatures and mechanically stable - Google Patents

Temperature detector which is resistant to high temperatures and mechanically stable Download PDF

Info

Publication number
KR20020059420A
KR20020059420A KR1020027005341A KR20027005341A KR20020059420A KR 20020059420 A KR20020059420 A KR 20020059420A KR 1020027005341 A KR1020027005341 A KR 1020027005341A KR 20027005341 A KR20027005341 A KR 20027005341A KR 20020059420 A KR20020059420 A KR 20020059420A
Authority
KR
South Korea
Prior art keywords
temperature sensor
temperature
filler
mass
metal
Prior art date
Application number
KR1020027005341A
Other languages
Korean (ko)
Inventor
린데만게르트
드레슬러볼프강
린트너프리데리케
뵈더호어스트
Original Assignee
클라우스 포스, 게오르그 뮐러
로베르트 보쉬 게엠베하
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 클라우스 포스, 게오르그 뮐러, 로베르트 보쉬 게엠베하 filed Critical 클라우스 포스, 게오르그 뮐러
Publication of KR20020059420A publication Critical patent/KR20020059420A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58085Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicides
    • C04B35/58092Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicides based on refractory metal silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/589Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained from Si-containing polymer precursors or organosilicon monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/593Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/593Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering
    • C04B35/5935Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering obtained by gas pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/04Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient
    • H01C7/042Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient mainly consisting of inorganic non-metallic substances
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3891Silicides, e.g. molybdenum disilicide, iron silicide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Products (AREA)
  • Thermistors And Varistors (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

본 발명은 내고온성 매트릭스 및, 탁월한 PTC 특성을 갖는 하나 이상의 층간 화합물로 이루어진 적어도 1400℃까지 내열성을 갖는 복합 재료를 포함하는 세라믹 온도 센서에 관한 것이다.The present invention relates to a ceramic temperature sensor comprising a high temperature resistant matrix and a composite material having heat resistance up to at least 1400 ° C. consisting of one or more interlayer compounds having excellent PTC properties.

Description

내고온성이며, 기계적으로 안정된 온도 센서{Temperature detector which is resistant to high temperatures and mechanically stable}Temperature detector, which is resistant to high temperatures and mechanically stable

온도 측정을 위해서는, 다양한 많은 온도 센서들이 공지되어 있다. 그 기능은 다양한 금속 또는 세라믹 재료가 사용되는 것에 의해 설명되며, 상기 재료들의 전기 저항은 온도에 따라 변한다. 저항의 변화는, 측정하고자 하는 온도 인터벌 내에 상기 변화가 예컨대 선형적인 일정한 특성 곡선을 포함할 때, 상기 변화에 맞게 조정된 전자 회로의 유효 신호로서 평가된다. 전기 저항은 온도가 상승하면서 재료에 따라 커지거나 또는 작아질 수 있다. 전자의 경우는 전기 저항의 포지티브 온도 계수(PTC)이며, 후자의 경우는 전기 저항의 네가티브 온도 계수(NTC)이다.For temperature measurement, many different temperature sensors are known. The function is explained by the use of various metal or ceramic materials, the electrical resistance of which materials vary with temperature. The change in resistance is evaluated as an effective signal of the electronic circuit adjusted for the change when the change in the temperature interval to be measured includes, for example, a linear constant characteristic curve. The electrical resistance may increase or decrease depending on the material as the temperature increases. The former is the positive temperature coefficient of electrical resistance (PTC), and the latter is the negative temperature coefficient of electrical resistance (NTC).

금속 온도 센서는 주로 PTC 특성을 포함한다. 그러나 상기 온도 센서는 기계적으로 불안정하며 일반적으로 자력 지지되는 온도 센서는 사용될 수 없다. 와이어형 온도 센서는 일반적으로 세라믹 보호관, 즉 전기 절연된 및/또는 금속의 보호관 내에 장착된다. 상기 센서는 케이싱 열전 소자이다. 또한 후막 기술 및 이어서 발생하는 연소에 의해 적절한 개별 기판의 표면 상에 제공되거나, 두 층 또는다층의 기판 층 구조 사이에 캡슐화되는 온도 센서도 공지되어 있다. 상기 온도 센서는 후막 소자로서 명칭된다.Metal temperature sensors mainly contain PTC properties. However, the temperature sensor is mechanically unstable and generally a magnetically supported temperature sensor cannot be used. Wire-type temperature sensors are generally mounted in ceramic sheaths, ie electrically insulated and / or metal sheaths. The sensor is a casing thermoelectric element. Also known is a temperature sensor which is provided on the surface of a suitable individual substrate by means of thick film technology and subsequent combustion, or encapsulated between two or multiple substrate layer structures. The temperature sensor is named as a thick film element.

PTC 열전 소자는 또한 비귀금속을 기로 하여, 최대 800℃까지 제한된 온도 범위 내에만 사용될 수 있다. 원칙적으로, 공지된 상기의 실시예는 온도 센서 소자를 위해 기계적 보호 기능을 하는 불활성 재료로 된 캐리어를 필요로 한다. 상기 열전 소자의 패시브 부품도 함께 가열되기 때문에, 신호 변화의 일정 관성이 생기며 이는 온도 측정의 신속성에 부정적으로 작용한다.PTC thermoelectric devices are also based on non-noble metals and can only be used within a limited temperature range up to 800 ° C. In principle, the above described embodiments require a carrier of inert material which provides mechanical protection for the temperature sensor element. Since the passive components of the thermoelectric element are also heated together, a constant inertia of signal change occurs, which negatively affects the speed of temperature measurement.

포지스터는, 도핑된 바륨 티타네이트(BaTiO3)를 기초로 하는 온도 의존 반도체 저항이다. 상기 저항 특성은, 저항이 퀴리 온도까지는 실제적으로 일정하게 유지된 다음 소정의 크기 만큼 불연속적으로 증가하는 것으로 특징된다. 전형적 포지스터는 매우 좁게 제한된 온도 범위 내에서 사용 가능한 저항 특성을 나타내며 최대 500℃까지 사용될 수 있다.The transistor is a temperature dependent semiconductor resistor based on doped barium titanate (BaTiO 3 ). The resistance characteristic is characterized by the fact that the resistance remains substantially constant up to the Curie temperature and then discontinuously increases by a predetermined amount. Typical resistors exhibit resistance characteristics that can be used within a very narrow limited temperature range and can be used up to 500 ° C.

서미스터, NTC 저항은 주로 전이 금속 산화물로 구성되며, 특성 곡선을 더 잘 재생할 수 있도록, 안정되게 작용하는 산화물이 상기 전이 금속 산화물에 혼합된다. 또한 상기 서미스터, NTC 저항은 그 열 안정성이 적기 때문에, 최대 1000℃까지 제한된 사용 범위 내에서만 사용될 수 있다.Thermistors, NTC resistors are mainly composed of transition metal oxides, and stable acting oxides are mixed with the transition metal oxides so that the characteristic curve can be better reproduced. In addition, the thermistor and NTC resistance can be used only within a limited use range up to 1000 ° C because of its low thermal stability.

본 발명의 과제는, 1400℃까지의 매우 높은 온도까지 열적으로 내열성을 가지며 기계적으로 안정되고, 또한 자력 지지되는 온도 센서를 제공하는 것이다. 또한 본 과제는, 상기 온도 센서가 -40℃ 내지 1400℃의 사용 범위 내에서 온도를 측정할 수 있어야 하는 것이다.An object of the present invention is to provide a temperature sensor which is thermally heat resistant, mechanically stable and magnetically supported up to a very high temperature up to 1400 ° C. In addition, the present invention is that the temperature sensor should be able to measure the temperature within the use range of -40 ℃ to 1400 ℃.

본 발명은 내고온성을 가지며 기계적으로 안정된 세라믹 온도 센서에 관한 것이다.The present invention relates to a high temperature resistant and mechanically stable ceramic temperature sensor.

도 1은 본 발명에 따른 온도 센서의 사용 하에 있는 온도 측정 장치를 도시한 도면.1 shows a temperature measuring device under the use of a temperature sensor according to the invention.

도 2는 포지티브 온도 계수를 갖는, 본 발명에 따른 온도 센서의 제 1 내지 제 4 실시예에 따라, 비저항ρ의 온도 의존성을 도시한 그래프.2 is a graph showing the temperature dependence of the resistivity p, according to the first to fourth embodiments of the temperature sensor according to the invention, having a positive temperature coefficient;

도 3은 포지티브 온도 계수를 갖는, 본 발명에 따른 온도 센서의 제 5 실시예에 따라, 비저항ρ의 온도 의존성을 도시한 그래프.3 is a graph showing the temperature dependence of the resistivity p, according to a fifth embodiment of the temperature sensor according to the invention, having a positive temperature coefficient;

상기 과제는 세라믹 온도 센서를 통해 본 발명에 따라 해결되며, 상기 온도 센서는 내고온성 매트릭스 및, 탁월한 PTC 특성을 갖는 하나 이상의 층간 화합물로 이루어진 적어도 1400℃까지 내열성을 갖는 복합 재료를 포함하는 것을 특징으로 한다.The problem is solved according to the invention via a ceramic temperature sensor, wherein the temperature sensor comprises a composite material having a heat resistance up to at least 1400 ° C. consisting of a high temperature resistant matrix and at least one interlayer compound having excellent PTC properties. do.

상기 온도 센서는 매우 높은 내고온성을 가지며, 기계적 하중을 매우 높게 지탱할 수 있고 이로써 자력 지지된다. 상기와 같이 자력 지지되는 구조에 의해 이제, 측정하고자 하는 구역에 열감성 재료를 직접 삽입하는 것이 가능하다. 일반적으로 사용되는, 패시브 부피를 갖는 지지체 재료의 생략은 특히 바람직한 방법으로 센서에서의 신속한 저항 변화 및 이로써 신속한 온도 측정을 가능하게 한다.The temperature sensor has a very high high temperature resistance, can bear a very high mechanical load and is thereby magnetically supported. With the magnetically supported structure as above, it is now possible to insert the thermosensitive material directly into the area to be measured. The omission of the passive material with passive volume, which is generally used, enables a rapid change of resistance in the sensor and thus a quick temperature measurement in a particularly preferred manner.

본 발명에 따른 온도 센서의 또 다른 장점은 상기 센서가 산화 및 환원된 대기 내에서 안정되는 데에 있다.Another advantage of the temperature sensor according to the invention is that the sensor is stable in an oxidized and reduced atmosphere.

-40℃ 내지 1400℃의 범위 내에서 온도가 증가함에 따른 전기 저항의 거의 선형적 증가를 상기 재료들이 포함함으로써, 전체 범위에서 온도가 측정될 수 있다.By incorporating a nearly linear increase in electrical resistance with increasing temperature in the range of -40 ° C to 1400 ° C, the temperature can be measured over the entire range.

내고온성 매트릭스가 트리실리콘테트라니트라이드를 포함하고/또는 층간 화합물이 금속 규화물인 본 발명에 따른 온도 센서는 바람직하다.Preference is given to temperature sensors according to the invention wherein the high temperature resistant matrix comprises trisilicontetranitride and / or the interlayer compound is a metal silicide.

이에 대해 금속으로서는 주로 몰립덴, 니오브, 텅스텐 또는 티탄이 사용된다.In contrast, molybdenum, niobium, tungsten or titanium is mainly used as the metal.

바람직한 실시예에서 상기 온도 센서는, 신터링 전에 냉간 등압 성형 단계에의해 제조될 수 있는 것을 특징으로 한다.In a preferred embodiment the temperature sensor is characterized in that it can be produced by a cold isostatic forming step before sintering.

여기서 사용될 수 있는 복합 재료에 대해서는 DE 197 22 321 A1가 참조된다.Reference is made to DE 197 22 321 A1 for composite materials which may be used here.

Si3N4/MSi2복합 재료(M = 금속)로 이루어진 온도 센서를 제조할 시, 우선 결합된 냉간 축상/등압 성형이 이뤄진다.When manufacturing a temperature sensor made of Si 3 N 4 / MSi 2 composite material (M = metal), the first combined cold axial / isostatic molding is achieved.

예컨대 Al2O3, Y2O3와 같은 적절한 신터 첨가제를 가지며 MSi2- 이때 M은 Mo, Nb, W, Ti가 될 수 있다-와 혼합된 예비 컨디셔닝된 Si3N4분은, 30 내지 90 질량 %의 상이한 질량부로 출발 성분을 제조하고 경우에 따라서는 예컨대 폴리비닐부티랄, 폴리비닐알콜, 폴리비닐아세테이트, 폴리에틸렌글리콜과 같은 유기 압축 및/또는 결합 보조제를 제조하기 위해, 아트리터 밀에서 예컨대 에탄올, 프로판올 또는 이소프로판올과 같은 유기 용매 중에 첨가된다.Pre-conditioned Si 3 N 4 minutes with suitable sinter additives such as for example Al 2 O 3 , Y 2 O 3 and mixed with MSi 2 , wherein M can be Mo, Nb, W, Ti- To prepare starting components at 90 parts by mass of different mass parts and in some cases organic compression and / or binding aids such as, for example, polyvinylbutyral, polyvinylalcohol, polyvinylacetate, polyethyleneglycol, For example in organic solvents such as ethanol, propanol or isopropanol.

상기의 예비 컨디셔닝된 Si3N4분은 0 내지 5 질량 %, 주로 4.3 질량 % Al2O3및, 5 내지 9 질량 %, 주로 5.7 질량 % Y203를 포함한다.Said preconditioned Si 3 N 4 minutes comprise 0 to 5 mass%, mainly 4.3 mass% Al 2 O 3 and, 5 to 9 mass%, mainly 5.7 mass% Y 2 0 3 .

그 다음 상기 현탁액은 회전 댐퍼에서 건조된다.The suspension is then dried in a rotary damper.

이제 신터링 연소 후 전도성 세라믹이 형성되도록, MSi2의 혼합물이 이루어진다.The mixture of MSi 2 is now made so that a conductive ceramic is formed after sintering combustion.

상기 온도 센서의 구조는, 40 MPa로써 소정의 구조로 예비 압축되도록 이뤄진다.The structure of the temperature sensor is made to be pre-compressed into a predetermined structure at 40 MPa.

냉간 등압 재성형은 200 MPa일 때 이뤄진다.Cold isostatic reshaping occurs at 200 MPa.

Si3N4/MSi2복합재료로 이루어진 상기 온도 센서 제조의 제 2 부분은, 신터링에 의한 디바인딩 후 성형 공정에 따라 이뤄진다.The second part of the temperature sensor production, which is made of Si 3 N 4 / MSi 2 composite material, is made according to the molding process after debinding by sintering.

주신터링 I은 일정한 N2부분 압력 하에 이루어지며, 1000℃와, 1900℃ 보다 높지 않은 신터링 온도 사이의 신터링 가스 중의 상기 N2부분 압력은 10 바아 보다 크지 않고, 전체 신터링 압력은 아르곤과 같은 불활성 가스를 혼합함으로써 100 바아까지의 값으로 증가된다.Zuntering I is made under constant N 2 partial pressure, wherein the N 2 partial pressure in the sintering gas between 1000 ° C. and the sintering temperature not higher than 1900 ° C. is not greater than 10 bar and the total sintering pressure is equal to argon and By mixing the same inert gas is increased to a value up to 100 bar.

주신터링 I에 대한 대안으로서, 주신터링 II이 일정한 N2부분 압력 하에 이루어질 수 있으며, 상기 N2부분 압력은 상기 온도로써, 부분 압력이 하나의 범위 내에 있도록 변형되어야 하고, 상기 범위는 하기 의존성에 의해 제한되고 전체 신터링 압력은 아르곤과 같은 불활성 가스를 혼합함으로써 100 바아까지의 값으로 증가된다.As an alternative to shunting I, shunting II can be made under a constant N 2 partial pressure, wherein the N 2 partial pressure must be modified such that the partial pressure is within one range, with the temperature dependent on Limited and the total sintering pressure is increased to values up to 100 bar by mixing inert gases such as argon.

상한: log p(N2) = 7.1566 ln(T) - 52.719Upper limit: log p (N 2 ) = 7.1566 ln (T)-52.719

하한: log p(N2) = 9.8279 ln(T) - 73.988.Lower limit: log p (N 2 ) = 9.8279 ln (T)-73.988.

T의 표시는 ℃로 이루어지며, p(N2)의 표시는 바아로 된다. 신터링 온도는 1900℃ 보다 높지 않다. 생성된 복합재는 95% 이상의 재료 밀도에 이른다.The indication of T is in ° C. and the indication of p (N 2 ) is bar. The sintering temperature is not higher than 1900 ° C. The resulting composite reaches a material density of at least 95%.

본 발명의 또 다른 바람직한 실시예에서 온도 센서는, 적어도 하나의 실리콘유기 폴리머 및 적어도 하나의 충전재를 세라마이즈함으로써 제조될 수 있는 것을 특징으로 하며, 상기 충전재는 전도성을 갖는 적어도 하나의 고융점 성분을 포함하고 충전재 성분은 용매가 없는 폴리머 충전재 혼합물에 대해 20 내지 50 부피 %에 이며, 비저항은 상기 충전재 성분에 의해 세팅될 수 있다.In another preferred embodiment of the present invention, the temperature sensor may be prepared by ceramizing at least one silicone organic polymer and at least one filler, the filler comprising at least one high melting point component having conductivity. And the filler component is from 20 to 50% by volume relative to the solvent-free polymer filler mixture, and the resistivity can be set by the filler component.

상기 경우 충전된, 유기 폴리머가 세라마이즈됨으로써 제조된 세라믹이 생성된다.In this case a ceramic produced by ceramizing the filled, organic polymer is produced.

여기에 사용될 수 있는 복합 재료에 대해서는 DE 195 38 695 A1에 공지되어 있다.Composite materials which can be used here are known from DE 195 38 695 A1.

본 발명의 또 다른 바람직한 실시예에서 온도 센서는, 매트릭스가 경질 재료 입자의 층간 화합물 및/또는 다른 강화 성분을 포함하는 것을 특징으로 하며, 이때 상기 온도 센서는, 폴리머 화합물의 열분해시에 생성된 분해 산물과 반응하는 금속 충전재와 실리콘 유기 폴리머로 이루어진 혼합물을 사용함으로써, 열분해 공정 및 반응 공정에서 제조될 수 있다.In another preferred embodiment of the invention, the temperature sensor is characterized in that the matrix comprises interlayer compounds and / or other reinforcing components of hard material particles, wherein the temperature sensor is decomposed generated during thermal decomposition of the polymer compound. By using a mixture of a metal filler and a silicon organic polymer that reacts with the product, it can be produced in a pyrolysis process and a reaction process.

여기에 사용될 수 있는 복합 재료에 대해서는 EP 0 412 428 A1에 공지되어 있다.Composite materials which can be used here are known from EP 0 412 428 A1.

도 1에서 복합 재료로 구성된 온도 센서(1)는 2 개의 연결 전극(2)에 의해 제한되고, 상기 연결 전극은 저항 측정 장치(4)와 연결된다. 상기 온도 센서(1)는 온도 측정 구역(3)을 통과해 진행된다.The temperature sensor 1 composed of a composite material in FIG. 1 is limited by two connecting electrodes 2, which are connected with a resistance measuring device 4. The temperature sensor 1 proceeds through the temperature measuring zone 3.

본 발명은 실시예에 의해 하기에서 더 자세히 설명된다.The invention is explained in more detail below by way of examples.

실시예 1Example 1

45 질량 % Si3N4, 2.35 질량 % Al2O3, 2.65 질량 % Y203및 50 질량 % MoSi2로 구성된 복합 성분(A)이 사용되며, 사용된 Si3N4의 평균 입자 크기는 0.7㎛이고, 사용된 MoSi2의 평균 입자 크기는 1.8㎛이다. 복합 성분은 0.5 질량 %의 폴리비닐부티랄 압축 보조제의 첨가 후, 축방향 압축 공구 내에서 30 MPa로 예비 압축되며 200 MPa로 냉간 등압 압축된다. 주신터링 II에 따라 신터링 후, 도 2에 도시된 온도 저항 특성을 갖는 온도 센서가 형성된다. 실온에서 비저항은 대략 2·10-3Ω㎝이다. 20 내지 1300℃의 온도 범위에서 온도 계수는 대략 5·10-3K-1이다.A composite component (A) consisting of 45 mass% Si 3 N 4 , 2.35 mass% Al 2 O 3 , 2.65 mass% Y 2 0 3 and 50 mass% MoSi 2 is used and the average particle size of Si 3 N 4 used Is 0.7 μm and the average particle size of MoSi 2 used is 1.8 μm. The composite component is precompressed to 30 MPa and cold isostatically compressed to 200 MPa in an axial compression tool after the addition of 0.5 mass% of polyvinylbutyral compression aid. After sintering in accordance with Zontering II, a temperature sensor having the temperature resistance characteristic shown in FIG. 2 is formed. The specific resistance at room temperature is approximately 2 · 10 −3 dBm. The temperature coefficient in the temperature range of 20-1300 ° C. is approximately 5 · 10 −3 K −1 .

실시예 2Example 2

40.5 질량 % Si3N4, 2.12 질량 % Al2O3, 2.38 질량 % Y2O3및 55 질량 % MoSi2로 구성된 복합 성분(B)이 사용되며, 사용된 Si3N4의 평균 입자 크기는 0.7 ㎛이고, MoSi2의 평균 입자 크기는 1,8 ㎛에 달한다. 상기 복합 성분은 0.5 질량 %의 폴리비닐부티랄 압축 보조제의 첨가 후, 축방향 압축 공구 내에서 30 MPa로 예비 압축되며 200 MPa로 냉간 등압 압축된다. 주신터링 II에 따라 신터링 후, 도 2에 도시된 온도 저항 특성을 갖는 온도 센서가 형성된다. 실온에서 비저항은 대략 10-3Ω㎝이다.A composite component (B) consisting of 40.5 mass% Si 3 N 4 , 2.12 mass% Al 2 O 3 , 2.38 mass% Y 2 O 3 and 55 mass% MoSi 2 is used, with the average particle size of Si 3 N 4 used Is 0.7 μm, and the average particle size of MoSi 2 reaches 1,8 μm. The composite component is precompressed to 30 MPa and cold isostatically compressed to 200 MPa in an axial compression tool after the addition of 0.5 mass% of polyvinylbutyral compression aid. After sintering in accordance with Zontering II, a temperature sensor having the temperature resistance characteristic shown in FIG. 2 is formed. The specific resistance at room temperature is approximately 10 −3 dBm.

실시예 3Example 3

36 질량 % Si3N4, 1.89 질량 % Al2O3, 2.11 질량 % Y2O3및 60 질량 % MoSi2로 구성된 복합 성분(C)이 사용되며, 사용된 Si3N4의 평균 입자 크기는 0.7 ㎛이고, 사용된 MoSi2의 평균 입자 크기는 1,8 ㎛에 달한다. 상기 복합 성분은 0.5 질량 %의 폴리비닐부티랄 압축 보조제의 첨가 후, 축방향 압축 공구 내에서 30 MPa로 예비 압축되며 200 MPa로 냉간 등압 압축된다. 주신터링 II에 따라 신터링 후, 도 2에 도시된 온도 저항 특성을 갖는 온도 센서가 형성된다. 실온에서 비저항은 대략 2·10-4Ω㎝이다.A composite component (C) consisting of 36 mass% Si 3 N 4 , 1.89 mass% Al 2 O 3 , 2.11 mass% Y 2 O 3 and 60 mass% MoSi 2 was used, with the average particle size of Si 3 N 4 used Is 0.7 μm and the average particle size of MoSi 2 used is 1,8 μm. The composite component is precompressed to 30 MPa and cold isostatically compressed to 200 MPa in an axial compression tool after the addition of 0.5 mass% of polyvinylbutyral compression aid. After sintering in accordance with Zontering II, a temperature sensor having the temperature resistance characteristic shown in FIG. 2 is formed. The specific resistance at room temperature is approximately 2 · 10 −4 dBm.

실시예 4Example 4

27 질량 % Si3N4, 1.43 질량 % Al2O3, 1.57 질량 % Y2O3및 70 질량 % MoSi2로 구성된 복합 성분(D)이 사용되며, 사용된 Si3N4의 평균 입자 크기는 0.7 ㎛이고, 사용된 MoSi2의 평균 입자 크기는 1,8 ㎛에 달한다. 상기 복합 성분은 0.5 질량 %의 폴리비닐부티랄 압축 보조제의 첨가 후, 축방향 압축 공구 내에서 30 MPa로 예비 압축되며 200 MPa로 냉간 등압 압축된다. 주신터링 II에 따라 신터링 후, 도 2에 도시된 온도 저항 특성을 갖는 온도 센서가 형성된다. 실온에서 비저항은 대략 8·10-5Ω㎝이다.A composite component (D) consisting of 27 mass% Si 3 N 4 , 1.43 mass% Al 2 O 3 , 1.57 mass% Y 2 O 3 and 70 mass% MoSi 2 was used, with the average particle size of Si 3 N 4 used Is 0.7 μm and the average particle size of MoSi 2 used is 1,8 μm. The composite component is precompressed to 30 MPa and cold isostatically compressed to 200 MPa in an axial compression tool after the addition of 0.5 mass% of polyvinylbutyral compression aid. After sintering in accordance with Zontering II, a temperature sensor having the temperature resistance characteristic shown in FIG. 2 is formed. The specific resistance at room temperature is approximately 8 · 10 -5 dBm.

실시예 5Example 5

EP 0 412 428 A1 또는 DE 195 38 695 A1에 따라, 7 부피 % Al2O3, 10 부피 % SiC, 20 부피 % MoSi2, 잔여 선구 물질 기본 재료(선구 물질 세라믹 E) 또는 20 부피 % SiC, 20 부피 % MoSi2, 잔여 선구 물질 기본 재료(선구 물질 세라믹 F)의 충전재 조합물로 두 가지 선구 물질 복합 세라믹이 제조된다. 상기 세라믹 화합물의 온도에 따르는 저항은 도 3에 도시된다. 비저항은 120℃일 때 8·10-3Ω㎝(선구 물질 세라믹 E) 또는 5.6·10-3Ω㎝(선구 물질 세라믹 F)이며, 1300℃일 때 3.0·10-2Ω㎝(선구 물질 세라믹 E) 또는 1.9·10-2Ω㎝(선구 물질 세라믹 F)이다. 온도 계수는, 실온 내지 1300℃까지의 온도 범위에서 2.1·10-3K-1(선구 물질 세라믹 E) 또는 3.1·10-3K-1(선구 물질 세라믹 F)이다.7 volume% Al 2 O 3 , 10 volume% SiC, 20 volume% MoSi 2 , residual precursor base material (precursor ceramic E) or 20 volume% SiC, according to EP 0 412 428 A1 or DE 195 38 695 A1 Two precursor composite ceramics are prepared from a filler combination of 20% by volume MoSi 2 , residual precursor base material (precursor ceramic F). The resistance depending on the temperature of the ceramic compound is shown in FIG. 3. The specific resistance is 8 · 10 -3 Ωcm (precursor ceramic E) or 5.6 · 10 -3 Ωcm (precursor ceramic F) at 120 ° C and 3.0 · 10 -2 Ωcm (precursor ceramic at 1300 ° C). E) or 1.9 · 10 −2 cm 3 (precursor ceramic F). The temperature coefficient is 2.1 · 10 −3 K −1 (precursor ceramic E) or 3.1 · 10 −3 K −1 (precursor ceramic F) in the temperature range from room temperature to 1300 ° C.

Claims (7)

세라믹 온도 센서에 있어서,In the ceramic temperature sensor, 상기 온도 센서는 내고온성 매트릭스 및, 탁월한 PTC 특성을 갖는 하나 이상의 층간 화합물로 이루어진 적어도 1400℃까지 내열성을 갖는 복합 재료를 포함하는 것을 특징으로 하는 온도 센서.Wherein said temperature sensor comprises a high temperature resistant matrix and a composite material having heat resistance up to at least 1400 ° C. consisting of one or more interlayer compounds having excellent PTC properties. 제 1 항에 있어서, 상기 내고온성 매트릭스는 트리실리콘테트라니트라이드를 포함하는 것을 특징으로 하는 온도 센서.The temperature sensor of claim 1, wherein the high temperature resistant matrix comprises trisilicontetranitride. 제 1 항 또는 제 2 항에 있어서. 상기 층간 화합물은 금속 규화물인 것을 특징으로 하는 온도 센서.The method according to claim 1 or 2. Wherein said interlayer compound is a metal silicide. 제 3 항에 있어서. 상기 금속은 몰립덴, 니오브, 텅스텐 또는 티탄인 것을 특징으로 하는 온도 센서.The method of claim 3. The metal is molybdenum, niobium, tungsten or titanium. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서, 상기 온도 센서는 신터링 전에 냉간 등압 성형 단계를 통해서 제조될 수 있는 것을 특징으로 하는 온도 센서.The temperature sensor according to any one of claims 1 to 4, wherein the temperature sensor can be manufactured through a cold isostatic forming step before sintering. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서, 상기 온도 센서는 적어도 하나의 실리콘 유기 폴리머 및 적어도 하나의 충전재를 세라마이즈함으로써 제조될 수 있으며, 상기 충전재는 전도성을 갖는 적어도 하나의 고융점 성분을 포함하고, 충전재 성분은 용매가 없는 폴리머 충전재 혼합물에 대해서 20 내지 50 부피 %에 이며, 상기 충전재 성분에 의해 비저항이 세팅될 수 있는 것을 특징으로 하는 온도 센서.5. The at least one high melting point component of claim 1, wherein the temperature sensor can be prepared by ceramizing at least one silicon organic polymer and at least one filler. Wherein the filler component is from 20 to 50% by volume relative to the solvent-free polymer filler mixture, the resistivity of which can be set by the filler component. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서, 상기 매트릭스는 경질 재료 입자의 층간 화합물 및/또는 다른 강화 성분을 포함하며, 상기 온도 센서는, 폴리머 화합물의 열분해 시에 생성된 분해 산물과 반응하는 금속 충전재와 실리콘 유기 폴리머로 이루어진 혼합물의 사용에 의해, 열분해 공정 및 반응 공정에서 제조될 수 있는 것을 특징으로 하는 온도 센서.The process of claim 1, wherein the matrix comprises interlayer compounds of hard material particles and / or other reinforcing components, and the temperature sensor reacts with decomposition products produced upon pyrolysis of the polymer compound. A temperature sensor, which can be produced in a pyrolysis process and a reaction process by using a mixture consisting of a metal filler and a silicon organic polymer.
KR1020027005341A 1999-10-29 2000-10-26 Temperature detector which is resistant to high temperatures and mechanically stable KR20020059420A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19952127A DE19952127C2 (en) 1999-10-29 1999-10-29 High temperature resistant, mechanically stable temperature sensor
DE19952127.1 1999-10-29
PCT/DE2000/003802 WO2001033177A1 (en) 1999-10-29 2000-10-26 Temperature detector which is resistant to high temperatures and mechanically stable

Publications (1)

Publication Number Publication Date
KR20020059420A true KR20020059420A (en) 2002-07-12

Family

ID=7927303

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020027005341A KR20020059420A (en) 1999-10-29 2000-10-26 Temperature detector which is resistant to high temperatures and mechanically stable

Country Status (8)

Country Link
EP (1) EP1228350A1 (en)
JP (1) JP2003513459A (en)
KR (1) KR20020059420A (en)
CZ (1) CZ20021439A3 (en)
DE (1) DE19952127C2 (en)
HU (1) HUP0203124A3 (en)
PL (1) PL354526A1 (en)
WO (1) WO2001033177A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100475590B1 (en) * 2002-11-13 2005-03-11 김영호 Thin-film temperature sensor using chalcogenide glass semiconductor and method for manufacturing the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006062374A1 (en) * 2006-12-20 2008-06-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Ceramic electric heating element
DE102008009817A1 (en) * 2008-02-19 2009-08-27 Epcos Ag Composite material for temperature measurement, temperature sensor comprising the composite material and method for producing the composite material and the temperature sensor
DE102008046319B3 (en) * 2008-08-29 2009-12-17 Technische Universität Dresden Resistive sensor for measuring e.g. temperature in industrial application, has electrodes, where chopstick shaped electrically conductive particle is dielectrophoretically aligned on substrate between electrodes
ITUB20150793A1 (en) * 2015-05-22 2016-11-22 Nuovo Pignone Srl COMPOSITE SILICIDE BASED MATERIAL AND PROCESS TO PRODUCE IT

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60216484A (en) * 1984-04-09 1985-10-29 株式会社日本自動車部品総合研究所 Ceramic heater
US4814581A (en) * 1986-10-09 1989-03-21 Nippondenso Co., Ltd. Electrically insulating ceramic sintered body
JPH02107572A (en) * 1988-01-28 1990-04-19 Hitachi Metals Ltd Conductive sialon sintered body and heater
DE3926077A1 (en) * 1989-08-07 1991-02-14 Peter Prof Dr Greil CERAMIC COMPOSITES AND METHOD FOR THEIR PRODUCTION
JP3124864B2 (en) * 1993-04-26 2001-01-15 京セラ株式会社 Silicon nitride sintered body and method for producing the same
DE19538695C2 (en) * 1994-10-19 2003-05-28 Bosch Gmbh Robert Ceramic electrical resistance and its use
DE19722321A1 (en) * 1997-05-28 1998-12-03 Bosch Gmbh Robert Process for the production of moldings from a ceramic composite structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100475590B1 (en) * 2002-11-13 2005-03-11 김영호 Thin-film temperature sensor using chalcogenide glass semiconductor and method for manufacturing the same

Also Published As

Publication number Publication date
DE19952127C2 (en) 2001-10-18
WO2001033177A1 (en) 2001-05-10
EP1228350A1 (en) 2002-08-07
CZ20021439A3 (en) 2002-09-11
DE19952127A1 (en) 2001-05-17
HUP0203124A2 (en) 2003-01-28
JP2003513459A (en) 2003-04-08
PL354526A1 (en) 2004-01-26
HUP0203124A3 (en) 2004-07-28

Similar Documents

Publication Publication Date Title
JP2828575B2 (en) Silicon nitride ceramic heater
JP2804393B2 (en) Ceramic heater
US4804823A (en) Ceramic heater
EP0862192B1 (en) Wide-range thermistor material and process for preparing the same
US7020952B2 (en) Method for producing a glow plug
JPH0799102A (en) Porcelain composition for thermistor, and thermistor element
US6274853B1 (en) Heating resistor, heating resistor for use in ceramic heater, and ceramic heater using the same
KR20020059420A (en) Temperature detector which is resistant to high temperatures and mechanically stable
EP1095920A1 (en) Silicon nitride sintered body, process for producing the same, ceramic heater and glow plug
KR100369912B1 (en) How to make a ceramic electric resistor
US6328913B1 (en) Composite monolithic elements and methods for making such elements
US6274855B1 (en) Heating resistor for ceramic heaters, ceramic heaters and method of manufacturing ceramic heaters
JPH11214124A (en) Ceramic heater
JP2000156275A (en) Heating resistor for ceramic heater, ceramic heater, and manufacture of ceramic heater
JPS6328325B2 (en)
WO2013141238A1 (en) Low-temperature thermistor material and method for manufacturing same
JP2020161759A (en) Thermistor material
KR100538667B1 (en) Method for producing moulded bodies from a composite ceramic material structure
JP2534847B2 (en) Ceramic Heater
JP2001261441A (en) Production process of electrically conductive silicon carbide sintered body
JPH08321404A (en) Batio3-based thermistor and its production
JP2550848Y2 (en) Sagger for ceramic firing
JP2001110553A (en) DENSE SiC HEATER AND MANUFACTURING PROCEDURE FOR IT
KR20010079132A (en) Fabrication of porous BaTiO3-based ceramics
JPH10300086A (en) Ceramic heater and ceramic glow plug

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid