Nothing Special   »   [go: up one dir, main page]

KR102618168B1 - 프리온 질환의 예방 또는 치료를 위한 약제학적 조성물 - Google Patents

프리온 질환의 예방 또는 치료를 위한 약제학적 조성물 Download PDF

Info

Publication number
KR102618168B1
KR102618168B1 KR1020180078887A KR20180078887A KR102618168B1 KR 102618168 B1 KR102618168 B1 KR 102618168B1 KR 1020180078887 A KR1020180078887 A KR 1020180078887A KR 20180078887 A KR20180078887 A KR 20180078887A KR 102618168 B1 KR102618168 B1 KR 102618168B1
Authority
KR
South Korea
Prior art keywords
prion
radotinib
pharmaceutical composition
disease
infection
Prior art date
Application number
KR1020180078887A
Other languages
English (en)
Other versions
KR20200005314A (ko
Inventor
김동연
신재수
조대진
이공열
김홍엽
이해언
안충암
송송이
박종성
강성영
김용선
최은경
최영곤
박정호
Original Assignee
일양약품주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 일양약품주식회사 filed Critical 일양약품주식회사
Priority to KR1020180078887A priority Critical patent/KR102618168B1/ko
Priority to PCT/KR2019/008279 priority patent/WO2020009522A1/ko
Publication of KR20200005314A publication Critical patent/KR20200005314A/ko
Application granted granted Critical
Publication of KR102618168B1 publication Critical patent/KR102618168B1/ko

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/506Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Nutrition Science (AREA)
  • Physiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

본 발명은 라도티닙(Radotinib) 또는 그의 약제학적으로 허용 가능한 염을 유효성분으로 포함하는, 신경퇴행성 질환중의 하나인 프리온 질환의 예방 또는 치료를 위한 약제학적 조성물에 관한 것이다.

Description

프리온 질환의 예방 또는 치료를 위한 약제학적 조성물{PHARMACEUTICAL COMPOSITION FOR PREVENTION OR TREATMENT OF PRION DISEASE}
본 발명은 라도티닙(Radotinib) 또는 그의 약제학적으로 허용가능한 염을 유효성분으로 포함하는, 퇴행성 신경질환의 하나인 프리온 질환의 예방 또는 치료를 위한 약제학적 조성물에 관한 것이다.
프리온(prion)은, 중추신경계에 쌓여서 아밀로이드라고 알려진 반점(plaque)을 형성함으로써 정상적인 조직구조를 붕괴시켜 퇴행성 신경질환(neurodegenerative disease)을 일으킨다. 이런 현상은 뉴론의 공포(vacuole) 형성으로 인하여 생기는 스폰지 모양의 구조로 인해 조직 내 "구멍"이 보이는 것이 특징이다. 다른 조직학적 변화로는 성상세포 수의 비정상적인 증가(astrogliosis)와 염증반응이 없다는 것 등을 들 수 있다. 프리온 질환(Prion Disease)의 잠복기는 상당히 길지만 일단 증상이 발현하면 질병은 신속히 진행하여 뇌손상과 사망에 이르게 된다.
프리온이란 크로이츠펠트-야콥병(Creutzfeldt-Jakob Disease: CJD)에 관해 연구하던 Stanly B. Prusiner가 1982년 감염성 단백을 분리하고, 핵산이 없다는 점에서 작은 RNA 병원체인 비로이드(viroid)나 기타 바이러스와는 구분되는 "단백질성 감염 분자(proteinaceous infectious particle)"라고 부르면서 사용하게 된 용어이다(Proteinaceous + Infectious + viriON = PRION).
이러한 프리온 단백질(prion protein: PrP)의 발견은 양의 스크래피(Scrapie) 병에서 처음으로 발견된 단백질(PrPSc)에서 유래하며, 이는 단백질 분해효소인 프로테이나아제 K(proteinase K)에 저항성을 지닌 27~30kDa 크기의 전염성이 높은 단백질이다. 한편 정상인 사람에서도 발견되는 프리온 단백질이 있는데, 그 크기는 33kDa 정도로서 정상 세포 기능에 필요하다 하여 세포성 프리온 단백질(cellular prion protein: PrPC)이라고 부른다. PrPC는 PrPSc와는 달리, proteinase K로 처리하면 완전히 소실된다. 즉, 프리온 질환은 정상적인 프리온 단백질 형태인 PrPC가 병을 유발하는 이상 형태인 PrPSc로 변형됨으로써 발생하는 것이며, 이것은 기본적으로 프리온 질환이 단백질 구조의 질환임을 밝히는 근거이다.
프리온 질환은 정상 프리온 단백질(PrPC)이 아직 밝혀지지 않은 번역 후 가공과정에 의해 비정상 감염성 프리온 단백질(PrPSc)로 단백질 구조가 바뀌는 구조적 변화(conformational change)인 프리온 전환 반응(prion conversion)에 의해 발생하며, 이러한 전염성 프리온 단백질이 감염된 개체의 대뇌 조직에서 축적되어 프리온 질환 특이적 병변(spongiform changes)이 유도되는 것으로 알려져 있다.
이 과정은 자연감염인 말초 감염이나 식이 감염일 경우 감염된 개체의 종에 따라 수개월 또는 수년간의 잠복기를 거치며 감염 초기에는 소장 관 벽에 존재하는 미소주름세포(microfold cells, M cells) 및 장세포(enterocytes)를 거쳐 면역세포인 대식세포(macrophages) 및 여포성 수지상세포(follicular dendritic cells, FDCs)에 의해 병원성 프리온 단백질이 흡수되어 장관 벽에 존재하는 말초신경을 따라 비장(spleen)에 침착하고 또한, 척추 내 척수 신경(spinal cord)을 통해 최종적으로 대뇌 신경세포에 감염이 전달되고 말기에는 대뇌 전반에 감염성 프리온이 축적된다. 이 과정에서 감염된 개체의 여러 장기 및 조직의 여러 세포에서 정상 프리온 단백질(PrPC)의 병원성 프리온 단백질(PrPSc)로의 전환이 지속적으로 일어나고 특정 장기 조직(비장, 충수, 편도 및 척수 신경조직)에서 병원성 프리온 단백질이 침착하는 것으로 알려져 있으나, 병변 현상은 오로지 대뇌 신경계의 퇴화와 함께 대뇌 내 스폰지 형태의 공포(vacuoles)가 형성되는 특징을 지닌다.
정상 및 감염성 프리온 단백질의 아미노산 배열순서는 동일하며 단지 단백질의 3차 구조에 있어서 감염성 프리온 단백질은 β-sheet 구조의 함량이 월등히 많으며 단백질 분해효소인 proteinase K(PK)에 저항성을 지닌다는 점이 큰 차이점으로 알려져 있다. 현재까지 프리온 단백질의 구조에 관한 많은 특징들이 보고되었지만 정상 프리온 단백질이 감염성 프리온 단백질로 전환되는 방식과 이와 관련된 번역 후 가공과정은 전혀 밝혀지지 않았다.
현재, 프리온 질환으로 판명된 것은 사람에서 발병하는 쿠루(Kuru), 산발성 크로이츠펠트-야콥병(sCJD), 가족성 크로이츠펠트-야콥병(familial CJD), 변종 크로이츠펠트-야콥병(vCJD), 게르스트만-스트라우스-쉐인커병(Gerstmann-Straussler-Scheinker Syndrome, GSS), 치명적 가족성 불면증(FFI) 등이 있으며, 동물에게서는 양에서의 스크래피병(scrapie), 전파성 밍크 뇌병증(transmissible mink encephalopathy), 사슴 및 엘크의 만성 소모성 질병(chronic wasting disease), 및 소 해면성 뇌병증(bovine spongiform encephalopathy, BSE, 일반적으로 부르는 "광우병(mad cow disease)") 등이 있다.
1980년대 후반 영국에서 BSE가 집단적으로 발생하였고, 이것은 산업용 사료에 의한 것으로 보여 진다. 그러나 BSE가 소에서 일차적인 산발성으로 나타난 것인지, 양의 스크래피병(scrapie)에서 전이된 것인지는 아직 확실하지 않다. 이들 프리온 질환의 특성은 주로 뇌를 침범하며, 수년간의 잠복기가 있으며, 발병하면 급격히 악화되어 사망에 이르고, 병리적으로는 해면양(spongi-form) 변화, 전염성을 갖으면서도 염증반응 및 면역반응이 일어나지 않는다는 것이다.
크로이츠펠트-야콥병(CJD)은 인간에서 발생하는 대표적인 프리온 질환으로 특정 지역에서만 발생하는 쿠루와는 달리 전 세계에서 발생하는 해면뇌병증이며, 비교적 급속히 진행하는 고위 대뇌기능과 소뇌기능의 저하, 근육간대병련 그리고 뇌파 검사상 관찰되는 1~1.5hz의 뇌파를 특징적으로 나타낸다. 산발적으로 발생하는 sCJD(sporadic CJD)는 사람에서 가장 흔한 프리온 질환인데, 사람의 CJD 질환 중 85% 정도를 차지한다. CJD의 10~15%는 유전성으로 발생하는데, 가족성 CJD(fCJD), 게르스트만-스트라우스-쉐인커병(GSS), 치명적 가족성 불면증(FFI)은 모두 PrP 유전자의 변형에 의해 발생하는 우성으로 유전되는 프리온 질환이다. 비록 감염성 프리온 질환은 전체 환자의 1% 이내이고, 감염은 전체 CJD 원인 중 주요한 것이 아니지만, 프리온의 전염성은 중요한 생물학적 특징이다.
CJD는 전 세계에 걸쳐 발생한다. sCJD의 발생률은 백만명당 한명 정도이다. 비록 CJD는 지역적으로 모여 있는 많은 군집들이 보고되고 있지만, 각각 군집에서 특이한 PrP 유전자의 돌연변이가 관찰되고 있다. 산발형과 가족성 CJD 질환에 대해서 어떤 공통된 원인인자가 작용하는 지를 밝혀내는 것은 아직까지 성공하지 못했다. 비록 감염 경로에 대한 연구가 이루어지고 있지만, BSE에 감염된 소를 먹어서 발생한 변종 CJD(vCJD) 외에, 스크래피(scrapie)에 감염된 양이나 염소를 먹는 것이 사람에서 CJD의 원인이라는 것은 아직 역학적 연구에서 증명되지 않았다. 또한, 시리아의 햄스터를 이용한 연구에서 프리온을 먹는 경우 감염이 일어날 수 있으나, 대뇌에 직접 프리온을 접종하는 것에 비해 효과적으로 감염을 발생시키지는 못하는 것으로 밝혀졌다.
산발성 CJD(sCJD) 환자의 약 25%에서 특징적인 임상증상이 나타나기 수주 또는 수개월 전부터 비특이적인 증세를 보이는 데 원인 불명의 무력감과 허약감, 식욕변화 수면습관의 변화, 체중감소, 집중력 감퇴, 일시적인 시간 및 장소 혼동, 환각, 감정 장애가 이에 해당한다. 시각장애, 어지럼증, 균형 장애와 수족의 감각장애 등의 신체증상도 자주 나타나는 전구증상의 하나이다.
그러나 산발성 CJD(sCJD)와 변종 CJD(vCJD)는 임상적으로 약간 차이가 있다. 산발성 CJD는 초기에 치매 증세를 보이고 발병 연령이 55~70세로 높은 편이나, 변종 CJD는 초기에는 정신이상, 감각중추의 이상 및 운동실조가 주로 나타나다가 말기에 치매증상이 나타난다. 또한 발생연령이 대체로 19~39세로 낮은 편이며 뇌파 소견이 특징적이지 않다. 대부분의 환자에서는 임상양상이 발생한 후 6~12개월 정도 생존하며, 일부는 5년 이상 생존하기도 한다.
아직까지 CJD를 적절하게 예방하거나 치료할 수 있는 방법은 없다. 프리온 질환의 치료에 많은 시도가 있었지만 일단 임상증세가 나타난 후에는 어떤 치료도 효과가 없었다.
최근의 연구에 따르면 진균감염 치료제인 암포테리신 B(amphotericin B)가 비정상 프리온 단백의 증식을 억제한다는 사실이 밝혀졌고, 포탈로시아닌 테트라설페이트(photalocyanine tetrasulfate)라는 물질이 비정상 프리온 단백의 형성을 강하게 억제하는 것으로 밝혀졌으나, 두 약제 모두 임상증세 발병 후에는 전혀 치료 효과가 없었다.
또한 항바이러스제인 아만티딘(amantidine), 희귀약품인 펜토산 폴리설페이트(pentosan polysulphate), 항말라리아제인 퀴나크린(quinacrine) 등이 치료제로 시도 되었으나 효과는 미미하였고, 현재는 단백질간의 상호작용을 조절하여 면역을 조절하는 펩타이드 및 항체백신 등이 항 프리온 효과를 보이고 있지만 세포 및 동물실험단계에 머물러 있고 이들 또한 만족할 만한 성과를 얻지 못하고 있다.
프리온 질환은 현재까지 특별한 치료제나 치료법은 없으며 진행되고 있는 치료의 목적은 환자들의 증상을 완화시키는 것으로 증상에 따라 보존적인 치료를 실시하고 있다. 그러므로 통제할 수 없이 진행되는 진행성 신경 퇴행성 질환인 프리온 질환을 치료할 수 있는 새로운 방법을 찾아내는 것이 요구된다.
초고령화 사회로 진입함에 따라서 노인 인구의 급격한 증가와 함께 퇴행성 신경질환자 수가 기하급수적으로 증가할 것으로 예상되고 있고, 더하여 프리온 질환 환자의 수도 현재보다 훨씬 증가할 것으로 예상된다.
또한 동물에서 발생하고 세계적으로 이슈화된 대표적인 동물 프리온 질환인 광우병(BSE)의 재 대유행에 대한 우려가 사라지지 않았기에 치료약물의 개발은 미래를 대비하기 위하여 반드시 필요하다.
이러한 퇴행성 신경질환의 잠재적인 치료제로서, 백혈병 치료제로 사용되는 선택적 Bcr-Abl 키나아제 억제제들에서 퇴행성 신경질환의 치료와 관련된 효과가 보고된 바 있다(중국 공개특허 CN 102406648 A). 이로부터 Bcr-Abl 키나아제 억제제들이 정상 프리온의 병원성 프리온으로의 변성을 억제하고 상기 병원성 프리온의 침착 형성을 저해할 수 있다면 퇴행성 신경질환인 프리온 질환의 치료제로 충분히 적용가능할 수 있다.
이에, 본 발명자들은 프리온 단백질의 침착 형성을 저해하는 신규한 프리온 질환 치료제를 개발하기 위해 노력한 결과, 라도티닙 또는 약제학적으로 허용되는 이의 염이 퇴행성 신경질환인 프리온 질환의 예방 및 치료제로 유용하게 사용될 수 있음을 확인함으로써, 본 발명을 완성하였다.
이에 본 발명은 아직까지 완치 방법이 발견되지 않은 프리온 질환의 치료를 위한 새로운 접근 방법을 제공하는 것을 그 기술적 과제로 한다.
상기 과제를 해결하기 위하여 본 발명은, 선택적 Bcr-Abl 키나아제 억제제이며 필라델피아 염색체 양성(Ph+) 만성 골수성 백혈병(CML) 치료에 사용되는 약물인 라도티닙(Radotinib)을 유효성분으로 포함하는 신경퇴행성 질환의 하나인 프리온 질환의 예방 또는 치료용 약제학적 조성물을 제공한다.
이하에서 본 발명을 보다 상세하게 설명한다.
본 발명은 하기 화학식 (I)로 표시되는 라도티닙 또는 그의 약제학적으로 허용가능한 염을 유효성분으로 포함하는, 신경퇴행성 질환 중의 하나인 프리온 질환의 예방 또는 치료용 약제학적 조성물을 제공한다.
또한, 본 발명은 치료학적 유효량의 상기 화학식 (I)로 표시되는 라도티닙 또는 이의 약제학적으로 허용가능한 염을 치료 대상에게 투여하는 것을 포함하는, 치료 대상에서 프리온 질환을 예방 또는 치료하는 방법을 제공한다.
또한 본 발명은 프리온 질환의 예방 또는 치료에 사용하기 위한, 상기 화학식 (I)로 표시되는 라도티닙 또는 이의 약제학적으로 허용가능한 염의 용도를 제공한다.
라도티닙은 수용체 티로신 키나아제 억제제의 일종으로, 4-메틸-N-(3-(4-메틸-1H-이미다졸-1-닐)-5-(트리플루오르메틸)페닐)-3-(4-피라진-2-닐-피리미딘-2-닐아미노)벤즈아미드 라고도 표시될 수 있다.
라도티닙은 1종 이상의 티로신 키나아제, 예를 들어 c-Abl, Bcr-Abl, 수용체 티로신 키나아제인 PDGFR, Flt3, VEGF-R, EGF-R 및 c-Kit를 억제하는 것으로 알려졌으며, 폐암, 위암, 대장암, 췌장암, 간암, 전립선암, 유방암, 만성 또는 급성백혈병, 혈액암, 뇌종양, 방광암, 직장암, 자궁경부암, 림프종 등 여러 부위의 암에 대해서도 우수한 항암효과를 갖는다고 알려져 있다. 그러나 라도티닙이 신경퇴행성 질환중의 하나인 프리온 질환에 효과가 있다는 문헌 및 특허는 현재까지 보고된 바 없다.
라도티닙은 유리 염기 그 자체 또는 이의 약제학적으로 허용가능한 염의 형태로 사용될 수 있다. 상기 "약제학적으로 허용가능한"이란 생리학적으로 허용되고 인간에게 투여될 때, 통상적으로 알레르기 반응 또는 이와 유사한 반응을 일으키지 않는 것을 말하며, 상기 염으로는 약제학적으로 허용 가능한 유리산(free acid)에 의하여 형성된 산 부가염이 예시될 수 있으나, 이에 제한되지 않을 수 있다. 산 부가염들은 라도티닙과 염산, 브롬산, 황산, 인산, 메탄술폰산, 톨루엔술폰산, 벤젠술폰산, 아세트산, 프로피온산, 아스코르브산, 시트르산, 말론산, 푸마르산, 말레산, 락트산, 살리실산, 설팜산 또는 타르타르산으로부터 선택되는 약제학적으로 허용 가능한 무기 또는 유기산으로부터 형성될 수 있으나, 이에 제한되지 않을 수 있다. 이 염들은, 예를 들어, 적절한 용매의 존재하에서 라도티닙에 적절한 산을 처리함으로써, 공지된 방법으로 제조될 수 있다.
라도티닙은 결정 형태 또는 용매 화합물(예를 들어, 수화물)의 형태일 수 있고 양 형태는 본 발명의 범위 내에 포함된다. "용매 화합물"이란 용어는 용질(본 발명에서, 라도티닙과 같은 화합물) 및 용매에 의해 형성된 다양한 화학양론의 착물이다. 이런 용매들은 용질의 생물학적 활성을 방해하지 않아야 한다. 예를 들어, 용매는 물, 에탄올, 메탄올, 에틸아세테이트 또는 아세톤 일 수 있으나, 이에 제한되지 않을 수 있다. 용매화 방법은 일반적으로 당업계에 공지되어 있다.
라도티닙의 약제학적으로 허용 가능한 염은 용매화되지 않은 형태 및 용매화된 형태 둘 다를 포함할 수 있다.
본 발명의 약제학적 조성물은 치료학적 유효량의 라도티닙을 포함할 수 있다. 여기서 "치료학적 유효량"이란 음성 대조군에 비해 그 이상의 반응을 나타내는 양을 말하며 바람직하게는 인간을 포함하는 포유류의 신경퇴행성 질환인 프리온 질환을 치료 또는 예방하기에 충분한 양을 말한다. 환자가 인간인 경우의 치료 용량은 일반적으로 상태의 심각성 및 라도티닙이 단독으로 또는 다른 약물과 조합하여 투여되는가에 따라 10 mg 내지 2000 mg/day, 보다 구체적으로는 30 mg 내지 1000 mg/day일 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 본 발명의 약제학적 조성물은 1일 1회 또는 분할하여 경구 또는 비경구적 경로를 통해 투여될 수 있다. 그러나 상기 치료학적 유효량은 질환 및 이의 중증정도, 환자의 연령, 체중, 건강상태, 성별, 투여 경로 및 치료기간 등과 같은 여러 인자에 따라 적절히 변화될 수 있다.
본 발명의 일 구현예에 따르면, 상기 약제학적 조성물은 약제학적으로 허용되는 담체를 추가로 포함할 수 있다. 예를 들어, 상기 담체는 불활성일 수 있으며, 락토즈, 덱스트로즈, 수크로즈, 솔비톨, 만니톨, 자일리톨, 에리스리톨 및 말티톨 등을 포함하는 당류와 옥수수 전분, 밀 전분, 쌀 전분 및 감자 전분 등을 포함하는 전분류, 셀룰로즈, 메틸 셀룰로즈, 나트륨 카르복시메틸셀룰로오즈 및 하이드록시프로필메틸-셀룰로즈 등을 포함하는 셀룰로즈류 및 젤라틴, 폴리비닐피롤리돈 등과 같은 충전제로부터 선택될 수 있으나, 이에 제한되지 않을 수 있다. 또한, 경우에 따라 가교결합 폴리비닐피롤리돈, 한천, 알긴산 또는 나트륨 알기네이트 등을 붕해제로 첨가할 수 있으나, 이에 제한되지 않을 수 있다.
예를 들어, 상기 약제학적 조성물은 항응집제, 윤활제, 습윤제, 향료, 유화제 및 방부제 등을 추가로 포함할 수 있으나, 이에 제한되지 않을 수 있다.
본 발명에 따른 약제학적 조성물은 동물, 예를 들어 포유류, 특히 인간의 신경퇴행성 질환인 프리온 질환의 예방 또는 치료를 위해 사용 될 수 있다.
프리온 질환의 구체적인 예로는, 사람에서 발병하는 쿠루(Kuru), 크로이츠펠트-야콥병(Creutzfeldt-Jacob Disease, CJD), 게르스트만-스트라우스-쉐인커병(Gerstmann-Straussler-Scheinker Syndrome, GSS), 치명적 가족성 불면증(FFI), 치명적 산발성 불면증 등이 있으며, 동물에게서는 소 해면성 뇌병증(bovine spongiform encephalopathy, BSE, 일반적으로 부르는 광우병(mad cow disease)), 양의 스크래피병(scrapie), 전파성 밍크 뇌병증(transmissible mink encephalopathy), 사슴 및 엘크의 만성 소모성 질병(chronic wasting disease), 고양이 해면상뇌증(feline spongiform encephalopathies) 등이 포함되나, 이에 제한되는 것은 아니다.
상기 크로이츠펠트-야콥병(CJD)의 구체적인 예로는, 산발성 크로이츠펠트-야콥병(sCJD), 가족성 크로이츠펠트-야콥병(familial CJD), 변종 크로이츠펠트-야콥병(vCJD), 의원성 크로이츠펠트-야콥병(iatrogenic CJD) 등을 포함하나, 이에 제한되는 것은 아니다.
본 발명의 약제학적 조성물의 투여 경로는 경구적 또는 비경구적으로 투여 될 수 있다. 비경구적 투여 경로로는 예를 들면, 경피, 비강, 복강, 근육, 피하, 정맥 주사 등의 여러 경로가 포함될 수 있으나, 이에 제한되지 않을 수 있다.
예를 들어, 비경구적으로 투여하는 경우 본 발명의 약제학적 조성물은 적합한 비경구용 담체와 함께 주사제, 경피 투여제, 좌제, 에어로졸 및 비강 흡입제의 형태로 당업계에 공지된 방법에 따라 제형화될 수 있다. 상기 주사제의 경우에는 반드시 멸균되어야 하며 박테리아 및 진균과 같은 미생물의 오염으로부터 보호되어야 한다. 주사제의 경우 적합한 담체의 예로는 이에 한정되지는 않으나, 물, 에탄올, 폴리올(예를 들어, 글리세롤, 프로필렌글리콜 및 액체 폴리에틸렌글리콜 등), 이들의 혼합물 및/또는 식물유를 포함하는 용매 또는 분산매질일 수 있다. 보다 바람직하게는, 적합한 담체로는 행크스 용액, 링거 용액, 트리에탄올 아민이 함유된 PBS(phosphate buffered saline) 또는 주사용 멸균수, 10% 에탄올, 40% 프로필렌 글리콜 및 5% 덱스트로즈와 같은 등장 용액 등을 사용할 수 있다. 상기 주사제를 미생물 오염으로부터 보호하기 위해서는 파라벤, 클로로부탄올, 페놀, 소르빈산, 티메로살 등과 같은 다양한 항균제 및 항진균제를 추가로 포함할 수 있다. 또한, 상기 주사제는 대부분의 경우 당 또는 나트륨 클로라이드와 같은 등장화제를 추가로 포함할 수 있다. 이들 제형은 제약 화학에 일반적으로 공지된 처방서인 문헌 (Remington's Pharmaceutical Science, 15th Edition, 1975, Mack Publishing Company, Easton, PA)에 기술되어 있다.
본 발명의 일 구현예에 따르면, 상기 약제학적 조성물은 대상에게 경구 투여되기 위한 것일 수 있다.
본 발명의 일 구현예에 따르면, 상기 경구 투여의 형태는 분말, 산제, 과립제, 정제, 캡슐제, 구강 분산성 정제, 당의정제, 에어로졸, 겔제, 환제, 연질캡슐, 현탁액, 에멀젼, 수성 의약품, 시럽제, 엘릭시르제(elixir), 웨이퍼 및 포제(sachet)로부터 선택될 수 있다.
흡입 투여제의 경우, 라도티닙은 적합한 추진제, 예를 들면, 디클로로플루오로메탄, 트리클로로플루오로메탄, 디클로로테트라플루오로에탄, 이산화탄소 또는 다른 적합한 기체를 사용하여, 가압 팩 또는 연무기로부터 에어로졸 스프레이 형태로 편리하게 전달 할 수 있다. 가압 에어로졸의 경우, 투약 단위는 계량된 양을 전달하는 밸브를 제공하여 결정할 수 있다. 예를 들면, 흡입기 또는 취입기에 사용되는 캡슐 및 카트리지는 적합한 분말 기제의 분말 혼합물을 함유하도록 제형화 할 수 있다.
그 밖의 약학적으로 허용되는 담체로는 다음의 문헌에 기재되어 있는 것을 참고로 할 수 있다 (Remington's Pharmaceutical Sciences, 19th Edition, 1955, Mack Publishing Company, Easton, PA).
본 발명의 약제학적 조성물은 라도티닙 또는 그의 약제학적으로 허용 가능한 염을 유효성분으로 포함함으로써 신경퇴행성 질환 중의 하나인 프리온 질환을 효율적으로 예방 또는 치료할 수 있다.  특히 본 발명의 약제학적 조성물의 유효성분인 라도티닙 또는 그의 약제학적으로 허용가능한 염은 정상 프리온의 병원성 프리온으로의 변성을 억제하고, 병원성 프리온의 침착 형성을 억제하는 효과를 나타낸다.
도 1은 복강내 263K 스크래피 프리온 접종 햄스터 모델에서 감염된 후 vehicle로 처리된 햄스터 대조군과, 감염된 후 라도티닙을 위내 경구 투여한 햄스터 군의 비교 생존 그래프 결과이다.
도 2는 (i) 263K 스크래피 프리온에 복강 감염된 후 vehicle로 처리된 군에서 감염된 후 146일에 사망한 감염군, (ii) 감염 후 146일 시점의 정상 대조군(음성 대조군) 및 (iii) 263K-라도티닙 처리군(감염 후 146일째에 임상 증상이 전혀 나타나지 않고 건강해 보이는 것으로 관찰됨. 우뇌 적출), 그리고 (iv) 263K-라도티닙 처리군에서 154일 시점에 사망한 햄스터로부터 각각 뇌 조직을 적출하여, Western blot 시험을 통하여 병원성을 지닌 감염성 프리온 단백질의 대뇌 침착 수준을 측정한 결과이다.
도 3은 (i) 263K 스크래피 프리온에 복강 감염된 후 vehicle로 처리된 군에서 감염된 후 146일에 사망한 감염군, (ii) 감염후 146일 시점의 정상 대조군(음성 대조군) 및 (iii) 263K-라도티닙 처리군(감염 후 146일째에 임상 증상이 전혀 나타나지 않고 건강해 보이는 것으로 관찰됨. 좌뇌 적출)을 각각 perfusion한 후 뇌 조직을 적출하여 면역조직화학 염색을 수행하여 병원성을 지닌 감염성 프리온 단백질의 대뇌 침착 수준 및 양상을 측정한 결과이다.
도 4는 햄스터의 소뇌 조직을 절편하여 263K 스크래피 프리온으로 감염시킨 후, 라도티닙을 처리하고 3일 간격으로 배양액 교환시 새로운 라도티닙 약물을 해당 농도로 처리하여 5주간 배양한 후, 각 실험군의 소뇌 조직 배양 절편으로 균질액을 제조하여 병원성을 지닌 감염성 프리온 단백질의 침착 수준을 Western blot 시험을 통하여 측정한 결과이다.
아래에서는 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
실시예 1
본 실시예에서는 263K 스크래피 프리온에 복강 감염된 햄스터(Hamster)에서의 생존곡선 및 감염성 프리온 단백질의 침착 수준을 Western blot 시험을 통한 라도티닙의 약물 효과에 대한 시험을 실시하였다.
1) 실험동물
6주령. 90∼100g의 golden Syrian hamster
2) 시험방법 :
A) 263K 스크래피 프리온 대뇌 감염 햄스터 뇌조직의 1% 균질액 100 μl를 golden Syrian hamster (6주령, 90 ~ 100 g)에 복강 주사로 접종하여 스크래피 프리온에 감염시키고 약 1시간 후 라도티닙(100 mg/kg, daily except Sunday)을 0.5% 카르복시메틸셀룰로오스(carboxymethylcellulose, CMC, vehicle)에 녹여 위내 경구 투여한다. 음성 대조군(Negative control, Neg CTL)으로 정상군에 라도티닙(100 mg/kg, daily except Sunday)을 위내 경구 투여하였고, 양성 대조군(Positive control, Pos CTL)으로 263K 복강 주사 감염군에 vehicle (10 ml/kg)을 위내 경구 투여하고, GraphPad Prism 4.0을 이용하여 각 햄스터 군의 생존곡선(Survival curves)을 확인하였다.
B) Western blot 시험
단백질 정량 후 각 햄스터군의 10% 뇌 균질액의 총(total) 단백질 20 μg을 단백질 분해효소(proteinase K, PK, 5 ~ 20 μg/ml, 1 hr, 37℃)로 일부 샘플을 처리한 후 전기영동하여 단백질을 질량별로 분리한 후 니트로셀룰로오스(NC) membrane에 전기영동으로 옮기고 해당 NC membrane을 5% 스킴 밀크(skimmed milk)로 블로킹한 후 3F4 또는 3F10 항i-PrP 항체(1:3000 ~ 1:10000)로 4℃에서 밤새 인큐베이션하고 염소 항-마우스 항체-HRP로 실온에서 1시간 인큐베이션한 후 SuperSignal West Pico (Thermo Scientific)를 이용하여 화학발광(chemiluminescence)을 측정 하였다.
그 결과는 도 1 및 도 2에 나타난 바와 같으며, 도 1의 그래프는 263K 스크래피 프리온에 복강 감염된 햄스터에 라도티닙을 위내 경구 투여하는 약효 시험에서 통계학적으로 유의미한 생존곡선을 얻었다. 도 2는 병원성을 지닌 감염성 프리온의 대뇌 침착을 억제시키고 지연시키는 효과가 있음을 Western blot 시험을 통하여 확인 할 수 있었다.
263K 스크래피 프리온에 말초 복강 감염된 후 vehicle인 0.5% CMC로 위내 투여된 대조군은 감염 후 118, 119, 134 및 146일에 사망하였으나, 라도티닙 (100 mg/kg)의 위내 경구 투여된 군은 감염된 후 124, 135, 136, 140, 145, 150, 154, 164, 166, 177, 198 및 223일에 사망하였다. 이러한 결과는 라도티닙의 경구 투여된 군이 대조군에 비하여 통계학적으로 유의미한 생존곡선을 보여주고 있음을 나타낸다(도 1).
263K 스크래피 프리온에 복강 감염된 후 vehicle로 처리된 군에서 감염된 후 146일에 사망한 감염군(263K + CMC)에 대비하여, 감염후 146일 시점의 정상 대조군-라도티닙 처리군 1마리(CTL + Radotinib, healthy)와 263K-라도티닙 처리군 1마리(263K + Radotinib, 감염 후 146일째에 임상 증상이 전혀 나타나지 않고 건강해 보이는 것으로 관찰됨. 우뇌 적출)를 도살하여 뇌 조직을 적출하였고, 263K 복강 감염 후 라도티닙의 처리군에서 154일 시점에 사망한 햄스터 1마리의 뇌 조직 또한 적출하여 Western blot을 통하여 병원성을 지닌 감염성 프리온 단백질의 대뇌 침착 수준을 조사하였다(도 2).
정상 대조군에서는 단백질 분해효소인 PK 처리 후 프리온 단백질이 침착되지 않았기에 정상 대조군에는 병원성을 지닌 감염성 프리온이 검출되지 않았고 (도 2의 레인 2), 263K 복강 감염 후 CMC(vehicle) 처리군(음성 대조군)에서는 146일 후에 PK 저항성 병원성 프리온 단백질이 상당량 침착되는 것을 확인하였다(도 2의 레인 4).
146 dpi(감염 후 146일)에서 263K 복강 감염 후 라도티닙의 위내 경구 투여군 중 건강해 보였던 햄스터 개체의 뇌 조직에서는 매우 극소량의 병원성 프리온 단백질이 침착되는 것으로 확인되었다(도 2의 레인 8). 이 침착량은 263K 복강 감염 후 154일 후에 임상증상이 나타나서 사망한 햄스터의 뇌 조직에 침착된 병원성 프리온 단백질의 양(도 2의 레인 6)에 비해 매우 극미량임을 확인하였다.
이러한 관찰 결과는 위내 경구 투여되는 라도티닙이 263K 스크래피 프리온 감염을 말초에서부터 억제시키거나, blood-brain barrier(BBB)를 라도티닙이 통과하여 대뇌 조직에서 직접적으로 억제시키는 등의 방법으로 병원성 프리온의 침착을 억제시키는 것으로 판단된다. 이러한 결과는 263K 스크래피 프리온 말초 복강 감염되는 햄스터 개체간의 차이가 있는 것으로 생각된다.
즉, 도 2에서 라도티닙의 처리군에서 154 dpi에서 사망한 햄스터는 263K 스크래피 프리온 임상증상이 완연히 나타나서 사망하였고 대뇌 조직에 병원성 프리온 단백질이 상당량 침착되었다. 263K 스크래피 프리온 감염 후 임상증상이 나타나지 않고 건강해 보였던 263K 스크래피 프리온 감염 후 146 dpi의 햄스터의 대뇌 조직에서는 매우 극소량의 병원성 프리온이 침착되었다. 이 결과는 154 dpi 이후로 사망한 각 263K-라도티닙 처리군의 햄스터 대뇌 조직에는 146 dpi 생존 시점에서 임상 증상 말기 때보다 훨씬 적은 양의 병원성 프리온이 침착되었음을 설명해주는 것이다.
이러한 결과는 말초 복강 스크래피 프리온의 감염 시 위내 경구 투여된 라도티닙이 병원성을 지닌 감염성 프리온의 대뇌 침착을 억제시키고 지연시키는 효과가 있음을 확인 할 수 있었다.
실시예 2
본 실시예에서는 대조군과 263K 스크래피 프리온 감염군 및 라도티닙 처리군을 perfusion하고 대뇌 조직을 고정한 후 뇌 절편 조직을 제작한 후, 단백질 분해효소 저항성 프리온 단백질의 침착 수준을 확인하기 위하여 면역조직화학 염색법(Immunohistochemistry)을 이용하여 시험을 실시하였다.
1) 시험방법 :
단백질 분해효소(PK)를 처리(20 μg/ml, 5 min, room temperature)한 후 각 그룹의 뇌 조직 절편을 염소 혈청(goat serum)으로 블로킹하고 1차 항체로 3F10 항체를 이용하고, 2차 항체로 anti-mouse IgG를 이용하여 각 군에서 프리온 단백질 및 단백질 분해효소 저항성 감염성 프리온의 침착 수준을 측정하였다.
그 결과 도 3에 나타난 바와 같이 햄스터의 말초 복강 스크래피 프리온의 감염 시 위내 경구 투여된 라도티닙이 병원성을 지닌 감염성 프리온의 대뇌 침착을 억제시킬 수 있음을 확인하였다.
263K 스크래피 프리온에 복강 감염된 후 vehicle로 처리된 군에서 감염된 후 146일에 사망한 감염군(263K + CMC)에 대비하여 감염후 146일 시점에 정상 대조군-라도티닙 처리군 1마리(CTL + Radotinib, healthy)와 263K-Radotinib 처리군 1마리(263K + Radotinib, 감염 후 146일째에 임상 증상이 전혀 나타나지 않고 건강해 보이는 것으로 관찰됨. 좌뇌 적출)를 perfusion한 후 뇌 조직을 적출하여 3F10 anti-PrP 항체를 이용하여 면역조직화학 염색을 수행하여 병원성을 지닌 감염성 프리온 단백질의 대뇌 침착 수준 및 양상을 측정하였다(도 3).
Western blot 관찰 결과와 유사하게 대조군에서는 단백질 분해효소인 PK 처리 후 프리온 단백질이 침착되지 않는 것으로 관찰되었다(도 3의 CTL-PK-Radotinib). 그러나, 263K 스크래피 프리온으로 복강 감염 후 CMC(vehicle) 처리군에서는 146일 후에 PK 저항성 병원성 프리온 단백질이 상당량 침착되는 것으로 관찰되었다(도 3의 263K-PK-CMC). 또한 146 dpi에 임상 증상이 없고 건강해 보이는 263K 복강 감염 후 라도티닙의 위내 경구 투여한 햄스터의 좌뇌 조직에는 매우 희미한 병원성 프리온 단백질의 침착이 확인되었다(도 3의 263K-Radotinib 및 263K-PK-Radotinib).
이러한 시험 결과는 Western blot 결과와 유사하게 말초 복강 스크래피 프리온의 감염 시 위내 경구 투여된 라도티닙이 병원성을 지닌 감염성 프리온의 대뇌 침착을 억제시킬 수 있음을 확인하였다.
실시예 3
본 실시예에서는 소뇌 조직 체외배양법(ex vivo)을 이용한 라도티닙의 병원성 프리온 생성 억제 효과를 확인하는 시험을 실시하였다.
1) 시험방법 :
생후 12일(postnatal 12, p12)경의 golden Syrian hamster의 소뇌(cerebellum) 부위를 절편하였다. 263K 스크래피 프리온 대뇌 감염 햄스터 뇌 조직 1% 균질액에 소뇌 절편을 4℃에서 1시간 동안 노출시켜 감염시키고 라도티닙을 10, 20 또는 40 μM 농도로 처리하여 37℃에서 배양하였다. 3일 간격으로 조직 배양액을 교환할 때 라도티닙을 각 농도별로 배양액에 녹여서 처리하고 대조군은 감염군 뇌 균질액 대신에 배양액에만 노출시키고 모든 소뇌 조직을 5 주간 배양하였다.
그 결과 도 4에 나타난 바와 같이 ex vivo 소뇌 조직배양액에 처리된 라도티닙이 263K 스크래피 프리온 감염으로부터 병원성 프리온의 생성을 억제하고 있음을 확인하였다.
생후 12일 golden Syrian hamster 소뇌 조직을 절편하여 263K 스크래피 프리온으로 감염시킨 후 라도티닙을 10, 20 또는 40 μM을 배양액에 처리하고 3일 간격으로 배양액 교환시 새로운 라도티닙을 해당 농도로 처리하여 5주간 배양한 후 각 실험군의 소뇌 조직 배양 절편으로 균질액을 제조하여 병원성을 지닌 감염성 프리온 단백질의 침착 수준을 측정하였다(도 4).
도 4에서와 같이 정상 대조군의 배양 소뇌 조직에는 PK 저항성을 지닌 병원성 프리온이 침착되지 않았으나(도 4의 레인 2), 263K 스크래피 프리온 대뇌 조직 접종군에서는 PK 저항성 프리온이 검출되었다(도 4의 레인 4).
그러나 라도티닙의 처리군에서는 처리 농도 의존적으로 PK 저항성 병원성 프리온의 침착이 억제되는 것을 확인할 수 있었다(도 4의 레인 5-7).
이러한 결과는 ex vivo 소뇌 조직배양액에 처리된 라도티닙이 263K 스크래피 프리온 감염 초기부터 프리온 전환반응이나 프리온 증폭 반응을 억제하였거나 병원성 프리온 침착을 억제하여 병원성 프리온의 생성을 억제할 수 있음을 나타낸다.
실시예 4
본 실시예에서는 마우스에서 라도티닙의 혈뇌장벽(Blood Brain Barrier) 투과율 시험을 실시하였다.
1) 실험동물: 6주령 수컷 ICR 마우스
2) 실험물질: 라도티닙
3) 시험방법:
생체 내로 투여된 라도티닙의 흡수 및 작용점인 뇌에서의 분포를 확인 하고자 아래와 같은 시험을 실시하였다.
ICR 마우스, 6 주령, 암컷에 시험물질인 라도티닙을 각각 50 mg/kg의 용량으로 경구 투여하였다. 투여 전, 투여 후 1, 2, 3, 4, 6, 8, 12 시간에 채혈하여 혈장을 분리하고, 뇌를 적출하여 LC-MS/MS로 라도티닙의 농도를 분석하였다.
그 결과, 하기 표 1에서와 같이 라도티닙은 혈장 및 뇌조직에서의 약물동태 수치들이 확인되었으며, 혈장 및 뇌조직에서의 라도티닙의 흡수율이 우수함을 나타내고 있으며, 특히 라도티닙은 혈장에서의 흡수비율 대비 뇌조직에서의 투과도 비율이 0.74%로 혈뇌 장벽 투과가 매우 우수한 것으로 확인되었다.
즉, 상기 실험 결과로부터, 라도티닙이 우수한 혈뇌 장벽 투과능을 가진다는 사실을 확인할 수 있었다. 혈뇌 장벽 투과능은 뇌질환 치료제 약물 개발의 매우 중요한 요소 중 하나로서, 라도티닙이 신경퇴행성 질환인 프리온 질환의 치료에 더욱 효과적일 것이라고 해석될 수 있다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술 분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며, 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위에 의하여 나타내어지며, 특허 청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (12)

  1. 하기 화학식 (I)로 표시되는 라도티닙(Radotinib) 또는 그의 약제학적으로 허용 가능한 염을 유효성분으로 포함하는, 스크래피병(scrapie)의 예방 또는 치료를 위한 약제학적 조성물:
  2. 삭제
  3. 삭제
  4. 삭제
  5. 제1항에 있어서, 약제학적으로 허용되는 담체를 추가로 포함하는 것을 특징으로 하는 약제학적 조성물.
  6. 제1항에 있어서, 동물에게 투여되기 위한 것임을 특징으로 하는 약제학적 조성물.
  7. 제6항에 있어서, 동물이 포유류인 것을 특징으로 하는 약제학적 조성물.
  8. 제7항에 있어서, 포유류가 인간인 것을 특징으로 하는 약제학적 조성물.
  9. 제1항 및 제5항 내지 제8항 중 어느 한 항에 있어서, 경구 투여용인 것을 특징으로 하는 약제학적 조성물.
  10. 제9항에 있어서, 경구 투여의 형태가 분말, 산제, 과립제, 정제, 캡슐제, 구강 분산성 정제, 당의정제, 에어로졸, 겔제, 환제, 연질 캡슐제, 현탁액, 에멀젼, 수성 의약품, 시럽, 엘릭시르제(elixir), 웨이퍼 및 포제(sachet)로 구성된 그룹 중에서 선택되는 것을 특징으로 하는 약제학적 조성물.
  11. 제1항 및 제5항 내지 제8항 중 어느 한 항에 있어서, 비경구 투여용인 것을 특징으로 하는 약제학적 조성물.
  12. 제11항에 있어서, 비경구 투여의 형태가 주사제, 경피 투여제, 좌제, 에어로졸 및 비강 흡입제로 구성된 그룹 중에서 선택되는 것을 특징으로 하는 약제학적 조성물.
KR1020180078887A 2018-07-06 2018-07-06 프리온 질환의 예방 또는 치료를 위한 약제학적 조성물 KR102618168B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020180078887A KR102618168B1 (ko) 2018-07-06 2018-07-06 프리온 질환의 예방 또는 치료를 위한 약제학적 조성물
PCT/KR2019/008279 WO2020009522A1 (ko) 2018-07-06 2019-07-05 프리온 질환의 예방 또는 치료를 위한 약제학적 조성물

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180078887A KR102618168B1 (ko) 2018-07-06 2018-07-06 프리온 질환의 예방 또는 치료를 위한 약제학적 조성물

Publications (2)

Publication Number Publication Date
KR20200005314A KR20200005314A (ko) 2020-01-15
KR102618168B1 true KR102618168B1 (ko) 2023-12-27

Family

ID=69060917

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180078887A KR102618168B1 (ko) 2018-07-06 2018-07-06 프리온 질환의 예방 또는 치료를 위한 약제학적 조성물

Country Status (2)

Country Link
KR (1) KR102618168B1 (ko)
WO (1) WO2020009522A1 (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130310395A1 (en) * 2012-05-15 2013-11-21 Novartis Ag Compounds and compositions for inhibiting the activity of abl1, abl2 and bcr-abl1

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102421301B1 (ko) * 2015-07-16 2022-07-15 일양약품주식회사 호흡기 바이러스성 질환 치료를 위한 라도티닙의 용도
CN108884098B (zh) * 2016-03-08 2021-09-14 拜耳制药股份公司 2-氨基-N-[7-甲氧基-2,3-二氢咪唑并[1,2-c]喹唑啉-5-基]嘧啶-5-甲酰胺类
KR102421303B1 (ko) * 2016-08-01 2022-07-18 일양약품주식회사 신경퇴행성 질환의 예방 또는 치료를 위한 약제학적 조성물

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130310395A1 (en) * 2012-05-15 2013-11-21 Novartis Ag Compounds and compositions for inhibiting the activity of abl1, abl2 and bcr-abl1

Also Published As

Publication number Publication date
WO2020009522A1 (ko) 2020-01-09
KR20200005314A (ko) 2020-01-15

Similar Documents

Publication Publication Date Title
Li et al. NLRP3/caspase-1/GSDMD–mediated pyroptosis exerts a crucial role in astrocyte pathological injury in mouse model of depression
Wu et al. BHBA treatment improves cognitive function by targeting pleiotropic mechanisms in transgenic mouse model of Alzheimer's disease
Friedman et al. Promoting autophagic clearance: viable therapeutic targets in Alzheimer's disease
Yan et al. The role of SIRT1 in neuroinflammation and cognitive dysfunction in aged rats after anesthesia and surgery
Casamenti et al. Oleuropein aglycone: a possible drug against degenerative conditions. In vivo evidence of its effectiveness against Alzheimer's disease
Guo et al. Deferoxamine-mediated up-regulation of HIF-1α prevents dopaminergic neuronal death via the activation of MAPK family proteins in MPTP-treated mice
Zeng et al. Autophagy in Alzheimer's disease and promising modulatory effects of herbal medicine
Wang et al. Hydrogen Gas Attenuates Hypoxic‐Ischemic Brain Injury via Regulation of the MAPK/HO‐1/PGC‐1a Pathway in Neonatal Rats
Carvalho et al. The role of mitochondrial disturbances in Alzheimer, Parkinson and Huntington diseases
JP2022028941A (ja) 難聴の処置のためのセトロンファミリーのカルシニューリン阻害剤
Xu et al. Wogonin prevents TLR4-NF-κB-medicated neuro-inflammation and improves retinal ganglion cells survival in retina after optic nerve crush
Qian et al. Periodontitis deteriorates cognitive function and impairs neurons and glia in a mouse model of Alzheimer’s disease
JP2007516294A (ja) 炎症性の疾患または症状の予防および治療のための方法および組成物
Dar et al. Elucidating critical proteinopathic mechanisms and potential drug targets in neurodegeneration
Kim et al. Beneficial effects of silibinin against kainic acid-induced neurotoxicity in the hippocampus in vivo
Wang et al. Microglial autophagy in Alzheimer’s disease and Parkinson’s disease
AU2012254093B2 (en) Effective amounts of (3aR)-1,3a,8-trimethyl-1,2,3,3a,8,8a-hexahydropyrrolo(2,3-b)indol-5-yl phenylcarbamate and methods thereof
JP6918839B2 (ja) 概日時計の乱れに関連するマイクロバイオームの調節異常を処置するための方法及び医薬組成物
Zhang et al. Inhibiting microglia‐derived NLRP3 alleviates subependymal edema and cognitive dysfunction in posthemorrhagic hydrocephalus after intracerebral hemorrhage via AMPK/Beclin‐1 pathway
Chen et al. Autophagy in neuroinflammation: a focus on epigenetic regulation
US20230340491A1 (en) Compositions and methods for treating metabolic and cardiovascular diseases
KR102618168B1 (ko) 프리온 질환의 예방 또는 치료를 위한 약제학적 조성물
Hunter et al. Acute activation of SERCA with CDN1163 attenuates IgE‐mediated mast cell activation through selective impairment of ROS and p38 signaling
Meng et al. 2′, 3′-Dideoxycytidine, a DNA polymerase-β inhibitor, reverses memory deficits in a mouse model of Alzheimer’s disease
Nóbrega et al. Machado-Joseph disease/spinocerebellar Ataxia type 3

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant