KR102559199B1 - 배터리 관리 방법 및 배터리 관리 장치 - Google Patents
배터리 관리 방법 및 배터리 관리 장치 Download PDFInfo
- Publication number
- KR102559199B1 KR102559199B1 KR1020150153400A KR20150153400A KR102559199B1 KR 102559199 B1 KR102559199 B1 KR 102559199B1 KR 1020150153400 A KR1020150153400 A KR 1020150153400A KR 20150153400 A KR20150153400 A KR 20150153400A KR 102559199 B1 KR102559199 B1 KR 102559199B1
- Authority
- KR
- South Korea
- Prior art keywords
- battery
- data
- feature
- physical quantity
- normal
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/396—Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/0023—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
- B60L3/0046—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/4207—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/18—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
- B60L58/22—Balancing the charge of battery modules
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/3644—Constructional arrangements
- G01R31/3648—Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/367—Software therefor, e.g. for battery testing using modelling or look-up tables
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/371—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with remote indication, e.g. on external chargers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/382—Arrangements for monitoring battery or accumulator variables, e.g. SoC
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/392—Determining battery ageing or deterioration, e.g. state of health
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/425—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
- H01M10/482—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0013—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
- H02J7/0014—Circuits for equalisation of charge between batteries
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0047—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
- H02J7/005—Detection of state of health [SOH]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/54—Drive Train control parameters related to batteries
- B60L2240/545—Temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/54—Drive Train control parameters related to batteries
- B60L2240/547—Voltage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/54—Drive Train control parameters related to batteries
- B60L2240/549—Current
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/425—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
- H01M2010/4271—Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2310/00—The network for supplying or distributing electric power characterised by its spatial reach or by the load
- H02J2310/40—The network being an on-board power network, i.e. within a vehicle
- H02J2310/48—The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0013—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
배터리 관리 방법이 개시된다. 일 실시예는 복수의 배터리의 동적으로 변화하는 물리량을 기초로 연산된 물리량 차이 정보를 이용하여 언밸런스 데이터를 획득하고, 상기 언밸런스 데이터를 특징 공간에 사영하여 특징 데이터를 획득하며, 상기 특징 데이터의 분포 정보를 기초로 배터리 안전도를 추정한다.
Description
아래 실시예들은 배터리 관리 방법 및 배터리 관리 장치에 관한 것이다.
최근 배터리를 탑재한 기기의 사용이 급증하고 있다. 스마트폰, 노트북, 및 전기 자동차 등 이동성이 중요한 기기들이 이러한 배터리를 사용하고 있다. 상술한 기기들이 점차 더 많은 용량(capacity)을 필요로 하는 바, 기기에 탑재되는 배터리의 용량이 증대되고 있다.
기기에 탑재된 배터리의 용량이 커질수록, 배터리가 폭발 시 더 큰 피해가 발생하게 되어 배터리의 위험성이 증대되고 있다. 예를 들어, 스마트폰과 같이 사람의 귀에 밀착하여 사용하는 기기의 경우, 작은 폭발에도 생명에 위협을 주는 인적 피해를 발생시킬 수 있다. 또한, 전기 자동차의 경우, 주행 중 배터리가 폭발하면 매우 큰 인적/물적 피해가 초래되고, 기업 브랜드 이미지도 크게 훼손될 수 있다.
일 측에 따른 배터리 관리 방법은 복수의 배터리의 동적으로 변화하는 물리량을 기초로 연산된 물리량 차이 정보를 이용하여 언밸런스 데이터를 획득하는 단계; 상기 언밸런스 데이터를 특징 공간에 사영하여 특징 데이터를 획득하는 단계; 및 상기 특징 데이터의 분포 정보를 기초로 배터리 안전도를 추정하는 단계를 포함한다.
상기 배터리 안전도를 추정하는 단계는, 상기 특징 데이터가 정상 영역에 분포하는지 여부를 확인하는 단계를 포함할 수 있다.
상기 정상 영역은, 정상 배터리 데이터의 차이 정보를 기초로 획득된 밸런스 데이터의 특징에 대응하는 정상 특징 데이터의 분포 정보가 이용되어 설정된 영역일 수 있다.
상기 배터리 안전도를 추정하는 단계는, 상기 정상 특징 데이터의 확률 분포 정보를 이용하여 상기 분포 정보에 대응하는 확률 데이터를 연산하는 단계를 포함할 수 있다.
상기 배터리 안전도를 추정하는 단계는, 정상 영역의 기준점과 상기 분포 정보에 대응하는 분포 위치 사이의 거리를 연산하는 단계를 포함할 수 있다.
상기 특징 데이터를 획득하는 단계는, 특징 추출 모델을 이용하여 상기 특징 데이터를 상기 특징 공간으로 사영하는 단계를 포함할 수 있고, 상기 특징 추출 모델은, 정상 배터리 데이터의 차이 정보를 기초로 획득된 밸런스 데이터의 특징을 추출하기 위해 미리 정의된 모델일 수 있다.
상기 배터리 안전도를 추정하는 단계는, 상기 특징 추출 모델이 추출한 특징에 대응하는 정상 특징 데이터의 분포 정보를 기초로 미리 모델링된 특징 분포 모델을 이용하여 상기 분포 정보를 확인하는 단계를 포함할 수 있다.
상기 배터리 안전도와 임계값을 비교하고, 비교 결과에 대응하는 피드백의 출력을 위한 제어 신호를 생성하는 단계를 더 포함할 수 있다.
상기 배터리 안전도를 제1 임계값과 비교하고, 상기 배터리 안전도가 상기 제1 임계값보다 작은 경우, 상기 배터리 안전도를 제2 임계값과 비교하는 단계; 및 상기 배터리 안전도가 상기 제2 임계값 이상인 경우, 셀 밸런싱을 수행하고, 상기 배터리 안전도가 상기 제2 임계값보다 작은 경우, 피드백의 출력을 위한 제어 신호를 생성하는 단계를 더 포함할 수 있다.
상기 언밸런스 데이터를 획득하는 단계는, 타임 윈도우 사이즈만큼의 상기 물리량 차이 정보를 이용하여 상기 언밸런스 데이터를 획득하는 단계를 포함할 수 있고, 상기 언밸런스 데이터를 상기 타임 윈도우 사이즈에 대응하는 사이즈를 갖는 버퍼에 저장하는 단계를 더 포함할 수 있다.
상기 언밸런스 데이터를 획득하는 단계는, 상기 물리량과 다른 속성을 갖는 제2 물리량을 기초로 연산된 제2 물리량 차이 정보를 더 이용하여 상기 언밸런스 데이터를 획득하는 단계를 포함할 수 있다.
상기 언밸런스 데이터는, 상기 물리량의 평균값과 상기 복수의 배터리 각각의 물리량 사이의 차이를 나타내는 제1 차이 정보 또는 상기 제1 차이 정보의 평균값; 상기 물리량의 최대값과 최소값 사이의 차이를 나타내는 제2 차이 정보; 상기 복수의 배터리 각각의 물리량과 상기 최대값 사이의 차이를 나타내는 제3 차이 정보 또는 상기 제3 차이 정보의 평균값; 및 상기 복수의 배터리 각각의 물리량과 상기 최소값 사이의 차이를 나타내는 제4 차이 정보 또는 상기 제4 차이 정보의 평균값중 적어도 하나를 포함할 수 있다.
다른 일 측에 따른 배터리 관리 방법은 복수의 배터리의 물리량을 기초로 연산된 물리량 차이 정보를 이용하여 언밸런스 데이터를 획득하는 단계; 특징 추출 모델을 이용하여 상기 언밸런스 데이터로부터 특징 데이터를 추출하는 단계; 상기 특징 데이터가 분포하는 특징 공간의 정상 영역을 정의하기 위해 모델링된 특징 분포 모델과 상기 특징 데이터 사이의 유사도를 추정하는 단계; 및 상기 유사도를 기초로 배터리 상태를 판단하는 단계를 포함한다.
상기 특징 추출 모델은, 정상 배터리 데이터의 차이 정보를 기초로 획득된 밸런스 데이터의 특징을 추출하기 위해 미리 정의된 모델일 수 있고, 상기 특징 분포 모델은, 상기 특징 추출 모델이 추출한 특징에 대응하는 정상 특징 데이터의 분포 정보를 기초로 생성된 모델일 수 있다.
상기 유사도를 추정하는 단계는, 상기 정상 특징 데이터의 확률 분포 정보를 이용하여 상기 특징 데이터의 분포 정보에 대응하는 확률 데이터를 연산하는 단계를 포함할 수 있다.
상기 유사도를 추정하는 단계는, 상기 정상 영역의 기준점과 상기 분포 정보에 대응하는 분포 위치 사이의 거리를 연산하는 단계를 포함할 수 있다.
상기 유사도를 추정하는 단계는, 상기 유사도에 대응하는 수치값을 제1 임계값과 비교하고, 상기 수치값이 상기 제1 임계값보다 작은 경우, 상기 수치값을 제2 임계값과 비교하는 단계를 포함할 수 있고, 상기 배터리 상태를 판단하는 단계는, 상기 수치값이 상기 제2 임계값 이상인 경우, 셀 밸런싱이 필요한 것으로 판단하고, 상기 수치값이 상기 제2 임계값보다 작은 경우, 상기 배터리 상태를 이상 상태로 판단하는 단계를 더 포함할 수 있다.
상기 언밸런스 데이터를 획득하는 단계는, 타임 윈도우 사이즈만큼의 상기 물리량 차이 정보를 이용하여 상기 언밸런스 데이터를 획득하는 단계를 포함할 수 있고, 상기 언밸런스 데이터를 상기 타임 윈도우 사이즈에 대응하는 사이즈를 갖는 버퍼에 저장하는 단계를 더 포함할 수 있다.
상기 언밸런스 데이터를 획득하는 단계는, 상기 물리량과 다른 속성을 갖는 제2 물리량을 기초로 획득된 제2 물리량 차이 정보를 더 이용하여 상기 언밸런스 데이터를 획득하는 단계를 포함할 수 있다.
일 측에 따른 배터리 관리 장치는 복수의 배터리의 동적으로 변화하는 물리량을 수신하는 인터페이스; 및 상기 물리량을 기초로 연산된 물리량 차이 정보를 이용하여 언밸런스 데이터를 획득하고, 상기 언밸런스 데이터를 특징 공간에 사영하여 특징 데이터를 획득하며, 상기 특징 데이터의 분포 정보를 기초로 배터리 안전도를 추정하는 프로세서를 포함한다.
도 1a 내지 도 1b는 복수의 배터리의 물리량 및 물리량 사이의 차이 정보를 설명하기 위한 도면이다.
도 2는 일 실시예에 따른 배터리 관리 방법을 설명하기 위한 순서도이다.
도 3은 일 실시예에 따른 특징 추출 모델을 설명하기 위한 도면이다.
도 4a 내도 도 4b는 일 실시예에 따른 정상 특징 데이터를 설명하기 위한 도면이다.
도 5는 일 실시예에 따른 특징 데이터를 설명하기 위한 도면이다.
도 6은 일 실시예에 따른 배터리 안전도의 추정을 설명하기 위한 도면이다.
도 7a 내지 도 7c는 일 실시예에 따른 제1 배터리와 제2 배터리의 배터리 안전도를 설명하기 위한 도면이다.
도 8은 일 실시예에 따른 배터리 관리 방법의 다른 일례를 설명하기 위한 순서도이다.
도 9는 일 실시예에 따른 배터리 관리 방법의 또 다른 일례를 설명하기 위한 순서도이다.
도 10은 일 실시예에 따른 배터리 관리 장치의 일례를 설명하기 위한 블록도이다.
도 11은 일 실시예에 따른 배터리 관리 장치의 다른 일례를 설명하기 위한 도면이다.
도 12는 일 실시예에 따른 배터리 관리 장치의 동작을 설명하기 위한 도면이다.
도 2는 일 실시예에 따른 배터리 관리 방법을 설명하기 위한 순서도이다.
도 3은 일 실시예에 따른 특징 추출 모델을 설명하기 위한 도면이다.
도 4a 내도 도 4b는 일 실시예에 따른 정상 특징 데이터를 설명하기 위한 도면이다.
도 5는 일 실시예에 따른 특징 데이터를 설명하기 위한 도면이다.
도 6은 일 실시예에 따른 배터리 안전도의 추정을 설명하기 위한 도면이다.
도 7a 내지 도 7c는 일 실시예에 따른 제1 배터리와 제2 배터리의 배터리 안전도를 설명하기 위한 도면이다.
도 8은 일 실시예에 따른 배터리 관리 방법의 다른 일례를 설명하기 위한 순서도이다.
도 9는 일 실시예에 따른 배터리 관리 방법의 또 다른 일례를 설명하기 위한 순서도이다.
도 10은 일 실시예에 따른 배터리 관리 장치의 일례를 설명하기 위한 블록도이다.
도 11은 일 실시예에 따른 배터리 관리 장치의 다른 일례를 설명하기 위한 도면이다.
도 12는 일 실시예에 따른 배터리 관리 장치의 동작을 설명하기 위한 도면이다.
이하, 실시예들을 첨부된 도면을 참조하여 상세하게 설명한다.
아래 설명하는 실시예들에는 다양한 변경이 가해질 수 있다. 아래 설명하는 실시예들은 실시 형태에 대해 한정하려는 것이 아니며, 이들에 대한 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
실시예에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 실시예를 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성 요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 명세서에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
또한, 첨부 도면을 참조하여 설명함에 있어, 도면 부호에 관계없이 동일한 구성 요소는 동일한 참조 부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 실시예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 실시예의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
도 1a 내지 도 1b는 복수의 배터리의 물리량 및 물리량 차이 정보를 설명하기 위한 도면이다.
배터리는 배터리 모듈 또는 배터리 셀을 나타낼 수 있다. 복수의 배터리가 복수의 배터리 모듈을 나타내는 경우, 각각의 배터리 모듈은 하나 또는 복수의 배터리 셀을 포함할 수 있다. 배터리 모듈에 포함된 복수의 배터리 셀은 직렬로 연결될 수 있다.
복수의 배터리의 물리량(physical quantity)은 전압, 전류, 및/또는 온도를 포함할 수 있다.
도 1a를 참조하면, 복수의 배터리의 전압이 도시된다. 복수의 배터리의 충방전 등 사용에 의해 복수의 배터리의 전압은 동적으로 변화한다.
도 1b를 참조하면, 물리량 차이 정보가 도시된다. 물리량 차이 정보는 편차(deviation)를 포함할 수 있다. 예를 들어, 시간 t에서 배터리 1의 전압값이 V1이고, 배터리 2의 전압값이 V2이며, V1과 V2의 평균이 Vaverage인 경우, 시간 t에서 배터리 1의 물리량 차이 정보는 V1-Vaverage이고, 배터리 2의 물리량 차이 정보는 V2-Vaverage이다. 도 1b에 도시된 것과 같이, 각각의 배터리의 물리량 차이 정보는 특정한 변화 패턴을 보이지 않아, 하나의 임계값으로 배터리의 상태를 판단하는 것은 어렵다. 또한, 물리량 차이 정보는 특정한 변화 패턴을 보이지 않아, 배터리의 상태를 판단하기 위해 사용되는 상수의 임계값을 설정하는 것이 어렵다. 또한, 물리량 차이 정보는 물리량보다 작은 값을 가져(예를 들어, 물리량 차이 정보는 0 내지 0.2V 범위 내의 값을 가질 수 있음), 물리량 차이 정보는 센서 오차에 민감할 수 있다. 이로 인해, 배터리의 상태가 잘못 판단될 확률이 높아 판단 오류가 클 수 있다.
도 2는 일 실시예에 따른 배터리 관리 방법의 일례를 설명하기 위한 순서도이다. 도 2에 도시된 배터리 관리 방법은 배터리 관리 장치에 의해 수행될 수 있다. 배터리 관리 장치는 하나 또는 복수의 프로세서를 포함할 수 있고, 하나 또는 복수의 메모리를 포함할 수 있다. 프로세서는 메모리를 참조하면서 배터리 관리 방법을 수행할 수 있다.
도 2를 참조하면, 배터리 관리 장치는 복수의 배터리의 물리량을 수신한다(210). 여기서, 배터리는 배터리 셀 또는 배터리 모듈일 수 있다. 복수의 배터리의 물리량은 하나 또는 복수의 센서를 포함하는 센싱 시스템에 의해 센싱될 수 있고, 센싱 시스템은 물리량을 배터리 관리 장치로 전달할 수 있다. 예를 들어, 센싱 시스템은 미리 정해진 시간 간격으로(예를 들어, 1초 간격) 복수의 배터리 각각의 전압 데이터, 전류 데이터, 및/또는 온도 데이터를 수집할 수 있고, 전압 데이터, 전류 데이터, 및/또는 온도 데이터를 배터리 관리 장치로 전달할 수 있다.
물리량은 동적으로 변화할 수 있다. 예를 들어, 복수의 배터리는 전기 이동체와 같은 물리적 어플리케이션에 이용될 수 있다. 이 경우, 복수의 배터리는 충전 및 방전될 수 있고, 물리량은 충방전 패턴을 가질 수 있다.
배터리 관리 장치는 타임 윈도우(time window) 사이즈에 대응하는 사이즈를 갖는 버퍼에 물리량을 저장할 수 있다. 버퍼에 물리량이 저장된 경우, 배터리 관리 장치는 버퍼에 액세스할 수 있다.
배터리 관리 장치는 복수의 배터리의 물리량을 기초로 연산된 물리량 차이 정보를 이용하여 언밸런스 데이터(unbalance data)를 획득한다(220). 일 실시예에 있어서, 배터리 관리 장치는 복수의 배터리의 제1 물리량을 기초로 제1 물리량 차이 정보를 연산할 수 있고, 제1 물리량 차이 정보를 이용하여 언밸런스 데이터를 획득할 수 있다.
일례로, 배터리 관리 장치는 n개의 배터리 셀의 전압 데이터 V1, V2, ... , Vn의 평균 Vaverage을 연산할 수 있고, V1, V2, ... , Vn 각각과 Vaverage 사이의 제1 전압 차이 정보를 연산할 수 있다. 여기서, n개의 제1 전압 차이 정보가 연산된다. 연산 결과가 음수인 경우, 절대값이 적용될 수 있다. 또한, 배터리 관리 장치는 n개의 제1 전압 차이 정보 또는 n개의 제1 전압 차이 정보의 절대값의 평균, 분산, 및/또는 표준 편차를 연산할 수 있다.
다른 일례로, 배터리 관리 장치는 V1, V2, ... , Vn 중에서 최대 Vmax와 최소 Vmin을 확인할 수 있고, Vmax와 Vmin 사이의 제2 전압 차이 정보를 연산할 수 있다.
또 다른 일례로, 배터리 관리 장치는 V1, V2, ... , Vn 각각과 Vmax 사이의 제3 전압 차이 정보를 연산하거나 V1, V2, ... , Vn 각각과 Vmin 사이의 제4 전압 차이 정보를 연산할 수 있다. 여기서, n개의 제3 전압 차이 정보가 연산되거나 n개의 제4 전압 차이 정보가 연산된다. 또한, 배터리 관리 장치는 n개의 제3 전압 차이 정보 또는 n개의 제3 전압 차이 정보의 절대값의 평균, 분산, 및/또는 표준 편차를 연산할 수 있다. 또한, 배터리 관리 장치는 n개의 제4 전압 차이 정보 또는 n개의 제4 전압 차이 정보의 절대값의 평균, 분산, 및/또는 표준 편차를 연산할 수 있다.
위에서 설명한 언밸런스 데이터는 일 실시예에 따른 예시적인 사항일 뿐, 언밸런스 데이터는 위에서 설명한 것으로 제한되지 않는다.
일 실시예에 있어서, 배터리 관리 장치는 복수의 배터리의 제2 물리량을 기초로 제2 물리량 차이 정보를 연산할 수 있고, 제1 물리량 차이 정보 및 제2 물리량 차이 정보를 이용하여 언밸런스 데이터를 획득할 수 있다. 여기서, 제2 물리량은 제1 물리량의 속성과 다른 속성을 갖는다. 예를 들어, 배터리 관리 장치는 복수의 배터리 셀의 온도 데이터를 기초로 온도 차이 정보를 연산할 수 있다. 배터리 관리 장치는 위에서 설명한 제1 전압 차이 정보 내지 제4 전압 차이 정보 중 어느 하나와 동일한 방식으로 온도 차이 정보를 연산할 수 있다. 또한, 배터리 관리 장치는 전압 차이 정보와 온도 차이 정보를 이용하여 언밸런스 데이터를 획득할 수 있다. 예를 들어, 배터리 관리 장치는 전압 차이 정보와 온도 차이 정보를 정규화할 수 있고, 정규화된 전압 차이 정보와 온도 차이 정보를 합하여 언밸런스 데이터를 획득할 수 있다.
배터리 관리 장치는 언밸런스 데이터를 버퍼에 저장할 수 있다. 또한, 배터리 관리 장치는 타임 윈도우 사이즈만큼의 언밸런스 데이터가 버퍼에 저장되어 있는지 확인할 수 있다(230). 배터리 관리 장치는 언밸런스 데이터의 사이즈가 버퍼의 사이즈에 대응하는지 확인할 수 있다. 타임 윈도우의 사이즈만큼의 언밸런스 데이터가 버퍼에 저장되지 않은 경우, 배터리 관리 장치는 언밸런스 데이터를 획득하여 버퍼에 저장할 수 있다. 버퍼가 꽉 찬 경우, 배터리 관리 장치는 버퍼에 액세스하여 언밸런스 데이터를 리트리브(retrieve)할 수 있다.
배터리 관리 장치는 언밸런스 데이터를 특징 공간(feature space)에 사영(projection)하여 특징 데이터(feature data)를 획득한다(240). 일 실시예에 있어서, 배터리 관리 장치는 특징 추출 모델(feature extraction model)을 이용하여 특징 데이터를 특징 공간으로 사영할 수 있다. 이에 따라, 특징 데이터는 특징 공간에 분포한다.
특징 추출 모델은 밸런스 데이터의 특징을 추출하기 위해 미리 정의된 모델이다. 여기서, 밸런스 데이터는 정상 배터리 데이터의 차이 정보를 기초로 획득된다. 정상 배터리 데이터는 생산 후 다양한 사용 패턴으로 사용되고, 과충전, 과방전, 열 폭주, 폭발, 접촉 오류, 또는 전력 감소와 같은 이상 현상이 발생하지 않은 정상 배터리의 사용 이력 데이터를 나타낼 수 있다. 특징 추출 모델에 대해선 도 3을 통해 자세히 설명한다.
배터리 관리 장치는 특징 데이터의 분포 정보를 기초로 배터리 안전도를 추정한다(250). 배터리 관리 장치는 특징 데이터의 분포 정보를 확인할 수 있다. 일 실시예에 있어서, 배터리 관리 장치는 특징 분포 모델을 이용하여 특징 데이터의 분포 정보를 확인할 수 있다.
특징 분포 모델은 미리 모델링된다. 밸런스 데이터의 특징에 대응하는 정상 특징 데이터가 미리 획득될 수 있고, 특징 분포 모델은 정상 특징 데이터의 분포 정보를 기초로 모델링될 수 있다. 특징 분포 모델을 통해 정상 영역(normal range)이 정의될 수 있다. 복수의 정상 배터리 각각의 성능은 실질적으로 차이가 없다. 이로 인해, 정상 배터리 데이터는 서로 실질적으로 동일할 수 있고, 대부분의 밸런스 데이터는 0 또는 0에 가까운 값을 가질 수 있다. 정상 특징 데이터는 특징 공간의 원점에 위치하거나 원점에 근접하게 분포할 수 있다. 정상 영역은 특징 공간의 원점을 둘러싸는 영역일 수 있다. 또한, 특징 분포 모델이 모델링되는 경우, 배터리 상태가 이상 상태인지 정상 상태인지 구분하는데 사용되는 임계값이 설정될 수 있다. 예를 들어, 정상 영역의 경계를 기초로 임계값이 설정될 수 있다.
특징 분포 모델은 머신 러닝(machine learning)을 통해 트레이닝될 수 있다. 머신 러닝은, 예를 들어, 딥 러닝(Deep learning), 서포트 벡터 머신(Support Vector Machine), 은닉 마르코프 모델(Hidden Markov Model), 회귀 분석(Regression), 신경망(Neural Network), 나이브 베이즈 분류(Naive Bayes Classification), 및/또는 결정 트리(Decision Tree)를 포함할 수 있다.
일 실시예에 있어서, 배터리 관리 장치는 배터리 안전도를 수치화할 수 있다. 예를 들어, 배터리 관리 장치는 정상 영역에 대응하는 확률 분포(probability distribution) 정보를 이용하여 특징 데이터의 분포 정보에 대응하는 확률 데이터를 연산할 수 있다. 배터리 관리 장치는 미리 연산된 밸런싱 데이터의 평균 및 분산을 기초로 특징 데이터의 분포 정보에 대응하는 확률 데이터를 연산할 수 있다. 다른 일례로, 배터리 관리 장치는 특징 데이터와 정상 영역 사이의 거리를 연산할 수 있다. 배터리 관리 장치는 정상 영역의 기준점을 설정할 수 있고, 기준점과 특징 데이터의 분포 위치 사이의 거리를 연산할 수 있다. 정상 영역의 기준점은, 예를 들어, 정상 영역의 원점 또는 정상 특징 데이터가 가장 많이 분포한 위치일 수 있다. 배터리 관리 장치는 유클라디언 거리 또는 마할라노비스 거리를 연산할 수 있다.
배터리 관리 장치는 배터리 안전도와 임계값을 비교할 수 있다(260). 여기서, 임계값은 위에서 설명한 임계값으로, 특징 분포 모델이 모델링되는 경우, 설정될 수 있다. 배터리 관리 장치는 배터리 안전도가 임계값 미만인 경우, 피드백의 출력을 위한 제어 신호를 생성하거나 피드백 출력 장치를 제어할 수 있다(270). 배터리 안전도가 임계값 미만인 경우, 배터리 상태는 이상 상태일 수 있다. 이 경우, 시각적, 청각적, 및 촉각적 방식의 피드백 중 어느 하나 또는 이들의 조합이 출력될 수 있다. 위에서 설명한 예에서, 확률 데이터가 임계 확률 미만인 경우, 배터리 관리 장치는 피드백의 출력을 위한 제어 신호를 생성할 수 있다. 도 2에 도시된 것과 달리, 배터리 관리 장치는 배터리 안전도가 임계값을 초과하는 경우, 피드백의 출력을 위한 제어 신호를 생성할 수 있다. 위에서 설명한 예에서, 정상 영역의 기준점과 특징 데이터의 분포 위치 사이의 거리가 임계 거리를 초과하는 경우, 배터리 관리 장치는 피드백의 출력을 위한 제어 신호를 생성할 수 있다.
복수의 배터리로 구성된 배터리 팩의 물리량 정보는 배터리의 내부상태에 따른 물리량의 변화뿐만 아니라, 배터리 사용에 따른 전류변화에 의한 물리량의 변화를 포함할 수 있다. 그러나, 직렬로 구성된 복수의 배터리 팩은 배터리 사용에 따른 전류변화가 모두 동일하게 반영되기 때문에 복수의 배터리의 물리량 차이를 기초로 연산된 언밸러스 데이터에는 배터리 사용에 따른 전류 변화의 영향은 상쇄되는 효과가 나타나고, 각 배터리의 내부상태에 따른 차이정보만 남게 된다. 따라서, 배터리 관리 장치는 배터리 사용에 따른 전류 변화 및/또는 전압 변화의 영향 없이 독립적으로 배터리의 이상 여부를 판단할 수 있다. 또한, 배터리 관리 장치는 언밸런스 데이터로부터 추출된 특징 데이터를 이용하여 배터리의 이상 여부를 판단할 수 있으므로, 배터리 관리 방법은 센싱된 물리량 모두를 이용하여 배터리의 이상 여부를 판단하는 방법보다 연산 속도가 빠르다. 또한, 배터리 관리 장치는 미리 정해진 시간 간격마다 배터리의 이상 여부를 판단할 수 있고, 물리량이 동적으로 변화하는 상황에서도 배터리의 이상 여부를 판단할 수 있어, 이상 상태의 감지에 대한 신뢰도가 확보될 수 있다.
도 3은 일 실시예에 따른 특징 추출 모델을 설명하기 위한 도면이다.
도 3을 참조하면, 배터리 관리 장치는 언밸런스 데이터(310)를 특징 공간으로 사영하여 특징 데이터(330)를 획득할 수 있다. 여기서, 배터리 관리 장치는 특징 추출 모델(320)을 이용하여 언밸런스 데이터(310)를 특징 공간으로 사영할 수 있다.
특징 추출 모델(320)은 미리 정의된 모델이다. 보다 구체적으로, 복수의 정상 배터리의 충방전에 의해 동적으로 변화하는 정상(normal) 물리량(예를 들어, 복수의 정상 배터리의 전압, 전류, 및/또는 온도)이 센싱되고, 정상 물리량을 기초로 정상 물리량 차이 정보가 연산된다. 정상 물리량 차이 정보는 위에서 설명한 제1 전압 차이 정보 내지 제4 전압 차이 정보 중 어느 하나와 동일한 방식으로 연산될 수 있다. 밸런스 데이터는 정상 물리량 차이 정보를 기초로 획득된다. 예를 들어, 차원 감소(Dimension Reduction) 함수가 밸런스 데이터에 적용될 수 있다. 차원 감소 함수는, 예를 들어, PCA(Principle Component Analysis), LDA(Linear Discriminant Analysis) 등의 특징 추출(Feature extraction) 함수를 포함할 수 있다. 밸런스 데이터에 차원 감소 함수가 적용되는 경우, 밸런스 데이터의 차원은 감소되고, 밸런스 데이터의 특징을 나타내는 정상 특징 데이터가 획득될 수 있다. 밸런스 데이터는 정상 특징 데이터로 맵핑되는데, 맵핑에 필요한 정보가 모델링되어 특징 추출 모델(320)이 생성된다. 특징 추출 모델(320)은 배터리 관리 장치에 미리 저장될 수 있고, 특징 데이터의 추출을 위해 사용될 수 있다.
도 3에 도시된 것과 같이, 언밸런스 데이터(310)의 차원은 d일 수 있고, 특징 추출 모델(320)의 차원은 d * p일 수 있으며, 특징 데이터(330)의 차원은 p일 수 있다. 고차원의 언밸런스 데이터(310)는 저차원의 특징 데이터(330)로 변환된다. 배터리 관리 장치는 복수의 배터리를 포함하는 배터리 팩의 이상 상태를 감지하기 위해 특징 데이터(330)를 이용할 수 있다. 이로 인해, 이상 상태의 감지에 필요한 연산 속도가 증가할 수 있다. 또한, 고차원의 수집된 물리량 또는 언밸런스 데이터는 노이즈(예를 들어, 배터리 내부 저항, 센서 오차, 데이터 유실 등)를 포함하나, 배터리 관리 장치는 언밸런스 데이터를 대표하는 특징 데이터를 이용하여, 일 실시예에 따른 배터리 관리 방법은 상대적으로 노이즈에 강하다.
도 4a 내지 도 4b는 일 실시예에 따른 정상 특징 데이터를 설명하기 위한 도면이다.
도 4a를 참조하면, 특징 공간(400)에 정상 특징 데이터가 분포한다.
정상 영역(401 내지 404)이 정의될 수 있고, 배터리 관리 장치는 특징 데이터가 정상 영역(401 내지 404)에 분포 또는 위치하는지 확인할 수 있고, 배터리 안전도를 추정할 수 있다.
도 4b를 참조하면, 확률 분포 정보가 도시된다. 도 4b의 그래프의 x축은 정상 특징 데이터에 대응하는 랜덤 변수를 나타내고, y축은 확률 밀도를 나타낸다. 도 4b의 그래프의 점선 내의 영역은 정상 영역(401 내지 404)과 대응한다. 특징 분포 모델이 생성되면서 정상 특징 데이터의 평균 및 분산은 연산될 수 있고, 확률 분포 정보가 연산될 수 있다. 특징 공간의 원점 또는 원점 부근에 정상 특징 데이터가 주로 분포하고, 특징 공간의 원점 또는 원점 부근의 확률 밀도가 높다.
도 5는 일 실시예에 따른 특징 데이터를 설명하기 위한 도면이다.
도 4a의 정상 특징 데이터의 분포와 비교할 때, 특징 데이터는 특징 공간(500)의 원점을 기준으로 보다 좌측에 많이 분포할 수 있다. 특징 데이터가 정상 영역 외에 분포하는 경우, 배터리 관리 장치는 배터리에 이상(abnormality)이 발생한 것으로 결정할 수 있다.
도 6은 일 실시예에 따른 배터리 안전도의 추정을 설명하기 위한 도면이다.
도 6을 참조하면, 제1 그래프(610) 내지 제4 그래프(640)가 도시된다.
제1 그래프(610)에는 배터리의 전압 데이터가 도시된다. 일 실시예에 있어서, 배터리 관리 장치는 타임 윈도우(611)의 시간 t에서의 전압 데이터 V1과 다른 배터리의 전압 데이터 Vi를 이용하여 평균 Vaverage을 연산할 수 있고, V1-Vaverage를 이용하여 언밸런스 데이터를 획득할 수 있다. 배터리 관리 장치는 타임 윈도우(611) 내의 미리 정해진 시간 간격마다 언밸런스 데이터를 획득할 수 있다. 예를 들어, 타임 윈도우(611)의 길이가 100초이고, 1초 마다 언밸런스 데이터가 획득되는 경우, 배터리 관리 장치는 100개의 언밸런스 데이터를 획득할 수 있다. 배터리 관리 장치는 타임 윈도우(611)에 대응하는 언밸런스 데이터 셋을 획득할 수 있다. 마찬가지로, 배터리 관리 장치는 타임 윈도우(612) 및 타임 윈도우(613) 각각에 대응하는 언밸런스 데이터 셋을 획득할 수 있다.
제2 그래프(620)에는 타임 윈도우(611)에 대응하는 언밸런스 데이터 셋이 도시된다. 배터리 관리 장치는 특징 추출 모델에 언밸런스 데이터 셋을 입력할 수 있고, 특징 데이터를 획득할 수 있다. 배터리 관리 장치는 언밸런스 데이터 셋으로부터 특징 데이터를 추출할 수 있다.
제3 그래프(630)에는 정상 영역(631)이 설정된 특징 공간이 도시된다. 정상 영역(631)은 언밸런스 데이터 셋을 획득하기 이전에 미리 정의된 영역이다. 또한, 정상 영역의 경계에 대응하는 임계값이 설정될 수 있다.
제4 그래프(640)에는 배터리 위험도가 도시된다. 배터리 안전도는 배터리 위험도의 절대값으로, 배터리 안전도와 배터리 위험도는 실질적으로 동일한 척도이다. 경우에 따라, 배터리 관리 장치는 배터리 안전도 대신에 배터리 위험도를 이용하여 배터리의 이상 여부를 판단할 수 있다. 배터리 관리 장치는 특징 데이터의 분포 정보를 기초로 배터리 위험도를 추정할 수 있고, 배터리 위험도를 임계값과 비교할 수 있다. 배터리 위험도가 임계값 미만인 경우, 사용자에게 피드백이 출력될 수 있다.
도 7a 내지 도 7c는 일 실시예에 따른 제1 배터리와 제2 배터리의 배터리 안전도를 설명하기 위한 도면이다. 여기서, 제1 배터리는 정상 배터리를 나타내고, 제2 배터리는 이상 상태에 있는 배터리를 나타낸다.
도 7a를 참조하면, 박스(710)의 왼쪽 그래프는 제1 배터리의 전압 데이터를 나타내고, 오른쪽 그래프는 제1 배터리에 대응하는 언밸런스 데이터를 나타낸다. 그래프(720)의 왼쪽 그래프는 제2 배터리의 전압 데이터를 나타내고, 오른쪽 그래프는 제2 배터리에 대응하는 언밸런스 데이터를 나타낸다.
제1 배터리 및 제2 배터리의 전압 데이터는 동적으로 변화한다. 보다 구체적으로, 제1 배터리 및 제2 배터리의 전압 데이터는 충방전 패턴과 사용자 프로파일 패턴을 포함할 수 있다. 여기서, 사용자 프로파일 패턴은 전기 이동체의 사용자가 액셀 또는 브레이크를 사용한 패턴을 나타낼 수 있다.
도 7b는 제1 배터리 및 제2 배터리의 전압 데이터를 기초로 추정된 배터리 안전도를 설명하기 위한 도면이고, 도 7c는 제1 배터리 및 제2 배터리의 언밸런스 데이터를 기초로 배터리 안전도를 설명하기 위한 도면이다. 도 7b 내지 도 7c에는 배터리 위험도가 도시되어 있으나, 위에서 설명한 것과 같이, 배터리 안전도는 배터리 위험도와 실질적으로 동일한 척도이다.
도 7b를 참조하면, 제1 배터리 및 제2 배터리의 전압 데이터 각각에 대응하는 특징 데이터가 특징 공간(730)에 분포된다. 제1 배터리 및 제2 배터리 각각의 충방전 패턴과 사용자 프로파일 패턴이 제거되지 않아, 제1 배터리의 특징 데이터와 제2 배터리의 특징 데이터가 구별되지 않게 특징 공간(730)에 분포된다.
그래프(740)에는 제1 배터리 및 제2 배터리 각각의 배터리 위험도가 도시된다. 실선이 제1 배터리의 배터리 위험도이고, 점선이 제2 배터리의 배터리 위험도이다. 제1 배터리 및 제2 배터리의 배터리 위험도는 서로 구별되지 않는다. 또한, 배터리 위험도가 시간에 따라 동적으로 변화하여, 배터리 관리 장치는 배터리의 이상 여부를 정확하게 판단할 수 없다. 이로 인해, 배터리 관리 장치는 배터리 위험도를 임계값과 비교하여 배터리의 이상 여부를 정확하게 판단할 수 없다.
도 7c를 참조하면, 제1 배터리 및 제2 배터리의 언밸런스 데이터 각각에 대응하는 특징 데이터가 특징 공간(750)에 분포된다. x축을 기준으로, 제1 배터리의 특징 데이터는 -5와 0 사이에 주로 분포하고, 제2 배터리의 특징 데이터는 -15와 0 사이에 분포한다. 제2 배터리의 특징 데이터의 경우, 제1 배터리의 특징 데이터보다 좌측으로 편향되게 분포한다. 제1 배터리의 특징 데이터와 제2 배터리의 특징 데이터가 구별되게 특징 공간(730)에 분포된다.
배터리 관리 장치는 물리량의 충방전 패턴과 사용자 프로파일 패턴과 같은 동적 변화 패턴을 제거할 수 있다. 보다 구체적으로, 배터리 팩에 직렬로 연결된 복수의 배터리 모듈의 전류값은 동일하다. 또는, 하나의 배터리 모듈에 직렬로 연결된 배터리 셀의 전류값은 동일하다. 전압 데이터의 동적 변화는 요구 전력에 따른 전류의 변화와 배터리의 내부 저항의 변화에 의해 발생한다. 전류가 변화하면, 복수의 배터리 셀의 전압 데이터가 공통적으로 변화한다. 달리 표현하면, 전류가 변화하면, 복수의 배터리 모듈 각각의 전압 데이터는 공통적인 동적 변화 패턴을 포함한다. 이로 인해, 복수의 배터리 모듈 사이의 전압 차이가 연산되는 경우, 공통적인 동적 변화 패턴이 제거될 수 있다. 전압 차이는 전류의 변화와 무관하고 복수의 배터리 모듈의 내부 저항 사이의 차이와 비례할 수 있다.
제1 배터리 및 제2 배터리의 언밸런스 데이터는 제1 배터리 및 제2 배터리의 물리량의 동적 변화 패턴이 제거되어, 제1 배터리 및 제2 배터리의 특징 데이터는 구별되게 분포될 수 있다.
그래프(760)에는 제1 배터리 및 제2 배터리 각각의 배터리 위험도가 도시된다. 제1 배터리의 배터리 위험도는 영역(761)에 속하고, 제2 배터리의 배터리 위험도는 영역(762)에 속한다. 여기서, 영역(761)은 정상 영역이고, 영역(762)은 이상 영역이다. 임계값을 기초로 제1 배터리의 배터리 위험도와 제2 배터리의 배터리 위험도가 구분된다. 언밸런스 데이터로부터 추출된 특징 데이터를 이용하는 경우, 배터리 관리 장치는 배터리의 이상 여부를 정확하게 판단할 수 있다.
도 8은 일 실시예에 따른 배터리 관리 방법의 다른 일례를 설명하기 위한 순서도이다.
도 8에 도시된 배터리 관리 방법은 배터리 관리 장치에 의해 수행될 수 있다. 단계(810) 내지 단계(850)은 도 2에 도시된 단계(210) 내지 단계(250)과 동일하여, 상세한 설명은 생략한다.
배터리 관리 장치는 배터리 안전도가 제1 임계값 미만인지 확인할 수 있다(860). 배터리 안전도가 제1 임계값 미만인 경우, 배터리 관리 장치는 배터리 안전도가 제2 임계값보다 큰 지 확인할 수 있다(870). 여기서, 배터리 안전도가 제2 임계값보다 큰 경우, 배터리 관리 장치는 셀 밸런싱을 수행할 수 있다(880). 또한, 배터리 안전도가 제2 임계값 이하인 경우, 배터리 관리 장치는 피드백의 출력을 위한 제어 신호를 생성할 수 있다(890). 여기서, 배터리 관리 장치는 제어 신호를 생성하면서 셀 밸런싱을 수행할 수 있다.
도 9는 일 실시예에 따른 배터리 관리 방법의 또 다른 일례를 설명하기 위한 순서도이다.
도 9에 도시된 배터리 관리 방법은 배터리 관리 장치에 의해 수행될 수 있다.
배터리 관리 장치는 복수의 배터리의 물리량을 기초로 연산된 물리량 차이 정보를 이용하여 언밸런스 데이터를 획득한다(910). 예를 들어, 배터리 관리 장치는 타임 윈도우 사이즈만큼의 물리량 차이 정보를 이용하여 언밸런스 데이터를 획득할 수 있고, 타임 윈도우 사이즈에 대응하는 사이즈를 갖는 버퍼에 언밸런스 데이터를 저장할 수 있다.
일 실시예에 있어서, 배터리 관리 장치는 물리량과 다른 속성을 갖는 제2 물리량을 기초로 제2 물리량 차이 정보를 연산할 수 있고, 제2 물리량 차이 정보를 더 이용하여 언밸런스 데이터를 획득할 수 있다.
배터리 관리 장치는 특징 추출 모델을 이용하여 언밸런스 데이터로부터 특징 데이터를 추출한다(920). 여기서, 특징 추출 모델은 정상 배터리 데이터의 차이 정보를 기초로 획득된 밸런스 데이터의 특징을 추출하기 위해 미리 정의된 모델일 수 있다.
배터리 관리 장치는 특징 데이터가 분포하는 특징 공간의 정상 영역을 정의하기 위해 모델링된 특징 분포 모델과 특징 데이터 사이의 유사도(a degree of similarity)를 추정한다(930). 여기서, 특징 분포 모델은 특징 추출 모델이 추출한 특징에 대응하는 정상 특징 데이터의 분포 정보를 기초로 생성될 수 있다. 배터리의 동작이 이상 현상을 나타내지 않는 경우, 유사도는 높을 수 있고, 배터리의 동작이 이상 현상을 나타내는 경우, 유사도는 낮을 수 있다. 배터리 관리 장치는 유사도를 추정하기 위해 유사도에 대응하는 수치값을 연산할 수 있다.
배터리 관리 장치는 유사도를 기초로 배터리 상태(battery state)를 판단한다(940). 배터리 상태는, 예를 들어, 정상 상태 또는 이상 상태일 수 있다. 배터리 관리 장치는 수치값과 임계값을 비교하여 배터리 상태를 판단할 수 있다. 예를 들어, 배터리 관리 장치는 정상 특징 데이터의 확률 분포 정보를 이용하여 특징 데이터의 분포 정보에 대응하는 확률 데이터를 연산할 수 있다. 배터리 관리 장치는 확률 데이터와 임계 확률을 비교할 수 있고, 확률 데이터가 임계 확률보다 작은 경우, 배터리 관리 장치는 배터리가 이상 상태에 있다고 판단할 수 있다. 다른 일례로, 배터리 관리 장치는 정상 영역의 기준점과 특징 데이터의 분포 정보에 대응하는 분포 위치 사이의 거리를 연산할 수 있다. 배터리 관리 장치는 거리와 임계 거리를 비교할 수 있고, 거리가 임계 거리보다 큰 경우, 배터리 관리 장치는 배터리가 이상 상태에 있다고 판단할 수 있다.
일 실시예에 있어서, 수치값이 제1 임계값보다 작고, 제2 임계값 이상인 경우, 배터리 관리 장치는 셀 밸런싱이 필요한 것으로 판단할 수 있다.
도 1 내지 도 8을 통해 기술된 사항들은 도 9를 통해 기술된 사항들에 적용될 수 있으므로, 상세한 설명은 생략한다.
도 10은 일 실시예에 따른 배터리 관리 장치의 일례를 설명하기 위한 블록도이다.
도 10을 참조하면, 일 실시예에 따른 배터리 관리 장치(1000)는 인터페이스(1010), 프로세서(1020), 및 메모리(1030)를 포함한다.
센서는 복수의 배터리의 물리량을 수집할 수 있고, 수집된 물리량을 인터페이스(1010)로 전달할 수 있다. 인터페이스(1010)는 복수의 물리량을 수신한다. 여기서, 물리량은 동적으로 변화할 수 있다.
프로세서(1020)는 물리량을 기초로 연산된 물리량 차이 정보를 이용하여 언밸런스 데이터를 획득한다. 또한, 프로세서(1020)는 언밸런스 데이터를 특징 공간에 사영하여 특징 데이터를 획득하고, 특징 데이터의 분포 정보를 기초로 배터리 안전도를 추정한다.
메모리(1030)는 특징 데이터를 획득하기 위해 사용되는 특징 추출 모델과 배터리 안전도의 추정을 위해 사용되는 특징 분포 모델을 저장한다.
프로세서(1020)는 도 1 내지 도 9를 통해 기술된 배터리 관리 방법을 구현할 수 있다. 이 때, 프로세서(1020)는 메모리(1030)를 참조하면서 배터리 관리 방법을 구현할 수 있다.
도 1 내지 도 9를 통해 기술된 사항들은 도 10을 통해 기술된 사항들에 적용될 수 있으므로, 상세한 설명은 생략한다.
도 11은 일 실시예에 따른 배터리 관리 장치의 다른 일례를 설명하기 위한 도면이다.
배터리 관리 장치(1100)는 물리량 수집부(1110), 언밸런스 데이터 획득부(1120), 특징 데이터 획득부(1140), 특징 추출 모델(1150), 특징 분포 모델(1160), 및 배터리 안전도 추정부(1170)를 포함한다.
물리량 수집부(1110)는 배터리부(1180)의 물리량을 수신한다. 배터리부(1180)는 복수의 배터리 모듈(1181 내지 1183)을 포함할 수 있다. 복수의 배터리 모듈(1181 내지 1183) 각각의 물리량을 센싱하는 센서는 배터리부(1180)의 내부 또는 외부에 위치할 수 있다. 하나의 센서가 복수의 배터리 모듈(1181 내지 1183)에 연결되어, 복수의 배터리 모듈(1181 내지 1183) 각각의 물리량을 센싱할 수 있다. 또한, 복수의 배터리 모듈(1181 내지 1183) 각각에 대응하는 센서가 대응 배터리 모듈의 물리량을 센싱할 수 있다. 센서는 물리량을 물리량 수집부(1110)로 전달할 수 있다.
물리량 수집부(1110)는 복수의 배터리 모듈(1181 내지 1183) 각각에 포함된 하나 또는 복수의 배터리 셀의 물리량을 수신할 수 있다. 복수의 배터리 모듈(1181 내지 1183) 각각은 셀 모니터를 포함할 수 있고, 셀 모니터는 하나 또는 복수의 배터리 셀의 물리량을 센싱하여 물리량 수집부(1110)로 전달할 수 있다.
언밸런스 데이터 획득부(1120), 특징 데이터 획득부(1140), 및 배터리 안전도 추정부(1170)는 도 10의 프로세서에 의해 구현될 수 있고, 특징 추출 모델(1150) 및 특징 분포 모델(1160)은 도 10의 메모리에 저장될 수 있다.
도 1 내지 도 10을 통해 기술된 사항들은 도 11을 통해 기술된 사항들에 적용될 수 있으므로, 상세한 설명을 생략한다.
도 12는 일 실시예에 따른 배터리 관리 장치의 동작을 설명하기 위한 도면이다.
일 실시예에 따른 배터리 관리 장치는 전기 이동체와 같은 물리적 어플리케이션에 포함될 수 있고, 물리적 어플리케이션에 포함된 배터리 팩 또는 배터리 모듈의 이상 여부를 판단할 수 있다. 예를 들어, 도 12에 도시된 것과 같이, 전기 자동차가 주행하는 동안, 배터리 관리 장치는 배터리 모듈 또는 배터리 셀의 물리량을 기초로 물리량 차이 정보를 연산할 수 있고, 물리량 차이 정보를 이용하여 언밸런스 데이터를 획득할 수 있다. 전기 자동차가 주행하는 경우, 물리량은 전기 자동차의 주행 패턴을 포함할 수 있다. 도 7a에 도시된 예와 같이, 주행하는 동안 전달받은 물리량은 충방전 패턴과 사용자 프로파일 패턴을 포함할 수 있다. 주행 패턴이 포함하는 물리량을 이용하여 특징 데이터가 획득되면, 배터리 상태 판단에 대한 정확도가 감소한다. 일 실시예에 따른 배터리 관리 장치는 주행 패턴을 포함하는 물리량을 기초로 물리량 차이 정보를 연산하고, 물리량 차이 정보를 이용하여 언밸런스 데이터를 획득하며, 언밸런스 데이터로부터 추출된 특징 데이터를 이용하여 배터리 상태를 판단할 수 있다.
전술한 물리적 어플리케이션은 예시적인 사항일 뿐, 물리적 어플리케이션은 전술한 예로 제한되지 않는다. 배터리 관리 장치는 전기 이동체뿐 아니라 배터리를 사용하는 모든 물리적 어플리케이션에 적용될 수 있다. 예를 들어, 배터리 관리 장치는 노트북, 태블릿 컴퓨터, 스마트 폰, 또는 웨어러블 디바이스 등 다양한 형태의 물리적 어플리케이션에 적용될 수 있다.
배터리 상태가 이상 상태로 판단된 경우, 전기 자동차의 컨트롤러는 계기판에 시각적 피드백을 출력할 수 있고, 소리의 청각적 피드백을 출력할 수 있다.
일 실시예에 따른 배터리 관리 장치는 전기 자동차가 주행하는 동안 배터리의 이상 여부를 판단할 수 있고, 배터리의 이상에 의한 사고 위험을 낮출 수 있으며, 배터리의 이상 감지에 대한 신뢰성을 높일 수 있다.
일 실시예에 따르면, 배터리 관리 장치는 칩(chip) 형태로 구현되어 ECU(Electric Control Unit)에 탑재될 수 있다. 또한, 배터리 관리 장치는 물리적 board 또는 unit 형태로 구현되어 ECU와 통신할 수 있다. 또한, 배터리 관리 장치는 전기 자동차(또는 하이브리드 자동차) 또는 에너지 저장 장치(Energy Storage System; ESS)와 같은 대용량 배터리 관리 시스템에 탑재될 수 있다. 또한, 배터리 관리 장치는 충전 가능(rechargeable) 배터리가 탑재되는 전자기기 또는 기기 관리 시스템에 탑재될 수 있다.
또한, 일 실시예에 따르면, 배터리 관리 방법은 펌웨어 또는 운영 체제(Operating System) 상에서 소프트웨어로 구현될 수 있다.
실시예에 따른 방법은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 실시예를 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 상기된 하드웨어 장치는 실시예의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
이상과 같이 실시예들이 비록 한정된 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기를 기초로 다양한 기술적 수정 및 변형을 적용할 수 있다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.
그러므로, 다른 구현들, 다른 실시예들 및 청구범위와 균등한 것들도 후술하는 청구범위의 범위에 속한다.
Claims (20)
- 배터리 관리 장치에 의해 수행되는 배터리 관리 방법에 있어서,
복수의 배터리의 동적으로 변화하는 물리량을 기초로 연산된 물리량 차이 정보를 이용하여 언밸런스 데이터를 획득하는 단계;
상기 언밸런스 데이터를 특징 공간에 사영하여 특징 데이터를 획득하는 단계;
상기 특징 공간에서 상기 특징 데이터가 분포한 분포 정보를 결정하는 단계; 및
이상 현상이 없는 정상 배터리의 정상 특징 데이터가 상기 특징 공간 상에서 분포한 분포 정보 및 상기 결정된 분포 정보 사이의 비교 결과를 기초로 배터리 안전도를 추정하는 단계
를 포함하는,
배터리 관리 방법.
- 제1항에 있어서,
상기 배터리 안전도를 추정하는 단계는,
상기 특징 데이터가 정상 영역에 분포하는지 여부를 확인하는 단계
를 포함하는,
배터리 관리 방법.
- 제2항에 있어서,
상기 정상 영역은,
정상 배터리 데이터의 차이 정보를 기초로 획득된 밸런스 데이터의 특징에 대응하는 상기 정상 특징 데이터의 분포 정보가 이용되어 설정된 영역인,
배터리 관리 방법.
- 제2항에 있어서,
상기 배터리 안전도를 추정하는 단계는,
상기 정상 특징 데이터의 확률 분포 정보를 이용하여 상기 분포 정보에 대응하는 확률 데이터를 연산하는 단계
를 포함하는,
배터리 관리 방법.
- 제1항에 있어서,
상기 배터리 안전도를 추정하는 단계는,
정상 영역의 기준점과 상기 분포 정보에 대응하는 분포 위치 사이의 거리를 연산하는 단계
를 포함하는,
배터리 관리 방법.
- 제1항에 있어서,
상기 특징 데이터를 획득하는 단계는,
특징 추출 모델을 이용하여 상기 특징 데이터를 상기 특징 공간으로 사영하는 단계
를 포함하고,
상기 특징 추출 모델은,
정상 배터리 데이터의 차이 정보를 기초로 획득된 밸런스 데이터의 특징을 추출하기 위해 미리 정의된 모델인,
배터리 관리 방법.
- 제6항에 있어서,
상기 배터리 안전도를 추정하는 단계는,
상기 특징 추출 모델이 추출한 특징에 대응하는 상기 정상 특징 데이터의 분포 정보를 기초로 미리 모델링된 특징 분포 모델을 이용하여 상기 분포 정보를 확인하는 단계를 포함하는,
배터리 관리 방법.
- 제1항에 있어서,
상기 배터리 안전도와 임계값을 비교하고, 비교 결과에 대응하는 피드백의 출력을 위한 제어 신호를 생성하는 단계
를 더 포함하는,
배터리 관리 방법.
- 제1항에 있어서,
상기 배터리 안전도를 제1 임계값과 비교하고, 상기 배터리 안전도가 상기 제1 임계값보다 작은 경우, 상기 배터리 안전도를 제2 임계값과 비교하는 단계; 및
상기 배터리 안전도가 상기 제2 임계값 이상인 경우, 셀 밸런싱을 수행하고, 상기 배터리 안전도가 상기 제2 임계값보다 작은 경우, 피드백의 출력을 위한 제어 신호를 생성하는 단계
를 더 포함하는,
배터리 관리 방법.
- 제1항에 있어서,
상기 언밸런스 데이터를 획득하는 단계는,
타임 윈도우 사이즈만큼의 상기 물리량 차이 정보를 이용하여 상기 언밸런스 데이터를 획득하는 단계
를 포함하고,
상기 언밸런스 데이터를 상기 타임 윈도우 사이즈에 대응하는 사이즈를 갖는 버퍼에 저장하는 단계
를 더 포함하는,
배터리 관리 방법.
- 제1항에 있어서,
상기 언밸런스 데이터를 획득하는 단계는,
상기 물리량과 다른 속성을 갖는 제2 물리량을 기초로 연산된 제2 물리량 차이 정보를 더 이용하여 상기 언밸런스 데이터를 획득하는 단계
를 포함하는,
배터리 관리 방법.
- 제1항에 있어서,
상기 언밸런스 데이터는,
상기 물리량의 평균값과 상기 복수의 배터리 각각의 물리량 사이의 차이를 나타내는 제1 차이 정보 또는 상기 제1 차이 정보의 평균값;
상기 물리량의 최대값과 최소값 사이의 차이를 나타내는 제2 차이 정보;
상기 복수의 배터리 각각의 물리량과 상기 최대값 사이의 차이를 나타내는 제3 차이 정보 또는 상기 제3 차이 정보의 평균값; 및
상기 복수의 배터리 각각의 물리량과 상기 최소값 사이의 차이를 나타내는 제4 차이 정보 또는 상기 제4 차이 정보의 평균값
중 적어도 하나를 포함하는,
배터리 관리 방법.
- 배터리 관리 장치에 의해 수행되는 배터리 관리 방법에 있어서,
복수의 배터리의 물리량을 기초로 연산된 물리량 차이 정보를 이용하여 언밸런스 데이터를 획득하는 단계;
특징 추출 모델을 이용하여 상기 언밸런스 데이터로부터 특징 데이터를 추출하는 단계;
상기 특징 데이터가 분포하는 특징 공간의 정상 영역을 정의하기 위해 모델링된 특징 분포 모델과 상기 특징 데이터 사이의 유사도를 추정하는 단계; 및
상기 유사도를 기초로 배터리 상태를 판단하는 단계
를 포함하고,
상기 유사도를 추정하는 단계는,
이상 현상이 없는 정상 배터리의 정상 특징 데이터가 상기 특징 공간 상에서 분포한 분포 정보 및 상기 특징 데이터가 상기 특징 공간 상에서 분포한 분포 정보 사이의 비교 결과를 통해 상기 유사도를 추정하는 단계
를 포함하는,
배터리 관리 방법.
- 제13항에 있어서,
상기 특징 추출 모델은,
정상 배터리 데이터의 차이 정보를 기초로 획득된 밸런스 데이터의 특징을 추출하기 위해 미리 정의된 모델이고,
상기 특징 분포 모델은,
상기 특징 추출 모델이 추출한 특징에 대응하는 상기 정상 특징 데이터의 분포 정보를 기초로 생성된 모델인,
배터리 관리 방법.
- 제14항에 있어서,
상기 유사도를 추정하는 단계는,
상기 정상 특징 데이터의 확률 분포 정보를 이용하여 상기 특징 데이터의 상기 분포 정보에 대응하는 확률 데이터를 연산하는 단계
를 포함하는,
배터리 관리 방법.
- 제13항에 있어서,
상기 유사도를 추정하는 단계는,
상기 정상 영역의 기준점과 상기 특징 데이터의 상기 분포 정보에 대응하는 분포 위치 사이의 거리를 연산하는 단계
를 포함하는,
배터리 관리 방법.
- 제13항에 있어서,
상기 유사도를 추정하는 단계는,
상기 유사도에 대응하는 수치값을 제1 임계값과 비교하고, 상기 수치값이 상기 제1 임계값보다 작은 경우, 상기 수치값을 제2 임계값과 비교하는 단계
를 포함하고,
상기 배터리 상태를 판단하는 단계는,
상기 수치값이 상기 제2 임계값 이상인 경우, 셀 밸런싱이 필요한 것으로 판단하고, 상기 수치값이 상기 제2 임계값보다 작은 경우, 상기 배터리 상태를 이상 상태로 판단하는 단계
를 더 포함하는,
배터리 관리 방법.
- 제13항에 있어서,
상기 언밸런스 데이터를 획득하는 단계는,
타임 윈도우 사이즈만큼의 상기 물리량 차이 정보를 이용하여 상기 언밸런스 데이터를 획득하는 단계
를 포함하고,
상기 언밸런스 데이터를 상기 타임 윈도우 사이즈에 대응하는 사이즈를 갖는 버퍼에 저장하는 단계
를 더 포함하는,
배터리 관리 방법.
- 제13항에 있어서,
상기 언밸런스 데이터를 획득하는 단계는,
상기 물리량과 다른 속성을 갖는 제2 물리량을 기초로 획득된 제2 물리량 차이 정보를 더 이용하여 상기 언밸런스 데이터를 획득하는 단계
를 포함하는,
배터리 관리 방법.
- 복수의 배터리의 동적으로 변화하는 물리량을 수신하는 인터페이스; 및
상기 물리량을 기초로 연산된 물리량 차이 정보를 이용하여 언밸런스 데이터를 획득하고, 상기 언밸런스 데이터를 특징 공간에 사영하여 특징 데이터를 획득하며, 상기 특징 공간에서 상기 특징 데이터가 분포한 분포 정보를 결정하고, 이상 현상이 없는 정상 배터리의 정상 특징 데이터가 상기 특징 공간 상에서 분포한 분포 정보 및 상기 결정된 분포 정보 사이의 비교 결과를 기초로 배터리 안전도를 추정하는 프로세서
를 포함하는,
배터리 관리 장치.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150153400A KR102559199B1 (ko) | 2015-11-02 | 2015-11-02 | 배터리 관리 방법 및 배터리 관리 장치 |
US15/278,547 US10468892B2 (en) | 2015-11-02 | 2016-09-28 | Battery management method and apparatus |
JP2016211850A JP7046481B2 (ja) | 2015-11-02 | 2016-10-28 | バッテリ管理方法及びバッテリ管理装置 |
CN201610943285.1A CN106654405B (zh) | 2015-11-02 | 2016-11-01 | 电池管理方法和设备 |
EP16196803.7A EP3162609B1 (en) | 2015-11-02 | 2016-11-02 | Battery management method and apparatus |
US16/581,861 US10940761B2 (en) | 2015-11-02 | 2019-09-25 | Battery management method and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150153400A KR102559199B1 (ko) | 2015-11-02 | 2015-11-02 | 배터리 관리 방법 및 배터리 관리 장치 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20170051059A KR20170051059A (ko) | 2017-05-11 |
KR102559199B1 true KR102559199B1 (ko) | 2023-07-25 |
Family
ID=57389186
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020150153400A KR102559199B1 (ko) | 2015-11-02 | 2015-11-02 | 배터리 관리 방법 및 배터리 관리 장치 |
Country Status (5)
Country | Link |
---|---|
US (2) | US10468892B2 (ko) |
EP (1) | EP3162609B1 (ko) |
JP (1) | JP7046481B2 (ko) |
KR (1) | KR102559199B1 (ko) |
CN (1) | CN106654405B (ko) |
Families Citing this family (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6569490B2 (ja) * | 2015-11-17 | 2019-09-04 | オムロン株式会社 | バッテリパックおよびこれを備えたバッテリシステム、バッテリパックの用途判別方法 |
US10361567B2 (en) * | 2016-02-05 | 2019-07-23 | Indian Institute Of Technology Madras (Iitm) | Complementary engagement of battery banks to augment life, performance and capacity of energy storage system |
CN106849248A (zh) * | 2017-03-02 | 2017-06-13 | 南京交通职业技术学院 | 一种车辆蓄电池电压不平衡状态指示装置 |
CN108957326B (zh) * | 2017-05-23 | 2020-07-07 | 中国石油化工股份有限公司 | 一种用于随钻电池的安全检测装置 |
KR102155331B1 (ko) * | 2017-07-06 | 2020-09-11 | 주식회사 엘지화학 | 무선 배터리 관리 시스템 및 이를 포함하는 배터리팩 |
CN109791179B (zh) | 2017-08-25 | 2021-08-06 | Oppo广东移动通信有限公司 | 终端设备、适配器、电池安全监控方法和监控系统 |
CN110015190B (zh) * | 2017-08-31 | 2021-02-23 | 比亚迪股份有限公司 | 电池均衡方法、系统、车辆、存储介质及电子设备 |
US10878090B2 (en) * | 2017-10-18 | 2020-12-29 | AO Kaspersky Lab | System and method of detecting malicious files using a trained machine learning model |
KR102530221B1 (ko) | 2017-11-28 | 2023-05-09 | 삼성전자주식회사 | 배터리 관리 방법 및 장치 |
US10933825B2 (en) * | 2017-12-28 | 2021-03-02 | Thermo King Corporation | Operation of vehicle accessories based on predicted runtime of a primary system |
TWI651881B (zh) * | 2018-01-04 | 2019-02-21 | 大有能源科技有限公司 | 電動載具之電池穩定充電及延長供電時效之充電方法 |
JPWO2019243950A1 (ja) * | 2018-06-22 | 2021-07-26 | 株式会社半導体エネルギー研究所 | 蓄電装置の異常検知方法、及び蓄電装置の制御装置 |
US11453309B2 (en) * | 2018-09-06 | 2022-09-27 | Artisan Vehicle Systems, Inc. | Electric power distribution system and method for electric mining machine |
CN109274151B (zh) * | 2018-10-12 | 2020-05-26 | 国网浙江省电力有限公司信息通信分公司 | 一种蓄电池智能远程维护系统 |
CN109270461A (zh) * | 2018-10-15 | 2019-01-25 | 四川长虹电器股份有限公司 | 基于贝叶斯网络的故障检测方法 |
CN109765490B (zh) * | 2018-11-12 | 2020-08-04 | 北京理工大学 | 一种基于高维数据诊断的动力电池故障检测方法及系统 |
KR102687127B1 (ko) * | 2019-05-15 | 2024-07-23 | 에스케이온 주식회사 | Bms 장치 및 그 제어 방법 |
WO2021054719A1 (en) * | 2019-09-19 | 2021-03-25 | Samsung Electronics Co., Ltd. | A method and system for battery-management in devices |
TWI718783B (zh) * | 2019-11-28 | 2021-02-11 | 新普科技股份有限公司 | 以視覺化圖像建立電池狀態模型的方法 |
JP2021086816A (ja) * | 2019-11-29 | 2021-06-03 | パナソニックIpマネジメント株式会社 | 電池情報管理装置、電池情報管理方法、および電池情報管理システム |
JP7314822B2 (ja) * | 2020-02-06 | 2023-07-26 | トヨタ自動車株式会社 | バッテリ劣化判定装置、バッテリ劣化判定方法、及びバッテリ劣化判定プログラム |
JP7497163B2 (ja) | 2020-02-13 | 2024-06-10 | 株式会社デンソーテン | 異常検出装置および異常検出方法 |
CN111426955B (zh) * | 2020-04-23 | 2021-06-08 | 华南理工大学 | 一种锂离子电池故障诊断方法 |
KR102701517B1 (ko) * | 2020-07-15 | 2024-08-30 | 주식회사 엘지에너지솔루션 | 배터리 관리 장치, 배터리 팩, 에너지 저장 시스템 및 배터리 관리 방법 |
TWI751934B (zh) * | 2020-07-31 | 2022-01-01 | 財團法人工業技術研究院 | 電池管理系統的測試設備和測試方法 |
CN114089189A (zh) | 2020-07-31 | 2022-02-25 | 财团法人工业技术研究院 | 电池管理系统的测试设备和测试方法 |
CN111967192B (zh) * | 2020-08-24 | 2023-12-22 | 哈尔滨理工大学 | 一种基于朴素贝叶斯的电池安全度估算方法 |
CN111983473B (zh) * | 2020-08-24 | 2023-03-10 | 哈尔滨理工大学 | 一种基于支持向量机的锂离子动力电池安全度评估方法及装置 |
CN111983475B (zh) * | 2020-08-24 | 2022-12-30 | 哈尔滨理工大学 | 一种基于隐马尔科夫的锂离子动力电池安全度评估方法及装置 |
CN111959281A (zh) * | 2020-09-01 | 2020-11-20 | 郑州飞轮威尔实业有限公司 | 一种基于物联网的电动自行车电池安全管理系统 |
KR102304395B1 (ko) * | 2020-10-16 | 2021-09-23 | 김창인 | 배터리팩 이상 상태 관리 방법 |
CN112590553A (zh) * | 2020-12-21 | 2021-04-02 | 凯博能源科技有限公司 | 电池箱、电动汽车及电池箱热失控控制方法 |
DE102021101757A1 (de) * | 2021-01-27 | 2022-07-28 | TWAICE Technologies GmbH | Big-Data für Fehlererkennung in Batteriesystemen |
CN112937369B (zh) * | 2021-02-01 | 2022-10-11 | 合肥国轩高科动力能源有限公司 | 一种基于马氏过程的动力电池组主动均衡控制方法 |
CN113022378B (zh) * | 2021-03-01 | 2023-03-07 | 中国第一汽车股份有限公司 | 温度一致性预测方法、装置、预测设备及存储介质 |
KR102515853B1 (ko) * | 2021-03-04 | 2023-03-31 | 한국전자기술연구원 | 배터리 셀 단위를 기반으로 하는 이상 진단 장치, 시스템 및 방법 |
CN112986829B (zh) * | 2021-04-21 | 2021-07-20 | 杭州宇谷科技有限公司 | 基于大数据及云计算的电池压差异常阈值确认方法及系统 |
CN113805066B (zh) * | 2021-09-20 | 2023-08-18 | 哈尔滨工业大学(威海) | 一种基于改进欧氏距离相似度的串联电池组多故障诊断方法 |
CN114167292B (zh) * | 2021-12-08 | 2023-10-27 | 章鱼博士智能技术(上海)有限公司 | 一种电池包的电池参数确定方法及装置、电子设备 |
CN115825790B (zh) * | 2022-01-29 | 2023-10-17 | 宁德时代新能源科技股份有限公司 | 电池绝缘故障的预警方法、装置、系统和计算机设备 |
KR20240030553A (ko) * | 2022-08-31 | 2024-03-07 | 주식회사 엘지에너지솔루션 | 이상 배터리 검출 장치 및 방법 |
CN117849653B (zh) * | 2024-03-08 | 2024-05-07 | 备倍电科技(深圳)有限公司 | 一种基于电源管理的工作状态监测方法及系统 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011076746A (ja) * | 2009-09-29 | 2011-04-14 | Mitsubishi Heavy Ind Ltd | 二次電池異常予見システム |
JP2012058890A (ja) * | 2010-09-07 | 2012-03-22 | Hitachi Ltd | 異常検知方法及びそのシステム |
JP2013013268A (ja) * | 2011-06-30 | 2013-01-17 | Toyota Industries Corp | セルバランス装置 |
Family Cites Families (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4633418A (en) | 1984-07-11 | 1986-12-30 | The United States Of America As Represented By The Secretary Of The Air Force | Battery control and fault detection method |
JP3237229B2 (ja) | 1992-09-09 | 2001-12-10 | 株式会社日立製作所 | 二次電池システム |
JP3598873B2 (ja) * | 1998-08-10 | 2004-12-08 | トヨタ自動車株式会社 | 二次電池の状態判定方法及び状態判定装置、並びに二次電池の再生方法 |
US6377024B1 (en) | 2001-03-23 | 2002-04-23 | The Boeing Company | Method and system for charge equalization of lithium-ion batteries |
US7227335B2 (en) * | 2003-07-22 | 2007-06-05 | Makita Corporation | Method and apparatus for diagnosing the condition of a rechargeable battery |
CN1867966B (zh) * | 2003-10-03 | 2012-05-30 | 旭化成株式会社 | 数据处理单元、模式模型搜索单元和特定模式模型提供系统 |
JP2006048945A (ja) | 2004-07-30 | 2006-02-16 | Sanyo Electric Co Ltd | 燃料電池システムおよび燃料電池の制御方法 |
JP5050325B2 (ja) * | 2005-07-12 | 2012-10-17 | 日産自動車株式会社 | 組電池用制御装置 |
US7728839B2 (en) * | 2005-10-28 | 2010-06-01 | Honda Motor Co., Ltd. | Discriminative motion modeling for human motion tracking |
WO2007105595A1 (ja) * | 2006-03-10 | 2007-09-20 | Shin-Kobe Electric Machinery Co., Ltd. | 電池状態判定装置 |
FI118656B (fi) * | 2006-05-05 | 2008-01-31 | Finnish Electric Vehicle Techn | Menetelmä ja laitteisto akkukennojen hoitamiseksi |
JP2007311255A (ja) * | 2006-05-19 | 2007-11-29 | Fuji Electric Systems Co Ltd | 組電池状態測定装置、組電池劣化判定方法および組電池劣化判定プログラム |
KR100986870B1 (ko) * | 2007-10-23 | 2010-10-08 | 삼성에스디아이 주식회사 | 연료전지 시스템 및 그 연료량 판단 방법 |
US8163411B2 (en) * | 2007-11-21 | 2012-04-24 | Denso Corporation | Abnormality detection apparatus for battery pack |
JP5459649B2 (ja) * | 2008-03-25 | 2014-04-02 | 株式会社東芝 | 組電池の充電方法及び組電池システム |
JP4816743B2 (ja) | 2009-02-17 | 2011-11-16 | ソニー株式会社 | 電池パックおよび検出方法 |
WO2010109956A1 (ja) * | 2009-03-27 | 2010-09-30 | 株式会社日立製作所 | 蓄電装置 |
US8330420B2 (en) * | 2009-04-10 | 2012-12-11 | The Regents Of The University Of Michigan | Dynamically reconfigurable framework for a large-scale battery system |
WO2011037257A1 (ja) | 2009-09-28 | 2011-03-31 | 日立ビークルエナジー株式会社 | 電池システム |
JP2011135657A (ja) * | 2009-12-22 | 2011-07-07 | Sanyo Electric Co Ltd | バッテリシステム及びこれを備える車両並びにバッテリシステムの電流制限状態検出方法 |
JP5143185B2 (ja) * | 2010-02-08 | 2013-02-13 | 三洋電機株式会社 | 電源装置 |
CN102299529B (zh) | 2010-06-25 | 2014-04-02 | 凹凸电子(武汉)有限公司 | 电池组管理系统、电动车及管理电池组的方法 |
US8219333B2 (en) | 2010-06-29 | 2012-07-10 | O2Micro, Inc | Battery management systems for protecting batteries from fault conditions |
US9559530B2 (en) * | 2010-11-02 | 2017-01-31 | Navitas Solutions | Fault tolerant wireless battery area network for a smart battery management system |
US9177466B2 (en) * | 2011-01-20 | 2015-11-03 | Indiana University Research And Technology Corporation | Advanced battery early warning and monitoring system |
US20130108898A1 (en) * | 2011-10-26 | 2013-05-02 | Eetrex, Inc. | Modular battery control system architecture |
US9041243B2 (en) | 2011-12-09 | 2015-05-26 | Honda Motor Co., Ltd. | Power control apparatus |
KR20130075379A (ko) | 2011-12-27 | 2013-07-05 | 넥스콘 테크놀러지 주식회사 | 전기 자동차용 배터리 팩의 셀 균등 제어 방법 |
US10556510B2 (en) * | 2012-04-27 | 2020-02-11 | California Institute Of Technology | Accurate assessment of the state of charge of electrochemical cells |
JP6111275B2 (ja) * | 2013-02-05 | 2017-04-05 | 日立オートモティブシステムズ株式会社 | 電池制御装置 |
US20140278169A1 (en) | 2013-03-12 | 2014-09-18 | Samsung Sdi Co., Ltd. | Apparatus for predicting state of health of battery pack by using discrete wavelet transform |
JP6050198B2 (ja) * | 2013-08-26 | 2016-12-21 | トヨタ自動車株式会社 | 蓄電システム |
US10063066B2 (en) * | 2014-01-07 | 2018-08-28 | Utah State University | Battery control |
US9272634B2 (en) * | 2014-02-20 | 2016-03-01 | Ford Global Technologies, Llc | Active battery system estimation request generation |
GB2528290A (en) * | 2014-07-16 | 2016-01-20 | John Leslie Gordon Hardy | Battery management |
GB2518759A (en) * | 2014-09-29 | 2015-04-01 | Daimler Ag | Battery management system for a motor vehicle |
US9847658B2 (en) * | 2014-12-31 | 2017-12-19 | Meridian Design, Inc. | Systems and methods for performing battery management |
-
2015
- 2015-11-02 KR KR1020150153400A patent/KR102559199B1/ko active IP Right Grant
-
2016
- 2016-09-28 US US15/278,547 patent/US10468892B2/en active Active
- 2016-10-28 JP JP2016211850A patent/JP7046481B2/ja active Active
- 2016-11-01 CN CN201610943285.1A patent/CN106654405B/zh active Active
- 2016-11-02 EP EP16196803.7A patent/EP3162609B1/en active Active
-
2019
- 2019-09-25 US US16/581,861 patent/US10940761B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011076746A (ja) * | 2009-09-29 | 2011-04-14 | Mitsubishi Heavy Ind Ltd | 二次電池異常予見システム |
JP2012058890A (ja) * | 2010-09-07 | 2012-03-22 | Hitachi Ltd | 異常検知方法及びそのシステム |
JP2013013268A (ja) * | 2011-06-30 | 2013-01-17 | Toyota Industries Corp | セルバランス装置 |
Also Published As
Publication number | Publication date |
---|---|
CN106654405B (zh) | 2021-11-12 |
US10468892B2 (en) | 2019-11-05 |
CN106654405A (zh) | 2017-05-10 |
JP7046481B2 (ja) | 2022-04-04 |
EP3162609A1 (en) | 2017-05-03 |
KR20170051059A (ko) | 2017-05-11 |
EP3162609B1 (en) | 2019-01-02 |
US20200091732A1 (en) | 2020-03-19 |
US20170126027A1 (en) | 2017-05-04 |
JP2017092028A (ja) | 2017-05-25 |
US10940761B2 (en) | 2021-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102559199B1 (ko) | 배터리 관리 방법 및 배터리 관리 장치 | |
KR102359315B1 (ko) | 배터리 상태 추정 장치 및 방법 | |
KR102332399B1 (ko) | 배터리 상태 추정 장치 및 방법 | |
JP6803163B2 (ja) | バッテリの状態を推定する方法及び装置 | |
KR102357351B1 (ko) | 복수의 배터리 셀들을 포함하는 배터리 팩의 상태를 추정하는 장치 및 방법 | |
KR102221756B1 (ko) | 배터리의 상태를 추정하는 방법 및 장치 | |
KR102225667B1 (ko) | 배터리의 상태를 추정하는 방법 및 장치 | |
CN105807227B (zh) | 估计电池状态的方法和设备 | |
KR102343967B1 (ko) | 배터리의 상태를 추정하는 방법 및 장치 | |
KR102247052B1 (ko) | 배터리의 이상 상태를 감지하는 장치 및 방법 | |
KR102574257B1 (ko) | Soh 추정 장치 및 방법과, soh 추정 모델 생성 장치 및 방법 | |
KR102695521B1 (ko) | 배터리 상태 추정 장치 및 방법 | |
KR102561574B1 (ko) | 충전 중 배터리의 전압 변화량에 기반하여 배터리의 상태에 대한 정보를 획득하기 위한 방법 및 이를 지원하는 전자 장치 | |
KR20160017416A (ko) | 패턴 정보에 기초하여 사용자 특성에 따른 배터리 수명을 추정하는 장치 및 방법 | |
KR20160101506A (ko) | 배터리 신호 세그먼트 데이터의 확률 추론을 기반으로 한 배터리 상태 추정 방법 및 장치 | |
EP4019993B1 (en) | Method and apparatus for battery short circuit detection | |
KR20170078387A (ko) | 센서 관리 장치 및 방법 | |
CN116298897A (zh) | 用于电池短路检测的方法和设备 | |
KR101945427B1 (ko) | 직렬 연결된 배터리 셀 확인 장치 및 방법 | |
CN111913113A (zh) | 电芯内短路识别方法、装置、存储介质及电子设备 | |
KR20240121276A (ko) | 배터리 상태를 결정하기 위한 시스템 및 방법 | |
KR20210054407A (ko) | 배터리 내부단락검출 시스템 및 이를 이용한 배터리 내부단락검출 방법 | |
US9373871B2 (en) | Battery module and detecting method thereof | |
JP2018044927A (ja) | 検出装置、検出方法、蓄電システムおよびプログラム | |
JP6862732B2 (ja) | 検出装置、検出方法、蓄電システムおよびプログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |