KR102104388B1 - Manufacturing method of a color film for protecting glass cover of liquid crystal display and the color film made therefrom - Google Patents
Manufacturing method of a color film for protecting glass cover of liquid crystal display and the color film made therefrom Download PDFInfo
- Publication number
- KR102104388B1 KR102104388B1 KR1020170123827A KR20170123827A KR102104388B1 KR 102104388 B1 KR102104388 B1 KR 102104388B1 KR 1020170123827 A KR1020170123827 A KR 1020170123827A KR 20170123827 A KR20170123827 A KR 20170123827A KR 102104388 B1 KR102104388 B1 KR 102104388B1
- Authority
- KR
- South Korea
- Prior art keywords
- nbox
- coating layer
- film
- refractive index
- siox
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
- C23C14/083—Oxides of refractory metals or yttrium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/0015—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterized by the colour of the layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/0021—Reactive sputtering or evaporation
- C23C14/0036—Reactive sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/02—Pretreatment of the material to be coated
- C23C14/021—Cleaning or etching treatments
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/10—Glass or silica
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/54—Controlling or regulating the coating process
- C23C14/542—Controlling the film thickness or evaporation rate
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/56—Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
- C23C14/562—Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
- Optical Filters (AREA)
- Surface Treatment Of Glass (AREA)
Abstract
본 발명은 산화물과의 부착력을 높이기 위해 필름의 전면에 산소 플라즈마(O2 plasma)를 조사하여 표면에너지를 증가시킨 후, 상기 필름 표면을 Nb2Ox/SiO2/Nb2Ox 산화물로 코팅하여 안정적이고 높은 균일도의 박막을 이루며, 효과적으로 유해 빛을 차단하는 스마트폰 커버유리 보호용 색상필름의 제조방법 및 이로부터 제조된 색상필름에 관한 것이다.The present invention is to increase the surface energy by irradiating oxygen plasma (O 2 plasma) on the front of the film to increase the adhesion with the oxide, the film surface is coated with Nb 2 Ox / SiO 2 / Nb 2 Ox oxide to be stable It relates to a manufacturing method of a color film for protecting a smartphone cover glass that forms a thin film of high uniformity and effectively blocks harmful light, and a color film produced therefrom.
Description
본 발명은 필름의 굴절율(n=1.66)을 기반으로 해서 NbOx의 고 굴절율(n=2.2)과 SiOx(n=1.45)의 저 굴절율을 조합하여 빛의 굴절율 차이에 의한 투과 반사 작용을 일으킴으로써, 원하는 색상(blue, violet & deep blue 등)을 구현하면서 원하지 않는 파장은 필터링(filtering) 하여 스마트폰의 전면 유리에서 통과되는 빛의 튜닝(tuning)을 통해 장식 효과와 인체 무해 효과를 얻을 수 있는 스마트폰 커버유리 보호용 색상필름의 제조방법 및 이로부터 제조된 색상필름에 관한 것이다.The present invention combines the high refractive index (n = 2.2) of NbOx and the low refractive index of SiOx (n = 1.45) based on the refractive index (n = 1.66) of the film, thereby causing a transflective action due to the difference in refractive index of light. It is smart to achieve the desired color (blue, violet & deep blue, etc.) while filtering unwanted wavelengths to obtain decorative and harmless effects through the tuning of light passing through the front glass of the smartphone. It relates to a method for manufacturing a color film for protecting the phone cover glass and a color film prepared therefrom.
휴대전화의 액정을 보호하기 위한 제품에는 여러가지가 있다. 일반적으로 PET film 양면에 경도가 1H~3H 수준인 아크릴계 하드코팅을 하여 휴대전화의 상부 유리에 부착하여 사용한다.There are many products for protecting the liquid crystal of mobile phones. Generally, an acrylic hard coating having a hardness level of 1H to 3H on both sides of a PET film is attached to the upper glass of a mobile phone.
이럴경우 제품의 수명이 짧고 탈착 후에는 유리표면에 잔사 이물 등이 남아 있어 별도의 세척공정을 거쳐야 하는 불편함이 있다. In this case, the life of the product is short, and after desorption, residues, etc., remain on the glass surface, which is inconvenient to undergo a separate washing process.
그리고 일부 제품의 경우 강화유리를 부착하기 위한 양면 점착 필름으로서 투명한 PET film을 사용하였으나, 최근들어 디스플레이에서 나오는 유해한 빛을 차단하고 대기화면의 조도를 개선하여 고급스러운 색상의 화면을 추구하기 위한 기능성 건식 코팅 필름이 요구되고 있다.In addition, in some products, transparent PET film was used as a double-sided adhesive film for attaching tempered glass, but recently, a functional dry type for pursuing a luxurious color screen by blocking harmful light from the display and improving the illuminance of the standby screen A coating film is required.
또한, 기존의 제품은 기본적으로 굴절율에 따라 낮은 저굴절 층과 고굴절 층을 번갈아가면서 1 마이크로(micro) 전후의 매우 얇은 두께를 동시 다발적으로 공압출하고, 공압출 한 것에 열을 가한 다음 압착하여 필름을 형성한다. 이럴 경우 굴절율의 차이에 의해 푸른색을 띠는 블루 파장을 걸러내는 필터 형태의 필름을 구성하여 특정 파장대의 빛을 차단하는 역할을 한다.In addition, the existing product basically coextrudes very thin thicknesses of about 1 micro before and after simultaneously alternating low and high refractive layers according to the refractive index. Form a film. In this case, by forming a filter-type film that filters out blue-blue wavelengths due to a difference in refractive index, it serves to block light in a specific wavelength range.
그리고 매우 얇은 필름을 공압출 함으로써 열제어에 의해 주름이 형성되거나, 특정 필름에서 기포 또는 기타 이물의 유입으로 인해 광특성에 결점이 생기는 경우가 많다. 아울러 기계적인 특성이 매우 불규칙하면서 레인보우(rainbow) 현상이나 얼룩 등의 표면 광특성의 불량이 발생할 가능성이 높다.Also, by coextruding a very thin film, wrinkles are formed by thermal control, or a defect occurs in optical characteristics due to inflow of air bubbles or other foreign matter in a specific film. In addition, the mechanical properties are very irregular, and there is a high possibility of defective surface optical properties such as a rainbow phenomenon or stain.
이와 같은 종래 기술의 문제를 해결하고자, 본 발명은 효과적인 유해 빛을 차단하기 위한 물질로 Nb2Ox/SiO2/Nb2Ox ceramic 물질을 사용함으로써, 상기 물질의 굴절율 및 특수 파장대의 필터(filter) 효과를 확인하였다. 또한 상기 Nb2Ox/SiO2/Nb2Ox ceramic 물질을 필름 스퍼터(film sputter) 공정에서 단일막으로 적정두께로 증착함으로써 균일한 막을 광폭의 필름에 증착하는 제품을 개발하였다.In order to solve the problems of the prior art, the present invention uses an Nb 2 Ox / SiO 2 / Nb 2 Ox ceramic material as a material for effectively blocking harmful light, and a refractive index of the material and a filter of a special wavelength band The effect was confirmed. In addition, by developing the Nb 2 Ox / SiO 2 / Nb 2 Ox ceramic material in an appropriate thickness as a single film in a film sputter process, a product was developed to deposit a uniform film on a wide film.
본 발명은 필름의 굴절율(n=1.66)을 기반으로 해서 NbOx의 고 굴절율(n=2.2)과 SiOx(n=1.45)의 저 굴절율을 조합하여 빛의 굴절율 차이에 의한 투과 반사 작용을 일으킴으로써, 원하는 색상(blue, violet & deep blue 등)을 구현하면서 원하지 않는 파장은 필터링(filtering) 하여 스마트폰의 전면 유리에서 통과되는 빛의 튜닝(tuning)을 통해 장식 효과와 인체 무해 효과를 얻을 수 있는 스마트폰 커버유리 보호용 색상필름의 제조방법 및 이로부터 제조된 색상필름을 제공하고자 하는 것을 발명의 목적으로 한다.The present invention combines the high refractive index (n = 2.2) of NbOx and the low refractive index of SiOx (n = 1.45) based on the refractive index (n = 1.66) of the film, thereby causing a transflective action due to the difference in refractive index of light. It is smart to achieve the desired color (blue, violet & deep blue, etc.) while filtering unwanted wavelengths to obtain decorative and harmless effects through the tuning of light passing through the front glass of the smartphone. It is an object of the present invention to provide a method for manufacturing a color film for protecting a phone cover glass and a color film prepared therefrom.
상기 목적을 달성하기 위하여,In order to achieve the above object,
본 발명은 권출롤러로부터 공급되는 베이스 필름이 드럼(Drum)에 밀착되어 주행할 때,In the present invention, when the base film supplied from the unwinding roller travels in close contact with the drum,
상기 베이스 필름의 전면에 플라즈마(Plasma)를 조사하여 상기 베이스 필름의 표면에너지를 증가시켜 접착강도를 높이고, 상기 베이스 필름의 표면에 존재하는 미세 이물이나 올리고머 등을 제거하는 제1공정(S10)과,A first step (S10) of irradiating plasma on the front surface of the base film to increase the surface energy of the base film to increase the adhesion strength and to remove fine foreign matter or oligomers, etc. existing on the surface of the base film. ,
NbOx를 DC 플라즈마(DC Plasma)를 이용하여 스퍼터링(sputtering)함으로써 상기 단계(S10)를 거친 베이스 필름 상부에 제1 NbOx 코팅막층을 형성하는 제2공정(S20)과,A second process (S20) of forming a first NbOx coating layer on top of the base film subjected to the above step (S10) by sputtering NbOx using DC plasma (DC Plasma);
SiOx를 반응성 스퍼터링(sputtering)을 통해 상기 제1 NbOx 코팅막층 상부에 증착하여 SiOx 코팅막층을 형성하는 제3공정(S30)과,A third process (S30) of depositing SiOx on top of the first NbOx coating layer through reactive sputtering to form an SiOx coating layer;
NbOx를 반응성 스퍼터링(sputtering)을 통해 상기 SiOx 코팅막층 상부에 증착하여 제2 NbOx 코팅막층을 형성하는 제4공정(S40)을 거쳐 이루어지는 스마트폰 커버유리 보호용 색상필름 제조방법을 제공한다.Provided is a method of manufacturing a color film for protecting a smartphone cover glass, which is performed through a fourth process (S40) of depositing NbOx on the SiOx coating layer by reactive sputtering to form a second NbOx coating layer.
그리고 상기 색상필름 제조방법에 따라 제조된 것으로서,And as manufactured according to the color film manufacturing method,
베이스 필름과,Base film,
상기 베이스 필름 상부에 증착되어 형성되는 제1 NbOx 코팅막층과,A first NbOx coating layer formed by depositing on the base film;
상기 제1 NbOx 코팅막층 상부에 증착되어 형성되는 SiOx 코팅막층과,An SiOx coating layer formed by depositing on the first NbOx coating layer;
상기 SiOx 코팅막층 상부에 증착되어 형성되는 제2 NbOx 코팅막층의 다층막구조를 이루되, NbOx의 굴절율과 SiOx의 굴절율의 차이에 의한 투과 반사 작용이 일어나도록 다층막의 두께를 제어하여 원하는 색상을 구현하거나 또는 원하지 않는 파장은 필터링(filtering) 되도록 구성된 스마트폰 커버유리 보호용 색상필름을 제공한다.A second NbOx coating layer formed by depositing on the SiOx coating layer is formed, and the desired color is achieved by controlling the thickness of the multilayer layer to control the thickness of the multilayer layer so that the transmission and reflection effect is caused by the difference between the refractive index of NbOx and the refractive index of SiOx. Alternatively, the unwanted wavelength provides a color film for protecting the cover glass of a smartphone configured to be filtered.
본 발명에 따른 스마트폰 커버유리 보호용 색상필름의 제조방법 및 이로부터 제조된 색상필름은 다음의 효과를 갖는다.The manufacturing method of the color film for protecting a smartphone cover glass according to the present invention and the color film produced therefrom have the following effects.
첫째. 본 발명에서 중요한 결과는 바로 필름의 굴절율(n=1.66)을 기반으로 해서 NbOx의 고 굴절율(n=2.2)과 SiOx(n=1.45)의 저 굴절율을 조합하여 빛의 굴절율 차이에 의한 투과 반사 작용을 일으키는 것이다. 광학설계를 통해 최적의 두께를 도출하여 이를 실제 필름상에 진공 증착을 통해 적용함으로써 원하는 색상(blue, violet & deep blue 등)을 구현하면서 원하지 않는 파장은 필터링(filtering) 하여 스마트폰의 전면 유리에서 통과되는 빛의 튜닝(tuning)을 통해 장식 효과와 인체 무해 효과를 얻을 수 있다.first. An important result in the present invention is a combination of a high refractive index (n = 2.2) of NbOx and a low refractive index of SiOx (n = 1.45) based on the refractive index (n = 1.66) of the film, and the transmission reflection effect due to the difference in refractive index of light. Will cause By deriving the optimum thickness through optical design and applying it through vacuum deposition on the actual film, it realizes the desired color (blue, violet & deep blue, etc.) while filtering unwanted wavelengths from the front glass of the smartphone. Through the tuning of the light passing through, it is possible to obtain a decorative effect and a harmless effect to the human body.
둘째. 멀티레이어 필름보다 저렴하고 단순한 공정을 통해서 제조가 가능하여 생산성이 높다.second. It is cheaper than a multilayer film and can be manufactured through a simple process, resulting in high productivity.
셋째. 상온에서 증착을 하기 때문에 필름에 가해지는 열적 데미지가 상대적으로 적다.third. Since it is deposited at room temperature, the thermal damage to the film is relatively small.
넷째. 이물유입이 거의 없어서 청정한 환경에서 생산이 가능하다.fourth. Since there is almost no foreign matter inflow, it is possible to produce in a clean environment.
다섯째. 광학설계를 통해 각층의 막을 제어하며 생산하기 때문에 제품간의 특성 편차가 상대적으로 적다.fifth. Because the film of each layer is controlled and manufactured through optical design, the characteristic variation between products is relatively small.
여섯째. 광폭제조가 가능하다. 일반적으로 멀티레이어 필름은 최대폭이 1,200 mm인데 반해서 스퍼터 증착막의 경우에는 2,300 mm 또는 2,500 mm까지 생산이 가능하다.Sixth. Wide manufacturing is possible. In general, the multilayer film has a maximum width of 1,200 mm, whereas in the case of a sputter deposition film, it can be produced up to 2,300 mm or 2,500 mm.
도 1은 본 발명에 따른 색상필름의 제조공정에 따른 순서도.
도 2는 본 발명에 따른 색상필름 제조에 사용되는 제조장치의 개략도.
도 3은 본 발명에 따른 색상필름의 적층구조를 보인 측단면도.
도 4는 본 발명에 따른 색상필름의 투과도 그래프.
도 5는 본 발명에 따른 색상필름의 반사율 그래프.
도 6은 본 발명에 따른 색상필름이 적용된 AB필름의 적층 구조를 보인 도면.1 is a flow chart according to the manufacturing process of the color film according to the present invention.
Figure 2 is a schematic diagram of a manufacturing apparatus used for manufacturing a color film according to the present invention.
Figure 3 is a side cross-sectional view showing a laminated structure of a color film according to the present invention.
Figure 4 is a graph of the transmittance of the color film according to the present invention.
5 is a graph of reflectance of the color film according to the present invention.
6 is a view showing a laminated structure of the AB film to which the color film according to the present invention is applied.
이하, 본 발명에 따른 스마트폰 커버유리 보호용 색상필름 및 이의 제조방법에 대한 구체적인 내용을 도면과 함께 살펴보도록 한다.Hereinafter, a detailed description of the color film for protecting a smartphone cover glass according to the present invention and a manufacturing method thereof will be described with reference to the drawings.
도 1은 본 발명에 따른 색상필름의 제조공정에 따른 순서도이다.1 is a flow chart according to the manufacturing process of the color film according to the present invention.
도 1에 도시된 바와 같이,As shown in Figure 1,
본 발명에 따른 색상필름(1)은 권출롤러(100)로부터 공급되는 베이스 필름(10)이 드럼(Drum)(200)에 밀착되어 회전할 때,When the
상기 베이스 필름(10)의 전면에 플라즈마(Plasma)를 조사하여 상기 베이스 필름(10)의 표면에너지를 증가시켜 접착강도를 높이고, 상기 베이스 필름(10)의 표면에 존재하는 미세 이물이나 올리고머 등을 제거하는 제1공정(S10)과,Plasma is irradiated on the front surface of the
NbOx를 DC 플라즈마(DC Plasma)를 이용하여 스퍼터링(sputtering)함으로써 상기 단계(S10)를 거친 베이스 필름 상부에 제1 NbOx 코팅막층(20)을 형성하는 제2공정(S20)과,A second process (S20) of forming a first
SiOx를 반응성 스퍼터링(sputtering)을 통해 상기 제1 NbOx 코팅막층(20) 상부에 증착하여 SiOx 코팅막층(30)을 형성하는 제3공정(S30)과,A third process (S30) of depositing SiOx on top of the first
NbOx를 반응성 스퍼터링(sputtering)을 통해 상기 SiOx 코팅막층(30) 상부에 증착하여 제2 NbOx 코팅막층(40)을 형성하는 제4공정(S40)을 거쳐 제조된다.It is manufactured through a fourth process (S40) of depositing NbOx on the SiOx
도 2는 본 발명에 따른 색상필름 제조에 사용되는 제조장치의 개략도이다.Figure 2 is a schematic diagram of a manufacturing apparatus used for manufacturing a color film according to the present invention.
상기 도 2에 도시된 제조장치와 함께 본 발명에 따른 색상필름의 제조공정에 대해 살펴보도록 한다.The manufacturing process of the color film according to the present invention together with the manufacturing apparatus shown in FIG. 2 will be described.
먼저 전체 공정을 간략히 살펴보면 다음과 같다.First, the whole process is briefly described as follows.
권출롤러(100)로부터 베이스 필름(10)이 공급되어 드럼(Drum)(200)에 밀착되어 회전하면서 일방향으로 이동하게 되고, 상기 드럼(Drum)(200)의 외주면을 따라 소정의 간격을 두고 순차적으로 설치되어 있는 고밀도 플라즈마 소스(High Density Plasma source)(400), NbOx 타겟(500), SiOx 타겟(600), NbOx 타겟(700)을 이용하여 플라즈마 전처리 및 증착공정이 진행되어 베이스 필름 상부에 NbOx/SiOx/NbOx의 다층막이 형성됨으로써 본 발명에 따른 색상필름이 완성되고, 완성된 색상필름은 권취롤러(300)에 감기게 된다.The
상기 베이스 필름은 특별히 한정을 두지는 않으나, 일례로 PET 필름을 사용할 수 있다.The base film is not particularly limited, but for example, a PET film may be used.
상기 드럼(Drum)(200)에는 -10 ℃ ~ 5 ℃의 냉각수가 지속적으로 순환하면서 상기 드럼(Drum)(200)에 밀착되어 회전되는 베이스 필름의 온도를 지속적으로 떨어뜨려줌으로써, 플라즈마를 통과하면서 고온의 공정을 거치는 베이스 필름의 열손상을 최소화하고, 장력조절을 통해서 베이스 필름의 연신을 최소화하도록 한다.Cooling water of -10 ° C to 5 ° C continuously circulates in the
이때 베이스 필름의 열손상 및 연신은 제품의 품질에 영향을 미치는 중요한 변수로 작용하게 된다.At this time, the thermal damage and stretching of the base film act as important variables that affect the quality of the product.
그리고 상기 드럼(Drum)(200)은 1 ~ 5 m/min의 속도로 회전한다.Then, the
상기 제1공정(S10)의 플라즈마(Plasma) 처리는 고밀도 플라즈마 소스(High Density Plasma source)를 통해 이루어지는 것으로서, 상기 고밀도 플라즈마 소스(High Density Plasma source)는 기밀 챔버 내부에 도입된 반응가스의 입자를 이온화하여 플라즈마 상태로 만들고, 생성된 플라즈마에 직접 노출시키거나 또는 상기 플라즈마로부터 추출한 이온빔(또는 중성빔)을 베이스 필름에 조사함으로써 이온의 에너지와 화학작용을 이용하여 베이스 필름의 표면에너지를 증가시켜 접착강도를 높이고, 상기 베이스 필름의 표면에 존재하는 미세 이물이나 올리고머 등을 제거한다. Plasma treatment of the first process (S10) is performed through a high density plasma source, and the high density plasma source is used to remove particles of the reaction gas introduced into the hermetic chamber. Ionization is made into a plasma state, and by directly exposing the generated plasma or irradiating an ion beam (or neutral beam) extracted from the plasma to the base film, the surface energy of the base film is increased by using ion energy and chemical action to adhere. It increases the strength and removes fine foreign substances, oligomers, and the like existing on the surface of the base film.
그리고 이를 통해 베이스 필름과 NbOx 사이에 계면 상호확산(interface interdiffusion)을 최소화하면서 매우 얇은막의 두께 균일도를 최적화할 수 있다.And through this, it is possible to optimize the thickness uniformity of the very thin film while minimizing the interface interdiffusion between the base film and NbOx.
또한 접착강도는 플라즈마 전처리를 하지 않은 경우와 대비하여 볼 때 50% 이상 증가하게 된다.In addition, the adhesive strength is increased by 50% or more when compared with the case where plasma pretreatment is not performed.
상기 플라즈마에 의한 전처리는 진공도 1 ~ 5×10-3 torr에서 아르곤 가스를 250 ~ 500 sccm 투입하고 직류전원을 12 ~ 15 kW로 인가하면서 베이스 필름을 1 ~ 5 m/min의 주행속도로 이동시키면서 처리한다.The pre-treatment by the plasma was performed by applying argon gas at a vacuum of 1 to 5 × 10 -3 torr, 250 to 500 sccm, and applying DC power at 12 to 15 kW while moving the base film at a traveling speed of 1 to 5 m / min. Process.
기본적으로 NbOx는 광학 굴절율이 높은 물질이다. 그리고 일반적으로 가시광선 영역에서 IR이나 Near IR 등의 영역을 차단하는데 매우 효율적인 물질이다.Basically, NbOx is a material having a high optical refractive index. And, in general, it is a very effective material to block areas such as IR or Near IR in the visible light area.
SiOx의 경우는 전형적인 저굴절 물질로 빛의 반사 각도를 좀더 수평적으로 전환시켜주는 역할을 한다.In the case of SiOx, it is a typical low-refractive material, and serves to convert the light reflection angle more horizontally.
본 발명에서 중요한 결과는 바로 베이스 필름의 굴절율(n=1.66)을 기반으로 해서 NbOx의 고 굴절율(n=2.2)과 SiOx (n=1.45)의 저 굴절율을 조합하여 빛의 굴절율 차이에 의한 투과 반사 작용을 일으키는 것이다.An important result in the present invention is based on the refractive index (n = 1.66) of the base film, and the combination of high refractive index (n = 2.2) of NbOx and low refractive index of SiOx (n = 1.45) reflects the transmitted reflection due to the difference in refractive index of light. Is to cause action.
광학설계를 통해 최적의 두께를 도출하여 이를 실제 베이스 필름상에 진공 증착을 통해 적용함으로써 원하는 색상(blue, violet & deep blue 등)을 구현하면서 원하지 않는 파장은 필터링(filtering) 하여 스마트폰의 전면 유리에서 통과되는 빛의 튜닝(tuning)을 통해 장식 효과와 인체 무해 효과를 얻을 수 있다.By deriving the optimal thickness through the optical design and applying it through vacuum deposition on the actual base film, the desired wavelength (blue, violet & deep blue, etc.) is realized while filtering unwanted wavelengths and filtering the front glass of the smartphone. The decorative effect and the harmless effect of the human body can be obtained through the tuning of light passing through.
상기 제1 NbOx 코팅막층은 광학설계에 의거 DC 플라즈마를 이용한 스퍼터링(sputtering)을 통해 15 nm ~ 40 nm의 두께로 형성한다.The first NbOx coating layer is formed to a thickness of 15 nm to 40 nm through sputtering using DC plasma according to optical design.
상기 스퍼터링(sputtering)은 공정조건으로서 우선 초기진공도를 3×10-6 torr까지 펌핑을 하여 진공도에 도달하도록 한다.The sputtering is a process condition. First, the initial vacuum is pumped to 3 × 10 -6 torr to reach the vacuum level.
그 후에는 아르곤 가스와 산소가스를 80 vol% : 20 vol% 비율로 각각 투입한다. 다음으로, 작동 진공도가 5 ~ 6×10-3 torr 수준에 도달하면 파워를 인가하여 초기에는 2 ~ 3 Kw로 프리 스퍼터링(pre-sputtering) 하여 타겟의 표면을 클리닝 한 후, 서서히 파워를 올려서 10 ~ 12 Kw로 인가하면서 베이스 필름을 1.3 ~ 2 m/min 의 속도로 구동하면서 스퍼터(sputter) 코팅을 실시한다.After that, argon gas and oxygen gas are respectively added at a ratio of 80 vol%: 20 vol%. Next, when the working vacuum level reaches the level of 5 ~ 6 × 10 -3 torr, power is applied to initially clean the surface of the target by pre-sputtering with 2 ~ 3 Kw, and then gradually increasing the power to 10 While applying at ~ 12 Kw, sputter coating is performed while driving the base film at a speed of 1.3 to 2 m / min.
상기 제1 NbOx 코팅막층의 두께가 15 nm 미만인 경우에는 이하인 경우 연속 박막을 이루지 못하고 아일랜드(island) 구조의 층을 형성하여 균일한 광특성을 발휘하기 어렵고, 40 nm를 초과하게 되는 경우에는 너무 두꺼워 크랙(crack)이 발생하거나 색상이 노란색으로 변해버려 본 발명에서 이루고자 하는 블루특성을 갖기 어려우므로, 제1 NbOx 코팅막층의 두께는 15 nm ~ 40 nm 범위 내로 한정하는 것이 바람직하다.When the thickness of the first NbOx coating layer is less than 15 nm, the continuous thin film is not formed in the following cases, and it is difficult to exhibit a uniform optical characteristic by forming an island structure layer, and when it exceeds 40 nm, it is too thick. It is difficult to have a blue characteristic to be achieved in the present invention because a crack occurs or the color changes to yellow, so the thickness of the first NbOx coating layer is preferably limited to within a range of 15 nm to 40 nm.
상기 SiOx 코팅막층은 실리콘을 반응성 스퍼터(sputter)를 이용하여 50 nm ~ 100 nm 두께로 증착함으로써 이루어진다.The SiOx coating layer is formed by depositing silicon to a thickness of 50 nm to 100 nm using a reactive sputter.
상기 반응성 스퍼터는 우선 실리콘 타겟을 사용하여 사용가스로 아르곤과 산소를 65 vol% : 35 vol%의 비율로 혼합하여 스퍼터를 하며 타겟 주변에 추가로 산소를 불어넣어서 산화 분위기를 만들어서 SiOx 박막을 제조 한다.The reactive sputter first uses a silicon target to sputter argon and oxygen at a ratio of 65 vol%: 35 vol% as a gas used, and further oxygen is blown around the target to create an oxidizing atmosphere to prepare an SiOx thin film. .
상기 SiOx 코팅막층의 두께가 50 nm 미만인 경우에는 박막의 색상이 블루가 아닌 보라색 또는 자외선의 영역으로 넘어 가게되어 색상이 흐트러지는 문제가 있고, 100 nm를 초과하게 되는 경우에는 막 자체가 너무 두꺼워 쉽게 크랙(crack)이 발생하고 생산속도가 너무 느려서 생산성이 급격히 저하되는 문제가 있으므로, SiOx 코팅막층의 두께는 50 nm ~ 100 nm 범위 내로 한정하는 것이 바람직하다.When the thickness of the SiOx coating layer is less than 50 nm, the color of the thin film is shifted to the region of purple or ultraviolet rays, not blue, and the color is disturbed. When it exceeds 100 nm, the film itself is too thick and easily Since cracks occur and the production rate is too slow, there is a problem that productivity is rapidly lowered, it is preferable to limit the thickness of the SiOx coating layer to be in the range of 50 nm to 100 nm.
상기 제2 NbOx 코팅막층은 NbOx를 반응성 스퍼터링(sputter)법을 이용하여 15 nm ~ 40 nm 두께로 증착함으로써 이루어진다.The second NbOx coating layer is formed by depositing NbOx to a thickness of 15 nm to 40 nm using a reactive sputtering method.
이때 상기 제2 NbOx 코팅막층은 상기 제1 NbOx 코팅막층과 동일한 과정을 거쳐 형성한다.At this time, the second NbOx coating layer is formed through the same process as the first NbOx coating layer.
상기 제2 NbOx 코팅막의 두께가 15 nm 미만인 경우에는 이하인 경우 연속 박막을 이루지 못하고 아일랜드(island) 구조의 층을 형성하여 균일한 광특성을 발휘하기 어렵고, 40 nm를 초과하게 되는 경우에는 너무 두꺼워 크랙(crack)이 발생하거나 색상이 노란색으로 변해버려 본 발명에서 이루고자 하는 블루특성을 갖기 어려우므로, 제2 NbOx 코팅막의 두께는 15 nm ~ 40 nm 범위 내로 한정하는 것이 바람직하다.When the thickness of the second NbOx coating film is less than 15 nm, it is difficult to form a continuous thin film and form an island structure layer in the following cases, and it is difficult to exhibit uniform optical properties, and when it exceeds 40 nm, it is too thick to crack Since (crack) occurs or the color is changed to yellow, it is difficult to have a blue characteristic to be achieved in the present invention, so it is preferable to limit the thickness of the second NbOx coating film to within a range of 15 nm to 40 nm.
상기 플라즈마 전처리 공정으로부터 최종 증착공정에 이르는 전공정은 진공 분위기와 가스가 유입되어 독립적인 플라즈마 환경에서 이루어진다.The entire process from the plasma pretreatment process to the final deposition process is performed in an independent plasma environment by introducing a vacuum atmosphere and gas.
이상에서 살펴본, 본 발명의 스마트폰 커버유리 보호용 색상필름 제조방법에 따른 구체적인 제조 공정은 실시예 1에 제시한 바와 같다.As described above, the specific manufacturing process according to the method for manufacturing a color film for protecting a smart phone cover glass of the present invention is as shown in Example 1.
실시예 1은 본 발명에 따른 스마트폰 커버유리 보호용 색상필름 제조공정에 대해 일례를 보인 것으로서, 그 공정은 다음의 순서에 따른다.Example 1 shows an example of a process for manufacturing a color film for protecting a smart phone cover glass according to the present invention, and the process is in the following order.
1. 권출롤러(100)에 감겨 있는 베이스 필름(10)인 PET 필름을 드럼(Drum)(200)으로 공급하면, PET 필름은 상기 드럼(Drum)(200)에 밀착되어 회전을 하게 된다. 이때 3×10-3 torr에서 아르곤 가스를 300 sccm 투입하고 직류전원을 14 kW로 인가하면서, 3 m/min의 평균 주행속도로 이동하고 있는 PET 필름의 전면에 플라즈마(Plasma)를 조사하여 PET 필름의 표면에너지를 증가시켜 접착강도를 높이고, 상기 베이스 필름의 표면에 존재하는 미세 이물이나 올리고머를 제거한다. 1. When the PET film, which is the
드럼(Drum)(200)의 내부에는 2 ℃의 냉각수를 순환시킴으로써 고온에 의한 PET 필름의 열손상을 최소화하고, 장력조절을 통해서 Film의 연신을 최소화한다.By circulating the cooling water at 2 ° C inside the
2. 플라즈마 조사 과정을 마친 후에는 스퍼터링(sputtering) 공정을 진행하기 위하여, 초기진공도를 3×10-6 torr까지 펌핑을 하여 진공도를 일치시킨다. 2. After completing the plasma irradiation process, in order to proceed with a sputtering process, the initial vacuum degree is pumped to 3 × 10 −6 torr to match the vacuum degree.
다음으로 아르곤 가스와 산소가스를 80 vol% : 20 vol% 비율로 각각 투입한 다음, 작동 진공도가 6×10-3 torr 수준에 도달하면 파워를 인가하여 초기에는 2 Kw로 프리 스퍼터링(pre-sputtering) 하여 타겟의 표면을 클리닝 한 후, 서서히 파워를 올려서 12 Kw로 인가하면서 베이스 필름을 2 m/min의 속도로 구동하면서 스퍼터(sputter) 코팅을 한다. 이때 스퍼터링(sputtering)을 통한 제1 NbOx 코팅막층의 평균두께는 20 nm이다.Next, argon gas and oxygen gas were respectively added at a rate of 80 vol%: 20 vol%, and when the working vacuum level reached a level of 6 × 10 -3 torr, power was applied to initially pre-sputter at 2 Kw (pre-sputtering). ) To clean the surface of the target, then gradually increase the power and apply it at 12 Kw while sputter coating while driving the base film at a speed of 2 m / min. At this time, the average thickness of the first NbOx coating layer through sputtering is 20 nm.
3. PET 필름 위로 제1 NbOx 코팅막층(20)을 증착한 후에는 SiOx를 반응성 스퍼터링(sputtering)을 통해 상기 제1 NbOx 코팅막층(20) 위로 SiOx 코팅막층(30)을 증착한다. 3. After depositing the first
반응성 스퍼터는 우선 실리콘 타겟을 사용하여 사용가스로 아르곤과 산소를 65 vol% : 35 vol%의 비율로 혼합하여 스퍼터를 하며 타겟 주변에 추가로 산소를 불어넣어서 산화 분위기를 만들어서 SiOx 코팅막층을 증착한다.Reactive sputtering is performed by first mixing silicon with argon and oxygen in a ratio of 65 vol%: 35 vol% as a gas to use, and then sputtering additional oxygen around the target to create an oxidizing atmosphere to deposit the SiOx coating layer. .
이때 스퍼터링(sputtering)을 통한 SiOx 코팅막층(30)의 평균두께는 70 nm이다.At this time, the average thickness of the
4. 다음으로, SiOx 코팅막층(30) 위로 제2 NbOx 코팅막층(40)을 증착하여 형성한다. 이때 제2 NbOx 코팅막층(40)의 증착과정은 제1 NbOx 코팅막층과 동일한 과정을 거쳐 동일한 두께로 증착한다. 4. Next, a second
이와 같은 제조과정을 거쳐 제조된 색상필름은 도 3에 도시된 바와 같이,The color film manufactured through such a manufacturing process is as shown in Figure 3,
베이스 필름(10)과,Base film (10),
상기 베이스 필름(10) 상부에 형성되는 제1 NbOx 코팅막층(20)과,A first
상기 제1 NbOx 코팅막층(20) 상부에 형성되는 SiOx 코팅막층(30)과,An
상기 SiOx 코팅막층(30) 상부에 형성되는 제2 NbOx 코팅막층(40)의 다층막구조를 이루되, NbOx의 굴절율과 SiOx의 굴절율의 차이에 의한 투과 반사 작용이 일어나도록 다층막의 두께를 제어하여 원하는 색상을 구현하거나 또는 원하지 않는 파장은 필터링(filtering) 되도록 구성된다.The multilayer film structure of the second NbOx
상기 베이스 필름(10)은 PET 필름 등의 베이스 필름에 의해 이루어진다.The
상기 제1 NbOx 코팅막층(20)은 플라즈마 전처리 과정을 거친 베이스 필름(10) 상부에 NbOx를 증착함으로써 형성되는 것으로서, 이때 NbOx는 다양하게 적용될 수 있으나, 구체적인 예로서 Nb2Ox(3.5<x<5)를 사용한다.The first
상기 SiOx 코팅막층(30)은 제1 NbOx 코팅막층(20) 상부에 SiOx를 증착함으로써 형성되는 것으로서, 이때 SiOx는 다양하게 적용될 수 있으나, 구체적인 예로서 SiO2를 사용한다.The
상기 제2 NbOx 코팅막층(40)은 SiOx 코팅막층(30) 상부에 NbOx를 증착함으로써 형성되는 것으로서, 이때 NbOx는 다양하게 적용될 수 있으나, 구체적인 예로서 Nb205를 사용한다.The second
앞서 살펴본 바와 같이, 본 발명은 베이스 필름의 굴절율(n=1.66)을 기반으로 해서 NbOx의 고 굴절율(n=2.2)과 SiOx의 저 굴절율을 조합하여 빛의 굴절율 차이에 의한 투과 반사 작용을 일으킴으로써, 원하는 색상(blue, violet & deep blue 등)을 구현하면서 원하지 않는 파장은 필터링(filtering) 하여 스마트폰의 전면 유리에서 통과되는 빛의 튜닝(tuning)을 통해 장식 효과와 인체 무해 효과를 얻을 수 있다.As described above, the present invention combines the high refractive index (n = 2.2) of NbOx and the low refractive index of SiOx based on the refractive index (n = 1.66) of the base film, thereby causing a transflective action due to the difference in refractive index of light. , While implementing the desired color (blue, violet & deep blue, etc.), filtering unwanted wavelengths can achieve the decorative effect and harmless effect of the human body through tuning of the light passing through the windshield of the smartphone. .
따라서 상기 색상필름을 다층막을 이루는 제1 NbOx 코팅막, SiOx 코팅막 및 제2 NbOx 코팅막의 두께는 중요 기술 구성으로서, 각각 15 ~ 40 nm, 50 ~ 100 nm 및 15 ~ 40 nm의 두께를 유지하는 것이 바람직하다.Therefore, the thickness of the first NbOx coating film, the SiOx coating film, and the second NbOx coating film forming the multi-layer film of the color film is an important technical configuration, and it is desirable to maintain thicknesses of 15 to 40 nm, 50 to 100 nm, and 15 to 40 nm, respectively. Do.
본 발명에 따른 색상필름의 효과와 관련하여, 상기 실시예 1을 통해 제조된 색상필름의 투과도 및 반사율을 살펴보면 도 4 및 도 5에 도시된 바와 같다.In relation to the effect of the color film according to the present invention, the transmittance and reflectance of the color film prepared through Example 1 are as shown in FIGS. 4 and 5.
도 4는 본 발명에 따른 색상필름의 투과도 그래프이다.4 is a graph of transmittance of a color film according to the present invention.
상기 도 4에 도시에 된 바와 같이, NbOx/SiO2/NbOx 다층막의 투과도(전광선: L)는 400 nm 기준으로 약 90%이며 a*는 -5.06이고 b*는 약 9.17로 사람의 눈으로 표면 관측시 전형적인 블루(blue) 색상을 보인다. 그리고 더욱 시각적인 효과를 극대화 하기 위해 검정 암막 시트를 붙인 후에 반사를 100% 가깝게 한 후 보면 더욱 선명하게 푸른색이 보임을 관찰할 수 있다.As shown in FIG. 4, the transmittance (light beam: L) of the NbOx / SiO 2 / NbOx multilayer film is about 90% based on 400 nm, a * is -5.06, and b * is about 9.17, which is the surface of the human eye. It shows a typical blue color when observed. And to maximize the visual effect, after attaching the black black sheet, make the reflection close to 100%, and see the blue color more clearly.
도 5는 본 발명에 따른 색상필름의 반사율 그래프이다.5 is a graph of reflectance of a color film according to the present invention.
블루 칼라(Blue color) 또는 바이올렛 칼라(Violet color)를 좀더 명확하게 판단하기 위해 반사 스펙트럼(spectrum)을 측정하면 잘 알 수 있다. 그 결과는 도 5에 도시된 바와 같다. 반사율(전광선: L)은 약 10%이고, a*는 16.12 그리고 b*는 -23.27로 매우 푸른색 쪽으로 치우쳐져 있음을 관찰할 수 있다. 이는 실제 스마트폰 전면 유리에 장착할 경우 번들거림을 감소시키면서 햇빛이 많은 옥외에서도 화면을 원활하게 볼 수 있다. 특히 야간에는 유해한 빛이 화면에서 밖으로 나올 때 효율적으로 필터링(filtering)하는 역할을 한다.(blue light cut effect)It is well known by measuring the reflection spectrum to more clearly judge the blue color or the violet color. The results are as shown in FIG. 5. Reflectance (all light: L) is about 10%, a * is 16.12 and b * is -23.27, which can be observed to be skewed toward the very blue color. This reduces the shine when mounted on the actual smartphone's windshield, allowing the screen to be viewed smoothly even in a lot of sunlight. Especially at night, when harmful light comes out of the screen, it effectively filters (blue light cut effect).
다음의 표 1은 본 발명에 따른 제품(실시예 1)과 일본의 M사 제품(비교예)을 비교하여 도출한 결과이다.The following Table 1 shows the results obtained by comparing the product according to the present invention (Example 1) and a Japanese company M product (Comparative Example).
도 6은 본 발명에 따른 색상필름을 적용한 AB필름의 적층 구조를 보인 도면이다. 6 is a view showing a laminated structure of the AB film to which the color film according to the present invention is applied.
상기 도 6에 도시된 바와 같이, 상기 AB필름은 본 발명에 따른 색상필름의 양면으로 점착제층을 형성하고, 상기 점착제층 위로 각각 보호층을 형성함으로써 이루어진다.As shown in Figure 6, the AB film is made by forming an adhesive layer on both sides of the color film according to the present invention, and forming a protective layer on each of the adhesive layer.
이와 같이 제조된 AB필름은 본 발명에 따른 색상필름의 효과가 그대로 발현됨으로써 고기능성을 갖는 블루계열의 고급필름으로 제공될 수 있다.The AB film prepared as described above can be provided as a high-quality blue film having high functionality by expressing the effect of the color film according to the present invention as it is.
본 발명에 따른 스마트폰 커버유리 보호용 색상필름은 멀티레이어 필름보다 저렴하고 단순한 공정을 통해서 제조가 가능하여 생산성이 높고, 상온에서 증착을 하기 때문에 필름에 가해지는 열적 데미지가 상대적으로 적으며, 광학설계를 통해 각층의 막을 제어하며 생산하기 때문에 제품간의 특성 편차가 상대적으로 적고, 일반적으로 멀티레이어 필름은 최대폭이 1,200 mm인데 반해서 스퍼터 증착막의 경우에는 2,300 mm 또는 2,500 mm까지 생산이 가능하여 광폭제조가 가능하여 산업상 이용가능성이 크다.The color film for protecting a smartphone cover glass according to the present invention is cheaper than a multilayer film and can be manufactured through a simple process, so productivity is high and thermal damage to the film is relatively small because it is deposited at room temperature. Because the film of each layer is controlled and produced through, the variation in characteristics between products is relatively small. In general, the maximum width of a multilayer film is 1,200 mm, whereas in the case of a sputter deposition film, it is possible to produce up to 2,300 mm or 2,500 mm, which makes wider manufacturing possible. Therefore, it has great industrial applicability.
1 : 색상필름 10: 필름
20: 제1 NbOx 코팅막층 30: SiOx 코팅막층
40: 제2 NbOx 코팅막층 100: 권출롤러
200: 드럼(Drum) 300: 권취롤러
400: 고밀도 플라즈마 소스(High Density Plasma source)
500: NbOx 타겟
600: SiOx 타겟
700: NbOx 타겟1: Color film 10: Film
20: first NbOx coating layer 30: SiOx coating layer
40: second NbOx coating film layer 100: unwinding roller
200: Drum 300: Winding roller
400: High Density Plasma source
500: NbOx target
600: SiOx target
700: NbOx target
Claims (7)
상기 베이스 필름(10)의 전면에 산소 플라즈마(O2 Plasma)를 조사하여 베이스 필름(10)의 표면에너지를 증가시켜 접착강도를 높이고, 상기 베이스 필름의 표면에 존재하는 미세 이물이나 올리고머를 제거하는 제1공정(S10)과,
NbOx를 DC 플라즈마(DC Plasma)를 이용하여 스퍼터링(sputtering)함으로써 상기 단계(S10)를 거친 베이스 필름(10) 상부에 제1 NbOx 코팅막층(20)을 형성하는 제2공정(S20)과,
SiOx를 반응성 스퍼터링(sputtering)을 통해 상기 제1 NbOx 코팅막층(20) 상부에 증착하여 SiOx 코팅막층(30)을 형성하는 제3공정(S30)과,
NbOx를 반응성 스퍼터링(sputtering)을 통해 상기 SiOx 코팅막층(30) 상부에 증착하여 제2 NbOx 코팅막층(40)을 형성하는 제4공정(S40)을 거쳐 이루어지는 것에 있어서,
굴절율 1.66인 상기 베이스 필름(10) 상부에 굴절율 2.2인 두께 15 nm ~ 40 nm의 제1 NbOx 코팅막층(20)이 증착되고,
상기 제1 NbOx 코팅막층(20) 상부에 굴절율 1.45인 두께 50 nm ~ 100 nm의 SiOx 코팅막층(30)이 증착되며,
상기 SiOx 코팅막층(30) 상부에 굴절율 2.2인 두께 15 nm ~ 40 nm의 제2 NbOx 코팅막층(40)이 증착되어 구성된 것을 특징으로 하는 스마트폰 커버유리 보호용 색상필름 제조방법.
While the base film 10 supplied from the unwinding roller 100 rotates in close contact with the drum 200,
The surface film 10 is irradiated with oxygen plasma (O 2 plasma) on the front surface of the base film 10 to increase the surface energy of the base film 10 to increase adhesion strength and to remove fine foreign matter or oligomers present on the surface of the base film 10 The first process (S10),
A second process (S20) of forming a first NbOx coating layer 20 on the base film 10 subjected to the above step (S10) by sputtering NbOx using DC plasma (DC Plasma);
A third process (S30) of depositing SiOx on top of the first NbOx coating layer 20 through reactive sputtering to form an SiOx coating layer 30;
In the NbOx is formed through a fourth step (S40) to deposit a second NbOx coating layer 40 by depositing on the SiOx coating layer 30 through reactive sputtering (sputtering),
A first NbOx coating layer 20 having a thickness of 15 nm to 40 nm having a refractive index of 2.2 is deposited on the base film 10 having a refractive index of 1.66,
An SiOx coating layer 30 having a thickness of 50 nm to 100 nm having a refractive index of 1.45 is deposited on the first NbOx coating layer 20,
A method of manufacturing a color film for protecting a smartphone cover glass, characterized in that a second NbOx coating layer 40 of a thickness of 15 nm to 40 nm having a refractive index of 2.2 is deposited on the SiOx coating layer 30.
베이스 필름(10)과,
상기 베이스 필름(10) 상부에 증착되어 형성되는 제1 NbOx 코팅막층(20)과,
상기 제1 NbOx 코팅막층(20) 상부에 증착되어 형성되는 SiOx 코팅막층(30)과,
상기 SiOx 코팅막층(30) 상부에 증착되어 형성되는 제2 NbOx 코팅막층(40)의 다층막구조를 이루되, NbOx의 굴절율과 SiOx의 굴절율의 차이에 의한 투과 반사 작용이 일어나도록 다층막의 두께를 제어하여 원하는 색상을 구현하거나 또는 원하지 않는 파장은 필터링(filtering) 되도록 구성된 것에 있어서,
굴절율 1.66인 상기 베이스 필름(10) 상부에 굴절율 2.2인 두께 15 nm ~ 40 nm의 제1 NbOx 코팅막층(20)이 증착되고,
상기 제1 NbOx 코팅막층(20) 상부에 굴절율 1.45인 두께 50 nm ~ 100 nm의 SiOx 코팅막층(30)이 증착되며,
상기 SiOx 코팅막층(30) 상부에 굴절율 2.2인 두께 15 nm ~ 40 nm의 제2 NbOx 코팅막층(40)이 증착되어 구성된 것을 특징으로 하는 스마트폰 커버유리 보호용 색상필름.
As manufactured by the manufacturing method of claim 1,
Base film (10),
A first NbOx coating layer 20 formed by depositing on the base film 10,
An SiOx coating layer 30 formed by depositing on the first NbOx coating layer 20,
The multilayer film structure of the second NbOx coating film layer 40 formed by depositing on the SiOx coating film layer 30 is formed, and the thickness of the multilayer film is controlled so that a transmission and reflection effect is caused by a difference between the refractive index of NbOx and the refractive index of SiOx. In order to realize the desired color or to filter the unwanted wavelengths,
A first NbOx coating layer 20 having a thickness of 15 nm to 40 nm having a refractive index of 2.2 is deposited on the base film 10 having a refractive index of 1.66,
An SiOx coating layer 30 having a thickness of 50 nm to 100 nm having a refractive index of 1.45 is deposited on the first NbOx coating layer 20,
A color film for protecting a smartphone cover glass, characterized in that a second NbOx coating layer 40 of a thickness of 15 nm to 40 nm having a refractive index of 2.2 is deposited on the SiOx coating layer 30.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170123827A KR102104388B1 (en) | 2017-09-26 | 2017-09-26 | Manufacturing method of a color film for protecting glass cover of liquid crystal display and the color film made therefrom |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170123827A KR102104388B1 (en) | 2017-09-26 | 2017-09-26 | Manufacturing method of a color film for protecting glass cover of liquid crystal display and the color film made therefrom |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20190035049A KR20190035049A (en) | 2019-04-03 |
KR102104388B1 true KR102104388B1 (en) | 2020-04-24 |
Family
ID=66165710
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020170123827A KR102104388B1 (en) | 2017-09-26 | 2017-09-26 | Manufacturing method of a color film for protecting glass cover of liquid crystal display and the color film made therefrom |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102104388B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022231254A1 (en) * | 2021-04-26 | 2022-11-03 | 삼성전자 주식회사 | Electronic device including housing having protective layer formed thereon |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110724919B (en) * | 2019-11-29 | 2022-03-25 | 湖南华庆科技有限公司 | Colorful and green mobile phone back shell membrane and preparation method thereof |
CN111501007B (en) * | 2020-06-15 | 2020-12-22 | 合肥市辉耀真空材料有限责任公司 | Transverse rainbow film production device with regular prism-shaped main drum and film coating process thereof |
CN114318236A (en) * | 2021-12-17 | 2022-04-12 | 中丰田光电科技(珠海)有限公司 | Rainbow film process and rainbow film production device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006328478A (en) * | 2005-05-26 | 2006-12-07 | Sumitomo Metal Mining Co Ltd | Winding type compound vacuum surface treatment apparatus, and film surface treatment method |
JP2009109850A (en) * | 2007-10-31 | 2009-05-21 | Toppan Printing Co Ltd | Reflection preventive film, manufacturing method therefor, polarizing plate using reflection preventive film, and manufacturing method therefor |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007279554A (en) | 2006-04-11 | 2007-10-25 | Three M Innovative Properties Co | Film for preventing scattering of protective glass of liquid crystal display |
KR101355020B1 (en) | 2012-02-10 | 2014-01-27 | 에스케이씨하스디스플레이필름(유) | Glass scattering preventing film for thin-film display protection |
US8586188B1 (en) | 2012-11-28 | 2013-11-19 | Corning Incorporated | Protective films or papers for glass surfaces and methods thereof |
-
2017
- 2017-09-26 KR KR1020170123827A patent/KR102104388B1/en active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006328478A (en) * | 2005-05-26 | 2006-12-07 | Sumitomo Metal Mining Co Ltd | Winding type compound vacuum surface treatment apparatus, and film surface treatment method |
JP2009109850A (en) * | 2007-10-31 | 2009-05-21 | Toppan Printing Co Ltd | Reflection preventive film, manufacturing method therefor, polarizing plate using reflection preventive film, and manufacturing method therefor |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022231254A1 (en) * | 2021-04-26 | 2022-11-03 | 삼성전자 주식회사 | Electronic device including housing having protective layer formed thereon |
Also Published As
Publication number | Publication date |
---|---|
KR20190035049A (en) | 2019-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102104388B1 (en) | Manufacturing method of a color film for protecting glass cover of liquid crystal display and the color film made therefrom | |
EP0933340B1 (en) | Process for the deposition of a metallic nitride layer on a transparent substrate | |
JP6764349B2 (en) | Method for obtaining a substrate coated with a functional layer using a sacrificial layer | |
JP2006267561A (en) | Optical element and manufacturing method thereof | |
EP3003631B1 (en) | Method for producing a substrate provided with a coating | |
CN108017290B (en) | Preparation method of antireflection glass | |
TW202028150A (en) | Anti-reflection glass | |
JP5051361B2 (en) | Absorption type multilayer ND filter manufacturing apparatus and method for manufacturing absorption type multilayer ND filter using the apparatus | |
JP7481990B2 (en) | Optical film manufacturing method and optical film manufacturing apparatus | |
CN108290779B (en) | Method and apparatus for obtaining tinted glass sheets | |
CN106707376A (en) | Optical lens film-coated film layer structure and film coating method of optical lens film-coated film layer structure | |
KR20060107941A (en) | Substrate for semi-transmitting type liquid crystal display element and semi-transmitting type liquid crystal display element including the substrate | |
JP2006227344A (en) | Optical laminate member and method for manufacturing the same | |
KR102536801B1 (en) | Method for rainbow colar coating on glass article | |
RU110742U1 (en) | MULTILAYER PROTECTIVE ENERGY SAVING GLASS | |
EP2803646B1 (en) | Process for coating a substrate and for manufacturing a window | |
WO2006064161A1 (en) | Method and installation for treating a glass substrate incorporating a magnetron line and a device generating an atmospheric pressure plasma | |
JP7162867B2 (en) | ND filter and its manufacturing method | |
BE1009514A3 (en) | Glass and method for manufacturing a glass tel. | |
FR2991980A1 (en) | THIN FILM DEPOSITION METHOD WITH VACUUM TREATMENT STEP AND PRODUCT OBTAINED | |
JP4811294B2 (en) | Method for manufacturing absorption multilayer ND filter | |
KR102106817B1 (en) | Multilayered filters for controlling color purity and manufacturing method thereof | |
CN106854043B (en) | Antifog corrosion-resistant energy-saving film for civil ship bridge glass and preparation method thereof | |
KR100472423B1 (en) | Visor multicoated with a film excluding ultraviolet rays for a suncap | |
JP2022177872A (en) | Method for manufacturing optical film having antifouling layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
AMND | Amendment | ||
X701 | Decision to grant (after re-examination) | ||
GRNT | Written decision to grant |