JP4811294B2 - Method for manufacturing absorption multilayer ND filter - Google Patents
Method for manufacturing absorption multilayer ND filter Download PDFInfo
- Publication number
- JP4811294B2 JP4811294B2 JP2007043408A JP2007043408A JP4811294B2 JP 4811294 B2 JP4811294 B2 JP 4811294B2 JP 2007043408 A JP2007043408 A JP 2007043408A JP 2007043408 A JP2007043408 A JP 2007043408A JP 4811294 B2 JP4811294 B2 JP 4811294B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- absorption
- multilayer
- filter
- resin film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Optical Elements Other Than Lenses (AREA)
Description
本発明は、樹脂フィルムに吸収型多層膜を設けた吸収型多層膜NDフィルターに関し、特に400〜700nmの透過光を減衰させる吸収型多層膜NDフィルターの耐環境性の改良に関するものである。 The present invention relates to an absorptive multilayer ND filter in which an absorptive multilayer film is provided on a resin film, and more particularly to an improvement in environmental resistance of an absorptive multilayer ND filter that attenuates transmitted light of 400 to 700 nm.
可視光領域の透過光を減衰させるND(Neutral Density Filter)フィルターとしては、入射光を反射して減衰させる反射型NDフィルターと、入射光を吸収して減衰させる吸収型NDフィルターが知られている。特に反射光が問題となるレンズ光学系にNDフィルターを組み込む場合には、一般的に吸収型NDフィルターが用いられている。 As an ND (Neutral Density Filter) filter that attenuates transmitted light in the visible light region, a reflective ND filter that reflects and attenuates incident light and an absorption ND filter that absorbs and attenuates incident light are known. . In particular, when an ND filter is incorporated in a lens optical system in which reflected light is a problem, an absorption ND filter is generally used.
この吸収型NDフィルターには、基板自体に吸収物質を混ぜるタイプ(色ガラスNDフィルター)と、基板に吸収物質を塗布するタイプと、基板自体に吸収はなく基板表面に形成された薄膜に吸収があるタイプとがある。また、薄膜に吸収があるタイプの場合は、薄膜表面の反射を防ぐため薄膜を多層膜で構成し、透過光を減衰させる機能と共に、反射防止の効果を持たせることもできる。 The absorption type ND filter includes a type in which an absorbing substance is mixed with the substrate itself (color glass ND filter), a type in which an absorbing substance is applied to the substrate, and a thin film formed on the substrate surface without absorption in the substrate itself. There are certain types. In the case of a type in which the thin film has absorption, the thin film can be composed of a multilayer film in order to prevent reflection on the surface of the thin film, and can have an antireflection effect as well as a function of attenuating transmitted light.
特に、小型薄型デジタルカメラ等に用いられる吸収型多層膜NDフィルターでは、組込みスペースが狭いため基板自体を薄くする必要があることから、樹脂フィルムが最適な基板とされている。例えば、特開2006−178395号公報には、樹脂フルムに酸化物誘電体膜層と金属吸収膜層とを交互に積層して吸収型多層膜を形成した吸収型多層膜NDフィルターが開示されている。 In particular, in an absorption type multilayer ND filter used for a small and thin digital camera or the like, a resin film is regarded as an optimal substrate because the mounting space is narrow and the substrate itself needs to be thinned. For example, JP 2006-178395 A discloses an absorptive multilayer ND filter in which an oxide dielectric film layer and a metal absorptive film layer are alternately laminated on a resin film to form an absorptive multilayer film. Yes.
また、特開2003−322709号公報には、フィルムの走行パス上に、基板表面をクリーニングするためのプラズマ電極と、その表面上に光吸収膜、透明誘電体膜を形成するための蒸着源を備え、最初にプラズマ電極で発生するプラズマ放電によって基板の表面洗浄を行い、次いで蒸着源のスパッタリングにより光吸収膜を形成し、引き続きスパッタリングにより透明誘電体膜を形成する方法が記載されている。ここでは、吸収型多層膜の密着性を向上させるために、成膜前の樹脂フィルムにプラズマ処理を行うことが開示されている。 Japanese Patent Application Laid-Open No. 2003-322709 discloses a plasma electrode for cleaning a substrate surface on a traveling path of a film, and a vapor deposition source for forming a light absorption film and a transparent dielectric film on the surface. A method is described in which a substrate surface is first cleaned by plasma discharge generated at a plasma electrode, then a light absorbing film is formed by sputtering of a vapor deposition source, and then a transparent dielectric film is formed by sputtering. Here, it is disclosed that plasma treatment is performed on a resin film before film formation in order to improve the adhesion of the absorption multilayer film.
上記した樹脂フルムに吸収型多層膜を形成した吸収型多層膜NDフィルターは、波長400〜700nmにおける平均透過率が通常25%程度であり、波長400〜550nm付近の透過率が高いという谷型形状の分光透過特性を有している。 The absorption multilayer film ND filter in which an absorption multilayer film is formed on the resin film described above has a valley shape in which the average transmittance at a wavelength of 400 to 700 nm is usually about 25% and the transmittance around a wavelength of 400 to 550 nm is high. Spectral transmission characteristics.
上記吸収型多層膜NDフィルターは、デジタルカメラや防犯カメラ等に組み込まれるために、耐環境性も要求されている。特に、樹脂フィルムからなる基板に成膜した吸収型多層膜NDフィルターは、高温高湿環境下に放置すると吸収型多層膜が網の目状にヒビ割れることがあり、その改良が望まれていた。 Since the absorption multilayer ND filter is incorporated in a digital camera, a security camera or the like, environmental resistance is also required. In particular, an absorptive multilayer film ND filter formed on a substrate made of a resin film may crack in the absorptive multilayer film like a mesh when left in a high-temperature and high-humidity environment. .
本発明は、このような従来の問題点に着目してなされたものであり、基板である樹脂フィルムに可視光領域の透過光を減衰させる吸収型多層膜を設けた吸収型多層膜NDフィルターについて、吸収型多層膜の膜構造を変更することなく、光学特性に優れると同時に、高温高湿環境下においてもヒビ割れが発生しない吸収型多層膜NDフィルターを提供することを目的とする。 The present invention has been made paying attention to such conventional problems, and relates to an absorptive multilayer ND filter in which a resin film as a substrate is provided with an absorptive multilayer film that attenuates transmitted light in the visible light region. It is an object of the present invention to provide an absorptive multilayer ND filter that has excellent optical characteristics without changing the film structure of the absorptive multilayer film, and at the same time, does not generate cracks even in a high-temperature and high-humidity environment.
本発明者は、上記目的を達成するため鋭意研究を行った結果、透明な樹脂多層フィルムがプラズマやイオンビームを照射する処理により若干着色するという知見に基づき、吸収型膜の膜構造を変更することなく、樹脂フィルムにプラズマやイオンビームを照射して熱収縮を起こさせることによって、その樹脂フィルム上に成膜した吸収型多層膜の高温高湿環境下での耐環境性が向上することを見出し、本発明に至ったものである。 As a result of earnest research to achieve the above object, the present inventor changed the film structure of the absorption film based on the knowledge that the transparent resin multilayer film is slightly colored by the treatment with plasma or ion beam irradiation. Without irradiating the resin film with plasma or ion beam and causing thermal shrinkage, the environmental resistance of the absorption multilayer film formed on the resin film under high temperature and high humidity environment is improved. This is the headline and the present invention.
即ち、本発明による吸収型多層膜NDフィルターの製造方法は、樹脂フィルムに可視光領域の透過光を減衰させる吸収型多層膜を設けた吸収型多層膜NDフィルターの製造方法であって、樹脂フィルムにプラズマ処理あるいはイオンビーム処理を施して、該樹脂フィルムを0.2%以上熱収縮させた後、該樹脂フルムの少なくとも片面に酸化物誘電体膜層と金属吸収膜層とを交互に積層して吸収型多層膜を形成することを特徴とする。 That is, the method for manufacturing an absorption multilayer ND filter according to the present invention is a method for manufacturing an absorption multilayer ND filter in which a resin film is provided with an absorption multilayer that attenuates transmitted light in the visible light region. The resin film is thermally contracted by 0.2% or more by plasma treatment or ion beam treatment, and then oxide dielectric film layers and metal absorption film layers are alternately laminated on at least one surface of the resin film. Forming an absorption-type multilayer film.
本発明によれば、吸収型多層膜NDフィルターの膜構造を変更せずに、また製造コストのアップや成膜工程を複雑にすることなく、優れた光学特性を維持しながら、吸収型多層膜と樹脂フィルムの密着性を向上させると同時に、高温高湿環境下における吸収型多層膜のヒビ割れを防ぐことができる。 According to the present invention, the absorption multilayer film is maintained without changing the film structure of the absorption multilayer film ND filter, while maintaining excellent optical characteristics without increasing the manufacturing cost or complicating the film formation process. In addition, it is possible to prevent cracking of the absorption multilayer film in a high temperature and high humidity environment.
本発明の吸収型多層膜NDフィルターにおいては、吸収型多層膜を成膜する前に、基板となる樹脂フィルムにプラズマあるいはイオンビームを照射する。この樹脂フィルムのプラズマ処理あるいはイオンビーム処理により、樹脂フィルムを0.2%以上熱収縮させることによって、樹脂フィルムと吸収型多層膜の密着性を高めると共に、高温高湿環境下における吸収型多層膜のヒビ割れを防止することができる。 In the absorptive multilayer ND filter of the present invention, the resin film as the substrate is irradiated with plasma or ion beams before the absorptive multilayer film is formed. The resin film is heat-shrinked by 0.2% or more by plasma treatment or ion beam treatment of the resin film, thereby improving the adhesion between the resin film and the absorbent multilayer film and absorbing the multilayer film in a high-temperature and high-humidity environment. Cracking can be prevented.
従来から、樹脂フィルムと多層膜との密着性を改善するために、多層膜を成膜する前に、樹脂フィルムへのプラズマ処理あるいはイオンビーム処理が行われていた。その場合、プラズマ処理電圧(電力)又はイオンビーム電圧(電力)に応じて多層膜の密着強度も向上するが、ある程度以上の電圧(電力)になると多層膜の密着強度はもはや向上しなくなり、更に電圧(電力)を高めると多層膜の密着強度は低下するようになる。これは、プラズマ処理あるいはイオンビーム処理により樹脂フィルム表面が劣化してしまうためと考えられている。 Conventionally, in order to improve the adhesion between the resin film and the multilayer film, plasma treatment or ion beam treatment is performed on the resin film before the multilayer film is formed. In that case, the adhesion strength of the multilayer film is improved in accordance with the plasma processing voltage (power) or the ion beam voltage (power), but when the voltage (power) exceeds a certain level, the adhesion strength of the multilayer film is no longer improved. When the voltage (power) is increased, the adhesion strength of the multilayer film is lowered. This is considered because the surface of the resin film is deteriorated by plasma treatment or ion beam treatment.
このように、従来の樹脂フィルムに対するプラズマ処理あるいはイオンビーム処理は、密着強度の向上のみを目的としていたので、多層膜の密着強度が向上する範囲で条件の検討がなされ、プラズマ処理あるいはイオンビーム処理の処理電圧(電力)を密着強度の向上の変化がなくなるレベルまで上げることは従来行われてこなかった。 As described above, since the conventional plasma treatment or ion beam treatment for the resin film was intended only to improve the adhesion strength, the conditions were studied within the range in which the adhesion strength of the multilayer film was improved, and the plasma treatment or ion beam treatment was performed. In the past, it has not been possible to raise the processing voltage (electric power) to a level at which there is no change in the adhesion strength.
本発明では、プラズマ処理電圧(電力)あるいはイオンビーム電圧(電力)を密着強度の向上の変化がなくなるレベルまで上げ、樹脂フィルムを0.2%以上熱収縮させることによって、高温高湿環境下に設置された吸収型多層膜NDフィルターの吸収型多層膜にヒビ割れが発生することを防止するものである。しかも、プラズマ処理あるいはイオンビーム処理は、樹脂フィルムの表面温度が樹脂フィルムのガラス転移温度近くとなる条件、即ち樹脂フィルム表面の劣化により吸収型多層膜の密着強度が低下する手前までの条件範囲で利用することが望ましいことも分った。 In the present invention, the plasma treatment voltage (electric power) or ion beam voltage (electric power) is raised to a level where there is no change in the adhesion strength, and the resin film is thermally shrunk by 0.2% or more, so that it is in a high temperature and high humidity environment. It prevents the occurrence of cracks in the absorption multilayer film of the installed absorption multilayer film ND filter. Moreover, the plasma treatment or ion beam treatment is performed under the condition that the surface temperature of the resin film is close to the glass transition temperature of the resin film, that is, the condition range before the adhesive strength of the absorption multilayer film is lowered due to deterioration of the resin film surface. I also found it desirable to use it.
上記のようなプラズマ処理電圧(電力)あるいはイオンビーム電圧(電力)の具体的な条件範囲を表すことは難しい。上記の処理効果は、樹脂フィルムへの処理時間、ガス導入量、ガス圧などに依存するからである。そこで本発明においては、高温高湿環境下に設置された吸収型多層膜NDフィルターの吸収型多層膜にヒビ割れが発生することを防止する効果が得られる条件として、プラズマ処理あるいはイオンビーム処理による樹脂フィルムの熱収縮率を採用したものである。 It is difficult to express a specific condition range of the plasma processing voltage (power) or ion beam voltage (power) as described above. This is because the above processing effect depends on the processing time, gas introduction amount, gas pressure, and the like on the resin film. Therefore, in the present invention, plasma treatment or ion beam treatment is used as a condition for obtaining the effect of preventing the occurrence of cracking in the absorption multilayer film of the absorption multilayer film ND filter installed in a high temperature and high humidity environment. The heat shrinkage rate of the resin film is adopted.
基板となる樹脂フィルムの材質は特に限定されないが、透明であるものが好ましく、量産性を考慮した場合、乾式のロールコーティングが可能なフレキシブルなものが好ましい。フレキシブル基板は、従来のガラス基板等に比べて廉価であるうえ、軽量で変形性に富む点においても優れている。 Although the material of the resin film used as a board | substrate is not specifically limited, A transparent thing is preferable and the flexible thing which can be dry-type roll-coated is preferable when mass productivity is considered. A flexible substrate is less expensive than a conventional glass substrate, and is excellent in that it is light and rich in deformability.
樹脂フィルムの具体例としては、ポリエチレンテレフタレート(PET)、ポリエーテルスルフォン(PES)、ポリアリレート(PAR)、ポリカーボネート(PC)、ポリオレフィン(PO)及びノルボルネンから選ばれた樹脂からなるフィルム、あるいは、その樹脂フィルムの片面又は両面をアクリル系有機膜で被覆した複合フィルムが挙げられる。特に、ノルボルネン樹脂は、可視波長域における透明性と耐熱性などの特長を有するため好ましく、その代表的なものとして、吸収率の低い日本ゼオン社製のゼオノア(商品名)や、膜密着性の高いJSR社製のアートン(商品名)などを挙げることができる。 Specific examples of the resin film include a film made of a resin selected from polyethylene terephthalate (PET), polyether sulfone (PES), polyarylate (PAR), polycarbonate (PC), polyolefin (PO) and norbornene, or The composite film which coat | covered the one or both surfaces of the resin film with the acrylic type organic film is mentioned. In particular, norbornene resin is preferable because it has characteristics such as transparency and heat resistance in the visible wavelength range, and representative examples thereof include ZEONOR (trade name) manufactured by Nippon Zeon Co., Ltd., which has a low absorption rate, and film adhesion. A high JSR Arton (trade name) can be mentioned.
樹脂フィルムの片面又は両面に設ける吸収型多層膜は、酸化物誘電体膜層と金属吸収膜層とを交互に積層させた多層膜で構成される。酸化物誘電体膜層としては、SiO2、Al2O3、若しくはこれら酸化物の混合物、あるいは複合酸化物を用いることができる。また、金属吸収膜層としては、Ni、Ti、Cr、W、Ta、Nbから選ばれた少なくとも1種の金属を用いることができる。 The absorption multilayer film provided on one side or both sides of the resin film is composed of a multilayer film in which oxide dielectric film layers and metal absorption film layers are alternately laminated. As the oxide dielectric film layer, SiO 2 , Al 2 O 3 , a mixture of these oxides, or a composite oxide can be used. In addition, as the metal absorption film layer, at least one metal selected from Ni, Ti, Cr, W, Ta, and Nb can be used.
上記吸収型多層膜を構成する酸化物誘電体膜層と金属吸収膜層は、上記のごとくプラズマ処理あるいはイオンビーム処理を行った後、真空蒸着法、イオンビームスパッタリング法、マグネトロンスパッタリング法、イオンプレーティング法などの成膜法により、それぞれ成膜することができる。 The oxide dielectric film layer and the metal absorption film layer constituting the absorption multilayer film are subjected to the plasma treatment or the ion beam treatment as described above, and then the vacuum deposition method, the ion beam sputtering method, the magnetron sputtering method, the ion plate method. Each film can be formed by a film forming method such as a coating method.
次に、本発明による吸収型多層膜NDフィルターの製造方法について、更に詳しく説明する。吸収型多層膜NDフィルターでは、基板となる樹脂フィルムの少なくとも片面に透過光を減衰させる吸収型多層膜が設けられる。本発明では、吸収型多層膜を成膜する前に、少なくとも吸収型多層膜が成膜される樹脂フィルム表面にプラズマ処理あるいはイオンビーム処理を施し、樹脂フィルムを0.2%以上熱収縮させる。尚、プラズマ処理及びイオンビーム処理については、特に制限はなく、導入ガスにはアルゴンガス単体若しくはアルゴンガスに酸素あるいは窒素を混合したガスを用いることができる。 Next, the manufacturing method of the absorption multilayer ND filter according to the present invention will be described in more detail. In the absorptive multilayer ND filter, an absorptive multilayer film that attenuates transmitted light is provided on at least one surface of a resin film serving as a substrate. In the present invention, before the absorption multilayer film is formed, at least the resin film surface on which the absorption multilayer film is formed is subjected to plasma treatment or ion beam treatment, and the resin film is thermally contracted by 0.2% or more. In addition, there is no restriction | limiting in particular about plasma processing and ion beam processing, The gas which mixed oxygen or nitrogen with argon gas single-piece | unit or argon gas can be used for introduction gas.
PETフィルムなどの樹脂フィルムの場合、縦横二軸方向に延伸して製造するため延伸方向にストレスがあり、加熱や湿度によって収縮現象が起こる。その際、縦方向(長さ方向)と横方向(幅方向)では延伸量が異なるため熱収縮率が異なり、縦方向の熱収縮率が横方向よりも大きいことが知られている。一般に吸収型多層膜の成膜にはロールコータを用い、縦方向に張力をかけて巻き取りながら成膜している。従って、本発明における0.2%以上の熱収縮率も、樹脂フィルムの縦方向で測定すれば良い。尚、熱収縮率は、予め処理前に樹脂フィルムにマーキングしたフィルム長を処理の前後で測定し、その寸法変化から求める。 In the case of a resin film such as a PET film, since the film is stretched in the longitudinal and lateral biaxial directions, there is stress in the stretching direction, and a shrinkage phenomenon occurs due to heating and humidity. At that time, it is known that the amount of stretching differs in the longitudinal direction (length direction) and the lateral direction (width direction), and therefore the thermal shrinkage rate differs, and the thermal shrinkage rate in the longitudinal direction is larger than that in the lateral direction. In general, the absorption multilayer film is formed by using a roll coater and winding it while applying tension in the vertical direction. Therefore, the heat shrinkage rate of 0.2% or more in the present invention may be measured in the longitudinal direction of the resin film. The heat shrinkage rate is obtained from the dimensional change by measuring the film length marked on the resin film before the treatment before and after the treatment.
上記プラズマ処理あるいはイオンビーム処理では、樹脂フィルムを0.2%以上熱収縮させることが必要である。樹脂フィルムの熱収縮が0.2%未満では、高温高湿環境下における吸収型多層膜のヒビ割れを防ぐ効果を得ることが難しいからである。ただし、樹脂フィルムの熱収縮が0.5%以上になると、高温高湿環境下における吸収型多層膜のヒビ割れを防ぐことはできるが、樹脂フィルム表面が劣化するため、吸収型多層膜の密着強度が低下する傾向にある。従って、樹脂フィルムの熱収縮が0.2%以上0.5%未満となるように、プラズマ処理あるいはイオンビーム処理の条件を調整することが好ましい。 In the plasma treatment or ion beam treatment, it is necessary to thermally shrink the resin film by 0.2% or more. This is because if the heat shrinkage of the resin film is less than 0.2%, it is difficult to obtain the effect of preventing cracking of the absorption multilayer film in a high temperature and high humidity environment. However, if the thermal shrinkage of the resin film is 0.5% or more, it is possible to prevent cracking of the absorbent multilayer film in a high-temperature and high-humidity environment, but the resin film surface deteriorates, so that the adhesion of the absorbent multilayer film is reduced. The strength tends to decrease. Therefore, it is preferable to adjust the conditions for plasma treatment or ion beam treatment so that the thermal shrinkage of the resin film is 0.2% or more and less than 0.5%.
上記プラズマ処理あるいはイオンビーム処理を施した樹脂フィルムには、吸収型多層膜を構成する酸化物誘電体膜層と金属膜層を交互に成膜する。例えば、易接着層付PETフィルムの両面に吸収型多層膜を成膜する場合、まずA面に所望のプラズマ処理電圧でプラズマ処理を行い、引き続きA面に吸収型多層膜を成膜する。次に、B面にもA面と同様にプラズマ処理を行い、引き続きB面に吸収型多層膜を成膜する。 On the resin film subjected to the plasma treatment or the ion beam treatment, an oxide dielectric film layer and a metal film layer constituting an absorption multilayer film are alternately formed. For example, when forming an absorption multilayer film on both surfaces of a PET film with an easy-adhesion layer, first, plasma processing is performed on the A surface with a desired plasma processing voltage, and then the absorption multilayer film is formed on the A surface. Next, plasma treatment is performed on the B surface in the same manner as the A surface, and an absorption multilayer film is subsequently formed on the B surface.
吸収型多層膜を構成する酸化物誘電体膜層と金属膜層は、真空蒸着法、イオンビームスパッタリング法、マグネトロンスパッタリング法、若しくはイオンプレーティング法などの成膜法により、それぞれ成膜することができる。特に金属吸収膜層は、膜材料の添加物や不純物、成膜時の残留ガス、基板からの放出ガスや成膜速度によって、屈折率や吸収係数などの特性が大きく異なることがあるが、これらの条件を適宜選択して、所望の吸収型多層膜NDフィルターの特性となるように設定すればよい。 The oxide dielectric film layer and the metal film layer constituting the absorption multilayer film can be formed by a film forming method such as a vacuum deposition method, an ion beam sputtering method, a magnetron sputtering method, or an ion plating method, respectively. it can. In particular, the characteristics of the metal absorption film layer, such as the refractive index and absorption coefficient, may vary greatly depending on the additive and impurities of the film material, the residual gas during film formation, the gas released from the substrate, and the film formation speed. These conditions may be appropriately selected and set so as to obtain the desired absorption multilayer ND filter characteristics.
基板として厚さ100μmの易接着層付PETフィルム(東洋紡製)を用い、吸収型多層膜を構成する酸化物誘電体膜層をSiO2及び金属吸収膜層をNiで形成することにより、下記表1に示す膜構造を有する吸収型多層膜NDフィルターを製造した。尚、この表1の膜構造を有する吸収型多層膜NDフィルターは、図1に示す谷型形状の分光透過特性を有し、波長400〜700nmにおける平均透過率が25%である。 By using a PET film with an easy-adhesion layer (Toyobo Co., Ltd.) having a thickness of 100 μm as the substrate, the oxide dielectric film layer constituting the absorption multilayer film is formed of SiO 2 and the metal absorption film layer is formed of Ni. An absorptive multilayer ND filter having the film structure shown in 1 was produced. The absorption multilayer ND filter having the film structure shown in Table 1 has a valley-shaped spectral transmission characteristic shown in FIG. 1, and has an average transmittance of 25% at a wavelength of 400 to 700 nm.
まず、上記易接着層付PETフィルムのA面に、プラズマ処理電圧1.6kVでプラズマ処理を行い、PETフィルムの終端部に未成膜部分を残して、SiO2からなる酸化物誘電体膜層とNiからなる金属吸収膜層とを交互に積層して吸収型多層膜を成膜した。その後、B面にもA面の同じ位置に同じプラズマ処理電圧でプラズマ処理を行い、A面と同様にPETフィルム終端部に未成膜部分を残して吸収型多層膜を成膜して、吸収型多層膜NDフィルターを得た。尚、上記PETフィルムの未成膜部分には、温度測定を行うために、85℃に達すると変色するサーモラベルを予め貼付した。 First, the A-side of the PET film with an easy-adhesion layer is subjected to plasma treatment at a plasma treatment voltage of 1.6 kV, leaving an undeposited portion at the end of the PET film, and an oxide dielectric film layer made of SiO 2 Absorption-type multilayer films were formed by alternately laminating metal absorption film layers made of Ni. After that, plasma treatment is performed on the B surface at the same position on the A surface with the same plasma processing voltage, and an absorptive multilayer film is formed at the end of the PET film leaving an undeposited portion in the same manner as the A surface. A multilayer ND filter was obtained. In addition, in order to measure temperature, the thermo-label which changes in color when it reaches to 85 degreeC was affixed previously to the non-film-forming part of the said PET film.
更に具体的に述べると、上記吸収型多層膜の成膜装置として、DCプラズマ処理機構が装備されているスパッタリングロールコータ装置を用いた。PETフィルムのプラズマ処理は、DCプラズマ処理装置にArガスを100sccm導入し、ターボポンプの回転数を低下させることによりArガス圧を3Paとし、フィルム搬送速度を1m/minにしてプラズマ処理を行った。 More specifically, a sputtering roll coater equipped with a DC plasma processing mechanism was used as the absorption multilayer film forming apparatus. The plasma treatment of the PET film was performed by introducing Ar gas into the DC plasma treatment apparatus at 100 sccm and lowering the rotation speed of the turbo pump so that the Ar gas pressure was 3 Pa and the film conveyance speed was 1 m / min. .
上記吸収型多層膜の成膜には、金属吸収膜層成膜用としてNi合金ターゲット(住友金属鉱山(株)製)を、酸化物誘電体膜層成膜用としてSiターゲット(住友金属鉱山(株)製)を用いた。即ち、Ni合金ターゲットはArガスを導入するDCマグネトロンスパッタリング法で成膜し、SiターゲットはArガスを導入するデュアルマグネトロンスパッタリングを行い、SiからSiO2を成膜するためにインピーダンスモニターにより酸素導入量を制御した。 For the formation of the absorption multilayer film, a Ni alloy target (manufactured by Sumitomo Metal Mining Co., Ltd.) is used for forming a metal absorption film layer, and a Si target (Sumitomo Metal Mining Co., Ltd.) is used for forming an oxide dielectric film layer. Product). That is, the Ni alloy target is formed by a DC magnetron sputtering method in which Ar gas is introduced, the Si target is subjected to dual magnetron sputtering in which Ar gas is introduced, and an oxygen introduction amount is measured by an impedance monitor in order to form SiO 2 from Si. Controlled.
また、PETフィルムのプラズマ処理電圧を変えた以外は上記と同様にして、吸収型多層膜NDフィルターを製造した。即ち、上記PETフィルムのA面とB面をプラズマ処理する際に、プラズマ処理電圧を1.8kV、2.1kV、2.3kV、2.5kV、及び2.8kVに設定し、それぞれプラズマ処理を行った後、吸収型多層膜を成膜することにより吸収型多層膜NDフィルターを製造した。 Also, an absorption multilayer ND filter was manufactured in the same manner as described above except that the plasma treatment voltage of the PET film was changed. That is, when plasma-treating the A side and the B side of the PET film, the plasma treatment voltage is set to 1.8 kV, 2.1 kV, 2.3 kV, 2.5 kV, and 2.8 kV, respectively. After this, an absorption type multilayer film ND filter was manufactured by forming an absorption type multilayer film.
得られた吸収型多層膜NDフィルターについて、上記各プラズマ処理電圧でプラズマ処理を両面に実施したPETフィルムの熱収縮率を測定し、その結果を下記表2に示した。尚、熱収縮率の測定は、PETフィルムの未成膜部分に予め縦方向(長さ方向)に1000mm間隔でマーキングした部分の寸法を、プラズマ処理後に測定して求めた。 About the obtained absorption type multilayer ND filter, the thermal contraction rate of the PET film in which the plasma treatment was performed on both sides with each plasma treatment voltage was measured, and the result is shown in Table 2 below. In addition, the measurement of the thermal contraction rate was obtained by measuring the dimension of the portion marked in advance in the longitudinal direction (length direction) at 1000 mm intervals on the non-deposited portion of the PET film after the plasma treatment.
また、得られた各吸収型多層膜NDフィルターを50mm角に切断し、温度80℃、湿度90%の環境試験機に24時間放置した。その後、各吸収型NDフィルターを100倍のノマルスキー微分干渉顕微鏡で観察し、吸収型多層膜のヒビ割れの状態を調べた。得られた観察結果を下記表2に示した。 Each of the obtained absorption multilayer ND filters was cut into 50 mm squares and left in an environmental tester at a temperature of 80 ° C. and a humidity of 90% for 24 hours. Then, each absorption type ND filter was observed with a 100 × Nomarski differential interference microscope, and the state of cracking of the absorption type multilayer film was examined. The obtained observation results are shown in Table 2 below.
上記の結果から、成膜前のプラズマ処理によりPETフィルムを0.2%以上熱収縮させることにより、高温高湿環境下における吸収型多層膜のヒビ割れを防止できることが分る。また、プラズマ処理電圧が1.8kV以上になると、PETフィルムの未成膜部分に貼付した85℃に達すると変色するサーモラベルの色が変化したことから、プラズマ処理中にPETフィルム表面温度がガラス転移温度(105℃)に近づいたものと判断することができる。 From the above results, it can be seen that cracking of the absorption multilayer film in a high temperature and high humidity environment can be prevented by thermally shrinking the PET film by 0.2% or more by plasma treatment before film formation. In addition, when the plasma treatment voltage is 1.8 kV or higher, the color of the thermolabel that changes color when it reaches 85 ° C attached to the non-deposited portion of the PET film changes. It can be determined that the temperature has approached (105 ° C.).
上記環境試験とは別に、湿度制御を行っていない80℃のオーブンに24時間放置する試験を行ったが、上記いずれのプラズマ処理を行った吸収型多層膜NDフィルターも、吸収型多層膜にヒビ割れが発生することはなかった。 Aside from the environmental test, a test was conducted for 24 hours in an oven at 80 ° C. where humidity control was not performed. However, the absorption multilayer ND filter subjected to any of the above plasma treatments also has a crack in the absorption multilayer film. No cracking occurred.
また、プラズマ処理電圧1.6〜2.5kVでプラズマ処理を行った吸収型多層膜NDフィルターでは、吸収型多層膜の密着強度が十分であったが、プラズマ処理電圧を2.8kVとした吸収型多層膜NDフィルターでは、実用上問題ない範囲で密着強度が若干低下する傾向が認められた。これは、樹脂フィルム表面が劣化したことに起因して、吸収型多層膜の密着強度が低下したためと考えられる。 Further, in the absorption type multilayer ND filter that has been subjected to the plasma processing at a plasma processing voltage of 1.6 to 2.5 kV, the adhesion strength of the absorption type multilayer film was sufficient, but the absorption at a plasma processing voltage of 2.8 kV. In the type multilayer ND filter, a tendency that the adhesion strength slightly decreases within a practically acceptable range was observed. This is presumably because the adhesion strength of the absorption multilayer film was lowered due to the deterioration of the resin film surface.
尚、上記実施例ではPETフィルムにプラズマ処理を行った場合についてのみ説明したが、イオンビーム処理においても上記とほぼ同様の結果が得られた。 In addition, although the said Example demonstrated only the case where a plasma process was performed to PET film, the result similar to the above was obtained also in the ion beam process.
Claims (2)
A manufacturing method of an absorption type multi-layer film ND filter provided with absorption type multi-layer film for attenuating the transmitted light in the visible light range to the resin film produced by stretching horizontally and vertically biaxial directions, a plasma treatment to the resin film And the resin film is thermally shrunk by 0.2% or more in the longitudinal direction , and then an oxide dielectric film layer and a metal absorption film layer are alternately laminated on at least one surface of the resin film to form an absorptive multilayer film The manufacturing method of the absorption type multilayer ND filter characterized by forming.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007043408A JP4811294B2 (en) | 2007-02-23 | 2007-02-23 | Method for manufacturing absorption multilayer ND filter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007043408A JP4811294B2 (en) | 2007-02-23 | 2007-02-23 | Method for manufacturing absorption multilayer ND filter |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008209443A JP2008209443A (en) | 2008-09-11 |
JP4811294B2 true JP4811294B2 (en) | 2011-11-09 |
Family
ID=39785828
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007043408A Expired - Fee Related JP4811294B2 (en) | 2007-02-23 | 2007-02-23 | Method for manufacturing absorption multilayer ND filter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4811294B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011103397A (en) * | 2009-11-11 | 2011-05-26 | Sharp Corp | Solar cell module assembly, method of manufacturing the same, and moving body |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62116763A (en) * | 1985-11-13 | 1987-05-28 | Toppan Printing Co Ltd | Production of thermally shrinkable plastic film having vapor-deposited layer |
JP4623349B2 (en) * | 2001-05-23 | 2011-02-02 | ソニー株式会社 | Thin film type ND filter and manufacturing method thereof |
JP2003322709A (en) * | 2002-04-30 | 2003-11-14 | Sony Corp | Thin film type nd filter |
JP2006091694A (en) * | 2004-09-27 | 2006-04-06 | Nidec Copal Corp | Nd filter, its manufacturing method, and light quantity control diaphragm device |
-
2007
- 2007-02-23 JP JP2007043408A patent/JP4811294B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2008209443A (en) | 2008-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI403762B (en) | Absorptive multilayer film nd filter and method for fabricating the same | |
US7880966B2 (en) | Optical article including a layer siox as main component and manufacturing method of the same | |
JP5417698B2 (en) | Method for producing functional film | |
KR102187048B1 (en) | Infrared band pass filter | |
JP2002055213A (en) | High reflectance mirror | |
JP2010184478A (en) | Multilayer film and method for manufacturing the same | |
JP2006267561A (en) | Optical element and manufacturing method thereof | |
JP4811294B2 (en) | Method for manufacturing absorption multilayer ND filter | |
JP2002350610A (en) | Thin film nd filter and method for manufacturing the same | |
JP2010224350A (en) | Absorption-type multilayer film nd filter and manufacturing method therefor | |
KR101165770B1 (en) | Method for manufacturing ito thin film with high-transmittance and low-resistance | |
JP4862829B2 (en) | Absorption-type multilayer ND filter | |
JP4802770B2 (en) | Absorption-type multilayer ND filter and method for manufacturing the same | |
JP2011197602A (en) | Absorption type multi-layer film nd filter, and manufacturing method of the same | |
JP4811293B2 (en) | Absorption-type multilayer ND filter and method for manufacturing the same | |
JP2013182091A (en) | Antireflection film and method for forming the same | |
JP4804830B2 (en) | Multilayer film forming method and film forming apparatus | |
KR20200065912A (en) | Barrier film having anti-glare function and manufacturing method thereof | |
JP2020064260A (en) | Optical filter, light intensity adjustment device, and imaging apparatus | |
JP2005232565A (en) | Method of producing thin film | |
JP4466457B2 (en) | Absorption-type multilayer ND filter and manufacturing method thereof | |
JP2004255635A (en) | Transparent laminated film, antireflection film, polarizing plate using the same, and liquid crystal display device | |
JP5125268B2 (en) | Method for manufacturing absorption multilayer ND filter | |
JP2011107496A (en) | Absorption type multilayer film nd filter and method of manufacturing the same | |
JP2003277911A (en) | Optical thin film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090602 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110519 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110524 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110705 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110726 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110808 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140902 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |