Nothing Special   »   [go: up one dir, main page]

KR102086515B1 - 무선 통신 시스템에서 안테나 포트 관계를 고려한 하향링크 신호 송수신 방법 및 장치 - Google Patents

무선 통신 시스템에서 안테나 포트 관계를 고려한 하향링크 신호 송수신 방법 및 장치 Download PDF

Info

Publication number
KR102086515B1
KR102086515B1 KR1020157004665A KR20157004665A KR102086515B1 KR 102086515 B1 KR102086515 B1 KR 102086515B1 KR 1020157004665 A KR1020157004665 A KR 1020157004665A KR 20157004665 A KR20157004665 A KR 20157004665A KR 102086515 B1 KR102086515 B1 KR 102086515B1
Authority
KR
South Korea
Prior art keywords
pdsch
csi
start symbol
value
pqi
Prior art date
Application number
KR1020157004665A
Other languages
English (en)
Other versions
KR20150058171A (ko
Inventor
박종현
김은선
서한별
김기준
김병훈
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of KR20150058171A publication Critical patent/KR20150058171A/ko
Application granted granted Critical
Publication of KR102086515B1 publication Critical patent/KR102086515B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2656Frame synchronisation, e.g. packet synchronisation, time division duplex [TDD] switching point detection or subframe synchronisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명은 무선 통신 시스템에 대한 것으로, 보다 상세하게는 안테나 포트 관계를 고려한 하향링크 신호 송신 또는 수신 방법 및 장치가 개시된다. 본 발명의 일 실시예에 따른 무선 통신 시스템에서 단말이 물리하향링크공유채널(PDSCH) 신호를 수신하는 방법은, 소정의 우선순위에 따라서 PDSCH 시작 심볼 인덱스를 결정하고, 이에 따라 PDSCH 신호를 수신할 수 있다. PQI(PDSCH resource element mapping and Quasi co-location Indicator) 파라미터 세트에 포함되는 PDSCH 시작 심볼 값이 상위계층에 의해서 설정되는 경우에는, 이에 따라서 PDSCH 시작 심볼 인덱스가 결정될 수 있다. 그렇지 않은 경우, 상기 PDSCH가 수신되는 셀에 대한 PDSCH 시작 심볼 값에 따라서 PDSCH 시작 심볼 인덱스가 결정될 수 있다.

Description

무선 통신 시스템에서 안테나 포트 관계를 고려한 하향링크 신호 송수신 방법 및 장치{METHOD AND APPARATUS FOR TRANSMITTING/RECEIVING DOWNLINK SIGNAL CONSIDERING ANTENNA PORT RELATIONSHIP IN WIRELESS COMMUNICATION SYSTEM}
이하의 설명은 무선 통신 시스템에 대한 것으로, 보다 상세하게는 안테나 포트 관계를 고려한 하향링크 신호 송신 또는 수신 방법 및 장치에 대한 것이다.
다중 입출력(Multi-Input Multi-Output; MIMO) 기술은 한 개의 송신 안테나와 한 개의 수신 안테나를 사용했던 것에서 탈피하여 다중 송신 안테나와 다중 수신 안테나를 사용하여 데이터의 송수신 효율을 향상시키는 기술이다. 단일 안테나를 사용하면 수신단은 데이터를 단일 안테나 경로(path)를 통해 수신하지만, 다중 안테나를 사용하면 수신단은 여러 경로를 통해 데이터를 수신한다. 따라서, 데이터 전송 속도와 전송량을 향상시킬 수 있고, 커버리지(coverage)를 증대시킬 수 있다.
MIMO 동작의 다중화 이득을 높이기 위해서 MIMO 수신단으로부터 채널상태정보(Channel Status Information; CSI)를 피드백 받아 MIMO 송신단에서 이용할 수 있다. 수신단에서는 송신단으로부터의 소정의 참조신호(Reference Signal; RS)를 이용하여 채널 측정을 수행함으로써 CSI를 결정할 수 있다.
발전된 무선 통신 시스템에서는 서로 다른 안테나 포트 간의 관계가 다양하게 정의될 수 있다. 예를 들어, 네트워크 측의 서로 다른 RS 포트가 실제로는 동일한 위치에 존재하는지 여부를 묻지 않고, 단말 측에서 상기 서로 다른 RS 포트가 QCL(Quasi Co-Located)되어 있다고 가정하거나, 또는 QCL 되어 있지 않다고 가정할 수 있다.
본 발명에서는 안테나 포트의 관계(특히, QCL 관계)를 고려하여 네트워크 측으로부터 송신되는 하향링크 신호를 단말 측에서 정확하고 효율적으로 수신하는 방안을 제공하는 것을 목적으로 한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기의 기술적 과제를 해결하기 위하여 본 발명의 일 실시예에 따른 무선 통신 시스템에서 단말이 물리하향링크공유채널(PDSCH) 신호를 수신하는 방법은, 하향링크 서브프레임에서 상기 PDSCH의 시작 심볼 인덱스를 결정하는 단계; 및 상기 시작 심볼 인덱스에 기초하여 상기 PDSCH 신호를 수신하는 단계를 포함할 수 있다. 상기 단말에 대해서 PQI(PDSCH resource element mapping and Quasi co-location Indicator) 파라미터 세트에 포함되는 PDSCH 시작 심볼 값이 상위계층에 의해서 설정되는 경우, 상기 시작 심볼 인덱스는 상기 PQI 파라미터 세트에 포함되는 상기 PDSCH 시작 심볼 값에 따라서 결정될 수 있다. 상기 단말에 대해서 상기 PQI 파라미터 세트에 포함되는 상기 PDSCH 시작 심볼 값이 상위계층에 의해서 설정되지 않고, 상기 PDSCH가 수신되는 셀에 대한 PDSCH 시작 심볼 값이 상위계층에 의해서 설정되는 경우, 상기 시작 심볼 인덱스는 상기 PDSCH가 수신되는 셀에 대한 상기 PDSCH 시작 심볼 값에 따라서 결정될 수 있다.
상기의 기술적 과제를 해결하기 위하여 본 발명의 다른 실시예에 따른 무선 통신 시스템에서 물리하향링크공유채널(PDSCH) 신호를 수신하는 단말 장치는, 전송 모듈; 수신 모듈; 및 프로세서를 포함할 수 있다. 상기 프로세서는, 하향링크 서브프레임에서 상기 PDSCH의 시작 심볼 인덱스를 결정하고; 상기 시작 심볼 인덱스에 기초하여 상기 PDSCH 신호를 상기 수신 모듈을 통하여 수신하도록 설정될 수 있다. 상기 단말에 대해서 PQI(PDSCH resource element mapping and Quasi co-location Indicator) 파라미터 세트에 포함되는 PDSCH 시작 심볼 값이 상위계층에 의해서 설정되는 경우, 상기 시작 심볼 인덱스는 상기 PQI 파라미터 세트에 포함되는 상기 PDSCH 시작 심볼 값에 따라서 결정될 수 있다. 상기 단말에 대해서 상기 PQI 파라미터 세트에 포함되는 상기 PDSCH 시작 심볼 값이 상위계층에 의해서 설정되지 않고, 상기 PDSCH가 수신되는 셀에 대한 PDSCH 시작 심볼 값이 상위계층에 의해서 설정되는 경우, 상기 시작 심볼 인덱스는 상기 PDSCH가 수신되는 셀에 대한 상기 PDSCH 시작 심볼 값에 따라서 결정될 수 있다.
상기 본 발명에 따른 실시예들에 있어서 이하의 사항이 공통으로 적용될 수 있다.
상기 PDSCH는, 물리하향링크제어채널(PDCCH) 또는 EPDCCH(Enhanced PDCCH)의 하향링크제어정보(DCI)에 의해서 할당될 수 있다.
상기 DCI가 DCI 포맷 2D에 따라서 구성되는 경우, 상기 PQI 파라미터 세트는 상기 DCI 포맷 2D의 PQI 필드의 상태 값에 따라서 결정될 수 있다.
상기 DCI가 DCI 포맷 1A에 따라서 구성되는 경우, 상기 PQI 파라미터 세트는 가장 낮은 인덱스를 가지는 PQI 파라미터 세트일 수 있다.
상기 PDCCH 또는 상기 EPDCCH가 수신되는 셀과, 상기 PDSCH가 수신되는 셀이 서로 상이한 셀인 경우, 상기 시작 심볼 인덱스는 상기 PDSCH가 수신되는 셀에 대한 상기 PDSCH 시작 심볼 값에 따라서 결정될 수 있다.
상기 PQI 파라미터 세트는, CRS(Cell-specific Reference Signal) 포트 개수 정보, CRS 주파수 시프트 정보, MBSFN(Multicast Broadcast Single Frequency Network) 서브프레임 설정 정보, ZP CSI-RS(Zero Power Channel State Information Reference Signal) 설정 정보, 상기 PDSCH 시작 심볼 값, 또는 NZP(Non-Zero Power) CSI-RS 설정 정보 중의 하나 이상의 파라미터를 포함할 수 있다.
상기 PQI 파라미터 세트에 포함되는 상기 PDSCH 시작 심볼 값은, 1, 2, 3, 또는 4 중의 하나일 수 있다.
상기 단말에 대해서 상기 PQI 파라미터 세트에 포함되는 상기 PDSCH 시작 심볼 값이 상위계층에 의해서 설정되지 않고, 또한 상기 PDSCH가 수신되는 셀에 대한 PDSCH 시작 심볼 값이 상위계층에 의해서 설정되지 않는 경우, 상기 시작 심볼 인덱스는 CFI(Control Format Indicator) 값에 기초하여 결정될 수 있다.
상기 단말은 전송모드 10(TM10)으로 설정될 수 있다.
상기 PDSCH 시작 심볼 인덱스는, 상기 하향링크 서브프레임에서 PDSCH가 매핑되는 시작 OFDM(Orthogonal Frequency Division Multiplexing) 심볼을 지시할 수 있다.
본 발명에 대하여 전술한 일반적인 설명과 후술하는 상세한 설명은 예시적인 것이며, 청구항 기재 발명에 대한 추가적인 설명을 위한 것이다.
본 발명에 따르면 안테나 포트의 관계(특히, QCL 관계)를 고려하여 네트워크 측으로부터 송신되는 하향링크 신호를 단말 측에서 정확하고 효율적으로 수신하는 방안이 제공될 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 명세서에 첨부되는 도면은 본 발명에 대한 이해를 제공하기 위한 것으로서 본 발명의 다양한 실시형태들을 나타내고 명세서의 기재와 함께 본 발명의 원리를 설명하기 위한 것이다.
도 1은 무선 프레임의 구조에 대하여 설명하기 위한 도면이다.
도 2는 하향링크 슬롯에서의 자원 그리드(resource grid)를 나타내는 도면이다.
도 3은 하향링크 서브프레임의 구조를 나타내는 도면이다.
도 4는 상향링크 서브프레임의 구조를 나타내는 도면이다.
도 5는 다중안테나를 갖는 무선 통신 시스템의 구성도이다.
도 6은 하나의 자원블록 쌍 상에서의 CRS 및 DRS의 예시적인 패턴을 나타내는 도면이다.
도 7은 LTE-A 시스템에서 정의되는 DMRS 패턴의 일례를 나타내는 도면이다.
도 8은 LTE-A 시스템에서 정의되는 CSI-RS 패턴의 예시들을 나타내는 도면이다.
도 9는 CSI-RS가 주기적으로 전송되는 방식의 일례를 설명하기 위한 도면이다.
도 10은 반송파 병합을 설명하기 위한 도면이다.
도 11은 크로스-반송파 스케줄링(cross-carrier scheduling)을 설명하기 위한 도면이다.
도 12는 본 발명에 따른 PDSCH 신호 송수신 방법을 설명하기 위한 흐름도이다.
도 13은 본 발명에 따른 기지국 장치 및 단말 장치의 바람직한 실시예의 구성을 도시한 도면이다.
이하의 실시예들은 본 발명의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성할 수도 있다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다.
본 명세서에서 본 발명의 실시예들을 기지국과 단말 간의 데이터 송신 및 수신의 관계를 중심으로 설명한다. 여기서, 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미를 갖는다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다.
즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국(BS: Base Station)'은 고정국(fixed station), Node B, eNode B(eNB), 액세스 포인트(AP: Access Point), 원격 무선 헤드(Remote Radio Head; RRD), 전송 포인트(TP), 수신 포인트(RP) 등의 용어에 의해 대체될 수 있다. 중계기는 Relay Node(RN), Relay Station(RS) 등의 용어에 의해 대체될 수 있다. 또한, '단말(Terminal)'은 UE(User Equipment), MS(Mobile Station), MSS(Mobile Subscriber Station), SS(Subscriber Station) 등의 용어로 대체될 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.
본 발명의 실시예들은 무선 접속 시스템들인 IEEE 802 시스템, 3GPP 시스템, 3GPP LTE 및 LTE-A(LTE-Advanced)시스템 및 3GPP2 시스템 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
이하의 기술은 CDMA(Code Division Multiple Access), FDMA(Frequency Division Multiple Access), TDMA(Time Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), SC-FDMA(Single Carrier Frequency Division Multiple Access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced)는 3GPP LTE의 진화이다. WiMAX는 IEEE 802.16e 규격(WirelessMAN-OFDMA Reference System) 및 발전된 IEEE 802.16m 규격(WirelessMAN-OFDMA Advanced system)에 의하여 설명될 수 있다. 명확성을 위하여 이하에서는 3GPP LTE 및 3GPP LTE-A 시스템을 위주로 설명하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
도 1은 무선 프레임의 구조에 대하여 설명하기 위한 도면이다.
셀룰라 OFDM 무선 패킷 통신 시스템에서, 상/하향링크 데이터 패킷 전송은 서브프레임 (subframe) 단위로 이루어지며, 한 서브프레임은 다수의 OFDM 심볼을 포함하는 일정 시간 구간으로 정의된다. 3GPP LTE 표준에서는 FDD(Frequency Division Duplex)에 적용 가능한 타입 1 무선 프레임(radio frame) 구조와 TDD(Time Division Duplex)에 적용 가능한 타입 2의 무선 프레임 구조를 지원한다.
도 1(a)는 타입 1 무선 프레임의 구조를 나타내는 도면이다. 하향링크 무선 프레임(radio frame)은 10개의 서브프레임(subframe)으로 구성되고, 하나의 서브프레임은 시간 영역(time domain)에서 2개의 슬롯(slot)으로 구성된다. 하나의 서브프레임이 전송되는 데 걸리는 시간을 TTI(transmission time interval)이라 하고, 예를 들어 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다. 하나의 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함하고, 주파수 영역에서 다수의 자원블록(Resource Block; RB)을 포함한다. 3GPP LTE 시스템에서는 하향링크에서 OFDMA를 사용하므로, OFDM 심볼이 하나의 심볼 구간을 나타낸다. OFDM 심볼은 또한 SC-FDMA 심볼 또는 심볼 구간으로 칭하여질 수도 있다. 자원 블록(Resource Block; RB)은 자원 할당 단위이고, 하나의 슬롯에서 복수개의 연속적인 부반송파(subcarrier)를 포함할 수 있다.
하나의 슬롯에 포함되는 OFDM 심볼의 수는 CP(Cyclic Prefix)의 구성(configuration)에 따라 달라질 수 있다. CP에는 확장된 CP(extended CP)와 정규 CP(normal CP)가 있다. 예를 들어, OFDM 심볼이 정규 CP에 의해 구성된 경우, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 7개일 수 있다. OFDM 심볼이 확장된 CP에 의해 구성된 경우에는 하나의 OFDM 심볼의 길이가 늘어나므로, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 정규 CP인 경우보다 적다. 확장된 CP의 경우에, 예를 들어, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 6개일 수 있다. 단말이 빠른 속도로 이동하는 등의 경우와 같이 채널상태가 불안정한 경우, 심볼간 간섭을 더욱 줄이기 위해 확장된 CP가 사용될 수 있다.
정규 CP가 사용되는 경우 하나의 슬롯은 7개의 OFDM 심볼을 포함하므로, 하나의 서브프레임은 14개의 OFDM 심볼을 포함한다. 이때, 각 서브프레임의 처음 2개 또는 3개의 OFDM 심볼은 PDCCH(physical downlink control channel)에 할당되고, 나머지 OFDM 심볼은 PDSCH(physical downlink shared channel)에 할당될 수 있다.
도 1(b)는 타입 2 무선 프레임의 구조를 나타내는 도면이다. 타입 2 무선 프레임은 2개의 하프 프레임 (half frame)으로 구성되며, 각 하프 프레임은 5개의 서브프레임과 DwPTS (Downlink Pilot Time Slot), 보호구간(Guard Period; GP), UpPTS (Uplink Pilot Time Slot)로 구성되며, 하나의 서브프레임은 2개의 슬롯으로 구성된다. DwPTS, GP 및 UpPTS 로 구성되는 서브프레임은, 특별 서브프레임(special subframe)이라고 칭할 수 있다. DwPTS는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향 전송 동기를 맞추는 데 사용된다. 보호구간은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다. 한편, 무선 프레임의 타입에 관계 없이 1개의 서브프레임은 2개의 슬롯으로 구성된다.
무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 심볼의 수는 다양하게 변경될 수 있다.
도 2는 하향링크 슬롯에서의 자원 그리드(resource grid)를 나타내는 도면이다.
하나의 하향링크 슬롯은 시간 영역에서 7 개의 OFDM 심볼을 포함하고, 하나의 자원블록(RB)은 주파수 영역에서 12 개의 부반송파를 포함하는 것으로 도시되어 있지만, 본 발명이 이에 제한되는 것은 아니다. 예를 들어, 정규 CP(Cyclic Prefix)의 경우에는 하나의 슬롯이 7 OFDM 심볼을 포함하지만, 확장된 CP(extended-CP)의 경우에는 하나의 슬롯이 6 OFDM 심볼을 포함할 수 있다. 자원 그리드 상의 각각의 요소는 자원 요소(resource element)라 한다. 하나의 자원블록은 12×7 자원 요소를 포함한다. 하향링크 슬롯에 포함되는 자원블록들의 NDL의 개수는 하향링크 전송 대역폭에 따른다. 상향링크 슬롯의 구조는 하향링크 슬롯의 구조와 동일할 수 있다.
도 3은 하향링크 서브프레임의 구조를 나타내는 도면이다.
하나의 서브프레임 내에서 첫 번째 슬롯의 앞 부분의 최대 3 개의 OFDM 심볼은 제어 채널이 할당되는 제어 영역에 해당한다. 나머지 OFDM 심볼들은 물리하향링크공유채널(Physical Downlink Shared Chancel; PDSCH)이 할당되는 데이터 영역에 해당한다.
3GPP LTE 시스템에서 사용되는 하향링크 제어 채널들에는, 예를 들어, 물리제어포맷지시자채널(Physical Control Format Indicator Channel; PCFICH), 물리하향링크제어채널(Physical Downlink Control Channel; PDCCH), 물리HARQ지시자채널(Physical Hybrid automatic repeat request Indicator Channel; PHICH) 등이 있다. PCFICH는 서브프레임의 첫 번째 OFDM 심볼에서 전송되고 서브프레임 내의 제어 채널 전송에 사용되는 OFDM 심볼의 개수에 대한 정보를 포함한다. PHICH는 상향링크 전송의 응답으로서 HARQ ACK/NACK 신호를 포함한다. PDCCH를 통하여 전송되는 제어 정보를 하향링크제어정보(Downlink Control Information; DCI)라 한다. DCI는 상향링크 또는 하향링크 스케줄링 정보를 포함하거나 임의의 단말 그룹에 대한 상향링크 전송 전력 제어 명령을 포함한다. PDCCH는 하향링크공유채널(DL-SCH)의 자원 할당 및 전송 포맷, 상향링크공유채널(UL-SCH)의 자원 할당 정보, 페이징채널(PCH)의 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상으로 전송되는 임의접속응답(Random Access Response)과 같은 상위계층 제어 메시지의 자원 할당, 임의의 단말 그룹 내의 개별 단말에 대한 전송 전력 제어 명령의 세트, 전송 전력 제어 정보, VoIP(Voice over IP)의 활성화 등을 포함할 수 있다. 복수의 PDCCH가 제어 영역 내에서 전송될 수 있고, 단말은 복수의 PDCCH를 모니터링할 수 있다.
PDCCH는 하나 이상의 연속하는 제어채널요소(Control Channel Element; CCE)의 조합(aggregation)으로 전송된다. CCE는 무선 채널의 상태에 기초한 코딩 레이트로 PDCCH를 제공하기 위해 사용되는 논리 할당 단위이다. CCE는 복수개의 자원 요소 그룹에 대응한다. PDCCH의 포맷과 이용가능한 비트 수는 CCE의 개수와 CCE에 의해 제공되는 코딩 레이트 간의 상관관계에 따라서 결정된다.
기지국은 단말에게 전송되는 DCI에 따라서 PDCCH 포맷을 결정하고, 제어 정보에 순환잉여검사(Cyclic Redundancy Check; CRC)를 부가한다. CRC는 PDCCH의 소유자 또는 용도에 따라 무선 네트워크 임시 식별자(Radio Network Temporary Identifier; RNTI)라 하는 식별자로 마스킹된다. PDCCH가 특정 단말에 대한 것이면, 단말의 cell-RNTI(C-RNTI) 식별자가 CRC에 마스킹될 수 있다. 또는, PDCCH가 페이징 메시지에 대한 것이면, 페이징 지시자 식별자(Paging Indicator Identifier; P-RNTI)가 CRC에 마스킹될 수 있다. PDCCH가 시스템 정보(보다 구체적으로, 시스템 정보 블록(SIB))에 대한 것이면, 시스템 정보 식별자 및 시스템 정보 RNTI(SI-RNTI)가 CRC에 마스킹될 수 있다. 단말의 임의 접속 프리앰블의 전송에 대한 응답인 임의접속응답을 나타내기 위해, 임의접속-RNTI(RA-RNTI)가 CRC에 마스킹될 수 있다.
도 4는 상향링크 서브프레임의 구조를 나타내는 도면이다.
상향링크 서브프레임은 주파수 영역에서 제어 영역과 데이터 영역으로 분할될 수 있다. 제어 영역에는 상향링크 제어 정보를 포함하는 물리상향링크제어채널(Physical Uplink Control Channel; PUCCH)이 할당된다. 데이터 영역에는 사용자 데이터를 포함하는 물리상향링크공유채널(Physical uplink shared channel; PUSCH)이 할당된다. 단일 반송파 특성을 유지하기 위해서, 하나의 단말은 PUCCH와 PUSCH를 동시에 전송하지 않는다. 하나의 단말에 대한 PUCCH는 서브프레임에서 자원블록 쌍(RB pair)에 할당된다. 자원블록 쌍에 속하는 자원블록들은 2 슬롯에 대하여 상이한 부반송파를 차지한다. 이를 PUCCH에 할당되는 자원블록 쌍이 슬롯 경계에서 주파수-호핑(frequency-hopped)된다고 한다.
다중안테나(MIMO) 시스템의 모델링
도 5는 다중안테나를 갖는 무선 통신 시스템의 구성도이다.
도 5(a)에 도시된 바와 같이 송신 안테나의 수를 NT 개로, 수신 안테나의 수를 NR 개로 늘리면, 송신기나 수신기에서만 다수의 안테나를 사용하게 되는 경우와 달리 안테나 수에 비례하여 이론적인 채널 전송 용량이 증가한다. 따라서, 전송 레이트를 향상시키고 주파수 효율을 획기적으로 향상시킬 수 있다. 채널 전송 용량이 증가함에 따라, 전송 레이트는 이론적으로 단일 안테나 이용시의 최대 전송 레이트(Ro)에 레이트 증가율(Ri)이 곱해진 만큼 증가할 수 있다.
Figure 112015018220788-pct00001
예를 들어, 4개의 송신 안테나와 4개의 수신 안테나를 이용하는 MIMO 통신 시스템에서는 단일 안테나 시스템에 비해 이론상 4배의 전송 레이트를 획득할 수 있다. 다중안테나 시스템의 이론적 용량 증가가 90 년대 중반에 증명된 이후 이를 실질적인 데이터 전송률 향상으로 이끌어 내기 위한 다양한 기술들이 현재까지 활발히 연구되고 있다. 또한, 몇몇 기술들은 이미 3 세대 이동 통신과 차세대 무선랜 등의 다양한 무선 통신의 표준에 반영되고 있다.
현재까지의 다중안테나 관련 연구 동향을 살펴보면 다양한 채널 환경 및 다중접속 환경에서의 다중안테나 통신 용량 계산 등과 관련된 정보 이론 측면 연구, 다중안테나 시스템의 무선 채널 측정 및 모형 도출 연구, 전송 신뢰도 향상 및 전송률 향상을 위한 시공간 신호 처리 기술 연구 등 다양한 관점에서 활발히 연구가 진행되고 있다.
다중안테나 시스템에서의 통신 방법을 수학적 모델링을 이용하여 보다 구체적으로 설명한다. 상기 시스템에는 NT개의 송신 안테나와 NR개의 수신 안테나가 존재한다고 가정한다.
송신 신호를 살펴보면, NT개의 송신 안테나가 있는 경우 전송 가능한 최대 정보는 NT개이다. 전송 정보는 다음과 같이 표현될 수 있다.
Figure 112015018220788-pct00002
각각의 전송 정보
Figure 112015018220788-pct00003
는 전송 전력이 다를 수 있다. 각각의 전송 전력을
Figure 112015018220788-pct00004
라고 하면, 전송 전력이 조정된 전송 정보는 다음과 같이 표현될 수 있다.
Figure 112015018220788-pct00005
또한,
Figure 112015018220788-pct00006
는 전송 전력의 대각행렬 P 를 이용해 다음과 같이 표현될 수 있다.
Figure 112015018220788-pct00007
전송전력이 조정된 정보 벡터
Figure 112015018220788-pct00008
에 가중치 행렬 W 가 적용되어 실제 전송되는 NT개의 송신신호
Figure 112015018220788-pct00009
가 구성되는 경우를 고려해 보자. 가중치 행렬 W 는 전송 정보를 전송 채널 상황 등에 따라 각 안테나에 적절히 분배해 주는 역할을 한다.
Figure 112015018220788-pct00010
는 벡터 X 를 이용하여 다음과 같이 표현될 수 있다.
Figure 112015018220788-pct00011
여기에서, w ij는 i번째 송신 안테나와 j번째 정보간의 가중치를 의미한다. W는 프리코딩 행렬이라고도 불린다.
수신신호는 NR 개의 수신 안테나가 있는 경우 각 안테나의 수신신호
Figure 112015018220788-pct00012
은 벡터로 다음과 같이 표현될 수 있다.
Figure 112015018220788-pct00013
다중안테나 무선 통신 시스템에서 채널을 모델링하는 경우, 채널은 송수신 안테나 인덱스에 따라 구분될 수 있다. 송신 안테나 j로부터 수신 안테나 i를 거치는 채널을 h ij 로 표시하기로 한다. h ij 에서, 인덱스의 순서가 수신 안테나 인덱스가 먼저, 송신 안테나의 인덱스가 나중임에 유의한다.
한편, 도 5(b)은 NT 개의 송신 안테나에서 수신 안테나 i로의 채널을 도시한 도면이다. 상기 채널을 묶어서 벡터 및 행렬 형태로 표시할 수 있다. 도 5(b)에서, 총 NT 개의 송신 안테나로부터 수신 안테나 i로 도착하는 채널은 다음과 같이 나타낼 수 있다.
Figure 112015018220788-pct00014
따라서, NT 개의 송신 안테나로부터 NR 개의 수신 안테나로 도착하는 모든 채널은 다음과 같이 표현될 수 있다.
Figure 112015018220788-pct00015
실제 채널에는 채널 행렬 H 를 거친 후에 백색잡음(AWGN; Additive White Gaussian Noise)이 더해진다. NR 개의 수신 안테나 각각에 더해지는 백색잡음
Figure 112015018220788-pct00016
은 다음과 같이 표현될 수 있다.
Figure 112015018220788-pct00017
상술한 수식 모델링을 통해 수신신호는 다음과 같이 표현될 수 있다.
Figure 112015018220788-pct00018
한편, 채널 상태를 나타내는 채널 행렬 H 의 행과 열의 수는 송수신 안테나의 수에 의해 결정된다. 채널 행렬 H에서 행의 수는 수신 안테나의 수 NR과 같고, 열의 수는 송신 안테나의 수 NT와 같다. 즉, 채널 행렬 H 는 행렬이 NR×NT된다.
행렬의 랭크(rank)는 서로 독립인(independent) 행 또는 열의 개수 중에서 최소 개수로 정의된다. 따라서, 행렬의 랭크는 행 또는 열의 개수 보다 클 수 없다. 채널 행렬 H의 랭크(rank(H))는 다음과 같이 제한된다.
Figure 112015018220788-pct00019
랭크의 다른 정의는 행렬을 고유치 분해(Eigen value decomposition) 하였을 때, 0이 아닌 고유치들의 개수로 정의할 수 있다. 유사하게, 랭크의 또 다른 정의는 특이치 분해(singular value decomposition) 하였을 때, 0이 아닌 특이치들의 개수로 정의할 수 있다. 따라서, 채널 행렬에서 랭크. 의 물리적인 의미는 주어진 채널에서 서로 다른 정보를 보낼 수 있는 최대 수라고 할 수 있다.
본 문서의 설명에 있어서, MIMO 전송에 대한 '랭크(Rank)' 는 특정 시점 및 특정 주파수 자원에서 독립적으로 신호를 전송할 수 있는 경로의 수를 나타내며, '레이어(layer)의 개수' 는 각 경로를 통해 전송되는 신호 스트림의 개수를 나타낸다. 일반적으로 송신단은 신호 전송에 이용되는 랭크 수에 대응하는 개수의 레이어를 전송하기 때문에 특별한 언급이 없는 한 랭크는 레이어 개수와 동일한 의미를 가진다.
참조 신호 (Reference Signal; RS)
무선 통신 시스템에서 패킷을 전송할 때, 전송되는 패킷은 무선 채널을 통해서 전송되기 때문에 전송과정에서 신호의 왜곡이 발생할 수 있다. 왜곡된 신호를 수신측에서 올바로 수신하기 위해서는 채널 정보를 이용하여 수신 신호에서 왜곡을 보정하여야 한다. 채널 정보를 알아내기 위해서, 송신측과 수신측에서 모두 알고 있는 신호를 전송하여, 상기 신호가 채널을 통해 수신될 때의 왜곡 정도를 가지고 채널 정보를 알아내는 방법을 주로 사용한다. 상기 신호를 파일럿 신호(Pilot Signal) 또는 참조 신호 (Reference Signal)라고 한다.
다중안테나를 사용하여 데이터를 송수신하는 경우에는 각 송신 안테나와 수신 안테나 사이의 채널 상황을 알아야 올바른 신호를 수신할 수 있다. 따라서, 각 송신 안테나 별로 별도의 참조 신호가 존재하여야 한다.
이동 통신 시스템에서 참조신호(RS)는 그 목적에 따라 크게 두 가지로 구분될 수 있다. 하나는 채널 정보 획득을 위해 사용되는 RS이고, 다른 하나는 데이터 복조를 위해 사용되는 RS이다. 전자는 단말이 하향 링크 채널 정보를 획득하도록 하기 위한 RS이므로 광대역으로 전송되어야 하고, 특정 서브프레임에서 하향링크 데이터를 수신하지 않는 단말이라도 해당 RS를 수신하고 측정할 수 있어야 한다. 이러한 RS는 핸드 오버 등을 위한 측정 등을 위해서도 사용된다. 후자는 기지국이 하향링크를 보낼 때 해당 자원에 함께 보내는 RS로서, 단말은 해당 RS를 수신함으로써 채널 추정을 할 수 있고, 따라서 데이터를 복조할 수 있게 된다. 이러한 RS는 데이터가 전송되는 영역에 전송되어야 한다.
기존의 3GPP LTE(예를 들어, 3GPP LTE 릴리즈-8) 시스템에서는 유니캐스트(unicast) 서비스를 위해서 2 가지 종류의 하향링크 RS 를 정의한다. 그 중 하나는 공용 참조신호(Common RS; CRS)이고, 다른 하나는 전용 참조신호(Dedicated RS; DRS) 이다. CRS 는 채널 상태에 대한 정보 획득 및 핸드오버 등을 위한 측정 등을 위해서 사용되고, 셀-특정(cell-specific) RS 라고 칭할 수도 있다. DRS 는 데이터 복조를 위해 사용되고, 단말-특정(UE-specific) RS 라고 칭할 수도 있다. 기존의 3GPP LTE 시스템에서 DRS 는 데이터 복조용으로만 사용되며 CRS는 채널 정보 획득 및 데이터 복조의 두 가지 목적으로 다 사용될 수 있다.
CRS는 셀-특정으로 전송되는 RS 이며, 광대역(wideband)에 대해서 매 서브프레임마다 전송된다. CRS는 기지국의 전송 안테나 개수에 따라서 최대 4개의 안테나 포트에 대해서 전송될 수 있다. 예를 들어 기지국의 송신 안테나의 개수가 두 개일 경우, 0번과 1번 안테나 포트에 대한 CRS가 전송되고, 네 개인 경우 0~3번 안테나 포트에 대한 CRS가 각각 전송된다.
도 6은 하나의 자원블록 쌍 상에서의 CRS 및 DRS의 예시적인 패턴을 나타내는 도면이다.
도 6의 참조신호 패턴의 예시에서는, 기지국이 4 개의 전송 안테나를 지원하는 시스템에서 하나의 자원블록 쌍(정규 CP 의 경우, 시간 상으로 14 개의 OFDM 심볼 × 주파수 상으로 12 부반송파) 상에서 CRS 및 DRS의 패턴을 나타낸다. 도 6에서 'R0', 'R1', 'R2' 및 'R3' 로 표시된 자원 요소(RE)는, 각각 안테나 포트 인덱스 0, 1, 2 및 3에 대한 CRS의 위치를 나타낸다. 한편, 도 6에서 'D'로 표시된 자원 요소는 LTE 시스템에서 정의되는 DRS의 위치를 나타낸다.
LTE 시스템의 진화 발전된 형태의 LTE-A 시스템에서는, 하향링크에서 최대 8개의 송신 안테나를 지원할 수 있다. 따라서, 최대 8개 송신 안테나에 대한 RS 역시 지원되어야 한다. LTE 시스템에서의 하향링크 RS는 최대 4개의 안테나 포트에 대해서만 정의되어 있으므로, LTE-A 시스템에서 기지국이 4개 이상 최대 8개의 하향 링크 송신 안테나를 가질 경우 이들 안테나 포트들에 대한 RS가 추가적으로 정의되어야 한다. 최대 8개의 송신 안테나 포트에 대한 RS로서, 채널 측정을 위한 RS와 데이터 복조를 위한 RS 두 가지가 모두 고려되어야 한다.
LTE-A 시스템을 설계함에 있어서 중요한 고려 사항 중 하나는 역방향 호환성(backward compatibility)이다. 역방향 호환성이란, 기존의 LTE 단말이 LTE-A 시스템에서도 올바르게 동작하도록 지원하는 것을 의미한다. RS 전송 관점에서 보았을 때, LTE 표준에서 정의되어 있는 CRS가 전 대역으로 매 서브프레임마다 전송되는 시간-주파수 영역에 최대 8개의 송신 안테나 포트에 대한 RS를 추가하는 경우, RS 오버헤드가 지나치게 커지게 된다. 따라서, 최대 8 안테나 포트에 대한 RS를 새롭게 설계함에 있어서 RS 오버헤드를 줄이는 것이 고려되어야 한다.
LTE-A 시스템에서 새롭게 도입되는 RS는 크게 2 가지로 분류할 수 있다. 그 중 하나는 전송 랭크, 변조및코딩기법(Modulation and Coding Scheme; MCS), 프리코딩행렬인덱스(Precoding Matrix Index; PMI) 등의 선택을 위한 채널 측정 목적의 RS인 채널상태정보-참조신호(Channel State Information RS; CSI-RS)이고, 다른 하나는 최대 8 개의 전송 안테나를 통해 전송되는 데이터를 복조하기 위한 목적의 RS 인 복조-참조신호(DeModulation RS; DMRS)이다.
채널 측정 목적의 CSI-RS는, 기존의 LTE 시스템에서의 CRS가 채널 측정, 핸드오버 등의 측정 등의 목적과 동시에 데이터 복조를 위해 사용되는 것과 달리, 채널 측정 위주의 목적을 위해서 설계되는 특징이 있다. 물론 CSI-RS 역시 핸드오버 등의 측정 등의 목적으로도 사용될 수도 있다. CSI-RS가 채널 상태에 대한 정보를 얻는 목적으로만 전송되므로, 기존의 LTE 시스템에서의 CRS와 달리, 매 서브프레임마다 전송되지 않아도 된다. 따라서, CSI-RS의 오버헤드를 줄이기 위하여 CSI-RS는 시간 축 상에서 간헐적으로(예를 들어, 주기적으로) 전송되도록 설계될 수 있다.
만약 어떤 하향링크 서브프레임 상에서 데이터가 전송되는 경우에는, 데이터 전송이 스케줄링된 단말에게 전용으로(dedicated) DMRS가 전송된다. 즉, DMRS는 단말-특정(UE-specific) RS라고 칭할 수도 있다. 특정 단말 전용의 DMRS는, 해당 단말이 스케줄링된 자원영역, 즉 해당 단말에 대한 데이터가 전송되는 시간-주파수 영역에서만 전송되도록 설계될 수 있다.
도 7은 LTE-A 시스템에서 정의되는 DMRS 패턴의 일례를 나타내는 도면이다.
도 7에서는 하향링크 데이터가 전송되는 하나의 자원블록 쌍(정규 CP 의 경우, 시간 상으로 14 개의 OFDM 심볼 × 주파수 상으로 12 부반송파) 상에서 DMRS가 전송되는 자원요소의 위치를 나타낸다. DMRS는 LTE-A 시스템에서 추가적으로 정의되는 4 개의 안테나 포트(안테나 포트 인덱스 7, 8, 9 및 10)에 대하여 전송될 수 있다. 서로 다른 안테나 포트에 대한 DMRS는 상이한 주파수 자원(부반송파) 및/또는 상이한 시간 자원(OFDM 심볼)에 위치하는 것으로 구분될 수 있다(즉, FDM 및/또는 TDM 방식으로 다중화될 수 있다). 또한, 동일한 시간-주파수 자원 상에 위치하는 서로 다른 안테나 포트에 대한 DMRS들은 서로 직교 코드(orthogonal code)에 의해서 구분될 수 있다(즉, CDM 방식으로 다중화될 수 있다). 도 7 의 예시에서 DMRS CDM 그룹 1 로 표시된 자원요소(RE) 들에는 안테나 포트 7 및 8 에 대한 DMRS들이 위치할 수 있고, 이들은 직교 코드에 의해 다중화될 수 있다. 마찬가지로, 도 7 의 예시에서 DMRS 그룹 2 로 표시된 자원요소들에는 안테나 포트 9 및 10 에 대한 DMRS들이 위치할 수 있고, 이들은 직교 코드에 의해 다중화될 수 있다.
기지국에서 DMRS를 전송함에 있어서, 데이터에 대해서 적용되는 프리코딩과 동일한 프리코딩이 DMRS에 적용된다. 따라서, 단말에서 DMRS(또는 단말-특정 RS)를 이용하여 추정되는 채널 정보는 프리코딩된 채널 정보이다. 단말은 DMRS를 통하여 추정한 프리코딩된 채널 정보를 이용하여, 데이터 복조를 용이하게 수행할 수 있다. 그러나, 단말은 DMRS에 적용된 프리코딩 정보를 알 수 없으므로, DMRS로부터는 프리코딩되지 않은 채널 정보를 획득할 수 없다. 단말은, DMRS 이외의 별도의 참조신호, 즉, 전술한 CSI-RS를 이용하여 프리코딩되지 않은 채널 정보를 획득할 수 있다.
도 8은 LTE-A 시스템에서 정의되는 CSI-RS 패턴의 예시들을 나타내는 도면이다.
도 8에서는 하향링크 데이터가 전송되는 하나의 자원블록 쌍(정규 CP 의 경우, 시간 상으로 14 개의 OFDM 심볼 × 주파수 상으로 12 부반송파) 상에서 CSI-RS 가 전송되는 자원요소의 위치를 나타낸다. 어떤 하향링크 서브프레임에서 도 8(a) 내지 8(e) 중 하나의 CSI-RS 패턴이 이용될 수 있다. CSI-RS 는 LTE-A 시스템에서 추가적으로 정의되는 8 개의 안테나 포트(안테나 포트 인덱스 15, 16, 17, 18, 19, 20, 21 및 22) 에 대하여 전송될 수 있다. 서로 다른 안테나 포트에 대한 CSI-RS 는 상이한 주파수 자원(부반송파) 및/또는 상이한 시간 자원(OFDM 심볼)에 위치하는 것으로 구분될 수 있다(즉, FDM 및/또는 TDM 방식으로 다중화될 수 있다). 또한, 동일한 시간-주파수 자원 상에 위치하는 서로 다른 안테나 포트에 대한 CSI-RS 들은 서로 직교 코드(orthogonal code)에 의해서 구분될 수 있다(즉, CDM 방식으로 다중화될 수 있다). 도 8(a) 의 예시에서 CSI-RS CDM 그룹 1 로 표시된 자원요소(RE) 들에는 안테나 포트 15 및 16 에 대한 CSI-RS 들이 위치할 수 있고, 이들은 직교 코드에 의해 다중화될 수 있다. 도 8(a) 의 예시에서 CSI-RS CDM 그룹 2 로 표시된 자원요소들에는 안테나 포트 17 및 18 에 대한 CSI-RS 들이 위치할 수 있고, 이들은 직교 코드에 의해 다중화될 수 있다. 도 8(a) 의 예시에서 CSI-RS CDM 그룹 3 으로 표시된 자원요소들에는 안테나 포트 19 및 20 에 대한 CSI-RS 들이 위치할 수 있고, 이들은 직교 코드에 의해 다중화될 수 있다. 도 8(a)의 예시에서 CSI-RS CDM 그룹 4 로 표시된 자원요소들에는 안테나 포트 21 및 22에 대한 CSI-RS 들이 위치할 수 있고, 이들은 직교 코드에 의해 다중화될 수 있다. 도 8(a)를 기준으로 설명한 동일한 원리가 도 8(b) 내지 8(e)에 적용될 수 있다.
도 6 내지 8 의 RS 패턴들은 단지 예시적인 것이며, 본 발명의 다양한 실시예들을 적용함에 있어서 특정 RS 패턴에 한정되는 것이 아니다. 즉, 도 6 내지 8 과 다른 RS 패턴이 정의 및 사용되는 경우에도 본 발명의 다양한 실시예들은 동일하게 적용될 수 있다.
CSI-RS 설정(configuration)
전술한 바와 같이, 하향링크에서 최대 8 개의 전송 안테나를 지원하는 LTE-A 시스템에서 기지국은 모든 안테나 포트에 대한 CSI-RS를 전송해야 한다. 최대 8개의 송신 안테나 포트에 대한 CSI-RS를 매 서브프레임마다 전송하는 것은 오버헤드가 너무 큰 단점이 있으므로, CSI-RS는 매 서브프레임마다 전송되지 않고 시간 축에서 간헐적으로 전송되어야 그 오버헤드를 줄일 수 있다. 이에 따라, CSI-RS는 한 서브프레임의 정수 배의 주기를 가지고 주기적으로 전송되거나, 특정 전송 패턴으로 전송될 수 있다.
이 때 CSI-RS가 전송되는 주기나 패턴은 네트워크(예를 들어, 기지국)가 설정(configure) 할 수 있다. CSI-RS에 기초한 측정을 수행하기 위해서 단말은 반드시 자신이 속한 셀(또는 송신 포인트(TP))의 각각의 CSI-RS 안테나 포트에 대한 CSI-RS 설정(configuration)을 알고 있어야 한다. CSI-RS 설정에는, CSI-RS가 전송되는 하향링크 서브프레임 인덱스, 전송 서브프레임 내에서 CSI-RS 자원요소(RE)의 시간-주파수 위치(예를 들어, 도 8(a) 내지 8(e)와 같은 CSI-RS 패턴), 그리고 CSI-RS 시퀀스(CSI-RS 용도로 사용되는 시퀀스로서, 슬롯 번호, 셀 ID, CP 길이 등에 기초하여 소정의 규칙에 따라 유사-랜덤(pseudo-random)하게 생성됨) 등이 포함될 수 있다. 즉, 임의의(given) 기지국에서 복수개의 CSI-RS 설정(configuration)이 사용될 수 있고, 기지국은 복수개의 CSI-RS 설정 중에서 셀 내의 단말(들)에 대해 사용될 CSI-RS 설정을 알려줄 수 있다.
복수개의 CSI-RS 설정들은, 단말이 CSI-RS의 전송 전력이 0이 아닌(non-zero) 것으로 가정하는 CSI-RS 설정을 하나를 포함하거나 포함하지 않을 수 있고, 또한, 단말이 0의 전송 전력으로 가정하는 CSI-RS 설정을 하나 이상을 포함하거나 포함하지 않을 수 있다.
또한, 상위 계층에 의해서 0의 전송전력의 CSI-RS 설정에 대한 파라미터(예를 들어, 16-비트 비트맵 ZeroPowerCSI-RS 파라미터)의 각각의 비트는 CSI-RS 설정(또는 CSI-RS 설정에 따라 CSI-RS가 할당될 수 있는 RE들)에 대응할 수 있고, 단말은 해당 파라미터에서 1로 설정되는 비트에 대응하는 CSI-RS 설정의 CSI-RS RE들에서의 전송 전력이 0인 것으로 가정할 수 있다.
또한, 각각의 안테나 포트에 대한 CSI-RS 는 구별될 필요가 있으므로, 각각의 안테나 포트에 대한 CSI-RS 가 전송되는 자원은 서로 직교(orthogonal)해야 한다. 도 8 과 관련하여 설명한 바와 같이, 각각의 안테나 포트에 대한 CSI-RS 들은 직교하는 주파수 자원, 직교하는 시간 자원 및/또는 직교하는 코드 자원을 이용하여 FDM, TDM 및/또는 CDM 방식으로 다중화될 수 있다.
CSI-RS에 관한 정보(CSI-RS 설정(configuration))를 기지국이 셀 내의 단말들에게 알려줄 때, 먼저 각 안테나 포트에 대한 CSI-RS가 매핑되는 시간-주파수에 대한 정보를 알려줘야 한다. 구체적으로, 시간에 대한 정보에는, CSI-RS가 전송되는 서브프레임 번호들, CSI-RS 가 전송되는 주기, CSI-RS가 전송되는 서브프레임 오프셋, 특정 안테나의 CSI-RS 자원요소(RE)가 전송되는 OFDM 심볼 번호 등이 포함될 수 있다. 주파수에 대한 정보에는 특정 안테나의 CSI-RS 자원요소(RE)가 전송되는 주파수 간격(spacing), 주파수 축에서의 RE의 오프셋 또는 시프트 값 등이 포함될 수 있다.
도 9는 CSI-RS가 주기적으로 전송되는 방식의 일례를 설명하기 위한 도면이다.
CSI-RS는 한 서브프레임의 정수 배의 주기(예를 들어, 5 서브프레임 주기, 10 서브프레임 주기, 20 서브프레임 주기, 40 서브프레임 주기 또는 80 서브프레임 주기)를 가지고 주기적으로 전송될 수 있다.
도 9에서는 하나의 무선 프레임이 10 개의 서브프레임(서브프레임 번호 0 내지 9)로 구성되는 것을 도시한다. 도 9 에서는, 예를 들어, 기지국의 CSI-RS의 전송 주기가 10ms (즉, 10 서브프레임) 이고, CSI-RS 전송 오프셋(Offset)은 3 인 경우를 도시한다. 여러 셀들의 CSI-RS가 시간 상에서 고르게 분포할 수 있도록 상기 오프셋 값은 기지국마다 각각 다른 값을 가질 수 있다. 10ms의 주기로 CSI-RS가 전송되는 경우, 오프셋 값은 0 내지 9 중 하나를 가질 수 있다. 이와 유사하게, 예를 들어 5ms의 주기로 CSI-RS가 전송되는 경우 오프셋 값은 0~4 중 하나의 값을 가질 수 있고, 20ms의 주기로 CSI-RS 가 전송되는 경우 오프셋 값은 0~19 중 하나의 값을 가질 수 있고, 40ms의 주기로 CSI-RS 가 전송되는 경우 오프셋 값은 0~39 중 하나의 값을 가질 수 있으며, 80ms의 주기로 CSI-RS 가 전송되는 경우 오프셋 값은 0~79 중 하나의 값을 가질 수 있다. 이 오프셋 값은, 소정의 주기로 CSI-RS 를 전송하는 기지국이 CSI-RS 전송을 시작하는 서브프레임의 값을 나타낸다. 기지국이 CSI-RS의 전송 주기와 오프셋 값을 알려주면, 단말은 그 값을 이용하여 해당 서브프레임 위치에서 기지국의 CSI-RS를 수신할 수 있다. 단말은 수신한 CSI-RS를 통해 채널을 측정하고 그 결과로서 CQI, PMI 및/또는 RI(Rank Indicator) 와 같은 정보를 기지국에게 보고할 수 있다. 본 문서에서 CQI, PMI 및 RI 를 구별하여 설명하는 경우를 제외하고, 이들을 통칭하여 CQI (또는 CSI)라 칭할 수 있다. 또한, CSI-RS 에 관련된 상기 정보들은 셀-특정 정보로서, 셀 내의 단말들에게 공통으로 적용될 수 있다. 또한, CSI-RS 전송 주기 및 오프셋은 CSI-RS 설정(configuration) 별로 별도로 지정될 수 있다. 예를 들어, 후술하는 바와 같이 0의 전송 전력으로 전송되는 CSI-RS 를 나타내는 CSI-RS 설정(configuration) 및 0이 아닌(non-zero) 전송 전력으로 전송되는 CSI-RS 를 나타내는 CSI-RS 설정(configuration) 에 대해서 별도의 CSI-RS 전송 주기 및 오프셋이 설정될 수 있다.
PDSCH가 전송될 수 있는 모든 서브프레임에서 전송되는 CRS와 달리, CSI-RS는 일부 서브프레임에서만 전송되는 것으로 설정될 수 있다. 예를 들어, 상위 계층에 의해서 CSI 서브프레임 세트 CCSI,0 및 CCSI,1 이 설정될 수 있다. CSI 레퍼런스 자원(즉, CSI 계산의 기준이 되는 소정의 자원 영역)은 CCSI,0 또는 CCSI,1 중 하나에 속할 수 있고, CCSI,0 및 CCSI,1 의 모두에 동시에 속하지는 않을 수 있다. 이에 따라, CSI 서브프레임 세트 CCSI,0 및 CCSI,1 이 상위 계층에 의해서 설정되는 경우에, 단말은 CSI 서브프레임 세트 중 어디에도 속하지 않는 서브프레임에 존재하는 CQI 레퍼런스 자원에 대한 트리거(또는 CSI 계산에 대한 지시)를 받을 것으로 예상하는 것이 허용되지 않는다.
또한, CSI 레퍼런스 자원은 유효한 하향링크 서브프레임 상에서 설정될 수 있다. 유효한 하향링크 서브프레임은 다양한 요건을 만족하는 서브프레임으로서 설정될 수 있다. 그 요건들 중 하나는, 주기적 CSI 보고의 경우에, 단말에 대해서 CSI 서브프레임 세트가 설정된다면 주기적 CSI 보고에 연결(link)되는 CSI 서브프레임 세트에 속하는 서브프레임일 것이다.
또한, CSI 레퍼런스 자원에서, 단말은 다음과 같은 가정들을 고려하여 CQI 인덱스를 도출할 수 있다 (자세한 사항은 3GPP TS 36.213을 참조한다):
- 한 서브프레임의 처음 3 개의 OFDM 심볼들은 제어 시그널링에 의해 점유됨
- 주 동기신호(primary synchronization signal), 부(secondary) 동기 신호 또는 물리방송채널(PBCH)에 의해 사용되는 자원요소는 없음
- 비-MBSFN(non-Multicast Broadcast Single Frequency Network) 서브프레임의 CP 길이
- 리던던시 버전(Redundancy Version)은 0 임
- 채널 측정을 위해 CSI-RS가 사용되는 경우, PDSCH EPRE(Energy Per Resource Element) 대 CSI-RS EPRE의 비(ratio)는 소정의 규칙에 따름
- 전송모드 9(즉, 최대 8 레이어 전송을 지원하는 모드)에서의 CSI 보고의 경우에, 단말에 대해 PMI/RI 보고가 설정되면, DMRS 오버헤드는 가장 최근에 보고된 랭크에 일치하는 것으로 가정함(예를 들어, DMRS 오버헤드는 도 7에서 설명한 바와 같이 2개 이상의 안테나 포트(즉, 랭크 2 이하)의 경우에는 하나의 자원블록 쌍 상에서의 DMRS 오버헤드가 12 RE이지만, 3개 이상의 안테나 포트(즉, 랭크 3 이상)의 경우에는 24 RE이므로, 가장 최근에 보고된 랭크 값에 대응하는 DMRS 오버헤드를 가정하여 CQI 인덱스를 계산할 수 있다.)
- CSI-RS 및 0-전력 CSI-RS에 대해서 RE가 할당되지 않음
- PRS(Positioning RS)에 대해서는 RE가 할당되지 않음
- PDSCH 전송 기법은 단말에 대해 현재 설정된 전송 모드(디폴트 모드일 수 있음)에 따름
- PDSCH EPRE 대 셀-특정 참조신호 EPRE의 비(ratio)는 소정의 규칙에 따름
이러한 CSI-RS 설정은, 예를 들어, RRC(Radio Resource Control) 시그널링을 이용하여 기지국이 단말에게 알려줄 수 있다. 즉, 전용(dedicated) RRC 시그널링을 사용하여 CSI-RS 설정에 대한 정보가 셀 내의 단말들 각각에게 제공될 수 있다. 예를 들어, 단말이 초기 액세스 또는 핸드오버를 통해서 기지국과 연결(connection)을 확립(establish)하는 과정에서, 기지국이 해당 단말에게 RRC 시그널링을 통해 CSI-RS 설정(configuration)을 알려 주도록 할 수 있다. 또는 기지국이 단말에게 CSI-RS 측정에 기반한 채널 상태 피드백을 요구하는 RRC 시그널링 메시지를 전송할 때에, 해당 RRC 시그널링 메시지를 통해 CSI-RS 설정(configuration)을 해당 단말에게 알려 주도록 할 수도 있다.
한편, CSI-RS가 존재하는 시간 위치, 즉, 셀-특정 서브프레임 설정 주기 및 셀-특정 서브프레임 오프셋은, 예를 들어, 다음의 표 1과 같이 정리할 수 있다.
Figure 112015018220788-pct00020
전술한 바와 같이, 파라미터 I CSI-RS 는 단말이 0이 아닌 전송 전력으로 가정하는 CSI-RS와 0의 전송 전력으로 가정하는 CSI-RS에 대해서 별도로(separately) 설정될 수 있다. CSI-RS를 포함하는 서브프레임은 다음의 수학식 12와 같이 표현할 수 있다 (수학식 12에서 nf는 시스템 프레임 번호이고, ns는 슬롯 번호임).
Figure 112015018220788-pct00021
아래의 표 2와 같이 정의되는 CSI-RS-Config 정보요소(IE)는 CSI-RS 설정을 특정하기 위해서 사용될 수 있다.
Figure 112015018220788-pct00022
상기 표 2에서 안테나포트카운트(antennaPortsCount) 파라미터는 CSI-RS의 전송을 위해서 사용되는 안테나 포트(즉, CSI-RS 포트)의 개수를 나타내며, an1은 1개에 해당하고, an2는 2개에 해당한다.
상기 표 2에서 p_C 파라미터는, 단말이 CSI 피드백을 유도(derive)할 때에 가정하는 PDSCH EPRE(Energy Per Resource Element)와 CSI-RS EPRE의 비율을 나타낸다.
상기 표 2에서 자원설정(resourceConfig) 파라미터는, 예를 들어, 상기 도 8에서와 같은 RB 쌍 상에서 CSI-RS가 매핑되는 자원요소의 위치를 결정하는 값을 가진다.
상기 표 2에서 서브프레임설정(subframeConfig) 파라미터는, 상기 표 1에서의 I CSI-RS에 해당한다.
상기 표 2에서 zeroTxPowerResourceConfigList 및 zeroTxPowerSubframeConfig는 각각 0의 전송전력의 CSI-RS에 대한 resourceConfig 및 subframeConfig에 해당한다.
상기 표 2의 CSI-RS 설정 IE에 대한 보다 구체적인 사항은 표준문서 TS 36.331을 참조할 수 있다.
CSI-RS 시퀀스 생성
RS 시퀀스
Figure 112015018220788-pct00023
은 아래의 수학식 13과 같이 정의될 수 있다.
Figure 112015018220788-pct00024
상기 수학식 13에서, ns는 무선 프레임 내에서의 슬롯 번호(또는 슬롯 인덱스)이고, l 은 슬롯 내에서의 OFDM 심볼 번호(또는 OFDM 심볼 인덱스)이다. 의사-랜덤(pseudo-random) 시퀀스 c(i) 는 길이-31의 골드 시퀀스(length-31 Gold sequence)로 정의된다. 의사-랜덤 시퀀스 생성에 있어서의 초기값(initialization value)은 cinit으로 주어진다. cinit은 아래의 수학식 14와 같이 주어질 수 있다.
Figure 112015018220788-pct00025
상기 수학식 14에서, ns는 무선 프레임 내에서의 슬롯 번호(또는 슬롯 인덱스)이고, l 은 슬롯 내에서의 OFDM 심볼 번호(또는 OFDM 심볼 인덱스)이다. NID cell은 물리계층 셀 식별자이다. NCP는 정규 CP의 경우에는 1이고, 확장된 CP의 경우에는 0이다.
CSI-RS 시퀀스 생성에 대한 보다 구체적인 사항은 표준문서 TS 36.211 v10.4.0을 참조할 수 있다.
채널상태정보(CSI)
MIMO 방식은 개-루프(open-loop) 방식과 폐-루프(closed-loop) 방식으로 구분될 수 있다. 개-루프 MIMO 방식은 MIMO 수신단으로부터의 채널상태정보의 피드백이 없이 송신단에서 MIMO 전송을 수행하는 것을 의미한다. 폐-루프 MIMO 방식은 MIMO 수신단으로부터의 채널상태정보를 피드백 받아 송신단에서 MIMO 전송을 수행하는 것을 의미한다. 폐-루프 MIMO 방식에서는 MIMO 송신 안테나의 다중화 이득(multiplexing gain)을 얻기 위해서 송신단과 수신단의 각각이 채널 상태정보를 바탕으로 빔포밍을 수행할 수 있다. 수신단(예를 들어, 단말)이 채널상태정보를 피드백할 수 있도록 송신단(예를 들어, 기지국)은 수신단(예를 들어, 단말)에게 상향링크 제어 채널 또는 상향링크 공유 채널을 할당할 수 있다.
단말은 CRS 및/또는 CSI-RS를 이용하여 하향링크 채널에 대한 추정 및/또는 측정을 수행할 수 있다. 단말에 의해서 기지국으로 피드백되는 채널상태정보(CSI)는 랭크 지시자(RI), 프리코딩 행렬 인덱스(PMI) 및 채널품질지시자(CQI)를 포함할 수 있다.
RI는 채널 랭크에 대한 정보이다. 채널의 랭크는 동일한 시간-주파수 자원을 통해서 서로 다른 정보를 보낼 수 있는 레이어(또는 스트림)의 최대 개수를 의미한다. 랭크 값은 채널의 장기간(long term) 페이딩에 의해서 주로 결정되므로, PMI 및 CQI 에 비하여 일반적으로 더 긴 주기에 따라(즉, 덜 빈번하게) 피드백될 수 있다.
PMI는 송신단으로부터의 전송에 이용되는 프리코딩 행렬에 대한 정보이며, 채널의 공간 특성을 반영하는 값이다. 프리코딩이란 전송 레이어를 송신 안테나에 매핑시키는 것을 의미하며, 프리코딩 행렬에 의해 레이어-안테나 매핑 관계가 결정될 수 있다. PMI 는 신호대잡음및간섭비(Signal-to-Interference plus Noise Ratio; SINR) 등의 측정값(metric)을 기준으로 단말이 선호하는(preferred) 기지국의 프리코딩 행렬 인덱스에 해당한다. 프리코딩 정보의 피드백 오버헤드를 줄이기 위해서, 송신단과 수신단이 여러 가지 프리코딩 행렬을 포함하는 코드북을 미리 공유하고 있고, 해당 코드북에서 특정 프리코딩 행렬을 지시하는 인덱스만을 피드백하는 방식이 사용될 수 있다. 예를 들어, PMI는 가장 최근에 보고된 RI에 기초하여 결정될 수 있다.
CQI는 채널 품질 또는 채널 세기를 나타내는 정보이다. CQI는 미리 결정된 MCS 조합으로서 표현될 수 있다. 즉, 피드백되는 CQI 인덱스는 해당하는 변조기법(modulation scheme) 및 코드 레이트(code rate)를 나타낸다. CQI는 특정 자원 영역(예를 들어, 유효한 서브프레임 및/또는 물리자원블록에 의해 특정되는 영역)을 CQI 레퍼런스 자원으로 설정하고, 해당 CQI 레퍼런스 자원에서 PDSCH 전송이 존재하는 것으로 가정하여, 소정의 에러확률(예를 들어, 0.1)을 넘지 않고 PDSCH가 수신될 수 있는 경우를 가정하여 계산될 수 있다. 일반적으로, CQI 는 기지국이 PMI 를 이용하여 공간 채널을 구성하는 경우에 얻을 수 있는 수신 SINR 을 반영하는 값이 된다. 예를 들어, CQI는 가장 최근에 보고된 RI 및/또는 PMI에 기초하여 계산될 수 있다.
확장된 안테나 구성을 지원하는 시스템(예를 들어, LTE-A 시스템)에서는 다중사용자-MIMO (MU-MIMO) 방식을 이용하여 추가적인 다중사용자 다이버시티를 획득하는 것을 고려하고 있다. MU-MIMO 방식에서는 안테나 영역(domain)에서 다중화되는 단말들 간의 간섭 채널이 존재하므로, 다중사용자 중 하나의 단말이 피드백하는 채널상태정보를 기지국에서 이용하여 하향링크 전송을 수행하는 경우에 다른 단말에 대해서 간섭이 발생하지 않도록 하는 것이 필요하다. 따라서, MU-MIMO 동작이 올바르게 수행되기 위해서는 단일사용자-MIMO (SU-MIMO) 방식에 비하여 보다 높은 정확도의 채널상태정보가 피드백되어야 한다.
이와 같이 보다 정확한 채널상태정보를 측정 및 보고할 수 있도록, 기존의 RI, PMI 및 CQI 로 구성되는 CSI 를 개선한 새로운 CSI 피드백 방안이 적용될 수 있다. 예를 들어, 수신단이 피드백하는 프리코딩 정보가 2 개의 PMI(예를 들어, i1 및 i2)의 조합에 의해서 지시될 수 있다. 이에 따라 보다 정교한 PMI가 피드백될 수 있으며, 이러한 정교한 PMI에 기초하여 보다 정교한 CQI가 계산 및 보고될 수 있다.
한편, CSI는 주기적으로 PUCCH를 통하여 전송되거나, 비주기적으로 PUSCH를 통하여 전송될 수 있다. 또한, RI, 제 1 PMI(예를 들어, W1), 제 2 PMI(예를 들어, W2), CQI 중에서 어느 것이 피드백되는지와, 피드백되는 PMI 및/또는 CQI가 광대역(WB)에 대한 것인지 또는 서브대역(SB)에 대한 것인지에 따라, 다양한 보고 모드가 정의될 수 있다.
CQI 계산
이하에서는 하향링크 수신단이 단말인 경우를 가정하여 CQI 계산에 대하여 구체적으로 설명한다. 그러나, 본 발명에서 설명하는 내용은 하향링크 수신 주체로서의 중계기에 대해서도 동일하게 적용될 수 있다.
단말이 CSI를 보고할 때 CQI를 계산하는 기준이 되는 자원(이하에서는, 레퍼런스 자원(reference resource)라 칭함)을 설정/정의하는 방안에 대하여 설명한다. 먼저, CQI의 정의에 대하여 보다 구체적으로 설명한다.
단말이 보고하는 CQI는 특정 인덱스 값에 해당한다. CQI 인덱스는 채널 상태에 해당하는 변조기법, 코드 레이트, 등을 나타내는 값이다. 예를 들어, CQI 인덱스들 및 그 해석은 다음의 표 3과 같이 주어질 수 있다.
Figure 112015018220788-pct00026
시간 및 주파수에서 제한되지 않는 관찰에 기초하여, 단말은 상향링크 서브프레임 n에서 보고되는 각각의 CQI 값에 대해서 상기 표 3의 CSI 인덱스 1 내지 15 중에서 소정의 요건을 만족하는 가장 높은 CQI 인덱스를 결정할 수 있다. 소정의 요건은, 해당 CQI 인덱스에 해당하는 변조 기법(예를 들어, MCS) 및 전송 블록 크기(TBS)의 조합을 가지고, CQI 레퍼런스 자원이라고 칭하여지는 하향링크 물리 자원 블록들의 그룹을 차지하는 단일 PDSCH 전송 블록이 0.1(즉, 10%)을 넘지 않는 전송 블록 에러 확률로 수신될 수 있는 것으로 정해질 수 있다. 만약 CQI 인덱스 1도 상기 요건을 만족하지 않는 경우에는 단말은 CQI 인덱스 0으로 결정할 수 있다.
전송 모드 9(최대 8 레이어 전송에 해당함) 및 피드백 보고 모드의 경우에, 단말은 CSI-RS에만 기초해서 상향링크 서브프레임 n에서 보고되는 CQI 값을 계산하기 위한 채널 측정을 수행할 수 있다. 다른 전송 모드 및 해당하는 보고 모드들의 경우에, 단말은 CRS에 기초하여 CQI 계산을 위한 채널 측정을 수행할 수 있다.
아래의 요건이 모두 만족하는 경우에, 변조 기법 및 전송 블록 크기의 조합은 하나의 CQI 인덱스에 해당할 수 있다. 관련된 전송 블록 크기 테이블에 따라서 CQI 레퍼런스 자원에서의 PDSCH 상에서의 전송에 대해서 상기 조합이 시그널링될 수 있고, 변조 기법이 해당 CQI 인덱스에 의해서 지시되고, 그리고, 전송 블록 크기 및 변조 기법의 조합이 상기 레퍼런스 자원에 적용되는 경우에, 해당 CQI 인덱스에 의해 지시되는 코드 레이트에 최대한 가까운 유효 채널 코드 레이트를 가지는 것이 위 요건에 해당한다. 만약 전송 블록 크기 및 변조 기법의 조합의 2 개 이상이 해당 CQI 인덱스에 의해 지시되는 코드 레이트에 동일한 정도로 가까운 경우에는, 전송 블록 크기가 최소인 조합으로 결정될 수 있다.
CQI 레퍼런스 자원은 다음과 같이 정의된다.
주파수 영역에서 CQI 레퍼런스 자원은, 도출된 CQI 값이 관련된 대역에 해당하는 하향링크 물리 자원 블록들의 그룹으로 정의된다.
시간 영역에서 CQI 레퍼런스 자원은, 단일 하향링크 서브프레임 n-nCQI_ref로 정의된다. 여기서, 주기적 CQI 보고의 경우에는, nCQI_ref 는 4 이상의 값 중에서 가장 작은 값이면서, 하향링크 서브프레임 n-nCQI_ref 가 유효한 하향링크 서브프레임에 해당하는 값으로 결정된다. 비주기적 CQI 보고의 경우에는, nCQI_ref는 상향링크 DCI 포맷(즉, 상향링크 스케줄링 제어 정보를 단말에게 제공하기 위한 PDCCH DCI 포맷)에서의 CQI 요청에 해당하는(또는 CQI 요청이 수신된) 유효한 하향링크 서브프레임과 동일한 하향링크 서브프레임이 CQI 레퍼런스 자원으로 결정된다. 또한, 비주기적 CQI 보고의 경우에, nCQI_ref 는 4이고 하향링크 서브프레임 n-nCQI_ref 는 유효한 하향링크 서브프레임에 해당하며, 여기서 하향링크 서브프레임 n-nCQI_ref 는 임의접속응답그랜트(random access response grant)에서의 CQI 요청에 해당하는 (또는 CQI 요청이 수신된) 서브프레임 이후에 수신될 수 있다. 여기서, 유효한 하향링크 서브프레임이란, 해당 단말에 대해서 하향링크 서브프레임으로 설정되고, 전송 모드 9를 제외하고는 MBSFN 서브프레임이 아니고, DwPTS의 길이가 7680*Ts (Ts=1/(15000×2048)초)이하인 경우에 DwPTS 필드를 포함하지 않으며, 그리고, 해당 단말에 대해서 설정된 측정 갭에 속하지 않는 하향링크 서브프레임을 의미한다. 만약 CQI 레퍼런스 자원을 위한 유효한 하향링크 서브프레임이 없는 경우에는, 상향링크 서브프레임 n에서 CQI 보고는 생략될 수 있다.
레이어 영역에서 CQI 레퍼런스 자원은, CQI가 전제로 하는 임의의 RI 및 PMI로 정의된다.
CQI 레퍼런스 자원에서 단말이 CQI 인덱스를 유도하기 위해서 다음의 사항들을 가정할 수 있다: (1) 하향링크 서브프레임의 처음 3 OFDM 심볼은 제어 시그널링의 용도로 사용된다. (2) 주동기신호, 부동기신호 또는 물리방송채널에 의해서 사용되는 자원 요소는 없다. (3) 비-MBSFN 서브프레임의 CP 길이를 가진다. (4) 리던던시 버전은 0이다. (5) 채널 측정을 위해서 CSI-RS가 사용되는 경우, PDSCH EPRE(Energy Per Resource Element) 대 CSI-RS EPRE의 비율은 상위 계층에 의해 시그널링되는 소정의 값을 가진다. (6) 전송 모드 별로 정의된 PDSCH 전송 기법(단일 안테나 포트 전송, 전송 다이버시티, 공간 다중화, MU-MIMO 등)이 해당 단말에 대해서 현재 설정되어 있다 (디폴트 모드일 수 있음). (7) 채널 측정을 위해서 CRS가 사용되는 경우에, PDSCH EPRE 대 CRS EPRE는 소정의 요건에 따라서 결정될 수 있다. CQI 정의에 관련된 보다 구체적인 사항은 3GPP TS36.213을 참조할 수 있다.
요컨대, 하향링크 수신단(예를 들어, 단말)은 현재 CQI 계산을 수행하는 시점을 기준으로 과거의 특정한 단일 서브프레임을 CQI 레퍼런스 자원으로 설정하고, 해당 CQI 레퍼런스 자원에서 기지국으로부터 PDSCH가 전송되었을 때 그 에러 확률이 10%를 넘지 않을 조건을 만족하도록 CQI 값을 계산할 수 있다.
협력 멀티 포인트(Coordinated Multi-Point: CoMP)
3GPP LTE-A 시스템의 개선된 시스템 성능 요구조건에 따라서, CoMP 송수신 기술 (co-MIMO, 공동(collaborative) MIMO 또는 네트워크 MIMO 등으로 표현되기도 함)이 제안되고 있다. CoMP 기술은 셀-경계(cell-edge)에 위치한 단말의 성능을 증가시키고 평균 섹터 수율(throughput)을 증가시킬 수 있다.
일반적으로, 주파수 재사용 인자(frequency reuse factor)가 1 인 다중-셀 환경에서, 셀-간 간섭(Inter-Cell Interference; ICI)으로 인하여 셀-경계에 위치한 단말의 성능과 평균 섹터 수율이 감소될 수 있다. 이러한 ICI를 저감하기 위하여, 기존의 LTE 시스템에서는 단말 특정 전력 제어를 통한 부분 주파수 재사용(fractional frequency reuse; FFR)과 같은 단순한 수동적인 기법을 이용하여 간섭에 의해 제한을 받은 환경에서 셀-경계에 위치한 단말이 적절한 수율 성능을 가지도록 하는 방법이 적용되었다. 그러나, 셀 당 주파수 자원 사용을 낮추기보다는, ICI를 저감하거나 ICI를 단말이 원하는 신호로 재사용하는 것이 보다 바람직할 수 있다. 위와 같은 목적을 달성하기 위하여, CoMP 전송 기법이 적용될 수 있다.
하향링크의 경우에 적용될 수 있는 CoMP 기법은 크게 조인트-프로세싱(joint processing; JP) 기법 및 조정 스케줄링/빔포밍 (coordinated scheduling/beamforming; CS/CB) 기법으로 분류할 수 있다.
JP 기법은 CoMP 협력 단위의 각각의 포인트(기지국)에서 데이터를 이용할 수 있다. CoMP 협력 단위는 협력 전송 기법에 이용되는 기지국들의 집합을 의미한다. JP 기법은 조인트 전송(Joint Transmission) 기법과 동적 셀 선택(Dynamic cell selection) 기법으로 분류할 수 있다.
조인트 전송 기법은, PDSCH 가 한번에 복수개의 포인트(CoMP 협력 단위의 일부 또는 전부)로부터 전송되는 기법을 말한다. 즉, 단일 단말로 전송되는 데이터는 복수개의 전송 포인트로부터 동시에 전송될 수 있다. 조인트 전송 기법에 의하면, 코히어런트하게(coherently) 또는 넌-코히어런트하게 (non-coherently) 수신 신호의 품질이 향상될 수 있고, 또한, 다른 단말에 대한 간섭을 능동적으로 소거할 수도 있다.
동적 셀 선택 기법은, PDSCH가 한번에 (CoMP 협력 단위의) 하나의 포인트로부터 전송되는 기법을 말한다. 즉, 특정 시점에서 단일 단말로 전송되는 데이터는 하나의 포인트로부터 전송되고, 그 시점에 협력 단위 내의 다른 포인트는 해당 단말에 대하여 데이터 전송을 하지 않으며, 해당 단말로 데이터를 전송하는 포인트는 동적으로 선택될 수 있다.
한편, CS/CB 기법에 의하면 CoMP 협력 단위들이 단일 단말에 대한 데이터 전송의 빔포밍을 협력적으로 수행할 수 있다. 여기서, 데이터는 서빙셀(serving-cell)에서만 전송되지만, 사용자 스케줄링/빔포밍은 해당 CoMP 협력 단위의 셀들의 조정에 의하여 결정될 수 있다.
한편, 상향링크의 경우에, 조정(coordinated) 다중-포인트 수신은 지리적으로 떨어진 복수개의 포인트들의 조정에 의해서 전송된 신호를 수신하는 것을 의미한다. 상향링크의 경우에 적용될 수 있는 CoMP 기법은 조인트 수신(Joint Reception; JR) 및 조정 스케줄링/빔포밍(coordinated scheduling/beamforming; CS/CB)으로 분류할 수 있다.
JR 기법은 PUSCH 를 통해 전송된 신호가 복수개의 수신 포인트에서 수신되는 것을 의미하고, CS/CB 기법은 PUSCH 가 하나의 포인트에서만 수신되지만 사용자 스케줄링/빔포밍은 CoMP 협력 단위의 셀들의 조정에 의해 결정되는 것을 의미한다.
이러한 CoMP 시스템을 이용하면, 단말은 다중-셀 기지국(Multi-cell base station)으로부터 공동으로 데이터를 지원받을 수 있다. 또한, 각 기지국은 동일한 무선 주파수 자원(Same Radio Frequency Resource)을 이용하여 하나 이상의 단말에 동시에 지원함으로써 시스템의 성능을 향상시킬 수 있다. 또한, 기지국은 기지국과 단말 간의 채널상태정보에 기초하여 공간 분할 다중접속(Space Division Multiple Access: SDMA) 방법을 수행할 수도 있다.
CoMP 시스템에서 서빙 기지국 및 하나 이상의 협력 기지국들은 백본망(Backbone Network)을 통해 스케줄러(scheduler)에 연결된다. 스케줄러는 백본망을 통하여 각 기지국이 측정한 각 단말 및 협력 기지국 간의 채널 상태에 관한 채널 정보를 피드백 받아 동작할 수 있다. 예를 들어, 스케줄러는 서빙 기지국 및 하나 이상의 협력 기지국에 대하여 협력적 MIMO 동작을 위한 정보를 스케줄링할 수 있다. 즉, 스케줄러에서 각 기지국으로 협력적 MIMO 동작에 대한 지시를 직접 내릴 수 있다.
상술한 바와 같이 CoMP 시스템은 복수개의 셀들을 하나의 그룹으로 묶어 가상 MIMO 시스템으로 동작하는 것이라 할 수 있으며, 기본적으로는 다중 안테나를 사용하는 MIMO 시스템의 통신 기법이 적용될 수 있다.
반송파 병합
반송파 병합을 설명하기에 앞서 LTE-A에서 무선자원을 관리하기 위해 도입된 셀(Cell)의 개념에 대해 먼저 설명한다. 셀은 하향링크 자원과 상향링크 자원의 조합으로 이해될 수 있다. 여기서 상향링크 자원은 필수 요소는 아니며 따라서 셀은 하향링크 자원 단독 또는 하향링크 자원과 상향링크 자원으로 이루어질 수 있다. 하향링크 자원은 하향링크 구성반송파(Downlink component carrier; DL CC)로 상향링크 자원은 상향링크 구성반송파(Uplink component carrier; UL CC)로 지칭될 수 있다. DL CC 및 UL CC는 반송파 주파수(carrier frequency)로 표현될 수 있으며, 반송파 주파수는 해당 셀에서의 중심주파수(center frequency)를 의미한다.
셀은 프라이머리 주파수(primary frequency)에서 동작하는 프라이머리 셀(primary cell, PCell)과 세컨더리 주파수(secondary frequency)에서 동작하는 세컨더리 셀(secondary cell, SCell)로 분류될 수 있다. PCell과 SCell은 서빙 셀(serving cell)로 통칭될 수 있다. PCell은 단말이 초기 연결 설정(initial connection establishment) 과정을 수행하거나 연결 재설정 과정 또는 핸드오버 과정에서 지시된 셀이 PCell이 될 수 있다. 즉, PCell은 후술할 반송파 병합 환경에서 제어관련 중심이 되는 셀로 이해될 수 있다. 단말은 자신의 PCell에서 PUCCH를 할당 받고 전송할 수 있다. SCell은 RRC(Radio Resource Control) 연결 설정이 이루어진 이후 구성 가능하고 추가적인 무선 자원을 제공하는데 사용될 수 있다. 반송파 병합 환경에서 PCell을 제외한 나머지 서빙 셀을 SCell로 볼 수 있다. RRC_CONNECTED 상태에 있지만 반송파 병합이 설정되지 않았거나 반송파 병합을 지원하지 않는 단말의 경우, PCell로만 구성된 서빙 셀이 단 하나 존재한다. 반면, RRC_CONNECTED 상태에 있고 반송파 병합이 설정된 단말의 경우, 하나 이상의 서빙 셀이 존재하고, 전체 서빙 셀에는 PCell과 전체 SCell이 포함된다. 반송파 병합을 지원하는 단말을 위해 네트워크는 초기 보안 활성화(initial security activation) 과정이 개시된 이후, 연결 설정 과정에서 초기에 구성되는 PCell에 부가하여 하나 이상의 SCell을 구성할 수 있다.
도 10은 반송파 병합을 설명하기 위한 도면이다.
반송파 병합은 높은 고속 전송률에 대한 요구에 부합하기 위해 보다 넓은 대역을 사용할 수 있도록 도입된 기술이다. 반송파 병합은 반송파 주파수가 서로 다른 2개 이상의 구성반송파(component carrier, CC)들 또는 2 개 이상의 셀들의 병합(aggregation)으로 정의될 수 있다. 도 10을 참조하면, 도 10(a)는 기존 LTE 시스템에서 하나의 CC를 사용하는 경우의 서브프레임을 나타내고, 도 10(b)는 반송파 병합이 사용되는 경우의 서브프레임을 나타낸다. 도 10(b)에는 예시적으로 20MHz의 CC 3개가 사용되어 총 60MHz의 대역폭을 지원하는 것을 도시하고 있다. 여기서 각 CC는 주파수 상에서 연속적일 수도 있고, 또한 비 연속적일 수도 있다
단말은 하향링크 데이터를 복수개의 DL CC를 통해 동시에 수신하고 모니터링할 수 있다. 각 DL CC와 UL CC 사이의 링키지(linkage)는 시스템 정보에 의해 지시될 수 있다. DL CC/UL CC 링크는 시스템에 고정되어 있거나 반-정적으로 구성될 수 있다. 또한, 시스템 전체 대역이 N개의 CC로 구성되더라도 특정 단말이 모니터링/수신할 수 있는 주파수 대역은 M(<N)개의 CC로 한정될 수 있다. 캐리어 병합에 대한 다양한 파라미터는 셀 특정(cell-specific), 단말 그룹 특정(UE group-specific) 또는 단말 특정(UE-specific) 방식으로 설정될 수 있다.
도 11은 크로스-반송파 스케줄링(cross-carrier scheduling)을 설명하기 위한 도면이다.
크로스-반송파 스케줄링이란, 예를 들어, 복수의 서빙 셀 중 어느 하나의 DL CC의 제어영역에 다른 DL CC의 하향링크 스케줄링 할당 정보를 모두 포함하는 것, 또는 복수의 서빙 셀 중 어느 하나의 DL CC의 제어영역에 그 DL CC와 링크되어 있는 복수의 UL CC에 대한 상향링크 스케줄링 승인 정보를 모두 포함하는 것을 의미한다.
크로스-반송파 스케줄링과 관련하여, 반송파 지시자 필드(carrier indicator field, CIF)에 대해 설명한다. CIF는 PDCCH를 통해 전송되는 DCI 포맷에 포함되거나 (예를 들어, 3 비트 크기로 정의됨) 또는 포함되지 않을 수 있으며(예를 들어, 0 비트 크기로 정의됨), 포함된 경우 크로스-반송파 스케줄링이 적용된 것을 나타낸다. 크로스-반송파 스케줄링이 적용되지 않은 경우에는 하향링크 스케줄링 할당 정보는 현재 하향링크 스케줄링 할당 정보가 전송되는 DL CC상에서 유효하다. 또한 상향링크 스케줄링 승인은 하향링크 스케줄링 할당 정보가 전송되는 DL CC 와 링크된 하나의 UL CC에 대해 유효하다.
크로스-반송파 스케줄링이 적용된 경우, CIF는 어느 하나의 DL CC에서 PDCCH를 통해 전송되는 하향링크 스케줄링 할당 정보에 관련된 CC를 지시한다. 예를 들어, 도 11을 참조하면 DL CC A 상의 제어 영역 내 PDCCH를 통해 DL CC B 및 DL CC C에 대한 하향링크 할당 정보, 즉 PDSCH 자원에 대한 정보가 전송된다. 단말은 DL CC A를 모니터링하여 CIF를 통해 PDSCH의 자원영역 및 해당 CC를 알 수 있다.
PDCCH에 CIF가 포함되거나 또는 포함되지 않는지는 반-정적으로 설정될 수 있고, 상위 계층 시그널링에 의해서 단말-특정으로 활성화될 수 있다.
CIF가 비활성화(disabled)된 경우에, 특정 DL CC 상의 PDCCH는 해당 동일한 DL CC 상의 PDSCH 자원을 할당하고, 특정 DL CC에 링크된 UL CC 상의 PUSCH 자원을 할당할 수 있다. 이 경우, 기존의 PDCCH 구조와 동일한 코딩 방식, CCE 기반 자원 매핑, DCI 포맷 등이 적용될 수 있다.
한편, CIF가 활성화(enabled)되는 경우에, 특정 DL CC 상의 PDCCH는 복수개의 병합된 CC들 중에서 CIF가 지시하는 하나의 DL/UL CC 상에서의 PDSCH/PUSCH 자원을 할당할 수 있다. 이 경우, 기존의 PDCCH DCI 포맷에 CIF가 추가적으로 정의될 수 있으며, 고정된 3 비트 길이의 필드로 정의되거나, CIF 위치가 DCI 포맷 크기에 무관하게 고정될 수도 있다. 이 경우에도, 기존의 PDCCH 구조와 동일한 코딩 방식, CCE 기반 자원 매핑, DCI 포맷 등이 적용될 수 있다.
CIF가 존재하는 경우에도, 기지국은 PDCCH를 모니터링할 DL CC 세트를 할당할 수 있다. 이에 따라, 단말의 블라인드 디코딩의 부담이 감소할 수 있다. PDCCH 모니터링 CC 세트는 전체 병합된 DL CC의 일부분이고 단말은 PDCCH의 검출/디코딩을 해당 CC 세트에서만 수행할 수 있다. 즉, 단말에 대해서 PDSCH/PUSCH를 스케줄링하기 위해서, 기지국은 PDCCH를 PDCCH 모니터링 CC 세트 상에서만 전송할 수 있다. PDCCH 모니터링 DL CC 세트는 단말-특정 또는 단말 그룹-특정 또는 셀-특정으로 설정될 수 있다. 예를 들어, 도 11의 예시에서와 같이 3 개의 DL CC가 병합되는 경우에, DL CC A 가 PDCCH 모니터링 DL CC로 설정될 수 있다. CIF가 비활성화되는 경우, 각각의 DL CC 상의 PDCCH는 DL CC A에서의 PDSCH만을 스케줄링할 수 있다. 한편, CIF가 활성화되면 DL CC A 상의 PDCCH는 DL CC A는 물론 다른 DL CC에서의 PDSCH도 스케줄링할 수 있다. DL CC A가 PDCCH 모니터링 CC로 설정되는 경우에는 DL CC B 및 DL CC C 에는 PDCCH가 전송되지 않을 수 있다.
PDCCH 프로세싱
PDCCH를 자원요소 상에 매핑할 때 연속된 논리할당단위인 제어채널요소(CCE)가 사용된다. 하나의 CCE는 복수(예를 들어, 9개)의 자원요소그룹(REG)을 포함하고, 하나의 REG는 참조 신호(RS)를 제외한 상태에서 이웃하는 네 개의 RE로 구성된다.
특정한 PDCCH를 위해 필요한 CCE의 개수는 제어정보의 크기인 DCI 페이로드, 셀 대역폭, 채널 부호화율 등에 따라 달라진다. 구체적으로 특정한 PDCCH를 위한 CCE의 개수는 다음 표 4와 같이 PDCCH 포맷에 따라 정의될 수 있다.
Figure 112015018220788-pct00027
PDCCH는 네 가지 포맷 중 어느 하나의 포맷이 사용될 수 있는데, 이는 단말에게 알려지지 않는다. 따라서 단말의 입장에서는 PDCCH 포맷을 알지 못한 채 디코딩을 수행하여야 하는데, 이를 블라인드 디코딩이라 한다. 다만, 단말이 하향링크에 사용되는 가능한 모든 CCE를 각 PDCCH 포맷에 대하여 디코딩하는 것은 큰 부담이 되므로, 스케줄러에 대한 제약과 디코딩 시도 횟수를 고려하여 탐색 공간(Search Space)이 정의된다.
즉, 탐색 공간은 조합레벨(Aggregation Level) 상에서 단말이 디코딩을 시도해야 하는 CCE들로 이루어진 후보(candidate) PDCCH의 조합이다. 여기서 조합레벨 및 PDCCH 후보의 수는 다음 표 5와 같이 정의될 수 있다.
Figure 112015018220788-pct00028
상기 표 5에서 알 수 있듯이 4가지의 조합레벨이 존재하므로, 단말은 각 조합레벨에 따라 복수개의 탐색 공간을 갖게 된다. 또한, 표 5에서 나타내는 바와 같이 탐색 공간은 단말-특정 탐색 공간과 공통 탐색 공간으로 구분될 수 있다. 단말-특정 탐색 공간은 특정한 단말들을 위한 것으로서 각 단말은 단말-특정 탐색 공간을 모니터링(가능한 DCI 포맷에 따라 PDCCH 후보의 조합에 대해 디코딩을 시도하는 것)하여 PDCCH에 마스킹되어 있는 RNTI 및 CRC를 확인하여 유효하면 제어정보를 획득할 수 있다.
공통 탐색 공간은 시스템 정보에 대한 동적 스케줄링이나 페이징 메시지 등 복수개의 단말 또는 모든 단말들이 PDCCH를 수신해야 할 필요가 있는 경우를 위한 것이다. 다만, 공통 탐색 공간은 자원 운용상 특정 단말을 위한 것으로 사용될 수도 있다. 또한, 공통 탐색 공간은 단말-특정 탐색 공간과 오버랩될 수도 있다.
상술한 바와 같이 단말은 탐색 공간에 대해 디코딩을 시도하는데, 이 디코딩 시도의 횟수는 DCI 포맷 및 RRC(Radio Resource Control) 시그널링을 통해 결정되는 전송모드(Transmission mode)로 결정된다. 반송파 병합(Carrier Aggregation)이 적용되지 않는 경우, 단말은 공통 탐색 공간에 대해 PDCCH 후보 6개 각각에 대해 두 가지의 DCI 크기(DCI 포맷 0/1A/3/3A 및 DCI 포맷 1C)를 고려하여야 하므로 최대 12번의 디코딩 시도가 필요하다. 단말 특정 탐색 공간에 대해서는, PDCCH 후보 수(6 + 6 + 2 + 2 = 16) 에 대해 두 가지의 DCI 크기를 고려하므로 최대 32번의 디코딩 시도가 필요하다. 따라서 반송파 병합이 적용되지 않는 경우 최대 44회의 디코딩 시도가 필요하다.
개선된(Enhanced) 제어채널
개선된 제어 채널의 일례로서, EPDCCH(Enhanced PDCCH)에 대해서 설명한다.
앞서 설명된 DCI 포맷들에 포함된 제어정보들은 LTE/LTE-A에 정의된 PDCCH를 통해 전송되는 것을 위주로 설명되었으나, PDCCH가 아닌 다른 하향링크 제어 채널, 예를 들어, EPDCCH에 적용이 가능하다. EPDCCH는 단말을 위한 스케줄링 할당 등의 DCI를 나르는(carry) 제어 채널의 새로운 형태에 해당하고, 셀간 간섭 조정(ICIC), CoMP, MU-MIMO 등의 기법을 효과적으로 지원하기 위하여 도입될 수 있다.
이러한 EPDCCH는 기존 LTE/LTE-A 시스템에서 PDCCH 전송을 위해 정의되는 영역(예를 들어, 도 3 의 제어 영역)을 제외한 시간-주파수 자원 영역(예를 들어, 도 3의 데이터 영역)에 할당된다는 점에서 기존의 PDCCH와 구별된다 (이하에서는, 기존의 PDCCH를 EPDCCH와 구분하기 위해, 레거시-PDCCH(legacy-PDCCH)라 칭한다). 예를 들어, EPDCCH의 자원 요소 매핑은, 시간 영역에서는 하향링크 서브프레임의 처음 N(예를 들어, N≤4)개의 OFDM 심볼을 제외한 OFDM 심볼에 매핑되고, 주파수 영역에서는 반-정적으로 할당된 자원블록(RB)의 세트에 매핑되는 것으로 표현할 수 있다.
또한, EPDCCH가 도입되는 이유와 유사하게, 상향링크 전송에 대한 HARQ ACK/NACK 정보를 나르는 새로운 제어 채널로서 E-PHICH가 정의될 수 있고, 하향링크 제어 채널 전송에 사용되는 자원 영역에 대한 정보를 나르는 새로운 제어 채널로서 E-PCFICH가 정의될 수도 있다. 이러한 EPDCCH, E-PHICH 및/또는 E-PCFICH를 통칭하여 Enhanced-제어채널이라고 칭할 수 있다.
EREG(Enhanced REG)는 Enhanced-제어채널들의 자원 요소에의 매핑을 정의하기 위해 사용될 수 있다. 예를 들어, 하나의 물리자원블록 쌍(PRB pair)에 대해서, 16개의 EREG들(즉, EREG 0부터 EREG 15)이 존재할 수 있다. 하나의 PRB 상에서 DMRS(DeModulation Reference Signal)가 매핑된 RE들을 제외한 나머지 RE들에 대해서 0부터 15까지 번호가 매겨진다. 번호가 매겨지는 순서는 먼저 주파수가 증가하는 순서에 따르고 그 후 시간이 증가하는 순서에 따른다. 예를 들어, i 라는 번호가 매겨진 RE들이 하나의 EREG i를 구성한다.
Enhanced-제어 채널은 하나 또는 복수개의 ECCE(Enhanced CCE)들의 조합(aggregation)을 사용하여 전송될 수 있다. 각각의 ECCE는 하나 또는 복수개의 EREG를 포함할 수 있다. ECCE 당 EREG의 개수는, 예를 들어, 4 또는 8일 수 있다(정규 CP의 서브프레임의 경우에는 4).
Enhanced-제어 채널에 대해 이용가능한 ECCE들은 0부터 NECCE-1까지 번호 매겨질 수 있다. NECCE의 값은, 예를 들어, 1, 2, 4, 8, 16 또는 32일 수 있다.
Enhanced-제어 채널의 전송을 위해 설정된 PRB 쌍의 RE들의 개수는 다음의 조건들 i), ii) 및 iii)을 만족하는 RE들의 개수로 정의될 수 있다. i) PRB 쌍의 16 개의 EREG들 중의 하나의 일부일 것, ii) CRS(Cell-specific Reference Signal) 또는 CSI-RS(Channel State Information-Reference Signal)를 위해 사용되지 않을 것, 및 iii) Enhanced-제어 채널이 시작되는 OFDM 심볼의 인덱스 이상의 OFDM 심볼에 속할 것.
또한, Enhanced-제어 채널은 로컬(localized) 방식 또는 분산(distributed) 방식으로 RE들에 매핑될 수 있다. Enhanced-제어 채널은, 다음의 조건들 a) 내지 d)를 만족하는 RE들에 매핑될 수 있다. a) 전송을 위해 할당된 EREG의 일부일 것, b) 물리브로드캐스트채널(Physical Broadcast Channel; PBCH) 또는 동기 신호(synchronization signal)의 전송에 이용되는 PRB 쌍의 일부가 아닐 것, c) CRS 또는 특정 단말에 대한 CSI-RS를 위해 사용되지 않을 것, 및 d) Enhanced-제어 채널이 시작되는 OFDM 심볼의 인덱스 이상의 OFDM 심볼에 속할 것.
Enhanced-제어 채널의 할당은 다음과 같이 수행될 수 있다. 기지국으로부터의 상위 계층 시그널링을 통해서 단말에게 하나 또는 복수개의 Enhanced-제어 채널-PRB-세트를 설정하여 줄 수 있다. 예를 들어, EPDCCH의 경우에는 Enhanced-제어 채널-PRB-세트는 EPDCCH의 모니터링을 위한 것일 수 있다.
또한, Enhanced-제어 채널의 RE 매핑에는 크로스 인터리빙(cross interleaving)이 적용되거나 적용되지 않을 수 있다.
크로스 인터리빙이 적용되지 않는 경우, 하나의 Enhanced-제어 채널은 자원블록의 특정 세트에 매핑될 수 있으며, 자원블록의 세트를 구성하는 자원블록들의 개수는 조합레벨(aggregation level) 1, 2, 4 또는 8에 대응할 수 있다. 또한, 다른 Enhanced-제어 채널이 해당 자원블록 세트에서 전송되지 않는다.
크로스 인터리빙이 적용되는 경우, 복수개의 Enhanced-제어 채널들이 함께 다중화 및 인터리빙되어, Enhanced-제어 채널 전송을 위해 할당된 자원블록 상에 매핑될 수 있다. 즉, 특정 자원블록 세트 상에서 복수개의 Enhanced-제어 채널이 함께 매핑되는 것으로 표현할 수도 있다.
DCI 포맷 1A
DCI 포맷 1A는 하나의 셀에서의 하나의 PDSCH 코드워드의 콤팩트(compact) 스케줄링을 위해서 사용되는 DCI 포맷을 지칭한다. 즉, DCI 포맷 1A 는 단일 안테나 전송, 단일 스트림 전송, 또는 전송 다이버시티 전송 등 랭크 1 전송에서 사용되는 제어 정보들을 포함할 수 있다. 표 3 및 표 4는 기존의 3GPP LTE/LTE-A 표준에서 정의하는 DCI 포맷 1A의 일례를 나타낸다.
Figure 112015018220788-pct00029
상기 표 6과 같은 제어 정보를 포함하는 DCI 포맷 1A는 PDCCH 또는 EPDCCH를 통하여 기지국으로부터 단말에게 제공될 수 있다.
DCI 포맷 1A는 가장 기본적인 하향링크 전송(랭크 1으로 하나의 PDSCH 코드워드 전송)을 스케줄링하는 정보를 포함한다. 따라서, 랭크 2 이상 및/또는 복수개의 코드워드 전송 등의 복잡한 PDSCH 전송 방식이 올바르게 수행되지 않는 경우, 가장 기본적인 PDSCH 전송 방식을 지원하기 위한 용도 (즉, 폴백(fallback)) 용도로 사용될 수 있다.
QCL (Quasi Co-location)
QC 또는 QCL (Quasi Co-Located) 관계는 신호에 대한 관점 또는 채널에 대한 관점에서 설명할 수 있다.
하나의 안테나 포트 상에서 수신되는 신호의 대규모 특성(large scale properties)이 다른 안테나 포트 상에서 수신되는 신호로부터 유추(infer)될 수 있는 경우에, 이들 두 안테나 포트가 QCL된 것이라고 할 수 있다. 여기서, 신호의 대규모 특성이란, 지연 확산(delay spread), 도플러 시프트(Doppler shift), 주파수 시프트(frequency shift), 평균 수신 전력(average received power), 수신 타이밍(received timing) 중의 하나 이상을 포함할 수 있다.
또는, 하나의 안테나 포트 상의 심볼이 전송되는 채널의 대규모 특성이 다른 안테나 포트 상의 심볼이 전송되는 채널의 특성으로부터 유추될 수 있는 경우에, 이들 두 안테나 포트가 QCL된 것이라고 할 수 있다. 여기서, 채널의 대규모 특성이란 지연 확산(delay spread), 도플러 확산(Doppler spread), 도플러 시프트(Doppler shift), 평균 이득(average gain), 및 평균 지연(average delay) 중의 하나 이상을 포함할 수 있다.
본 발명에서 QC 또는 QCL 이라는 용어를 사용함에 있어서, 위에서 설명하는 신호 관점 또는 채널 관점의 정의를 구분하지는 않는다.
단말의 입장에서 QCL에 대한 가정이 성립하는 안테나 포트들 간에는, 실제로는 두 안테나 포트가 co-located 되어 있지 않더라도 마치 co-located 되어 있는 것으로 가정할 수 있다. 예를 들어, 단말은 QCL 가정이 성립하는 두 안테나 포트들이 동일한 전송 포인트(TP)에 존재하는 것으로 가정할 수 있다.
예를 들어, 특정 CSI-RS 안테나 포트와, 특정 하향링크 DMRS 안테나 포트와, 특정 CRS 안테나 포트가 QCL되어 있는 것으로 설정될 수 있다. 이는, 특정 CSI-RS 안테나 포트와, 특정 하향링크 DMRS 안테나 포트와, 특정 CRS 안테나 포트가 하나의 서빙셀(serving-cell)로부터의 것인 경우일 수 있다.
또한, CSI-RS 안테나 포트와 하향링크 DMRS 안테나 포트가 QCL되어 있는 것으로 설정될 수도 있다. 예를 들어, 복수개의 TP가 참여하는 CoMP 상황에서, 어떤 CSI-RS 안테나 포트가 실제로 어떤 TP로부터 전송되는 것인지는 단말에게 명시적으로 알려지지 않는다. 이 경우에, 특정 CSI-RS 안테나 포트와 특정 DMRS 안테나 포트가 QCL되어 있는 것을 단말에게 알려줄 수 있다. 이는 상기 특정 CSI-RS 안테나 포트와 특정 DMRS 안테나 포트가 어떤 하나의 TP로부터의 것인 경우일 수도 있다.
이러한 경우, 단말은 CSI-RS 또는 CRS를 이용하여 획득한 채널의 대규모 특성 정보를 이용해서, DMRS를 통한 채널 추정의 성능을 높일 수 있다. 예를 들어, CSI-RS를 통해서 추정된 채널의 지연 확산을 이용해서, DMRS로부터 추정된 채널의 간섭을 억제하는 등의 동작을 할 수 있다.
예를 들어, 지연 확산 및 도플러 확산에 대하여, 단말은 어떤 하나의 안테나 포트에 대한 전력-지연-프로파일(power-delay-profile), 지연 확산 및 도플러 스펙트럼, 도플러 확산 추정 결과를, 다른 안테나 포트에 대한 채널 추정 시 사용되는 위너 필터(Wiener filter) 등에 동일하게 적용할 수 있다. 또한, 주파수 시프트 및 수신 타이밍에 대해서, 단말은 어떤 하나의 안테나 포트에 대한 시간 및 주파수 동기화(synchronization)를 수행한 후, 동일한 동기화를 다른 안테나 포트의 복조에 적용할 수 있다. 또한, 평균 수신 전력에 대해서, 단말은 2 개 이상의 안테나 포트들에 대해서 참조신호수신전력(reference signal received power; RSRP) 측정을 평균화할 수 있다.
예를 들어, 단말이 PDCCH(혹은 EPDCCH)를 통해 특정 DMRS 기반 DL 관련 DCI 포맷(DMRS-based DL-related DCI format) (예를 들어, DCI 포맷 2C)을 통하여 DL 스케줄링 그랜트 정보를 수신할 수 있다. 이 경우, 단말은 설정된 DMRS 시퀀스를 통해 해당 스케줄링된 PDSCH에 대한 채널 추정을 수행한 후 데이터 복조를 수행한다. 예를 들어, 만일 단말이 이러한 DL 스케줄링 그랜트로부터 받은 DMRS 포트 설정이 특정 RS(예를 들어, 특정 CSI-RS, 특정 CRS, 또는 자신의 DL 서빙셀 CRS, 등) 포트와 QCL된 것으로 가정할 수 있다면, 단말은 해당 DMRS 포트를 통한 채널 추정시 상기 특정 RS의 포트로부터 추정했던 지연 확산 등의 대규모 특성 추정치를 그대로 적용하여 DMRS-기반 수신의 성능을 향상시킬 수가 있다.
이는, CSI-RS 또는 CRS는 주파수 도메인에서 전대역에 걸쳐서 전송되는 셀-특정 신호이므로, 단말-특정으로 전송되는 DMRS에 비하여 채널의 대규모 특성을 보다 정확하게 파악할 수 있기 때문이다. 특히, CRS는 매 서브프레임에서 전대역에 걸쳐서 상대적으로 높은 밀도로 브로드캐스트되는 참조신호이기 때문에, 일반적으로 채널의 대규모 특성에 대한 추정치는 CRS로부터 안정적으로 보다 정확하게 획득할 수 있다. 반면에 DMRS는 스케줄링된 특정 RB에서만 단말-특정으로 전송되므로 채널의 대규모 특성 추정치의 정확도가 CRS 또는 CSI-RS에 비하여 떨어진다. 또한, 단말이 다수의 PRBG를 스케줄링 받은 경우라고 하더라도. 기지국이 송신에 사용한 프리코딩 행렬은 물리 자원 블록 그룹(PRBG) 단위로 변할 수도 있으므로 단말에게 수신되는 유효 채널은 PBRG 단위로 달라질 수 있다. 따라서, 넓은 대역에 걸쳐 DMRS를 기반으론 대규모 채널 특성을 추정하더라도 그 정확성이 떨어질 수 있다.
한편, 단말은 QCL 되어 있지 않은 (non-quasi-co-located; NQC) 안테나 포트(AP)들에 대해서는, 해당 AP들이 동일한 대규모 채널 특성을 가지는 것으로는 가정할 수 없다. 이 경우에 단말은 타이밍 획득 및 추적(timing acquisition and tracking), 주파수 오프셋 추정 및 보상(frequency offset estimation and compensation), 지연 추정(delay estimation), 및 도플러 추정(Doppler estimation) 등에 대하여 NQC AP 별로 독립적으로 처리해야 한다.
QCL 여부는 하향링크 제어 정보(예를 들어, DCI 포맷 2D의 PQI 필드 (PDSCH RE 매핑 및 QCL 지시자 필드))를 통해서 단말에게 제공될 수 있다. 구체적으로, QCL 설정에 대한 파라미터 세트들이 상위계층에 의해서 미리 설정되어 있고, DCI 2D의 PQI 필드를 통해서 상기 QCL 파라미터 세트들 중에서 특정 하나의 파라미터 세트가 지시될 수 있다.
QC 관련 정보의 시그널링 방안
본 발명의 일 실시예에서는 CRS, CSI-RS, DMRS 등 RS들간의 QC 가정 정보를 기지국이 시그널링 해줌으로써 단말의 CSI 피드백 및 수신 프로세싱 성능을 향상시킬 수 있는 방안을 제안한다.
QC 관련 정보의 상위 계층 시그널링 방안
이하에서는 QC 관련 정보를 상위 계층(예를 들어, RRC) 시그널링을 통하여 설정하는 본 발명의 예시들에 대해서 설명한다. 예를 들어, 단말이 상위 계층에 의해서 하나 이상의 CSI-RS 설정(들)(configuration(s))을 시그널링 받을 때에, 각각의 CSI-RS 설정 별로 특정 RS(들)와의 QC 가정이 가능한지를 알려 줄 수 있다(여기서, 특정 RS는 단말의 특정 셀의 (예를 들어, DL 서빙셀 또는 이웃 셀)의 CRS, 다른 CSI-RS, 또는 DMRS 일 수 있다). 이와 같이 설정된 단말은 각각의 CSI-RS 설정에 기초한 CSI 피드백에 있어서, 보고할 정보(예를 들어, RI, PMI, CQI 등)를 계산/결정함에 있어서 이러한 QC 가정 또는 NQC 가정을 적용할 수 있다.
QC 관련 정보의 상위 계층 시그널링 방안의 일례로서, CSI-RS 포트와 CRS 포트 간의 QC/NQC 적용 여부에 따른 동작에 대해서 설명한다.
예를 들어, 단말이 복수개의 CSI-RS 설정(configuration)을 시그널링 받을 수 있다. 이하의 설명에서 CSI-RS 설정(configuration)은 CSI-RS 자원(resource)이라는 용어로 대체하여 이해될 수도 있다. 예를 들어, 단말은 CSI-RS 설정 1 (이하에서 "CSI-RS1"로 표기) 및 CSI-RS 설정 2 (이하에서 "CSI-RS2"로 표기)를 상위계층에 의해서 시그널링 받을 수 있다. 또한, CSI-RS1은 DL 서빙셀 CRS와 QC를 가정할 수 있는 것으로, CSI-RS2는 DL 서빙셀 CRS와 NQC를 가정할 수 있는 것으로 상위계층에 의해서 시그널링될 수 있다.
이 경우, 단말은 DL 서빙셀 CRS와의 QC가정이 가능한 CSI-RS1을 이용한 CSI 계산은 다음과 같은 가정에 기초할 수 있다. 단말은 CSI를 계산함에 있어서 DMRS-기반 PDSCH를 수신하는 경우를 가정하여 데이터 복조 시에 소정의 에러율을 넘지 않는 RI, PMI, CQI 등을 계산/결정할 수 있는데, 이 때 해당 PDSCH DMRS 포트(들)와 DL 서빙셀 CRS와의 QC 관계에 있는 것을 가정하였을 때의 데이터 복조 시의 10% 이하의 FER을 성취할 수 있는 RI, PMI, CQI 등을 계산할 수 있다. 또한, CSI-RS1을 이용한 CSI 계산에 있어서, CSI-RS configuration에 포함되는 Pc 값(상기 표 2의 파라미터 p_C 참조)에, 상기 DL 서빙셀 CRS를 고려한 소정의 스케일링(scaling)을 적용하는 방식으로 QC 가정을 반영할 수도 있다.
한편, 단말은 CSI-RS2는 DL 서빙셀 CRS와 NQC 관계인 것으로 설정되었기 때문에, CSI-RS2를 전송한 TP로부터 DMRS-기반 PDSCH를 수신하는 경우를 가정하여 RI, PMI, CQI를 계산/결정함에 있어서 해당 PDSCH DMRS 포트(들)와 DL 서빙셀 CRS와의 QC 가정을 적용하지 않는다. 즉, QC 가정 없이 DMRS-기반 PDSCH를 통한 데이터 복조 시의 10% 이하의 FER을 성취할 수 있는 RI, PMI, CQI 등을 계산/결정할 수 있다. 예를 들어, QC 가정을 적용할 수 있는 때에 비하여 보다 낮은 (즉, 보다 강인한 전송이 예상되는) MCS 레벨, CQI, RI 값 등을 계산/결정하고 이를 기지국으로 보고할 수 있다.
QC 관련 정보의 상위 계층 시그널링 방안의 추가적인 예시로서, 특정 CSI-RS 설정의 CSI-RS 포트(들)와 다른 CSI-RS 설정의 CSI-RS 포트(들)와의 QC/NQC 가정의 적용 여부를 지시하는 정보가 상위계층 시그널링에 포함될 수도 있다.
예를 들어, CSI-RS 설정 별로 소정의 로케이션(location) 정보를 포함하고, 동일한 로케이션 값을 가지는 CSI-RS 간에는 서로 QC를 가정할 수 있다는 것으로 해석하는 시그널링 방안을 제안한다. 상기 location 정보는 N 비트 크기를 가질 수 있다. 예를 들어, L×M 개의 안테나를 포함하는 2 차원 URA(Uniform Rectangular Antenna array)를 구비한 기지국에서 3 차원 빔포밍을 수행하는 경우를 가정할 수 있다. 이 경우, 기지국은 하나의 단말에 대해서 상기 2 차원 URA에 의해서 구성되는 복수개의 CSI-RS 설정들 간에 QC 관계를 가짐을 알려줄 수 있다. 이에 따라, 단말은 하나의 CSI-RS 설정의 특정 CSI-RS 포트에 대해서 측정된 대규모 채널 특성(예를 들어, 지연 확산, 도플러 확산, 주파수 시프트, 수신 타이밍 등)의 일부 또는 전부를 다른 CSI-RS 설정의 CSI-RS 포트에 대해서 적용할 수 있다. 이에 따라, 단말의 채널 추정의 복잡성이 크게 감소할 수 있다. 다만, 서로 다른 CSI-RS 설정에 대해서 대규모 채널 특성 중에서 평균 수신 전력을 QC 관계인 것으로 가정하게 되면 3 차원 빔포밍의 이득을 충분히 누릴 수 없기 때문에, 평균 수신 전력을 결정함에 있어서는 서로 다른 CSI-RS 설정에 속한 CSI-RS 포트에 대해서는 NQC 관계인 것으로 가정할 수 있다.
추가적인 예시로서, CSI-RS 설정 별로 플래그 비트(flag bit)가 포함될 수 있다. 플래그 비트가 토글(toggle)될 때마다 QC 가정이 적용되는 동일한 그룹에 속하는지 여부가 지시될 수 있다. 예를 들어, 플래그 비트의 값이 토글되는 경우(즉, 이전 CSI-RS 설정의 플래그 비트의 값에 비하여 해당 CSI-RS 설정의 플래그 비트의 값이 0 에서 1로 변경되거나, 1 에서 0으로 변경되는 경우)에는 이전 CSI-RS 설정과 서로 다른 그룹에 속하는 것이 지시되고, 플래그 비트의 값이 토글되지 않는 경우에는 동일한 그룹에 속하는 것이 지시될 수 있다. 예를 들어, 단말이 총 5개의 CSI-RS 설정(CSI-RS1, CSI-RS2, ..., CSI-RS5)을 시그널링 받은 경우에, CSI-RS1 및 CSI-RS2에서는 상기 플래그 비트가 '0'이고, CSI-RS3 및 CSI-RS4에 대해서는 '1'이고, CSI-RS5에 대해서는 '0'으로 토글된 경우를 가정할 수 있다. 이 경우, CSI-RS1 및 CSI-RS2 간에는 QC 가정이 가능하고, CSI-RS3 및 CSI-RS4 간에는 QC 가정이 가능하며, CSI-RS5는 다른 CSI-RS와 QC 관계에 있지 않음(즉, NQC 관계임)이 지시될 수 있다. 또한, CSI-RS1 또는 CSI-RS2과, CSI-RS3 또는 CSI-RS4 간에는 QC 가정이 가능하지 않음을 알 수 있다.
추가적인 예시로서, CSI-RS 설정 별로 포함되어 있는 CSI-RS 시퀀스 스크램블링 시드 값을 X 라고 하면, X 값이 동일한지 여부에 따라서 QC 가정의 적용 여부가 묵시적으로(implicitly) 지시될 수 있다. 예를 들어, CSI-RS 설정 별로 포함되는 X 값이 동일한 경우, 해당 CSI-RS 설정들 간에는 CSI-RS 포트(들)의 QC 가정이 적용되는 것으로 지시될 수 있다. 한편, CSI-RS 설정 별로 포함되는 X 값이 상이한 경우에는, 해당 CSI-RS 설정들 간에는 CSI-RS 포트(들)의 NQC 가정이 적용되는 것으로 지시될 수 있다. 여기서, X 값은 단말-특정으로 설정되는 CSI-RS 설정에 포함되는 값이므로, 셀 특정으로 주어치는 물리 셀 식별자(PCI)와는 독립적으로 설정되는 값일 수 있으며, 가상 셀 식별자(VCI)라고 칭할 수 있다. 또한, X 값은 PCI와 유사하게 0 내지 503의 범위 중의 하나의 정수 값을 가질 수 있지만, PCI 값과 동일한 것으로 제한되지는 않는다.
또한, 특정 CSI-RS 설정에 포함된 X 값이 특정 CRS 포트(들)의 PCI 값과 동일한 경우에는, 해당 CSI-RS 설정의 CSI-RS 포트(들)와 상기 특정 CRS 포트(들) 간에 QC 가정이 가능한 것이 묵시적으로 지시될 수 있다. 한편, 특정 CSI-RS 설정에 포함된 X 값이 특정 CRS 포트(들)의 PCI 값과 상이한 경우에는, 해당 CSI-RS 설정의 CSI-RS 포트(들)와 상기 특정 CRS 포트(들) 간에 NQC 가정이 적용되는 것이 묵시적으로 지시될 수 있다.
추가적으로, CSI-RS 스크램블링 시퀀스 시드 값인 X 값은, 하나의 CSI-RS 설정 내의 CSI-RS 포트 별로 개별적으로 할당될 수도 있다. 이 경우, 어떤 CSI-RS 포트와 다른 RS 포트(예를 들어, 다른 CSI-RS 설정의 CSI-RS 포트, 동일한 CSI-RS 설정 내에서의 다른 CSI-RS 포트, 및/또는 CRS 포트)와의 QC/NQC 가정 적용 여부는, 각각의 CSI-RS 포트에 대한 X 값(또는 특정 CSI-RS 포트에 대한 X 값과 특정 CRS의 PCI 값)이 동일한지 여부에 의해서 묵시적으로 지시될 수 있다.
QC 관련 정보의 상위 계층 시그널링 방안의 추가적인 예시로서, 특정 CSI-RS 설정에 다른 DMRS 포트와의 QC/NQC 가정 적용 여부를 지시하는 정보가 포함될 수도 있다.
예를 들어, CSI-RS 설정 별로 특정 DMRS 포트(들)와의 QC/NQC 가정의 적용 여부를 RRC 시그널링을 통해서 지정해 둘 수 있다. 만일 모든 DMRS 포트들과의 QC 가정의 적용이 가능한 CSI-RS1을 설정 받는다면, 단말은 CSI-RS1을 이용한 대규모 채널 특성의 추정치를 DMRS-기반 PDSCH 수신 시에도 동일하게 적용할 수 있다. 이러한 CSI-RS1을 설정받은 단말은, 기지국이 반-정적으로(즉, 상위계층에 의해 재설정되지 않는 한), CSI-RS1을 전송한 TP로부터 해당 단말에게 PDSCH를 전송하겠다는 의미인 것으로 해석할 수도 있다. 특히, CoMP 시나리오 4 (즉, 동일한 셀 ID를 가지는 복수의 TP에서 CRS가 동시 전송되는 상황)에서는 CRS를 통한 TP-특정 QC 가정을 적용하기가 어려우므로, CSI-RS 포트(들)와 QC 가정이 설정된 DMRS 포트(들)의 정보를 단말에게 알려주어, DMRS-기반 수신 프로세싱의 성능을 향상시키는데 활용될 수 있다.
추가적인 예시로서, 단말이 CSI-RS1과 CSI-RS2를 설정 받았을 경우, CSI-RS1은 DL 서빙셀 CRS와의 QC 가정이 적용되고, CSI-RS2은 DL 서빙셀 CRS와 NQC 가정이 적용되는 경우를 가정한다. 이 경우, 단말은 DMRS 포트(들)는 CSI-RS1 및 DL 서빙셀 CRS와 모두 QC 가정이 적용된다는 반-정적인 지시를 받은 것으로 묵시적으로 해석/동작할 수 있다. 예를 들어, CSI-RS1이 DL 서빙셀 CRS와 QC 가정이 가능하다라고 설정 받았기 때문에, 단말은 CSI-RS1을 기반으로한 CSI 피드백 시에 NQC 가정하는 경우에 비하여 더 높은 MCS 레벨, CQI 등의 CSI 피드백 정보를 보고했을 수 있다. 따라서, 기지국이 CSI-RS1과 DL 서빙셀 CRS 간에 QC 가정이 적용된다고 설정하면 (기지국이 다른 시그널링을 주지 않는 한), 단말은 기지국이 자신에게 DL 전송을 스케줄링할 때는 CSI-RS1을 전송한 TP가 DMRS-기반 PDSCH를 전송하도록 할 것이라는 일종의 약속으로 해석할 수 있다. 이에 따라, 단말은 QC가 가정된 CSI-RS1 기반의 CSI 피드백 정보를 보고하고, 실제 PDSCH 수신도 QC 가정을 적용하여 수행함으로써 수신 프로세싱의 성능 향상을 기대할 수 있기 때문이다.
구체적으로, CoMP 측정 세트(measurement set) 내의 복수개의 CSI-RS 설정들 중에서 하나라도 DL 서빙셀 CRS와의 QC 가정이 가능하도록 허용된 경우, 단말은 DMRS-기반 PDSCH의 복조를 수행함에 있어서 해당 DMRS 포트(들)와 자신의 DL 서빙셀 CRS 포트(들) (또한 해당 DL 서빙셀 CRS 포트(들)과 QC 가정이 적용되는 CSI-RS 포트(들)) 간의 QC 가정이 가능한 것으로 반-정적 지시를 받은 것으로 묵시적으로 해석할 수 있다. 이에 따라, 단말에게는 이와 같은 DL 서빙셀 CRS, DMRS, CSI-RS 포트들 간의 QC 가정을 고려하여 수신 프로세싱을 수행하는 것이 허용된다. 또한, 해당 단말이 CSI 피드백을 수행할 때에도 이와 같은 QC 가정이 적용된 수신 프로세싱을 가정하여 CSI를 생성하게 된다. 예를 들어, 단말이 DMRS-기반 PDSCH를 수신하는 것을 가정하여, 해당 DMRS 포트(들)와 DL 서빙셀 CRS 포트(들) (또한 해당 DL 서빙셀 CRS 포트(들)과 QC 가정이 적용되는 CSI-RS 포트(들)) 간에 QC 관계를 가진다고 가정하며, 데이터 복조 시에 10% 이하의 에러율을 성취할 수 있는 MCS 레벨, CQI, RI, PMI 등을 계산/결정하고 이를 보고할 수 있다.
한편, CoMP 측정 세트 내의 복수개의 CSI-RS 설정들이 모두 DL 서빙셀 CRS와 NQC 가정을 적용하는 것으로 설정된 경우에는, 단말은 DMRS-기반 PDSCH의 복조를 수행함에 있어서 해당 DMRS 포트(들)와 자신의 DL 서빙셀 CRS 포트(들) 간에 NQC 가정이 적용되는 것으로 반-정적 지시를 받은 것으로 묵시적으로 해석할 수 있다. 또한, 해당 단말이 수신 프로세싱을 수행함에 있어서 해당 CSI-RS 설정의 CSI-RS 포트(들)와 다른 RS 포트(들)와의 QC 가정을 적용해서는 안된다. 또한, 해당 단말이 CSI 피드백을 수행할 때에도 이와 같은 NQC 가정이 적용된 수신 프로세싱을 가정하여 CSI를 생성하게 된다. 예를 들어, 단말이 DMRS-기반 PDSCH를 수신하는 것을 가정하여, 해당 DMRS 포트(들)와 DL 서빙셀 CRS 포트(들) 간에 NQC 관계를 가진다고 가정하여, 데이터 복조 시에 10% 이하의 에러율을 성취할 수 있는 MCS 레벨, CQI, RI, PMI 등을 계산/결정하고 이를 보고할 수 있다.
추가적인 예시로서, CSI-RS 설정 별로 서브프레임 인덱스 정보가 포함되고, 해당 서브프레임(들)에서 DMRS-기반 PDSCH 스케줄링을 받는 경우에, 해당 DMRS 포트(들)와 해당 CSI-RS 포트(들) (또한 DL 서빙셀 CRS 포트(들)) 간의 QC/NQC 가정의 적용 여우가 RRC 시그널링에 의해서 지정될 수 있다. 예를 들어, CSI-RS1은 짝수 인덱스를 가지는 서브프레임에서 DMRS 포트(들)와의 QC 가정이 가능하다고 시그널링되는 경우, 단말은 짝수 인덱스의 서브프레임에서는 CSI-RS1의 CSI-RS 포트(들) 및/또는 DL 서빙셀 CRS 포트(들)을 이용한 대규모 채널 특성 추정치의 일부 또는 전부를, DMRS-기반 PDSCH 수신 프로세싱에 동일하게 적용할 수 있다. CSI 피드백의 경우에는, 단말이 QC 가정을 고려한 CSI와, NQC 가정을 고려한 CSI를 모두 생성하여 보고할 수 있다. 또는, CQI에 대해서만 QC 인 경우를 가정한 CQI와, NQC인 경우를 가정한 CQI를 모두 계산/결정하여 보고하도록 할 수도 있다.
이러한 시그널링은 서브프레임 비트맵 또는 서브프레임 인덱스 세트의 형태로 제공될 수 있다. 예를 들어, 서브프레임 세트 1은 "DMRS 포트(들)와 DL 서빙셀 CRS 포트(들)"간의 QC 가정이 가능하고, 서브프레임 세트 2는 "DMRS 포트(들)와 특정 CSI-RS 포트(들)"간의 QC 가정이 가능하다고 설정될 수 있다. 또는, 서브프레임 세트 1은 "DMRS 포트(들)와 DL 서빙셀 CRS 포트(들)"간의 QC 가정이 가능하고, 서브프레임 세트 2는 "DMRS 포트(들)와 DL 서빙셀 CRS 포트(들)"간의 NQC를 가정하여야 하는 것으로 설정될 수도 있다.
QC 관련 정보의 동적 시그널링 방안
이하에서는 QC 관련 정보를 동적 시그널링을 통하여 설정하는 본 발명의 예시들에 대해서 설명한다. 예를 들어, 단말이 DMRS-기반 PDSCH 전송에 대한 DL-관련 (또는 하향링크 그랜트) DCI를 PDCCH 혹은 EPDCCH를 통하여 수신할 수 있는데, 해당 DMRS 포트(들)와 다른 RS (예를 들어, 해당 단말의 DL 서빙셀 CRS 또는 CSI-RS) 포트(들)와의 QC 가정의 적용 여부를 지시하는 정보가 포함될 수 있다.
QC 관련 정보의 동적 시그널링 방안의 일례로서, 1 비트 크기의 정보를 통해 해당 DMRS 포트(들)와 특정 RS(예를 들어, 해당 단말의 DL 서빙셀 CRS 또는 CSI-RS) 포트(들) 간의 QC 가정의 적용 여부만을 동적으로 시그널링할 수 있다. 이에 따라, CoMP 동적 포인트 선택(DPS) 또는 동적 셀 선택 방식에 따른 PDSCH 스케줄링을 위한 DL-관련 DCI를 제공할 때에, 기지국은 QC 가정이 가능한 TP로부터의 PDSCH가 DPS 방식으로 전송되는 경우에는, QC 가정의 적용이 가능하다는 것을 동적으로 단말에게 지시하여 줌으로써 단말의 수신 프로세싱 성능을 높일 수 있다.
QC 관련 정보의 동적 시그널링 방안의 추가적인 예시로서, 사전에 상위계층(예를 들어, RRC 계층) 시그널링에 의해서 "CSI-RS 포트 및 DMRS 포트 간의 QC-쌍(pair) 정보" 또는 "CRS 포트 및 DMRS 포트 간의 QC-pair 정보"를 복수개의 상태(state)를 가지는 정보로서 반-정적으로 미리 설정해 두고, DCI를 통해서 스케줄링 그랜트 정보를 단말에게 제공할 때에 상기 복수개의 상태 중에서 어느 하나를 동적으로 지시하는 방식을 적용할 수 있다. 예를 들어, N (예를 들어, N=2) 개의 비트 상태 중에서 하나를 동적으로 트리거링하되, 각각의 상태는 RRC에 의해서 미리 설정된 RS 간(inter-RS) QC-pair 후보들(예를 들어, CSI-RS와 DMRS pair, 또는 CRS와 DMRS pair) 중의 하나에 해당한다.
예를 들어, N=2인 경우, 상태 '00'은 NQC(즉, DMRS 포트들은 다른 RS 포트와 QC 가정이 적용되지 않음)를, 상태 '01'은 DL 서빙셀 CRS 포트와 QC 가정이 가능함을, 상태 '10'은 RRC 설정된 제 1 세트의 RS(예를 들어, 특정 CSI-RS 또는 특정 CRS) 포트와 QC 가정이 가능함을, 상태 '11'은 RRC 설정된 제 2 세트의 RS 포트와 QC 가정이 가능함을 나타내는 것으로 미리 설정해 둘 수 있다. 예를 들어, RRC 설정된 제 1 세트의 RS-간 QC-pair는 "DMRS 포트들은 CSI-RS1 및 CSI-RS2의 CSI-RS 포트(들)와 QC 가정이 가능함"을 나타낼 수 있고, RRC 설정된 제 2 세트의 RS-간 QC-pair는 "DMRS 포트들은 CRS 포트(들)와 QC 가정이 가능함"을 나타낼 수도 있다.
또한, QC 정보와 CRS 레이트 매칭(RM) 패턴 정보가 조인트 코딩될 수도 있다. 이에 따라, 상기 DCI 포맷 내의 N 비트 필드는 "PDSCH RE 매핑 및 QCL 지시자 필드" (줄여서, PQI 필드)라고 칭할 수 있다.
예를 들어, N (예를 들어, N=2) 개의 비트 상태는 아래의 표 7과 같이 구성될 수 있다.
Figure 112015018220788-pct00030
상기 표 7에서 "QC assumption with CSI-RS" 항목은 특정 상태('00', '01', '10', '11')을 지시하는 정보가 DMRS-기반 PDSCH 전송을 스케줄링하는 DL-관련 DCI에 포함될 때, 해당 DMRS 포트와 어떤 CSI-RS 설정간에 QC 가정의 적용이 가능한지를 나타낸다. 예를 들어, TP 당 하나씩의 서로 다른 CSI-RS가 사전에 RRC 시그널링을 통해서 단말에게 설정된 경우를 가정할 수 있다. 여기서, 특정 TP를 인덱스 n(n=0, 1, 2, ...)의 TPn이라고 칭하고, TPn에 해당하는 설정된 CSI-RS 설정을 CSI-RSn 이라고 칭할 수 있다. 여기서, TP라는 용어는 셀(cell)이라는 의미로 이해될 수도 있다. 또한, 상기 CSI-RSn은 0이 아닌 전송 전력의(non-zero power; NZP) CSI-RS 설정일 수 있다.
이 경우, 상기 표 7에서 상태 '00'는 TP1에서 전송하는 CSI-RS1의 CSI-RS 포트(들)와 해당 DMRS 포트(들) 간에 QC 가정이 가능함을 의미할 수 있다. 상태 '01'은 TP2에서 전송하는 CSI-RS2의 CSI-RS 포트(들)와 해당 DMRS 포트(들) 간에, 상태 '10'은 TP3에서 전송하는 CSI-RS3의 CSI-RS 포트(들)와 해당 DMRS 포트(들) 간에, QC 가정이 가능함을 의미할 수 있다. 즉, 기지국은 DL-관련 DCI를 통하여 '00', '01' 또는 '10' 중에서 하나의 상태를 지시함으로써, TP1, TP2 또는 TP3 중에서 어느 하나의 TP로부터의 DPS 방식 PDSCH 전송을 동적으로 시그널링할 수 있다.
또한, 상기 표 7의 "QC assumption with CSI-RS" 항목을 특정 TP(들)에서 전송한다고 알려주는 등의 형태로 시그널링할 수도 있다. 예를 들어, 특정 TP(들)을 지시하는 식별자(예를 들어, PCI, VCI, 또는 스크램블링 시퀀스 시드 값 등)이용하여 DMRS와 QC 가정이 적용되는 CSI-RS를 전송하는 TP가 무엇인지를 단말에게 알려줄 수도 있다.
또한, "QC assumption with CSI-RS" 항목이 특정 CSI 프로세스를 지시하는 것으로 이용할 수도 있다. 여기서, DPS 방식의 PDSCH 전송에서는 하나의 CSI 프로세스 인덱스만이 지시될 수도 있고, JP 또는 조인트 전송(JT) 방식의 PDSCH 전송에서는 복수개의 CSI 프로세스 인덱스들이 지시될 수도 있다. 여기서, 각각의 CSI 프로세스는, 채널 측정을 위한 CSI-RS 자원 및 CSI-간섭 측정 자원(CSI-IM resource)에 연관될 수 있다. 구체적으로, 하나의 CSI 프로세스는 원하는 신호 측정을 위한 하나의 NZP CSI-RS 자원과, 간섭 측정을 위한 하나의 간섭 측정 자원(IMR)의 연관으로 정의된다. 각각의 CSI 프로세스는 독립적인 CSI 피드백 설정을 가진다. 독립적인 CSI 피드백 설정은, 피드백 모드 (어떤 종류의 CSI(RI, PMI, CQI 등)를 어떤 순서로 전송할지), 피드백 주기 및 오프셋 등을 의미한다.
이와 같이, "QC assumption with CSI process"를 지시하는 N(N=2) 비트 정보가 DMRS-기반 PDSCH 전송을 스케줄링하는 DL-관련 DCI에 포함되는 경우, 특정 CSI 프로세스에 연관된 NZP CSI-RS 자원 및 IMR 각각에 대해서 DMRS와 QC 가정을 적용할 수 있는지를 알려줄 수 있다. 즉, NZP CSI-RS 자원 및 IMR 둘 다, 또는 NZP CSI-RS 자원만이, 또는 IMR만이 DMRS와의 QC 가정 적용이 가능한지, 아니면 둘 다 DMRS와 NQC인 것인지에 대한 정보가 개별적으로 제공될 수 있다.
여기서, IMR과 DMRS 간에 QC 가정이 적용될 수 있다는 것은, DMRS-기반 복조를 수행 할 때에 위너(Wiener) 필터와 같은 MMSE(Minimum Mean Squared Error) 필터 등의 계수(coefficient)를 결정하는 등의 수신 프로세싱에 있어서, IMR을 통해 추정된 파라미터(예를 들어, 간섭 또는 잡음 분산(variance) 값)를 활용하는 것이 허용됨을 의미할 수 있으며, 이에 따라 DMRS의 복조 성능이 향상될 수 있다.
이와 같이, CSI 프로세스에 속하는 NZP CSI-RS 및 IMR 각각에 대해 DMRS와의 QC 가정 가능 여부를 개별적으로 알려줌으로써, 보다 정확한 채널 추정 성능을 기대할 수 있다. 예를 들어, SU(single user)-MIMO 전송 또는 MU(multiple user)-MIMO 전송에 따라서, IMR을 이용하여 추정된 파라미터(예를 들어, 잡음 분산 값 등)를, DMRS를 이용한 데이터 복조 시의 수신 프로세싱에 사용(예를 들어, MMSE 필터 등의 계수로 사용)하는데 있어서의 오차가 발생할 수 있기 때문이다. 즉, SU-MIMO 전송의 경우에는 NZP CSI-RS 자원과 IMR 모두가 DMRS 와의 QC 가정이 적용될 수 있어서 데이터 복조 성능이 향상될 것으로 기대할 수 있다. 반면, MU-MIMO 전송의 경우에는 NZP CSI-RS 자원과 DMRS 간의 QC 가정의 적용만이 가능하고, IMR과 DMRS 간에는 NQC 가정이 적용되는 것(즉, IMR을 이용하여 측정된 잡음 분산값 등을 데이터 복조 시에 재사용하는 것이 금지되는 것)이 바람직하다.
따라서, 상기 표 7의 각각의 상태에 연동되는 추가적인 1 비트 크기의 플래그 비트를 정의하여, 그 값이 '0'이면 NZP CSI-RS 자원과 DMRS간의 QC 가정만을 지시하는 것으로 하고, 그 값이 '1'이면 NZP CSI-RS 자원 및 IMR 모두와 DMRS 간의 QC 가정을 지시하는 것으로 정의할 수 있다. 또는, 추가적인 플래그 비트의 값이 '0'이면 MU-MIMO 전송임을 지시하고, '1'이면 SU-MIMO 전송임을 지시하는 것으로 정의할 수도 있다. 또는, 이러한 추가적인 플래그 비트의 값이 '0' 이면 CSI 프로세스 인덱스와 DMRS 간의 QC 가정의 비활성화(즉, NQC 가정이 적용됨)를 지시하고, 그 값이 '1'이면 CSI 프로세스 인덱스와 DMRS 간의 QC 가정의 활성화를 지시하는 것으로 정의할 수도 있다.
전술한 바와 같은 QC 정보의 동적 시그널링을 위해서 정의되는 N 비트(예를 들어, N=2)의 정보 및/또는 추가적인 1 비트 크기의 플래그 정보는, 기존의 DCI 포맷에서 정의하는 필드를 재사용할 수도 있고, 또는 새로운 비트 필드를 추가적으로 정의함으로써 구성될 수도 있다. 여기서, 추가적인 1 비트 크기의 플래그 정보가 SU-MIMO 또는 MU-MIMO 여부에 따라서 QC 가정을 스위칭하는 용도로 사용되는 경우에는 동적 시그널링에 별도의 비트로서 포함되지 않고, 상기 N 비트 정보가 지시하는 추가적인 정보(즉, 사전에 RRC 시그널링에 의해서 N 비트 정보의 각각의 상태가 의미하는 정보)로서 반-정적으로 설정될 수도 있다.
전술한 바와 같이, 상기 표 7의 예시에서 DPS 방식의 PDSCH 전송에서 어떤 TP로부터의 전송인지(또는 DMRS가 어떤 RS와 QC인 것으로 가정하는지)를 지시할 수 있다. 이에 추가적으로, 상기 표 7의 상태 '11'의 예시에서와 같이 TP1 및 TP2의 JT 방식의 PDSCH 전송을 지시할 수도 잇다. 즉, 상기 표 7의 예시에서와 같이 "QC assumption with CSI-RS" 항목을 "CSI-RS1, CSI-RS2"로 시그널링 하거나, TP1과 TP2에 해당하는 식별자(예를 들어, PCI, VCI, 또는 스크램블링 시퀀스 시드 값)으로 시그널링하거나, "CSI process1, CSI process2" 등으로 시그널링 할 수 있다. 이러한 시그널링 정보를 DCI를 통해서 획득한 단말은, 해당 TP들과의 QC 가정의 적용이 가능하다는 정보를 통해서 해당 DMRS 포트들이 복수개의 TP로부터의 가상 DMRS 형태로 전송될 것을 알 수 있고, 각각의 TP로부터의 대규모 특성 추정치들의 평균을 내는 방식 등으로 해당 TP들로부터의 대규모 특성 추정치들을 결정하고, 이를 이용하여 수신 성능을 향상시킬 수 있다.
추가적인 예시로서, 상기 N 비트 정보의 특정 상태(예를 들어, 표 7의 상태 '11')의 "QC assumption with CSI-RS" 항목을 "non-QC (NQC)"로 설정하거나, 사용불가(not available)로 설정하거나, 또는 비워둠으로써, 어떠한 TP들과도 QC 가정을 적용하지 말라는 형태의 시그널링을 줄 수도 있다. 이는 JT를 지시하기 위한 용도 등으로 사용될 수 있다. 예를 들어 JT의 경우에는 특정 하나의 TP와의 QC 가정 정보만 제공하는 것이 부적절할 수 있으므로, 아예 NQC 상태인 것으로 알려줄 수 있다. 또한, 이와 같이 사용불가 또는 비워두는 형태의 시그널링의 경우에는, NQC 인 것이 묵시적으로 지시되고 이에 따라 어떠한 QC 가정도 적용하지 않도록 하거나, 또는 어떠한 디폴트 상태가 적용되는 것으로 할 수도 있다. 예를 들어, 디폴트 상태는, 특정 DL 서빙셀 RS(들) (예를 들어, DL 서빙셀 CRS, 디폴트 TP(예를 들어, DL 서빙 TP)에 해당하는 CSI-RS, 또는 특정 CSI 프로세스에 속한 CSI-RS 등)와의 QC 가정만 가능한 상태로 정의될 수 있다.
추가적으로, 상기 표 7의 예시에서와 같이 해당 PDSCH 수신시에 단말이 가정해야 하는 CRS 레이트 매칭(RM) 패턴에 관한 정보가 시그널링될 수 있다. CRS RM 패턴에 관한 정보는, CRS 포트 개수, CRS v-shift (기본적인 CRS 패턴(상기 도 6 참조)을 기준으로 주파수 축 방향으로 시프트되는 값), RM 패턴이 적용되는 서브프레임 세트 등을 포함할 수 있다. CRS RM 패턴이란, CRS가 매핑되는 RE(들)을 제외하고 나머지 RE들에 PDSCH가 매핑되는 것을 가정하여, PDSCH 심볼을 구성하는 것을 의미한다. 따라서, PDSCH 수신측에서 해당 PDSCH가 어떤 CRS 패턴을 고려하여 레이트 매칭되어 전송된 것인지를 정확하게 알아야, 올바르게 PDSCH를 복조할 수 있다.
예를 들어, TPn이 전송하는 CRS RM 패턴 정보를 CRS-RMn이라고 하면, 상태 '00'은 TP1에서 전송하는 CRS RM 패턴에 관한 정보를 뜻하는 CRS-RM1, 상태 '01'은 TP2에서 전송하는 상기 CRS RM 패턴에 관한 정보를 뜻하는 CRS-RM2, 상태 '10'은 TP3에서 전송하는 상기 CRS RM 패턴에 관한 정보를 뜻하는 CRS-RM3이 각각 시그널링될 수 있다. 즉, 기지국은 상태 '00', '01' 또는 '10' 중에서 하나의 상태를 지시함으로써, TP1, TP2 또는 TP3 중에서 어느 하나의 TP로부터의 DPS에 의한 PDSCH 전송을 동적으로 시그널링할 수 있다. 여기서, "QC assumption with CSI-RS" 정보와 함께, CRS RM 패턴 정보를 제공함으로써, 특히 CoMP 시나리오 3(즉, 상이한 셀 ID(즉, PCI)를 가지는 복수의 TP에서 CRS가 동시 전송되는 상황)에서, 각각의 CRS RM 패턴을 CRS-RMn의 형태로 올바르게 동적으로 지시하여 줄 수 있다.
또한, 상기 표 7의 "RM pattern information" 항목을 특정 TP(들)에서 전송한다고 알려주는 등의 형태로 시그널링할 수도 있다. 예를 들어, 특정 TP(들)을 지시하는 식별자(예를 들어, PCI, VCI, 또는 스크램블링 시퀀스 시드 값 등)이용하여, CRS RM 패턴이 무엇인지를 단말에게 알려줄 수도 있다.
이와 같이, 상기 상태 '00', '01' 또는 '10'를 통해 DPS 전송을 동적으로 지시할 수 있다. 추가적으로, 상기 표 7의 상태 '11'의 예시에서와 같이 TP1과 TP2로부터의 JT를 지시하기 위한 방법으로, "RM pattern information" 항목을 "CRS-RM1, CRS-RM2"로 시그널링 하거나, TP1과 TP2에 해당하는 식별자(예를 들어, PCI, VCI, 또는 스크램블링 시퀀스 시드 값 등)를 지시할 수도 있다. 이러한 시그널링 정보를 DCI를 통해서 획득한 단말은, 예를 들어, CRS-RM1과 CRS-RM2의 합집합에 해당하는 RE에서는 모두 PDSCH가 레이트 매칭되는 것으로 가정하고 PDSCH 복조를 수행할 수 있다. 즉, PDSCH를 수신하는 단말의 입장에서는, "RM pattern information" 항목에서 CRS RM 패턴 정보가 복수개 지시된 경우에는, 지시된 CRS RM 패턴들 중에 어느 하나에서라도 지시된 RE 위치는 모두 PDSCH가 매핑되지 않은 것으로(즉, PDSCH 전송 시에 레이트매칭이 수행된 것으로) 가정하고 PDSCH 복조를 수행할 수 있다.
추가적으로, 상기 표 7의 예시에서의 "Flag for QC assumption with CRS" 항목에서와 같이, "QC assumption with CSI-RS" 항목에서 지시하는 특정 CSI-RSn과, "RM pattern information" 항목에서 지시하는 특정 CRS 포트 (즉, PCI 정보에 의해서 특정되는 CRS 포트(들)) 간의 QC 가정이 적용될 수 있는지의 여부를 나타내는 플래그 지시 정보가 포함될 수 있다. 즉, 특정 상태 값(예를 들어, '00', '01', '10', '11')이 트리거링되고 그 상태 값이 지시하는 정보에서 상기 플래그 비트가 활성화된 경우 (또는 '1' 값을 가지는 경우), 해당 상태 값이 지시하는 CSI-RSn의 CSI-RS 포트(들)와, 해당 상태 값이 지시하는 CRS-RMn의 CRS 포트(들)(예를 들어, CRS-RMn이 지시하는 PCIn 또는 VCIn 등을 통해 해당 CRS 포트(들)을 알 수 있음) 간에 QC 가정의 적용이 가능함을 지시하는 것으로 정의될 수 있다. 한편, 특정 상태 값(예를 들어, '00', '01', '10', '11')이 트리거링되고 그 상태 값이 지시하는 정보에서 상기 플래그 비트가 비활성화된 경우(또는 '0' 값을 가지는 경우), 해당 상태 에서의 CSI-RSn의 CSI-RS ports와, 해당 state에서의 CRS-RMn이 지시하는 CRS ports(e.g., CRS-RMn이 지시하는 PCIn 혹은 VCIn 등을 통해 해당 CRS ports를 알 수 있음) 간에 QC 가정을 적용해서는 안되는 것(즉, NQC 관계인 것)을 지시하는 것으로 정의될 수 있다.
상기 표 7의 예시를 참조하면, 상태 '00' 및 '01'의 경우에는 "Flag for QC assumption with CRS"가 '1'로 설정되므로, 이는 각각 TP1 또는 TP2로부터의 DPS 전송을 의미한다. 구체적으로, 상태 '00'에서 플래그 비트가 '1'값으로 설정되면, CRS-RM1 패턴에 따라 PDSCH가 레이트매칭된 것을 가정하고, CSI-RS1과 DMRS 포트(들) 간의 QC 가정의 적용이 가능하며, CSI-RS1과 PCI1-기반 CRS 포트(들)와의 QC 가정의 적용도 가능한 것으로 해석된다. 상태 '01'에서 플래그 비트가 '1'값으로 설정되면, CRS-RM2 패턴에 따라 PDSCH가 레이트 매칭된 것을 가정하고, CSI-RS2와 DMRS 포트(들) 간의 QC 가정의 적용이 가능하며, CSI-RS2와 PCI2-기반 CRS 포트(들)와의 QC 가정의 적용도 가능한 것으로 해석된다.
이와 같이 DMRS 포트(들)와 특정 CSI-RS 포트(들) 간의 QC 가정 적용 여부 뿐만 아니라, 해당 CSI-RS 포트(들)와 특정 CRS 포트(들)와의 QC 가정 적용 여부(즉, 상기 표 7의 플래그 비트가 지시하는 정보)가 단말에게 시그널링되면, 단말은 DMRS-기반 PDSCH 복조를 수행함에 있어서 QC 가정의 적용이 가능한 CSI-RS 포트(들) 뿐만 아니라 RS 밀도가 훨씬 높은 해당 CRS 포트(들)로부터 추정된 대규모 채널 특성(즉, 더욱 정확한 대규모 채널 특성)을 이용할 수 있다는 점에서 바람직하다.
한편, 상기 표 7의 예시에서 상태 '10'에 해당하는 "Flag for QC assumption with CRS"는 '0'으로 설정되며, 이는 TP3으로부터의 DPS 전송을 의미하되, CRS-RM3 패턴에 따라 PDSCH가 레이트 매칭된 것을 가정하고, CSI-RS3과 DMRS 포트(들) 간의 QC 가정의 적용은 가능하지만, CSI-RS3과 PCI3-기반 CRS 포트(들) 간의 QC 가정은 적용해서는 안되는 것으로 해석된다.
상기 표 7의 예시에서 상태 '11'에 해당하는 "Flag for QC assumption with CRS"는 '1'로 설정되며, 이는 TP1 및 TP2로부터의 JT 전송을 의미하며, CRS-RM1 및 CRS-RM2 패턴을 모두 고려하여 PDSCH가 레이트 매칭된 것으로 가정하고, CSI-RS1과 PCI1-기반 CRS 포트(들) 간의 QC 가정의 적용이 가능하며, CSI-RS2와 PCI2-기반 CRS 포트(들) 간의 QC 가정의 적용도 가능한 것으로 해석된다.
이와 같이, 특정 상태 값에 해당하는 "QC assumption with CSI-RS" 항목에 다수개의 CSI-RSn이 존재하고, "RM pattern information" 항목에 다수개의 CRS-RMn이 존재하는 경우에는 소정의 순서에 따라서 CSI-RSn과 CRS-RMn 간에 QC-pair가 구성되는 것으로 해석될 수 있다. 예를 들어, CSI-RS1과 CRS-RM1 간에 QC 가정이 적용되고, CSI-RS2와 CRS-RM2 간에 QC 가정이 적용되는 것으로 해석될 수 있다. 만약, 상기 플래그 비트가 '0'으로 설정된 경우라면, 예를 들어, CSI-RS1과 CRS-RM1 간의 QC 가정이 적용되지 않고, CSI-RS2와 CRS-RM2 간에 QC 가정이 적용되지 않는 것으로 (즉, 모두 NQC 관계인 것으로) 해석될 수 있다. 또는, 각각의 CSI-RSn 및 각각의 CRS-RMn 간의 QC/NQC 여부를 개별적으로 지시하는 형태로 "Flag for QC assumption with CRS" 정보가 구성될 수도 있다.
QC 관련 정보의 동적 시그널링 방안의 추가적인 예시로서, N (예를 들어, N=2) 개의 비트 상태는 아래의 표 8과 같이 구성될 수 있다.
Figure 112015018220788-pct00031
상기 표 8의 예시에서, CRS-RM4(예를 들어, PCI4)는 TP1과 TP2가 PCI4를 공유(share)하고 있는 CoMP 시나리오 4에 해당할 수 있다. 또한 상기 표 8의 상태 '11'의 경우와 같이, CRS RM 패턴 정보로서 No-CRS(즉, MBSFN)를 지시할 수 있다. MBSFN 서브프레임은 상기 도 3을 참조하여 제어 영역에서 CRS 및 제어 채널(예를 들어, PDCCH)만이 전송되고, 데이터 영역에서는 CRS 및 PDSCH가 전송되지 않는 서브프레임을 의미한다. JT의 경우 MBSFN 서브프레임들에서만 스케줄링을 하기 위해서, No-CRS(즉, MBSFN)가 지시될 수도 있다. 이 경우 단말은 데이터 영역에서 CRS가 없다는 것으로 해석하므로, PDSCH에 대한 레이트 매칭을 가정함에 있어서 CRS 포트에 해당하는 RE 위치들에서 PDSCH가 레이트매칭이 수행되지 않은 것(즉, 해당 RE에 PDSCH가 매핑되는 것)으로 가정할 수 있다.
상기 표 7 및 표 8을 참조하여 설명한 N 비트 크기의 필드(예를 들어, PQI 필드)의 각각의 상태에는, DMRS 스크램블링 시드 값 x(n)(예를 들어, n=0, 1)이 사전에 (예를 들어, RRC 시그널링에 의해) 묵시적으로 링크(link) 또는 타이(tie)될 수 있다. 이 경우, 2^N 개의 상태 중에서 특정 하나의 상태가 동적 시그널링에 의해서 지시될 때, 해당 상태 값에 링크된 x(n) 값들 중에서 어떤 값이 사용되어야 하는지는 별도의 동적 지시 파라미터(예를 들어, 스크램블링 식별자 값(nSCID))에 의해서 지시되는 등의 조인트 인코딩 방식도 가능하다.
상기 표 7의 예시에서 전술한 바와 같은 조인트 인코딩 방식을 추가하는 경우, 아래 표 9와 같은 예시를 고려할 수 있다.
Figure 112015018220788-pct00032
상기 표 9의 예시에서 x(n)의 범위는 PCI 범위가 같이 0 내지 503일 수 있다. 상기 표 9에서는 각각의 상태 별로 할당된 x(0) 및 x(1)의 예시적인 값을 나타낸다. 예를 들어 nSCID=1에 링크/타이된 x(1)의 값은 모두 동일한 값 420으로 할당될 수 있다. 이와 같이 다수의 TP들에서 공통적으로 사용할 특정 식별자 값을 할당해 놓고 nSCID=1이 지시되는 경우 이러한 공유된 식별자 값을 사용하도록 함으로써, TP 간의 DMRS 직교성이 확보되도록 할 수 있다. 또한, 상기 표 9의 예시에서와 같이, nSCID=0에 링크/타이된 x(0)의 값은 각각의 상태 별로 상이하게 할당할 수 있다. 이에 따라, TP-특정 VCI (또는 스크램블링 시드 값)을 이용하여 셀-분리(cell-splitting) 이득을 얻도록 할 수 있다. 또한, 상기 표 9의 예시에서 상태 '11'에 대한 x(0) 값을, 다른 상태에 대한 x(0) 값과 상이한 값으로 할당함으로써, JT를 위한 별도의 VCI(또는 스크램블링 시드 값)을 지정할 수도 있다.
예를 들어, 전술한 바와 같은 QC 정보 및 CRS RM 패턴에 대한 정보를 지시하는 N 비트 필드(예를 들어, PQI 필드)에서, 2^N 개의 상태의 각각에 대해서 x(n)값이 상이하게 링크/타이되어 있을 수 있다. 이 때, DCI 포맷 내의 다른 필드를 통해서 DMRS 시퀀스 생성을 위해 사용될 nSCID 값이 동적으로 지시되는데, 이 nSCID 값에 따라서 x(n) 값이 묵시적으로 결정된다. 예를 들어, nSCID=n 이면 x(n) (예를 들어, n=0 또는 1)이 지시되는 것으로 규칙을 정해 둘 수 있다. 이와 같은 x(n)에 관한 조인트 인코딩을 통해, 예를 들어, 단말이 상기 2^N 개의 상태 중에서 특정 상태가 동적으로 지시되는 경우에, 해당 상태에 링크된 x(0), x(1), ...이 결정된다. 추가적으로, 별도의 필드를 통하여 지시되는 nSCID 값에 따라서, x(0), x(1), ... 중에서 하나가 최종적으로 결정/선택될 수 있다.
QC 동작방식(Behavior)
CoMP 동작을 지원하지 않는 기존의 시스템(예를 들어, 3GPP LTE 릴리즈-10(Rel-10) 이전의 표준에 따르는 시스템)에서의 RS 포트 간의 QC 가정은, 사실상 묵시적으로 하나의 동작방식(behavior)으로서 정의된 것이라 할 수 있다. 이러한 하나의 동작 방식을 본 발명에서는 Behavior A라 칭하고, Behavior A는, CRS, CSI-RS 및 PDSCH DMRS는, 주파수 시프트, 도플러 확산, 수신 타이밍, 지연 확산 중의 하나 이상에 대해서 QC 되어 있는 것으로 가정한다는 것으로 정의될 수 있다. 이는, 기존의 시스템에서는 CoMP 동작을 고려하지 않고, CRS, CSI-RS 및 PDSCH DMRS 포트가 모두 하나의 셀 또는 TP로부터 전송되는 것을 당연히 가정하여야 했기 때문이다.
CoMP 동작을 지원하는 시스템에서는, QC 가정에 대해서 다른 동작방식(예를 들어, TP1의 CSI-RS1과 TP2의 CSI-RS2가 QC인 것으로 가정하는 동작 방식 등)이 정의될 수도 있다. 따라서, 본 발명에서는 복수개의 QC 동작 방식이 적용될 수 있는 시스템에서, 상기 Behavior A가 디폴트 동작방식으로서 정의되는 방안에 대해서 제안한다. 즉, 특정 조건이 만족되는 경우에 단말은 항상 디폴트 동작방식인 Behavior A에 따르는 것으로 정의될 수 있다.
예를 들어, 특정 CSI 프로세스 인덱스(들)에 대해서는, 별도로 시그널링되지 않는 한, 단말은 항상 Behavior A를 적용하는 것으로 설정될 수 있다. 이는, 단말이 복수개의 CSI 프로세스들을 설정받은 경우에, 최소한 하나의 CSI 프로세스에 대해서는 기존의 시스템(Rel-10 시스템)과 동일한 QC 가정에 따라서 동작하도록 하여 기존의 시스템에서와 동일한 성능을 보장하도록 하기 위한 것이다. 예를 들어, CSI 프로세스 인덱스 0에 대해서는 항상 Behavior A가 적용되도록 할 수 있다. 이 경우, CSI 프로세스 인덱스 0에 대해서, 예를 들어, CoMP 시나리오 3의 경우에서 DL 서빙셀/TP로부터 전송되는 CRS와 QC 가정을 적용할 수 있는 특정 CSI-RS 자원이 설정되어 있을 수 있다.
또한, 디폴트 동작방식인 Behavior A는, CoMP 동작을 지원하는 시스템(예를 들어, 3GPP LTE Rel-11 이후 표준에 따르는 시스템)에서 정의되는 새로운 전송 모드(예를 들어, TM10)를 제외하고, 기존의 시스템(예를 들어, 3GPP LTE Rel-10 이전의 표준에 따르는 시스템)에서 정의된 전송모드(예를 들어, TM9)에 대해서 적용되도록 정의될 수도 있다.
CoMP 동작을 지원하는 시스템에만 적용될 수 있는 QC 동작방식은, 다음과 같이 정의될 수 있다.
새로운 전송 모드(예를 들어, TM10)에 대해서 적용되는 DCI 포맷(예를 들어, DCI 포맷 2D)를 통해서 DL 그랜트를 수신하는 경우, 단말은 새로운 QC 동작방식(이하에서는, Behavior B)을 가정할 수 있다. Behavior B는, CRS, CSI-RS, 및 PDSCH DMRS (및/또는 EPDCCH DMRS)는, 지연 확산, 도플러 확산, 도플러 시프트, 평균 이득, 평균 지연 중의 하나 이상에 대해서, 다음의 예외사항을 제외하고는 QC되어 있지 않은 것으로 가정한다는 것으로 정의될 수 있다. 상기 예외사항은, PDSCH DMRS (및/또는 EPDCCH DMRS)와, 물리 계층 시그널링(예를 들어, PDCCH DCI를 통한 시그널링)에 의해서 지시되는 특정 CSI-RS 자원은, 지연 확산, 도플러 확산, 도플러 시프트, 평균 지연 중의 하나 이상에 대해서, QC되어 있는 것으로 가정할 수 있다는 것이다. 즉, Behavior B의 경우 기본적으로 CRS와 다른 RS(예를 들어, CSI-RS, DMRS)간에는 QC 가정을 하면 안되는 것으로 설정될 수 있으며, 상기 DCI 포맷 2D를 통해 DL 그랜트를 수신할 때 상기 표 7, 표 8, 표 9의 예시에서와 같이 동적 시그널링에 의해 지시되는 특정 CSI-RS 자원의 CSI-RS 포트(들)와 상기 DCI 포맷 2D에 의해서 스케줄링되는 PDSCH의 DMRS 포트(들) 간의 QC 가정은 적용될 수 있다는 것으로 이해될 수 있다.
또는, 특정 CRS와 특정 CSI-RS간의 QC 가정의 적용 가능 여부도 상기 표 7, 표 8, 표 9의 예시에서와 같이 (또는 별도의 RRC 시그널링을 통해) 시그널링될 수도 있다.
만약 DCI 포맷 2D를 통해 DL 그랜트를 수신하는 경우에는, 해당 PDSCH DMRS 포트와 특정 CSI-RS 포트 간에 QC 가정이 가능할 수 있다. 추가적으로, RRC 시그널링을 통해 특정 CSI-RS 포트와 특정 CRS 포트 간의 QC 가정의 적용 가능여부가 설정될 수도 있다. 이 경우에는, DMRS 포트와 CSI-RS 포트와 CRS 포트 간에 모두 QC 가정이 가능하다는 시그널링이 주어질 수도 있다. 이러한 Behavior B가 DCI 포맷 2D에 대해서 주어질 수 있으며, 단말은 Behavior B에 따른 QC 가정에 기초하여 데이터 복조를 수행(예를 들어, 다른 RS로부터 추정된 대규모 특성을 Wiener 필터 계수를 결정하는 데에 반영하는 등)할 수 있다. 만약, Behavior B에 따르는 경우에서 특정 CSI-RS와, CRS와, DMRS 간에 모두 QC 가정이 가능하도록 지시된 경우에도, Behavior A와의 큰 차이는 상기 특정 CSI-RS와, CRS와, DMRS 가 반드시 DL 서빙셀로부터의 것일 필요가 없다는 것이다. 예를 들어, CRS는 DL 서빙셀이 아닌 인접셀의 CRS 포트일 수도 있고, CSI-RS는 복수개의 CSI-RS 자원들 중에서 어떤 하나가 지시될 수도 있다.
여기서, 주파수 오프셋(또는 도플러 시프트)에 대해서, 단말은 Behavior B로 설정된다고 하더라도, 초기(또는 대략적인(coarse)) 주파수 오프셋을 서빙셀 CRS로부터 추정하고, 여기에 특정 주파수 범위(예를 들어, [-N; +N] Hz) 내에서만 해당 지시된 CSI-RS를 통해서 정밀한(fine) 주파수 오프셋 추정을 하도록 설정될 수도 있다. 예를 들어, 해당 CSI-RS의 전송 주기가 5ms라면, 이것의 역수인 200Hz만큼의 주파수 오프셋 차이가 CSI-RS로부터 불명료성(ambiguity) 없이 추정될 수 있으므로, 다음과 같은 단말 동작을 정의할 수 있다.
단말은, (Behavior B에서) 지시된 CSI-RS을 이용하여 단말에 의해서 추적된(tracked) 도플러 시프트(및/또는 도플러 확산)가 서빙 셀에 대한 주파수 오프셋의 범위 (예를 들어, [-N; +N] Hz) 내인 것으로 예상할 수 있다. 예를 들어, 지시된 CSI-RS의 주기가 5ms인 경우에는, N=100Hz 이다. 예를 들어, 지시된 CSI-RS의 주기가 10ms인 경우에는, N=50Hz 이다. 예를 들어, 지시된 CSI-RS의 주기가 20ms인 경우에는, N=25Hz 이다. 예를 들어, 지시된 CSI-RS의 주기가 40ms인 경우에는, N=12.5Hz 이다. 예를 들어, 지시된 CSI-RS의 주기가 80ms인 경우에는, N=6.25Hz 이다. 요컨대, 지시된 CSI-RS가 T[ms]의 주기를 가지는 경우, N=1/(kT)[Hz] 로 설정되며, 여기서 k는 예를 들어 2일 수 있다.
이러한 본 발명의 제안은, 지시된 CSI-RS의 주기가 가변함에 따라, UE가 상기 주파수 오프셋(또는 도플러 시프트 및/또는 도플러 확산)의 추정을 위해 서빙셀 CRS를 기준으로 탐색해야 하는 주파수 범위를 가변적으로 정해준다는 의미를 가진다. 여기서, 상기 지시된 CSI-RS는, 상위 계층에 의해서 복수개의 CSI-RS 자원들이 설정된 단말(예를 들어, TM10이 설정된 단말)꼭 경우에는 DCI(예를 들어, DCI 포맷 2D)에 의해서 지시되는 DMRS와 QC 가정이 가능한 하나의 NZP CSI-RS를 의미할 수 있다. 또는 상기 지시된 CSI-RS는, DCI 포맷 1A의 경우에 RRC로 설정된 특정 디폴트 CSI-RS일 수 있다.
CSI-RS 주기가 5ms인 경우에 비하여 주기가 10ms인 경우에는, 단말이 탐색해야 하는 범위가 절반으로 줄어든다. 즉, 기지국은 CSI-RS 주기를 크게 설정할수록, CSI_RS는 서빙셀의 CRS와의 주파수 오프셋이 더 좁은 범위 내에서 형성되어야 한다. 이에 따라 단말이 동작할 수 있게 함으로써, 단말이 더 좁은 탐색 범위 내에서만 주파수 오프셋을 추정하면 된다. 이러한 탐색 범위를 벗어나는 주파수 오프셋을 가지는 CSI-RS 전송으로 인하여, 단말이 채널 추정을 올바르게 수행하지 못하고 성능 열화가 발생하지 않도록 기지국이 위와 같은 CRS와 CSI-RS 간의 관계를 보장해야 한다.
기지국의 입장에서는, CRS를 전송하는 TP의 오실레이터와 상기 지시된 CSI-RS를 전송하는 TP의 오실레이터 간의 주파수 오프셋(또는 도플러 시프트)가, 지시된 CSI-RS의 주기 T[ms]에 따른 N=1/(kT)값 (예를 들어, k=2)에 따른 [-N; +N] Hz 범위를 만족할 수 없다면, 해당 CSI-RS의 주기를 T[ms]로 설정할 수 없음을 의미할 수 있다. 이 경우 기지국은 T[ms]보다 더 작은 값의 주기를 가지는 CSI-RS를 설정하여 전송하여야 한다.
또는, 단말 동작을 통일하기 위해서, 기지국은 항상 T1 ms (예를 들어, T1=5)의 주기를 가지는 CSI-RS만을, Behavior B의 경우에 적용할 CSI-RS 로 설정하는 것을 제한으로 둘 수 있다. 이 경우 단말은 지시되는 CSI-RS의 주기에 무관하게, (Behavior B에서) 지시된 CSI-RS을 이용하여 단말에 의해서 추적된(tracked) 도플러 시프트(및/또는 도플러 확산)가 서빙 셀에 대한 주파수 오프셋의 범위 ([-N; +N] Hz, 예를 들어, N=100) 내인 것으로 예상할 수 있다.
또는, 기지국은 T1 ms의 주기 외의 다른 주기를 가지는 CSI-RS를 설정할 수 있지만, 단말이 탐색해야 하는 주파수 범위는 가장 최소의 범위로 정할 수도 있다. 예를 들어, 기지국은 T = 5, 10, 20, 40, 80 ms의 주기를 가지는 CSI-RS를 다양하게 설정할 수 있으나, N 값은 적어도 가장 좁은 범위(즉, T=80ms일 때의 N=6.25Hz 값)를 항상 보장하도록 할 수도 있다. 이 경우 단말은, 지시되는 CSI-RS의 주기에 무관하게, (Behavior B에서) 지시된 CSI-RS을 이용하여 단말에 의해서 추적된(tracked) 도플러 시프트(및/또는 도플러 확산)가 서빙 셀에 대한 주파수 오프셋의 범위 ([-N; +N] Hz, 예를 들어, N=6.25) 내인 것으로 예상할 수 있다. 만약, 기지국이 T = 5, 10 ms의 주기를 가지는 CSI-RS를 다양하게 설정할 수 있다면, 최소한의 탐색 주파수 범위를 보장하기 위한 N=50 Hz로 설정될 수 있다. 즉, 어떠한 주기를 가지는 CSI-RS가 지시되는지와 무관하게, 단말은 특정 [-N; +N] Hz 범위 내에서만 탐색을 수행하면 되는 것이라고 할 수 있다. 이에 따라, 기지국은 단말의 상기 동작을 보장할 수 있는 주기를 가지는 CSI-RS 만을 단말이 상기 Behavior B에 활용하도록 설정할 수 있다.
한편, 새로운 전송모드(예를 들어, TM10)이 적용될 수 있는 시스템에서도, 시스템 성능이 낮은 경우나 다른 문제가 있는 경우 등을 대비하여 안정적으로 동작할 수 있도록, 디폴트 전송 모드로 동작하는 것이 지원되어야 하며, 이를 폴백(fallback) 동작 모드라고 칭할 수 있다. 예를 들어, 폴백 DCI 포맷(예를 들어, DCI 포맷 1A)을 통해서 MBSFN 서브프레임들에서 DL 그랜트를 수신하는 경우에는 단말은 Behavior A' (즉, 상기 Behavior A의 변형 동작방식)에 따를 수 있다. Behavior A'는, CRS, CSI-RS, 및 PDSCH DMRS (및/또는 EPDCCH DMRS)는, 지연 확산, 도플러 확산, 도플러 시프트, 평균 이득, 평균 지연 중의 하나 이상에 대해서, 다음의 예외사항을 제외하고는 QC되어 있지 않은 것으로 가정한다는 것으로 정의될 수 있다. 상기 예외사항은, CRS(예를 들어, DL 서빙셀의 CRS, 또는 RRC 시그널링에 의해 지시되는 특정 CRS)와 PDSCH DMRS는, 지연 확산, 도플러 확산, 도플러 시프트, 평균 지연 중의 하나 이상에 대해서 QC 되어 있는 것으로 가정한다는 것으로 정의될 수 있다. 즉, Behavior A'의 경우 기본적으로 CSI-RS와 다른 RS(예를 들어, CRS, DMRS)간에는 QC 가정을 하면 안되는 것으로 설정될 수 있으며, 상기 DCI 포맷 1A를 통해 MBSFN 서브프레임에서 DL 그랜트를 수신할 때 항상 특정 CRS 포트(들)와 상기 DCI 포맷 1A에 의해서 스케줄링되는 PDSCH의 DMRS 포트(들) (예를 들어, DMRS 포트 7) 간에는 항상 QC 가정이 적용될 수 있다는 것으로 이해될 수 있다.
추가적인 예시로서, Behavior A'가, 특정 CSI-RS 자원 인덱스 n (예를 들어, n=0), CRS 및 DMRS 간에 QC 가정이 추가적으로 가능한 것으로 정의될 수도 있다. 이 경우, 해당 CSI-RS 자원의 스크램블링 시드 값 X는 항상 PCI가 되도록 제한될 수도 있다. 또는, 단말 동작의 관점에서는, 단말이 CSI-RS 자원 인덱스 n이 PCI와 동일하지 않다고 예상(expect)하는 것이 허용되지 않는다고 표현될 수도 있다. 또는, 상기 제안사항에서 CSI-RS 자원 대신에, CSI 프로세스(또는 해당 CSI 프로세스에 연관된 특정 CSI-RS 자원)가 대신 사용될 수도 있다. 즉, Behavior A'는, 특정 CSI 프로세스 i (예를 들어, i=0), CRS 및 DMRS 간에 QC 가정이 추가적으로 가능한 것으로 표현될 수 있다. 단말은 이러한 가정에 따라 데이터 복조를 수행함에 있어서 다른 RS를 이용하여 추정된 대규모 채널 특성을 수신 프로세스에 적용(예를 들어, Wiener 필터 계수 결정 등에 반영)할 수 있다.
이와 같이, Behavior A'가 상기 Behavior A 또는 B와 또 다른 별개의 Behavior로 정의함으로써 단말의 데이터 복조 성능을 보다 향상시킬 수 있다. 구체적으로, DCI 포맷 1A는 폴백 DCI 포맷에 해당하는데, 다양한 RRC 재설정이 적용되고 있는 구간 동안에서의 불명료성(ambiguity)이 발생할 수 있는 상황 등에서 명확하고 강인한 전송을 가능하게 하기 위해서 사용될 수 있다. 이러한 DCI 포맷 1A가 MBSFN 서브프레임에서 수신된 경우에, 기존 시스템(예를 들어, Rel-10 시스템)에서는 DMRS 포트 7으로 복조를 수행하도록 정의되어 있다. 이 때, DMRS 스크램블링 시드 값으로 PCI를 사용하도록 할 수 있다. 이 경우, 해당 PCI를 이용하여 생성되는 CRS를 브로드캐스트하는 DL 서빙셀 CRS 포트와 DMRS 간의 QC 가정이 적용될 수 있다. 따라서, CRS를 이용하여 측정되는 보다 정확한 대규모 채널 특성을 데이터 복조 시에도 이용할 수 있기 때문에 데이터 복조 성능이 향상될 수 있다.
따라서, Behavior A'는 기본적으로 CRS 포트와 DMRS 포트 간의 QC 가정이 가능하도록 할 수 있으며, 이에 추가적으로, 특정 CSI-RS 자원 인덱스 (예를 들어, CSI-RS 자원 인덱스 0) 또는 특정 CSI 프로세스 인덱스(예를 들어, CSI 프로세스 인덱스 0)에 속한 CSI-RS 포트와 DMRS 포트 간의 QC 가정이 가능하다는 정보가 제공될 수 있다. 예를 들어, 복수개의 TP들이 동일한 셀 식별자를 사용하는 CoMP 시나리오 4의 경우에, CRS가 동시전송되는 TP들로부터 CSI-RS도 동시에 전송되는(즉, PCI에 의해서 생성된 가상 CSI-RS가 복수개의 TP들로부터 동시에 전송되는) 형태로 동작할 수 있다.
즉, Behavior A'는 기본적으로 Behavior A와 같이 CRS와 DMRS 간에는 항상 QC 가정을 할 수 있다는 점에서는 유사하지만, DMRS와 QC 가정이 적용될 수 있는 CSI-RS를 지시하는 방식에서 차이를 가지는 것으로 이해될 수 있다. 즉, Behavior A에 따르면 해당 DMRS와 QC 가정이 가능한 CSI-RS가 무엇인지를 DCI를 통해 동적으로 지시될 수 있는 반면, Behavior A'에 따르면 해당 DMRS와 QC 가정이 가능한 CSI-RS는 반-정적으로 RRC 시그널링을 통해 지시되거나 또는 고정적으로 특정 CSI-RS 자원 인덱스(예를 들어, CSI-RS 자원 인덱스 0)가 설정될 수 있다.
Behavior A'에 대한 추가적인 예시로서, Behavior A'는, CRS와 DMRS 간의 QC 가정은 불가능한 것으로 하고, 특정 CSI-RS 자원 인덱스(예를 들어, CSI-RS 자원 인덱스 0)와 DMRS 간의 QC 가정은 가능한 것으로 정의될 수도 있다. 이와 같이 정의되는 Behavior A'는 Behavior B와 유사하지만, Behavior B에 따르면 해당 DMRS와 QC 가능한 CSI-RS 자원이 무엇인지가 DCI를 통해서 동적으로 지시되는 반면, Behavior A'에 따르면 해당 DMRS와 QC 가정이 가능한 CSI-RS는 반-정적으로 RRC 시그널링을 통해 지시되거나 또는 고정적으로 특정 CSI-RS 자원 인덱스(예를 들어, CSI-RS 자원 인덱스 0)가 설정될 수 있다.
전술한 바와 같은 Behavior A'에 대한 본 발명의 다양한 예시들에 있어서, 특정 CSI-RS 자원 인덱스(예를 들어, CSI-RS 자원 인덱스 0)가 고정 또는 반-정적으로 설정되는 대신에, Behavior B에서와 같이 동적으로 지시될 수도 있다. 예를 들어, MBSFN 서브프레임(또는 MBSFN 서브프레임의 단말-특정 탐색 공간)에서 검출되는 DCI 포맷 1A의 특정 필드를 통해서, 해당 DMRS 포트와 QC 가정이 적용될 수 있는 CSI-RS 자원(또는 CSI 프로세스)에 속한 CSI-RS 포트가 무엇인지를 지시할 수도 있다. 이러한 경우에는, MBSFN 서브프레임에서 DCI 포맷 1A를 통해서 DL 그랜트를 받는 경우나, DCI 포맷 2D를 통해서 DL 그랜트를 받는 경우 모두에서 상기 Behavior B가 적용되도록 할 수도 있다. 또는, MBSFN 서브프레임에서 DCI 포맷 1A를 통해서 DL 그랜트를 받는 경우나, TM9 이하의 TM에 대해서는, 모두 상기 Behavior A가 적용되도록 하고 (이 경우 CSI-RS 자원은 반-정적으로 RRC 시그널링되거나 특정 CSI-RS 자원 인덱스가 고정적으로 적용될 수 있음), DCI 포맷 2D로 DL 그랜트를 받는 경우에서만 Behavior B가 적용되도록 할 수도 있다.
한편, Behavior A의 정의에서 CSI-RS가 제외될 수도 있다. 즉, Behavior A는, CRS와 PDSCH DMRS는, 주파수 시프트, 도플러 확산, 수신 타이밍, 지연 확산 중의 하나 이상에 대해서 QC 되어 있는 것으로 가정한다는 것으로 정의될 수 있다. CSI-RS에 대한 QC 가정이 제외된 것은, CoMP 시나리오 4에서와 같이 CRS는 다수의 TP들로부터 동시에 SFN 형태로 전송되지만, CSI-RS는 해당 TP들에서 동시에 SFN 형태로 전송하지 않는 것으로 동작하는 것을 지원하기 위함이다. 즉, Behavior A에서 CRS와 DMRS 간의 QC 가정 만으로도 데이터 복조에 도움을 줄 수 있는 대규모 특성 추정치들을 충분히 반영할 수 있고, CRS에 비하여 상대적으로 밀도가 낮은 CSI-RS를 이용하여 측정된 채널 특성이 DMRS 기반 데이터 복조의 성능을 크게 향상시키지는 않을 것으로 볼 수 있기 때문에, CSI-RS와 DMRS 간의 QC 가정이 제외될 수 있다.
또한, 이와 같이 CSI-RS를 배제한 Behavior A는, 단말이 어떠한 CSI-RS 자원도 설정받지 않은 경우(예를 들어, TDD 시스템, 상호적(reciprocity) 시스템 등)에 적용될 수도 있다. 반면, 단말이 CSI-RS 자원을 설정받은 경우에는 처음에 설명하였던 Behavior A에 따라 CRS, CSI-RS 및 DMRS 간의 모든 QC 가정이 적용될 수도 있다. 이러한 Behavior A는 특정 TM(들)(예를 들어, TM1 내지 TM9, 또는 TM1 내지 TM8)에 대해서만 적용되도록 한정할 수도 있다.
CSI-RS 자원의 설정 여부에 따른 Behavior A는 다음과 같이 표현할 수 있다. 즉, Behavior A는, CRS, CSI-RS (if configured (설정된 경우라면)) 및 PDSCH DMRS는, 주파수 시프트, 도플러 확산, 수신 타이밍, 지연 확산 중의 하나 이상에 대해서 QC 되어 있는 것으로 가정한다는 것으로 정의될 수 있다. 즉, CSI-RS에 대해서는 if configured 라는 조건을 부여함으로써, 전술한 CSI-RS 자원의 설정 여부에 따른 Behavior A가 간략하게 표현될 수 있다.
나아가, 전술한 Behavior A'로서 설명했던 사항을 Behavior A와 통합하면 다음과 같이 정의될 수 있다. 즉, Behavior A는, CRS, CSI-RS (if only one CSI-RS resource is configured (오직 하나의 CSI-RS 자원만이 설정된 경우라면)) 및 PDSCH DMRS는, 주파수 시프트, 도플러 확산, 수신 타이밍, 지연 확산 중의 하나 이상에 대해서 QC 되어 있는 것으로 가정한다는 것으로 정의될 수 있다. 동일한 의미를 달리 표현하자면, Behavior A는, CRS, CSI-RS (CSI-RS가 설정된 경우라면, 그리고 설정된 CSI-RS 자원의 개수가 1 이라면)) 및 PDSCH DMRS는, 주파수 시프트, 도플러 확산, 수신 타이밍, 지연 확산 중의 하나 이상에 대해서 QC 되어 있는 것으로 가정한다는 것으로 정의될 수 있다. 동일한 의미를 달리 표현하자면, Behavior A는, CRS, CSI-RS (CSI-RS가 설정된 경우라면, 그리고 설정된 CSI-RS 자원의 개수가 1 이라면(또는 CSI 프로세스의 최대 개수에 대한 UE 캐퍼빌리티 P가 {1}이라면))) 및 PDSCH DMRS는, 주파수 시프트, 도플러 확산, 수신 타이밍, 지연 확산 중의 하나 이상에 대해서 QC 되어 있는 것으로 가정한다는 것으로 정의될 수 있다.
이와 같이, CSI-RS에 대해서는 if one CSI-RS resource is configured 와 동일한 의미를 가지는 조건을 부여함으로써, 전술한 CSI-RS 자원의 설정 여부에 따른 Behavior A가 간략하게 표현될 수 있다. 이에 따라, 단말이 하나의 CSI-RS 자원을 설정받은 경우에만, CRS, CSI-RS 및 DMRS 간의 QC 가정이 적용될 수 있다. 만약 단말이 어떠한 CSI-RS 자원도 설정받지 않은 경우(예를 들어, TDD 시스템)나 2 개 이상의 CSI-RS 자원을 설정받은 경우(예를 들어, TM10)에는 CRS와 DMRS 간의 QC 가정만이 적용될 수 있고, CSI-RS와의 QC 가정은 적용되지 않는다.
이와 같이, CSI-RS에 대한 QC 가정을 제외하는 경우를 포괄하는 방식으로 Behavior A를 정의하면, 이와 같이 정의된 Behavior A를 TM10에서 MBSFN 서브프레임 상에서 DCI 포맷 1A를 통해서 DL 그랜트를 수신하는 경우에도 동일하게 Behavior A가 적용되는 것으로 정리할 수 있다. 한편, 오직 TM10에서 DCI 포맷 2D를 통해서 DL 그랜트를 수신하는 경우에만 Behavior B가 적용되는 것으로 할 수 있다.
전술한 제안사항들 중에서, MBSFN 서브프레임에서 DCI 포맷 1A를 통해서 DL 그랜트를 수신하는 경우에서의 단말의 QC Behavior는, 비-MBSFN 서브프레임에서 DCI 포맷 1A를 통해서 DL 그랜트를 수신하는 경우(또는 비-MBSFN 서브프레임에서 단말-특정 탐색 공간 상에서 DCI 포맷 1A를 통해서 DL 그랜트를 수신하는 경우로 한정하여)에도 동일하게 적용될 수 있다. 이는, 기존의 시스템(예를 들어, Rel-10 이전의 시스템)에서는 비-MBSFN 서브프레임에서 DCI 포맷 1A를 통해서 DL 그랜트가 수신되는 경우에는 CRS 기반의 데이터 복조를 수행하도록 정의되어 있지만, 새로운 시스템(예를 들어, Rel-11 이후의 시스템)에서 새로운 TM(예를 들어, TM10)에서의 비-MBSFN 서브프레임에서 DCI 포맷 1A를 통해서 (또는 비-MBSFN 서브프레임에서 단말-특정 탐색 공간 상에서 DCI 포맷 1A를 통해서) DL 그랜트를 수신하는 경우에는, MBSFN 서브프레임에서의 동작과 마찬가지로 DMRS 기반의 데이터 복조가 정의될 수 있음을 고려한 것이다. 이와 같이 비-MBSFN 서브프레임에서 DCI 포맷 1A를 통해서 DL 그랜트가 수신되는 경우에도 DMRS(예를 들어, DMRS 포트 7) 기반의 데이터 복조가 정의되는 경우에는, 전술한 본 발명의 예시들에서 MBSFN 서브프레임에서 DCI 포맷 1A를 통해서 DL 그랜트를 수신하는 경우에 대한 설명들이 동일하게 적용될 수 있다.
PDSCH 심볼 위치 결정
전술한 본 발명의 다양한 예시들에서는 DCI 포맷 내의 N 비트 필드(예를 들어, PQI 필드)를 통해서 QC 가정의 적용 여부에 대한 정보와 PDSCH RE 매핑 관련 정보들을 동적으로 지시하는 것에 대해서 설명하였다. 이에 추가적으로, 본 발명에서는 DCI 포맷 내의 N 비트 필드를 통해서, PDSCH 시작 심볼(PDSCH start symbol 또는 data start symbol) (즉, PDSCH의 매핑이 시작되는 OFDM 심볼)에 관련된 정보를 추가적으로 지시하는 방안에 대해서 제안한다.
즉, 상위 계층에 의해서 2^N 개의 파라미터 세트가 단말에게 설정되고, DCI 포맷 내의 N 비트 필드(예를 들어, PQI 필드)를 통해서 상기 2^N 개의 파라미터 세트 중에서 어느 하나가 동적으로 시그널링되는데, 하나의 파라미터 세트의 파라미터들 중에는 PDSCH 시작 심볼 정보가 포함될 수 있다.
하나의 서브프레임의 OFDM 심볼 인덱스가 0, 1, 2, ... 로 주어지는 것을 가정한다. 즉, 정규 CP 서브프레임의 경우 첫 번째 슬롯(또는 슬롯 인덱스가 0부터 시작하는 경우, 짝수 인덱스의 슬롯)의 OFDM 심볼 인덱스는 0, 1, 2, 3, 4, 5, 6이고, 두 번째 슬롯(또는 슬롯 인덱스가 0부터 시작하는 경우, 홀수 인덱스의 슬롯)의 OFDM 심볼 인덱스는 7, 8, 9, 10, 11, 12, 13가 된다. 확장된 CP의 경우 첫 번째 슬롯(또는 짝수 인덱스의 슬롯)의 OFDM 심볼 인덱스는 0, 1, 2, 3, 4, 5이고, 두 번째 슬롯(또는 홀수 인덱스의 슬롯)의 OFDM 심볼 인덱스는 6, 7, 8, 9, 10, 11이다. 일반적인 경우에는, OFDM 심볼 인덱스 0, 1, 또는 2 까지 PDCCH가 매핑될 수 있다. 단말은, PDCCH 심볼이 어디까지 존재하는지를, PCFICH를 통해 알 수 있다. PDSCH 시작 심볼 인덱스에 대한 별도의 시그널링이 없다면, 기본적으로는 PCFICH에 의해 결정되는 마지막 PDCCH 심볼 인덱스의 바로 다음 심볼 인덱스가 PDSCH 시작 심볼 인덱스라고 결정된다.
본 발명에서는 PDSCH 시작 심볼 위치가 PCFICH(즉, CFI 값)로부터 결정되는 것과 별도로, PDSCH 시작 심볼 정보를 시그널링하는 방안에 대해서 제안한다. 예를 들어, PDSCH 시작 심볼 정보는, 상기 QC 가정 관련 정보를 지시하는 DCI 포맷 내의 N 비트 필드(예를 들어, PQI 필드)가 지시하는 2^N 개의 상태 별로 각각 제공될 수도 있다. 또는, 2^N 개의 상태 중에서 복수개의 상태에 대해서 공통적으로 적용되는 PDSCH 시작 심볼 정보가 RRC 시그널링을 통해서 설정될 수도 있다.
본 발명에서는 서브프레임 패턴(또는 서브프레임 세트) 별로 PDSCH 시작 심볼 인덱스 정보를 단말에게 알려주는 방식을 제안한다. 서브프레임 세트는 최소 2 세트가 존재할 수 있고, 이러한 서브프레임 세트에 대한 설정은 단말에게 미리 알려줄 수 있다. 예를 들어, MBSFN 서브프레임(들)로 구성된 하나의 세트와, 비-MBSFN 서브프레임(들)로 구성된 다른 하나의 세트가 설정될 수 있다. 이 경우, MBSFN 서브프레임에 대해서 적용되는 PDSCH 시작 심볼 인덱스와, 비-MBSFN 서브프레임에 대해서 적용되는 PDSCH 시작 심볼 인덱스가 각각 시그널링될 수 있다.
추가적인 예시로서, DCI 포맷 내의 N 비트 필드(예를 들어, PQI 필드)에 의해 지시되는 2^N 개의 상태 각각에 대해서 (또는 별도의 RRC 시그널링을 통해서 모든 상태에 대해서 공통적으로 적용되는 정보로서) 하나의 PDSCH 시작 심볼 인덱스 값(예를 들어, 인덱스 k)를 제공할 수 있다. 또한, 기본적으로는 시그널링되는 k 값에 따라서 PDSCH 시작 심볼을 결정하지만, 특정 서브프레임 세트(예를 들어, MBSFN 서브프레임)에서는 k > KThreshold인 경우에는 k = KThreshold로 적용할 수 있다. 즉, 특정 서브프레임에서는 시그널링되는 k 값을 해석함에 있어서, 상한(KThreshold)이 존재하는 것으로 적용할 수 있다. 동일한 의미를 달리 표현하자면, k = min(KThreshold, K) 이고, 여기서 K는 일반적인 서브프레임에서 적용되는 PDSCH 시작 심볼 인덱스 값이고, k는 특정 서브프레임에서 단말이 결정하는 PDSCH 시작 심볼 인덱스 값이다.
상기 특정 서브프레임 세트는, MBSFN 서브프레임일 수도 있고, 또는 비-MBSFN 서브프레임일 수도 있다. 또한, 상기 특정 서브프레임 세트는, 하나의 서브프레임 세트일 수도 있고, 복수개의 서브프레임 세트들일 수도 있다.
예를 들어, KThreshold=3인 경우, DCI 포맷의 N 비트 필드(예를 들어, PQI 필드)의 특정 상태가 k=4를 지시하는 경우를 가정한다. 단말은 비-MBSFN 서브프레임에서는 시그널링된 바와 같이 PDSCH 시작 심볼 인덱스가 4인 것으로 보고 PDSCH 복조를 수행한다. 한편, 단말은 MBSFN 서브프레임에서는 k=KThreshold=3인 것으로 해석하고, 이에 따라 PDSCH 시작 심볼 인덱스가 3인 것을 가정하여 PDSCH 복조를 수행한다. 여기서, KThreshold=3 은 단지 예시적인 것이며 이에 제한되지는 않는다. KThreshold=0, 1, 2, 3, 4 일 수 있다.
상기 제안사항을 정리하여 표현하면, 단말은 일반적인 서브프레임(예를 들어, 비-MBSFN 서브프레임)에서는 RRC 시그널링된 PDSCH 시작 심볼의 후보들의 값이나, 비-크로스-캐리어 스케줄링의 경우에는 서빙셀의 PCFICH로부터 결정되는 값, 또는 크로스-캐리어 스케줄링의 경우에는 상위 계층에 의해서 설정된 값 중의 하나(이를 K라고 표현함)를, PDSCH 시작 심볼 인덱스 값으로 결정할 수 있다. 여기서, RRC 시그널링된 PDSCH 시작 심볼의 후보들의 값은, 0 또는 유보된 값, 1, 2, 3, 4일 수 있다 (4는 시스템 대역폭이 10개의 PRB이하인 경우에만 적용된다). 한편, 특정 서브프레임(예를 들어, MBSFN 서브프레임)에서는 특정 서브프레임(예를 들어, MBSFN 서브프레임)에서의 PDSCH 시작 심볼 인덱스 k를, k = min(KThreshold, K) (예를 들어, KThreshold=2) 로 결정한다.
추가적인 예시로서, 이와 같이 결정된 PDSCH 시작 심볼이 다른 제어 채널 영역(예를 들어, DL 서빙셀 제어 채널 영역)과 중첩되는 경우에는, 해당 제어 채널 영역의 다음 OFDM 심볼이 PDSCH 시작 심볼인 것으로 결정되도록 할 수 있다.
예를 들어, 비-MBSFN 서브프레임에서 PDSCH 시작 심볼(즉, k)은, K 값과, 비-크로스-스케줄링의 경우에는 서빙셀의 PCFICH로부터 결정되는 값 또는 크로스-캐리어 스케줄링의 경우에는 상위 계층에 의해서 설정된 값 (즉, P) 중의 최대값으로 결정될 수 있다 (즉, k=max{K, P}). 여기서, K 값은, 0 또는 유보된 값, 1, 2, 3, 4, (4는 시스템 대역폭이 10개의 PRB이하인 경우에만 적용됨), 비-크로스-캐리어 스케줄링의 경우에는 서빙셀의 PCFICH로부터 결정되는 값, 또는 크로스-캐리어 스케줄링의 경우에는 상위 계층에 의해서 설정된 값 중의 하나일 수 있다. 한편, DCI에 의해서 지시되는 MBSFN 서브프레임에서 PDSCH 시작 심볼(즉, k)은, KThreshold 값과 K 값 중의 최소값과, P 값 중의 최대값으로 결정될 수 있다(즉, max{min(KThreshold,K), P}).
추가적인 예시로서, 서빙 셀의 PCFICH로부터 PDSCH 시작 심볼을 결정하는 것과 무관하게 K 값을 정하도록 수정할 수도 있다.
예를 들어, 비-MBSFN 서브프레임에서 PDSCH 시작 심볼(즉, k)은, K 값과, P 값 중의 최대값으로 결정될 수 있다 (즉, k=max{K, P}). 여기서, K 값은, 0 또는 유보된 값, 1, 2, 3, 또는 4 (4는 시스템 대역폭이 10개의 PRB이하인 경우에만 적용됨) 중에서 하나일 수 있다. 한편, DCI에 의해서 지시되는 MBSFN 서브프레임에서 PDSCH 시작 심볼(즉, k)은, KThreshold 값과 K 값 중의 최소값과, P 값 중의 최대값으로 결정될 수 있다 (즉, max{min(KThreshold,K), P}).
전술한 바와 같이 PDSCH 시작 심볼을 결정하는 방안은, TDD 시스템에서 특별 서브프레임(special subframe)의 설정 중에서 DwPTS 심볼 개수가 특정 값 이하인 경우에는 적용되지 않는 것으로 제한할 수도 있다. TDD 특별 서브프레임 설정은, 예를 들어, 8 가지가 정의될 수 있고, 그 중에서 DwPTS 심볼의 개수가 3 개 이하인 설정은 0번 및 5번 설정일 수 있다 (자세한 사항은 TS 36.211 문서 참조). 즉, 특정 심볼 개수를 초과하는 TDD 특별 서브프레임 설정(들)에 대해서만 PDSCH 시작 심볼 정보에 대해서 RRC 시그널링에 의해 정해지는 값, DCI 시그널링에 의해 정해지는 값 사이의 우선순위에 관련된 규칙이 적용되도록 할 수 있다.
추가적인 예시로서, TDD시스템에 대해서는, 상기 DCI 시그널링을 위한 2^N 상태 별로 어떠한 TDD 특별 서브프레임 설정을 따르도록 스케줄링하는지를 알려줄 수도 있다.
예를 들어, 2^N 개의 상태 별로 독립적인 TDD 특별 서브프레임 설정(들)이 RRC 시그널링에 의해 설정될 수 있다. DCI 시그널링을 통해서 2^N 상태 중 어떠한 상태가 현재 스케줄링되는 PDSCH 전송에 대해서 적용되어야 하는지 동적으로 지시될 수 있다. 만약 특정 상태가 지시되고, 이 상태가 어떤 특별 서브프레임 설정(예를 들어, 특별 서브프레임 설정 6)을 지시하고 있는 경우에는, 단말의 DL 서빙셀의 특별 서브프레임 설정이 무엇이었든지 간에 이를 무시하고 상기 DCI 시그널링되는 특별 서브프레임 설정에 따라서 DwPTS 영역의 OFDM심볼 길이만큼의 PDSCH가 전송되는 것으로 오버라이드(override)하여 해석하고, 이에 따라서 PDSCH 복조를 수행할 할 수 있다.
만약 DCI에 의해서 지시되는 특별 서브프레임 설정이 다수개인 경우에는 JT 전송이 수행되는 경우일 수도 있으며, 이러한 경우에는 항상 특별 서브프레임 설정들 간의 교집합에 해당하는 DwPTS 심볼(즉, 특별 서브프레임 설정들에서 DwPTS가 공통으로 존재하는 OFDM 심볼)에서 PDSCH 전송이 존재하는 것으로 해석하거나, 합집합에 해당하는 DwPTS 심볼(즉, 특별 서브프레임 설정들 중에서 DwPTS 영역이 가장 큰 것에 따른 OFDM 심볼)에서 PDSCH 전송이 존재하는 것으로 해석할 수 있다.
추가적으로, PDSCH 마지막 OFDM 심볼 (PDSCH last symbol, PDSCH ending symbol, 또는 data last symbol, data ending symbol) 정보를 명시적으로 알려줄 수도 있다. 여기서, 상기 DCI 시그널링의 2^N 상태 별로 상기 특별 서브프레임 설정(들)과 함께 PDSCH 마지막 심볼 정보를 알려줄 수도 있고, 또는 상기 특별 서브프레임 설정(들)은 알려주지 않고 마지막 OFDM 심볼 정보만을 알려줄 수도 있다.
예를 들어, 단말은 DCI 시그널링을 통해 지시되는 특별 서브프레임 설정(들)을 통해서 DwPTS 영역을 결정할 수 있고, 여기에 추가적으로 PDSCH 마지막 OFDM 심볼 정보가 명시적으로 주어지는 경우에는, 이에 따라서 DwPTS 영역 중에 마지막 몇 개의 OFDM 심볼(들)은 PDSCH 영역에서 제외되는 것으로 결정하거나, 또는 DwPTS 영역에 비하여 더 많은 심볼이 PDSCH 영역에 포함될 수도 있다. 즉, 단말은 DCI 시그널링을 통해서 특별 서브프레임 설정이 주어지더라도, PDSCH 마지막 OFDM 심볼 정보가 주어지는 경우에는 PDSCH 마지막 OFDM 심볼에 기초하여 PDSCH 영역을 결정할 수 있다.
한편, DCI 포맷의 N 비트 필드(예를 들어, PQI 필드)에 의해서 지시되는 2^N 상태 별로 특별 서브프레임 설정을 알려주는 방식 대신에, 단말이 DL 서빙셀의 특별 서브프레임 설정에 따르고, 서빙셀이 아닌 인접셀/TP로부터의 PDSCH 전송이라고 하더라도 서빙셀의 특별 서브프레임 선정에 따르는 것으로 단말이 가정할 수 있다. 즉, 단말은 DL 서빙셀의 특별 서브프레임 설정과 동일한 설정으로 가정(assume)할 수 있다고 정의되거나, 또는, DL 서빙셀의 특별 서브프레임 설정과 상이한 특별 서브프레임 설정을 예상하는 것이 허용되지 않는다고 정의할 수도 있다. 유사하게, 단말은 특별 서브프레임의 DwPTS에 PDSCH가 스케줄링되는 경우에는, 해당 PDSCH는 자신의 DL 서빙셀이 아닌 다른 셀/TP로부터 전송되는 것이라고 예상하는 것이 허용되지 않는다.
추가적인 예시로서, 특별 서브프레임에서(구체적으로는, DwPTS에서) DL 그랜트가 전송될 때에, 해당 DCI 포맷 내의 N 비트 필드(예를 들어, PQI 필드)가 포함되지 않는 것으로 정의될 수도 있다. 이러한 경우는, 비-CoMP 동작을 의미할 수 있으며, 특별 서브프레임에서는 DL 서빙셀로부터의 PDSCH 전송만 스케줄링할 수 있다는 의미일 수 있다.
전술한 본 발명의 다양한 예시들에서, DCI 포맷 내의 N 비트 필드(예를 들어, PQI 필드)의 2^N 개의 상태 별로 특별 서브프레임 설정(들)을 알려줌으로써 DwPTS 영역의 마지막 OFDM 심볼 인덱스가 어디까지인지를 단말에게 알려줄 수 있다. 또한, PDSCH 시작 OFDM 심볼 인덱스를 결정하는 시그널링도 함께 DCI 포맷 내의 N 비트 필드(예를 들어, PQI 필드)의 2^N 개의 상태 별로 RRC 시그널링에 의해 제공될 수도 있다. 즉, PDSCH 시작 OFDM 심볼 인덱스를 알려주는 정보와, PDSCH 마지막 OFDM 심볼 인덱스를 결정하기 위한 TDD 특별 서브프레임 설정에 대한 정보가 함께 상기 2^N 개의 상태 별로 RRC-설정 파라미터 세트에 포함될 수 있다. 이에 따라, 단말은 DCI 동적 시그널링되는 상태 값에 해당하는 파라미터 세트에 포함되는 PDSCH 시작 심볼 및/또는 PDSCH 마지막 심볼을 결정하고, 이에 따라 PDSCH 복조를 올바르게 수행할 수 있다.
EPDCCH 관련 PQI 파라미터 적용
DMRS와 CSI-RS 간의 QCL 정보, PDSCH RE 매핑(또는 CRS RM 패턴(예를 들어, CRS 포트의 개수, CRS 주파수 시프트, 셀 식별자 등)) 정보, MBSFN 서브프레임 설정에 대한 정보, NZP CSI-RS 설정 정보, ZP(Zero-Power) CSI-RS 설정 정보, TDD 특별 서브프레임 설정 정보, PDSCH 시작 심볼 정보, 및/또는 PDSCH 마지막 심볼 정보 등은, 하나의 파라미터 세트(또는 파라미터 리스트)에 포함되는 PQI 파라미터들로 정의될 수 있다. 이러한 파라미터 세트를 PQI(PDSCH RE 매핑 및 QCL 지시자) 파라미터 세트라고 칭할 수 있다. 복수개의(예를 들어, 2^N개의) PQI 파라미터 세트가 상위계층에 의해서 반-정적으로 설정될 수 있다. 2^N 개의 PQI 파라미터 세트 중에서 어떤 하나의 파라미터 세트는 DCI 포맷(예를 들어, DCI 포맷 2D) 내의 N 비트 크기의 PQI 필드의 상태 값(이하, "PQI 상태 값"이라고 칭함)에 의해서 동적으로 지시될 수 있다.
또한, 이러한 PQI 파라미터 세트에 대한 정보는, DCI 포맷 1A에 의해서 스케줄링되는 경우에 단말이 따라야 할 정보로서 별도의 RRC-설정된 파라미터 세트의 형태로 반-정적으로 설정될 수도 있다. 또는, DCI 포맷 1A의 경우에 따라야 할 디폴트 정보로서 어떤 PQI 파라미터 세트가 설정될 수도 있다. 디폴트 PQI 파라미터 세트는, 예를 들어, 서빙 셀의 설정을 따르도록 한 것일 수도 있고, 디폴트 설정으로서 별도로 정의될 수도 있다. 이러한 DCI 포맷 1A의 경우에 대한 디폴트 PQI 파라미터 세트는, DCI 포맷 2D의 경우에 대한 상위계층 설정된 복수개의 PQI 파라미터 세트들 중에서 어떤 하나의 파라미터 세트(예를 들어, 가장 낮은 PQI 상태 값(예를 들어, '00')에 대응하는 파라미터 세트) (예를 들어, 파라미터 세트 1)일 수 있다.
EPDCCH를 통해서 DCI 포맷 1A에 해당하는 스케줄링 정보가 단말에게 시그널링될 수도 있다. EPDCCH의 경우에는 EPDCCH 세트 별로 적용될 특정 PQI 파라미터 세트가 상위 계층 시그널링에 의해서 설정될 수 있다. EPDCCH 세트(또는 EPDCCH-PRB-set)는, 예를 들어, 로컬 방식 EPDCCH 매핑 RB 세트 또는 분산방식 EPDCCH 매핑 RB 세트를 의미한다.
EPDCCH를 통해서 DCI 포맷 1A에 해당하는 스케줄링 정보가 단말에게 시그널링되는 경우, PQI 파라미터들 중의 하나 이상이 사전에 RRC 시그널링 등에 의해서 EPDCCH 세트 별로 설정될 수 있다. 따라서, DCI 포맷 1A가 어떠한 EPDCCH 세트를 통해 단말에게 전송되는지에 따라, 해당 EPDCCH 세트 별로 설정(또는 링크 또는 매핑)되어 있는 RRC 설정된(RRC-configured) 파라미터 세트에 포함된 파라미터들의 일부 또는 전부를 단말이 따르도록 동작할 수 있다. 보다 구체적으로, 단말은 사전에 설정받은 EPDCCH 세트(들) 각각에 대한 탐색 공간에서 블라인드 디코딩을 수행하고, 블라인드 디코딩 결과 성공적으로 검출된 DCI 포맷 1A가 존재하는 경우, 해당 탐색 공간을 설명(describe)하는 EPDCCH 세트에 링크된 RRC-설정된 파라미터 세트에 포함된 파라미터들의 일부 또는 전부에 따른 가정을, 해당 DCI 포맷 1A에 의해서 스케줄링되는 PDSCH 복조 시에 반영하여 수신 프로세싱을 수행할 수 있다.
이와 같이 EPDCCH 세트 별로 설정된 PQI 파라미터를 따르도록 하는 것은, DCI 포맷 1A가 TM10으로 EPDCCH를 통해 전송될 때에만 적용되는 것으로 한정할 수도 있다. TM10의 경우에는 복수개의 EPDCCH 세트들이 설정된 경우에, 각각의 EPDCCH의 세트 별로 PQI 파라미터 세트가 RRC-설정되고, 단말은 DCI 포맷 1A가 상기 복수개의 EPDCCH 세트들 중에서 어떤 EPDCCH 세트에서 검출되었는지에 따라서, 해당 EPDCCH 세트에 해당하는 RRC-설정된 파라미터 세트에 포함되는 파라미터들의 일부 또는 전부에 따른 가정을, 해당 DCI 포맷 1A에 의해서 스케줄링되는 PDSCH 복조 시에 반영할 수 있다. 반면, TM1 내지 TM9의 경우에는, 복수개의 EPDCCH 세트들이 설정된 경우라고 하더라도, PQI 파라미터 세트에 포함되는 파라미터들의 일부 또는 전부가 상기 복수개의 EPDCCH 세트들에 공통적으로 적용되도록 설정될 수도 있다. 단말은 해당 DCI 포맷 1A가 어떤 EPDCCH 세트를 통해서 수신 및 디코딩되었는지에 무관하게, 상기 공통적으로 설정된 PQI 파라미터 세트에 포함되는 파라미터들의 일부 또는 전부에 따른 가정을, 해당 DCI 포맷 1A에 의해서 스케줄링되는 PDSCH 복조 시에 반영하여 수신 프로세싱을 수행할 수 있다.
전술한 EPDCCH 세트-특정으로 또는 EPDCCH 세트-공통으로 PQI 파라미터 세트가 RRC-설정되는 본 발명의 예시들에 대한 설명에 있어서 DCI 포맷 1A를 예로 들었지만, 동일한 예시가 DCI 포맷 2C 또는 2D에 대해서도 적용될 수 있다.
또한, 레거시-PDCCH를 통해서 전송되는 DCI에 대한 PQI 파라미터 세트와, EPDCCH를 통해 전송되는 DCI에 대한 PQI 파라미터 세트가 독립적으로 RRC-설정될 수 있다. 즉, 레거시-PDCCH를 통해서 전송되는 DCI의 PQI 상태 값에 매핑되는 PQI 파라미터 세트는, EPDCCH를 통해서 전송되는 DCI의 PQI 상태 값에 매핑되는 PQI 파라미터 세트와 별개로 설정되기 때문에, 서로 상이할 수도 있다.
또한, EPDCCH 세트 별로 EPDCCH QC 동작방식(behavior)가 정의될 수 있다. 예를 들어, EPDCCH 세트 별로 EPDCCH Behavior A 또는 EPDCCH Behavior B가 적용되는 것으로 RRC-설정될 수 있다. 여기서, EPDCCH Behavior A는, EPDCCH DMRS와 서빙셀 CRS 간의 QCL을 가정하는 동작방식이다. EPDCCH Behavior B는, EPDCCH DMRS와 CSI-RS 간의 QCL을 가정하는 동작방식이다. 또한, 복수개의 EPDCCH 세트 모두에 대해서 EPDCCH Behavior A가 디폴트 QC 동작방식으로서 설정되고, 각각의 EPDCCH 세트 별로 독림적으로 특정 CSI-RS에 대한 EPDCCH Behavior B가 설정될 수도 있다. EPDCCH QC 동작방식에 대해서는 별도의 항목에서 자세하게 설명한다.
나아가, EPDCCH 세트 별로 QCL 동작방식뿐만 아니라, PQI 파라미터들의 일부 또는 전부가 설정될 수 있다. 이 때, 어떤 DCI의 2^N 개의 PQI 상태 값에 대응하도록 RRC-설정된 PQI 파라미터 세트들 중에서 일부 또는 전부가 EPDCCH 자체의 디코딩에 적용되도록 설정될 수 있다. 예를 들어, 레거시-PDCCH를 통해 (또는 EPDCCH를 통해) DCI(예를 들어, DCI 포맷 2D)가 전송되는 경우에, 상기 DCI의 특정 PQI 상태 값에 대응하도록 RRC-설정된 파라미터 세트의 파라미터들의 일부 또는 전부가 특정 EPDCCH 세트에 그대로 적용될 수 있도록, 각각의 EPDCCH 세트 별로 상기 PQI 상태 값 중에서 특정 상태 값에 의해서 지시되는 PQI 파라미터 세트가 설정되는 것으로 할 수 있다.
즉, 각각의 EPDCCH 세트 별로 RRC 설정에 의해 상기 PQI 상태 값 중 특정 상태 값이 지정될 수 있다. 또한, 상기 특정 PQI 상태 값이 지시하는 PQI 파라미터들(DMRS와 CSI-RS 간의 QCL 정보, PDSCH RE 매핑(또는 CRS RM 패턴(예를 들어, CRS 포트의 개수, CRS 주파수 시프트, 셀 식별자 등)) 정보, MBSFN 서브프레임 설정에 대한 정보, NZP CSI-RS 설정 정보, ZP(Zero-Power) CSI-RS 설정 정보, TDD 특별 서브프레임 설정 정보, PDSCH 시작 심볼 정보, 및/또는 PDSCH 마지막 심볼 정보 등)의 일부 또는 전부가 그대로 EPDCCH 디코딩 자체에 적용되도록 할 수 있다.
예를 들어, 상기 PQI 파라미터들 중에서 ZP CSI-RS 설정 정보에 따라서 EPDCCH 자체의 RE 매핑을 결정하고 (즉, ZP CSI-RS가 지시하는 RE에는 EPDCCH가 매핑되지 않는다는 가정하에), EPDCCH의 디코딩을 수행할 수 있다.
또한, 상기 PQI 파라미터들 중에서 CRS RM 패턴 정보에 따라, EPDCCH 자체의 RE 매핑을 결정하고 EPDCCH 디코딩을 수행할 수 있다.
또한, 상기 PQI 파라미터들 중에서 MBSFN 서브프레임 설정 정보에 따라 EPDCCH가 전송되는 서브프레임이 MBSFN 서브프레임 또는 비-MBSFN 서브프레임인지 결정하고, 이에 따라 CRS가 매핑되는 RE(들)이 존재하는지를 결정하고, 최종적으로 EPDCCH 자체의 RE 매핑을 결정하고 EPDCCH 디코딩을 수행할 수 있다.
또한, 상기 PQI 파라미터들 중에서 PDSCH 시작 심볼 정보에 기초하여 EPDCCH 자체의 시작 심볼을 결정하고, 이에 따라 EPDCCH 자체의 RE 매핑을 결정하고 EPDCCH 디코딩을 수행할 수 있다. 예를 들어, PQI 파라미터 세트에 포함된 PDSCH 시작 심볼 정보로부터 PDSCH 시작 심볼 값 k가 결정될 수 있는데, 이 k 값이 그대로 EPDCCH의 시작 심볼 값으로 적용될 수 있다. 여기서, EPDCCH의 시작 심볼 인덱스 값 k 는 MBSFN 서브프레임과 비-MBSFN 서브프레임에 공통으로 적용될 수 있다. 또는, 비-MBSFN 서브프레임에 대해서는 k = K 로 결정되고, MBSFN 서브프레임에 대해서는 k = min(KThreshold, K)으로 결정될 수 있다, 여기서, K 값은, 0 또는 유보된 값, 1, 2, 3, 4, (4는 시스템 대역폭이 10개의 PRB이하인 경우에만 적용됨), 비-크로스-캐리어 스케줄링의 경우에는 서빙셀의 PCFICH로부터 결정되는 값, 또는 크로스-캐리어 스케줄링의 경우에는 상위 계층에 의해서 설정된 값 중의 하나일 수 있다. 예를 들어, KThreshold=2 일 수 있다.
또한, 상기 PQI 파라미터들에 하나의 NZP CSI-RS 설정 정보가 포함되는 경우, 이러한 NZP CSI-RS 설정 정보는 EPDCCH 자체의 디코딩을 위해서 무시할 (또는 고려하지 않을) 수도 있다. 즉, EPDCCH 세트 별로 Behavior A 또는 Behavior B가 별도로 RRC 설정되는 경우, PDSCH 복조를 위한 PQI 파라미터 세트 중에서 하나의 NZP CSI-RS 설정 정보는 EPDCCH 디코딩을 위해서 적용하지 않는다.
또는, EPDCCH Behavior B가 지시된 특정 EPDCCH 세트에 대해서는, NZP CSI-RS 설정 정보를 고려할 수도 있다. NZP CSI-RS 설정 정보가 PQI 파라미터 세트에 포함되는 것은 선택적(optional)이므로, 경우를 나누어 설명한다. 만약 상기 PQI 파라미터에 하나의 NZP CSI-RS 설정 정보가 포함되는 경우, 이를 고려하여 EPDCCH 자체의 RE 매핑을 결정하고 EPDCCH 디코딩을 수행할 수 있다. 즉, EPDCCH 세트 별로 RRC-설정된 PQI 파라미터 세트에 속한 하나의 NZP CSI-RS 설정 정보가 존재한다면, EPDCCH DMRS와 상기 하나의 NZP CSI-RS 간의 QCL을 가정하는 Behavior B를 적용하여 EPDCCH 디코딩을 수행한다. 만약, 상기 PQI 파라미터들에 하나의 NZP CSI-RS 설정 정보가 포함되지 않는 경우, EPDCCH DMRS와 디폴트 CSI-RS 간의 QCL을 가정하는 Behavior B를 적용하여 EPDCCH 디코딩을 수행한다. 여기서, 디폴트 CSI-RS는, 가장 낮은 인덱스의 CSI-RS 자원(예를 들어, CSI-RS 자원 인덱스 0), 특정 CSI-RS 자원(예를 들어, CSI-RS 자원 인덱스 n, 여기서 n 은 미리 지정된 값), 가장 낮은 CSI 프로세스 인덱스에 속한 CSI-RS 자원(예를 들어, CSI 프로세스 인덱스 0에 속한 CSI-RS 자원), 또는 특정 CSI 프로세스에 속한 CSI-RS 자원 (예를 들어, CSI 프로세스 인덱스 n에 속한 CSI-RS 자원, 여기서 n 은 미리 지정된 값) 중의 하나로 설정될 수 있다.
전술한 바와 같이 본 발명에 따르면 EPDCCH 세트의 각각에 대해서 (또는 공통으로) 상위계층에 의해 설정된 PQI 파라미터 세트를, EPDCCH 자체의 RE 매핑 및 EPDCCH 안테나 포트 QCL을 결정하기 위해서 사용할 수 있고, 이에 따라 EPDCCH 디코딩 성능을 높일 수 있다.
PDSCH 시작 심볼 결정의 우선순위
DCI 내의 N 비트 크기의 PQI 필드는 2^N 개의 PQI 상태 값 중에서 어느 하나의 값을 가질 수 있고, 이는 2^N 개의 PQI 파라미터 세트 중에서 어느 하나를 지시할 수 있다. 이러한 2^N 개의 PQI 파라미터 세트는 상위 계층(예를 들어, RRC 계층)에 의해서 미리 설정될 수 있다.
만약, 어떤 PQI 파라미터 세트에 특정 파라미터가 포함되지 않는 경우에는, 상기 특정 파라미터를 위해서 디폴트 규칙에 의해서 결정된 값이 적용될 수 있다.
예를 들어, 특정 PQI 필드의 상태 값에 대응하는 PQI 파라미터 세트에서 PDSCH 시작 심볼 인덱스 정보가 포함되지 (또는 주어지지) 않는 경우, 단말은 PDSCH 시작 심볼 인덱스가, 서빙셀의 PDSCH 시작 위치를 따르는 것으로 가정할 수 있다. 이는, PQI 파라미터가 아니더라도 별도의 RRC 시그널링에 의해 EPDCCH 시작 심볼이 단말에게 설정되어 있다면, PQI 파라미터에 PDSCH 시작 심볼이 포함되지 않는 경우에 DL 서빙셀의 PCFICH로부터 PDSCH 시작 심볼을 결정하기 보다는, 이미 RRC 시그널링을 통하여 주어진 EPDCCH 시작 심볼 위치가 곧 PDSCH 시작 심볼의 위치와 동일한 것으로 결정하도록 한다는 의미이다.
예를 들어, 특정 PQI 필드의 상태 값에 대응하는 PQI 파라미터 세트에서 PDSCH 시작 심볼 인덱스 정보가 포함되지 (또는 주어지지) 않는 경우, 단말은 PDSCH 시작 심볼 인덱스가, DL 서빙셀의 PCFICH에서 지시하는 PDCCH의 마지막 심볼 인덱스 다음의 심볼 인덱스(즉, PDCCH 마지막 심볼 인덱스 + 1)인 것으로 결정할 수 있다.
이와 같이, 본 발명에서 제안하는 PQI 파라미터를 적용하는 우선순위는 다음과 같이 설정될 수 있다. 첫 번째 우선순위는 (즉, 다른 경우에 비하여 우선적으로 적용되는 동작은), PQI 상태 값에 대응하는 특정 PQI 파라미터가 주어지는 경우에는 이에 따른다는 것이다. 두 번째 우선순위는 (즉, 상기 첫 번째 우선순위에 따른 동작이 적용되지 않는 경우에 적용되는 동작은), PQI 상태 값에 대응하는 특정 PQI 파라미터가 주어지지 않는 경우에 적용되는 것이며, 상기 특정 PQI 파라미터와 관련하여 (PQI 파라미터 설정이 아닌 다른 목적으로라도) 별도로 설정된 값이 존재하는 경우에는, 이에 따라서 상기 특정 PQI 파라미터의 값을 결정하는 것이다.
PQI 파라미터들 중에서 PDSCH 시작 심볼 정보를 예로 들어서 본 발명에 따른 동작을 설명한다.
먼저, 첫 번째 우선순위에 따른 동작 또는 두 번째 우선순위에 따른 동작을 적용할지 여부를 결정하기 위해서, DCI 내의 PQI 필드의 특정 상태 값에 대응하는 PQI 파라미터 세트에서 PDSCH 시작 심볼 값이 포함되는지(또는 주어지는지)를 결정한다.
첫 번째 우선순위에 따른 동작으로서, 만약 DCI 내의 PQI 필드의 특정 상태 값에 대응하는 PQI 파라미터 세트에서 PDSCH 시작 심볼 값이 제공되는 경우라면, 단말은 이를 이용하여 PDSCH 복조(또는 EPDCCH 디코딩)를 수행할 수 있다.
여기서, 비-MBSFN 서브프레임에 대해서 RRC 시그널링된 PDSCH 시작 심볼 정보(예를 들어, 상기 예시들에서 K 값으로 표현된 정보)는, 0 또는 유보된 값, 1, 2, 3, 4, (4는 시스템 대역폭이 10개의 PRB이하인 경우에만 적용됨), 비-크로스-캐리어 스케줄링의 경우에는 서빙셀의 PCFICH로부터 결정되는 값, 또는 크로스-캐리어 스케줄링의 경우에는 상위 계층에 의해서 설정된 값 중의 하나일 수 있다.
또는, K 값은, 0 또는 유보된 값, 1, 2, 3, 4, (4는 시스템 대역폭이 10개의 PRB이하인 경우에만 적용됨), 비-크로스-캐리어 스케줄링의 경우에는 특정 셀 또는 TP의 PCFICH로부터 결정되는 값, 또는 크로스-캐리어 스케줄링의 경우에는 상위 계층에 의해서 설정된 값 중의 하나일 수 있다. 여기서, 특정 셀 또는 TP의 PCFICH에 의해서 주어지는 정보(또는 제어 영역의 OFDM 심볼 개수를 지시하는 다른 파라미터/값/변수)에 따라서 동적으로 PDSCH 시작 심볼 개수를 결정하는 방식은, 상기 특정 셀 또는 TP의 RS(예를 들어, CRS, CSI-RS, 트래킹 (tracking) RS 등)를 신뢰성있게 검출할 수 있는 경우에(예를 들어, 간섭 소거 수신기(interference cancelation receiver)를 구비하는 단말에서) 적용하도록 할 수 있다.
한편, 이와 같이 특정 셀 또는 TP의 PCFICH에 따라서 동적으로 PDSCH 시작 심볼 값 K를 결정하는 동작은, DL 제어 채널 영역과 PDSCH 영역의 중복을 방지하기 위한 다른 실시예들에도 적용될 수 있다.
예를 들어, 비-MBSFN 서브프레임에서 PDSCH 시작 심볼 값 k=max{K, P}로 결정될 수 있다. MBSFN 서브프레임에서 PDSCH 시작 심볼 값 k=max{(min(KThreshold,K))으로 결정될 수 있다. 여기서, K 값은, 0 또는 유보된 값, 1, 2, 3, 4, (4는 시스템 대역폭이 10개의 PRB이하인 경우에만 적용됨), 비-크로스-캐리어 스케줄링의 경우에는 특정 셀 또는 TP의 PCFICH로부터 결정되는 값, 또는 크로스-캐리어 스케줄링의 경우에는 상위 계층에 의해서 설정된 값 중의 하나일 수 있다. P는 비-크로스-스케줄링의 경우에는 서빙셀의 PCFICH로부터 결정되는 값 또는 크로스-캐리어 스케줄링의 경우에는 상위 계층에 의해서 설정된 값일 수 있다. KThreshold 값은, 예를 들어, 2 일 수 있다.
두 번째 우선순위에 따른 동작으로서, DCI 내의 PQI 필드의 특정 상태 값에 대응하는 PQI 파라미터 세트에서 PDSCH 시작 심볼 값이 제공되지 않는 경우라면, 단말은 (PQI 파라미터 설정이 아닌 다른 목적으로라도) 별도로 설정된 PDSCH 시작 심볼 값이 존재하는 경우에는, 단말은 이를 이용하여 PDSCH 복조(또는 EPDCCH 디코딩)를 수행할 수 있다.
예를 들어, PQI 파라미터 외에 별도로 설정된 PDSCH 시작 심볼 값은 EPDCCH 시작 심볼 값을 지시하기 위한 정보일 수 있다. 즉, EPDCCH 시작 심볼 = PDSCH 시작 심볼로 결정되는데, 이를 위하여 단말에게 EPDCCH 시작 심볼 정보가 반-정적으로 설정되어 있는 경우에는, 단말은 이에 따라 PDSCH 시작 심볼을 결정하고 PDSCH 복조 등을 수행할 수 있다.
다른 예시로서, DL 서빙 셀에 대한 PDSCH 시작 심볼 정보가 아니더라도, 다를 셀 또는 TP(예를 들어, CSI-RS와의 QC 정보 등을 통해서 PDSCH를 전송하는 셀 또는 TP)에 대해서 설정된 PDSCH 시작 심볼 정보가 존재한다면, 단말은 이에 따라 PDSCH 복조 등을 수행할 수 있다. 이는 반송파 병합(CA) 시스템에서 SCell의 PDSCH 시작 심볼 정보가 RRC 시그널링에 의해 주어지는 방식과 유사하다고 이해될 수 있으며, 여기서 SCell이 동일 주파수 대역에서의 CoMP 측정 세트 내의 인접 TP인 것으로 볼 수 있다.
예를 들어, 폴백 동작을 위해서 DCI 포맷 1A가 사용되는 경우를 가정할 수 있다. 이 경우, CoMP와 같은 동작 모드를 위한 정보(특히, PDSCH 시작 심볼에 대한 정보)가 제공되지 않을 수 있다. 또는, CoMP 모드를 위한 PDSCH를 스케줄링하는 DCI라고 하더라도, 다른 단말들과 함께 스케줄링 메시지를 검출 시도하는 공통 탐색 공간에서 전송될 때에는, 다른 스케줄링 정보와의 길이를 동일하게 유지하기 위해서 PDSCH 시작 심볼 정보 등이 포함되지 못할 수도 있다. 이와 같이 PDSCH 시작 심볼에 대한 정보가 존재하지 않는 스케줄링 정보에 의해서 PDSCH가 스케줄링되는 경우에, EPDCCH와 PDSCH는 동일한 셀(또는 CC) 상에서 동일한 시작점을 가지는 것으로 동작할 수 있다.
세 번째 우선순위에 따른 동작으로서, PQI 파라미터가 주어지지도 않고 다른 목적으로 설정된 값도 존재하지 않는 경우에는, 가장 기본적인 동작을 지원하기 위한 방식으로서, PDSCH 시작 심볼 인덱스를 DL 서빙셀의 PCFICH에서 지시하는 PDCCH의 마지막 심볼 인덱스 다음의 심볼 인덱스(즉, PDCCH 마지막 심볼 인덱스 + 1)인 것으로 결정할 수 있다.
다른 예시로서, PCFICH의 CFI 값이 지시할 수 있는 최대 값에서 1을 더한 값(즉, PDCCH 최대 스팬(span) + 1)이 PDSCH 시작 심볼 인덱스의 값인 것으로 결정할 수 있다. PDCCH 최대 스팬 + 1로 결정하는 방식은, 실제로 PDCCH가 최대 스팬보다 적은 심볼을 이용하는 경우에는 자원 활용도가 떨어질 수 있지만, 단말 동작이 단순화 및 안정화되는 장점을 가진다. 예를 들어, PDCCH를 위해서 사용될 수 있는 OFDM 심볼의 개수는 아래의 표 10과 같이 정의될 수 있는데, 그 중에서 PDCCH를 위한 OFDM 심볼 개수의 최대 값은 하향링크 시스템 대역폭이 10 개의 RB 이하인 경우(즉,
Figure 112015018220788-pct00033
≤10)의 4개이다. 따라서, PDSCH 시작 심볼은 5 번째 OFDM 심볼(OFDM 심볼 인덱스가 0부터 시작하는 경우에는, 심볼 인덱스 4)인 것으로 결정할 수 있다.
Figure 112015018220788-pct00034
또 다른 예시로서, 상기 표 10에서 프레임 구조, MBSFN 또는 비-MBSFN 서브프레임 여부, CRS 안테나 포트 개수 등의 조건에 따라서 CFI가 지시하는 값(즉, PDCCH를 위한 OFDM 심볼의 개수) 중에서, 해당 조건에서의 최대 값을 결정하고, 상기 결정된 최대 값에 해당하는 심볼 인덱스 + 1 을 PDSCH 시작 심볼 위치로서 결정할 수도 있다. 이와 같이 조건에 따른 최대 값은 상기 표 10의 특정 행(row)에서의 최대값 또는 특정 열(column)에서의 최대 값 등으로 결정될 수 있다.
또 다른 예시로서, DL 서빙 셀이 아니라, 다른 셀 또는 TP의 PDSCH 시작 심볼 위치 정보를 이용할 수도 있다. 예를 들어, 상기 다른 셀 또는 TP는, CSI-RS와의 QC 정보 등을 통해서 PDSCH를 전송하는 셀 또는 TP일 수 있다. 상기 다른 셀 또는 TP에 대한 특정 시그너쳐 값(예를 들어, 해당 셀 또는 TP의 물리 셀 식별자, 가상 셀 식별자 등의 스크램블링 시드 값 등)이 지시될 때, 해당 셀 또는 TP의 RS(예를 들어, CRS, 트래킹 RS, CSI-RS 등)을 통해서 PCFICH를 디코딩할 수 있다면, 상기 PCFICH에서 지시되는 CFI 값에 따라 결정되는 PDCCH의 마지막 심볼 인덱스의 다음 심볼 인덱스를 PDSCH 시작 심볼 위치라고 결정할 수도 있다.
추가적인 예시로서, 단말이 특정 PDSCH 스케줄링 정보(예를 들어, 특정 DCI 포맷을 통한 하향링크 스케줄링 정보)를 수신한 경우, PDSCH를 전송하는 셀이 상기 단말의 서빙셀이 아닌 특정 셀인 것으로 사전에 정하는 것이 가능하다. 이 경우, 사전에 정해진 특정 셀이 어떤 셀인지는, 상위계층(예를 들어, RRC 계층)에 의해서 설정될 수 있다.
또한, EPDCCH가 아닌 PDCCH를 통해 전송되는 DCI에 의해서 PDSCH가 스케줄링되는 경우에는, EPDCCH 시작 심볼에 대한 정보가 PDSCH 시작 심볼과 상이하거나, 또는 EPDCCH 시작 심볼에 대한 정보 자체가 존재하지 않는 경우에 해당할 수 있다. 이 경우에는, 상기 두 번째 우선순위에서 별도로 설정된 PDSCH 시작 심볼 값을 이용할 수 없으므로, 상기 세 번째 우선순위에 따라서 PDSCH 시작 심볼 위치가 결정될 수 있다.
폴백 모드로 스케줄링된 PDSCH에 대한 PQI 파라미터의 적용
단말에 대해서 전송모드 재설정 등이 수행되는 상황에서 기지국과 단말의 동작 모드 설정이 불일치하는 경우가 발생할 수 있고, 이러한 경우에는 안정적인 동작을 위해서 단말과 기지국이 모두 기본적으로 지원하는 폴백 모드로 동작할 수 있다. 본 발명에서는 폴백 모드에서 스케줄링되는 PDSCH에 대해서 PQI 파라미터를 적용하는 동작을 제안한다.
폴백 모드로 동작하는 경우, 상기 첫 번째 우선순위에 따른 동작(예를 들어, PDSCH 시작 심볼 정보)가 직접적으로 주어지는 경우의 동작)이 적용되지 못할 수 있다. 여기서, 폴백 모드로 동작하는 경우에는, 상기 첫 번째 우선순위에 따른 동작이 적용될 수 없는 경우, 상기 두 번째 우선순위에 따른 동작(예를 들어, EPDCCH 시작 심볼 정보에 따라서 PDSCH 시작 심볼 위치를 결정하는 동작)을 수행하지 않고, 상기 세 번째 우선순위에 따르는 동작(예를 들어, PCFICH가 지시하는 CFI 값에 의해 결정되는 PDCCH 마지막 심볼 인덱스의 바로 다음 심볼 인덱스로 PDSCH 시작 심볼 위치를 결정하는 동작)이 수행될 수도 있다.
예를 들어, 폴백 모드를 위한 DCI 포맷(예를 들어, DCI 포맷 1A)에 의해서 스케줄링된 PDSCH 전송 시작 심볼 위치는, 보다 안정적인 폴백 동작을 위해서 동일 셀(또는 CC) 상의 EPDCCH 시작 심볼과 상이하게 설정될 수도 있다. 예를 들어, 폴백 모드를 위한 DCI 포맷 1A에 따라서 PDSCH가 스케줄링되는 경우, 이 PDSCH는 사전에 정해진 특정 셀(예를 들어, 해당 단말의 서빙 셀)로부터 전송되는 것으로 지정될 수 있으며, 이는 폴백 모드에서는 서빙셀이 단말의 동작을 관리하도록 하는 것이 적절하기 때문이다. 이러한 경우, DCI 포맷 1A로 스케줄링된 PDSCH의 시작 심볼 위치는, 서빙셀의 PDSCH 시작 심볼 위치와 동일하게 설정되는 것이 바람직하다.
이에 따라, 단말은 DCI 포맷 1A에 의해 PDSCH가 스케줄링된 경우에는, 별도로 RRC-설정되는 EPDCCH의 시작 심볼 위치와 무관하게, 서빙셀의 PCFICH의 CFI가 지시하는 값에 따라 PDSCH 시작 심볼 위치를 결정할 수 있다.
또는, 상위 계층(예를 들어, RRC 계층) 시그널링을 통해서, 서빙셀의 PDSCH 시작 심볼 정보를 알려주고 이에 따르도록 할 수도 있다. 여기서, 상위 계층 신호가 지시하는 서빙셀 PDSCH 시작 심볼 정보는, DCI 포맷 1A로 스케줄링 되었을 경우에 적용해야 하는 PDSCH 시작 심볼 위치로서 주어지거나, 또는, 서빙셀의 특정 RS(예를 들어, CRS 또는 기준이 되는 특정 CSI-RS)와 동일한 위치에서 PDSCH가 전송된다고 가정할 수 있는 경우에 사용하는 PDSCH 시작 심볼 위치로서 주어질 수도 있다. 여기서, 상기 기준이 되는 CSI-RS는 서빙셀이 전송한다고 묵시적으로 가정하며, 첫 번째 (또는 가장 낮은) CSI-RS 설정 인덱스와 같이 특정 CSI-RS 설정 인덱스에 해당하는 것일 수 있다.
또한, PDSCH 스케줄링 메시지가 공통 탐색 공간(CSS) 상에서 검출되고, PDSCH 스케줄링 메시지에 PDSCH 시작 심볼 위치에 대한 정보가 포함되지 않는 경우에도, 위와 유사한 방식으로 동작할 수 있다. 즉, 비-MBSFN 서브프레임에서 CSS 상에서 전송되는 DCI 포맷 1A의 경우에는 CRS 기반으로 동작하여 모든 종류의 전송 모드에서도 동일한 동작을 보장하는 폴백 동작을 제공하여야 하므로, 반드시 서빙셀의 PCFICH 정보에 따라서 PDSCH 시작 심볼 위치를 결정하도록 하는 것이 바람직하다.
전술한 본 발명의 제안을 정리하여, 폴백 모드에서 PQI 파라미터 적용에 대한 본 발명의 제 1 예시에 따른 단말 동작은 다음과 같이 정의될 수 있다.
- 비-MBSFN 서브프레임에서 공통 탐색 공간 상의 DCI 포맷 1A에 의해 PDSCH가 스케줄링되는 경우, 상기 PDSCH의 시작 심볼은 DL 서빙셀의 PCFICH 정보(즉, CFI)에 기초하여 결정된다.
- MBSFN 서브프레임에서 또는 비-MBSFN 서브프레임에서 단말-특정 탐색 공간 상의 DCI 포맷 1A에 의해서 PDSCH가 스케줄링되는 경우, 상기 PDSCH의 시작 심볼은 DCI 포맷 2D에 대해서 설정된 PQI 상태 값 중의 미리 결정된 하나에 따르는 PQI 파라미터에 따라서 결정된다. 여기서, DCI 포맷 2D는 PQI 필드를 포함하는 DCI 포맷을 예시적으로 칭하는 것이다. 또한, PQI 상태 값 중의 미리 결정된 하나는, 디폴트 PQI 상태 값을 의미하는 것으로서, 예를 들어, 첫 번째 PQI 상태 값, 또는 가장 낮은 PQI 상태 값 등으로 정의될 수 있다.
폴백 모드에서 PQI 파라미터 적용에 대한 본 발명의 제 2 예시로서, 비-MBSFN 서브프레임에서 단말-특정 탐색 공간 상에서 전송되는 DCI에 의해서 PDSCH가 스케줄링되는 경우에도 폴백 모드로서 동작할 수 있도록 하기 단말 동작을 정의할 수도 있다. 이에 따라, MBSFN 서브프레임인 경우와 비-MBSFN 서브프레임인 경우로 조건을 나누어, 다음과 같이 단말 동작을 정의할 수도 있다.
- 비-MBSFN 서브프레임에서 DCI 포맷 1A에 의해 PDSCH가 스케줄링되는 경우, 상기 PDSCH의 시작 심볼은 DL 서빙셀의 PCFICH 정보(즉, CFI)에 기초하여 결정된다.
- MBSFN 서브프레임에서 DCI 포맷 1A에 의해 PDSCH가 스케줄링되는 경우, 상기 PDSCH의 시작 심볼은 PDSCH 시작 심볼은 DCI 포맷 2D에 대해서 설정된 PQI 상태 값 중의 미리 결정된 하나에 따르는 PQI 파라미터에 따라서 결정된다. 여기서, DCI 포맷 2D는 PQI 필드를 포함하는 DCI 포맷을 예시적으로 칭하는 것이다. 또한, PQI 상태 값 중의 미리 결정된 하나는, 디폴트 PQI 상태 값을 의미하는 것으로서, 예를 들어, 첫 번째 PQI 상태 값, 또는 가장 낮은 PQI 상태 값 등으로 정의될 수 있다.
전술한 본 발명의 예시들에서 제안하는 사항은, CRS 기반으로 PDSCH 복조를 수행하는 경우에는, 서빙셀의 PCFICH 정보(즉, CFI)에 기초하여 PDSCH 시작 심볼이 결정되어야 한다는 것이다. 또한, TM10의 경우에도 TM9에서와 같이 비-MBSFN 서브프레임에서 DCI 포맷 1A에 의해서 PDSCH가 스케줄링되는 경우, 공통 탐색 공간에서 DCI 포맷 1A가 검출되는지 또는 단말-특정 탐색 공간에서 DCI 포맷 1A가 검출되는지와 무관하게 CRS-기반 PDSCH 전송(예를 들어, 안테나 포트 0 전송 또는 전송 다이버시티 모드)이 수행된다고 하면, 상기 폴백 모드에서 PQI 파라미터 적용에 대한 본 발명의 제 2 예시에서 설명한 바와 같이 PQI 파라미터를 적용하는 것이 아니라 서빙셀의 PCFICH 정보(즉, CFI)에 기초하여 PDSCH 시작 심볼이 결정될 수 있다. 한편, 비-MBSFN 서브프레임에서 EPDCCH를 통해 전송되는 DCI 포맷 1A는 오직 단말-특정 탐색 공간을 통해서만 전송되므로, 상기 폴백 모드에서 PQI 파라미터 적용에 대한 본 발명의 제 1 예시에서 설명한 바와 같이, 비-MBSFN 서브프레임에서 공통 탐색 공간을 통해서 수신된 DCI 포맷 1A에 의해 스케줄링된 PDSCH에 대해서는 서빙셀의 PCFICH 정보(즉, CFI)에 기초하여 PDSCH 시작 심볼을 결정하고, 그 외의 DCI 포맷 1A에 의해서 스케줄링된 PDSCH에 대해서는 특정 PQI 상태 값에 대응하는 PQI 파라미터를 적용할 수 있다.
상기 폴백 모드에서 PQI 파라미터 적용에 대한 본 발명의 제 1 및 제 2 예시에 대해서, DCI 포맷 1A가 EPDCCH 상에서 전송되는지 PDCCH 상에서 전송되는지에 대한 세부적인 조건을 고려한 본 발명의 추가적인 예시에 따른 단말 동작은 다음과 같이 정의할 수 있다.
상기 폴백 모드에서 PQI 파라미터 적용에 대한 본 발명의 제 1 예시는 다음과 같은 변형예로서 정의될 수 있다.
- 비-MBSFN 서브프레임에서 공통 탐색 공간 상의 EPDCCH를 통해서 전송되는 DCI 포맷 1A에 의해 PDSCH가 스케줄링되는 경우, 상기 PDSCH의 시작 심볼은 EPDCCH 시작 심볼에 따라서 결정된다. 여기서, EPDCCH 시작 심볼은 서빙셀의 PCFICH 정보(즉, CFI)에 기초하여 결정되거나, 또는 RRC-설정된 EPDCCH 시작 심볼 값에 따라서 결정될 수 있다.
- 비-MBSFN 서브프레임에서 공통 탐색 공간 상의 PDCCH를 통해서 전송되는 DCI 포맷 1A에 의해 PDSCH가 스케줄링되는 경우, 상기 PDSCH의 시작 심볼은 DL 서빙셀의 PCFICH 정보(즉, CFI)에 기초하여 결정된다.
- PDCCH 또는 EPDCCH를 통한 전송 여부에 무관하게, MBSFN 서브프레임에서 또는 비-MBSFN 서브프레임에서 단말-특정 탐색 공간 상의 DCI 포맷 1A에 의해서 PDSCH가 스케줄링되는 경우, 상기 PDSCH의 시작 심볼은 DCI 포맷 2D에 대해서 설정된 PQI 상태 값 중의 미리 결정된 하나에 따르는 PQI 파라미터에 따라서 결정된다. 여기서, DCI 포맷 2D는 PQI 필드를 포함하는 DCI 포맷을 예시적으로 칭하는 것이다. 또한, PQI 상태 값 중의 미리 결정된 하나는, 디폴트 PQI 상태 값을 의미하는 것으로서, 예를 들어, 첫 번째 PQI 상태 값, 또는 가장 낮은 PQI 상태 값 등으로 정의될 수 있다.
상기 폴백 모드에서 PQI 파라미터 적용에 대한 본 발명의 제 2 예시는 다음과 같은 변형예로서 정의될 수 있다.
- 비-MBSFN 서브프레임에서 EPDCCH를 통해서 전송되는 DCI 포맷 1A에 의해 PDSCH가 스케줄링되는 경우, 상기 PDSCH의 시작 심볼은 EPDCCH 시작 심볼에 따라서 결정된다. 여기서, EPDCCH 시작 심볼은 서빙셀의 PCFICH 정보(즉, CFI)에 기초하여 결정되거나, 또는 RRC-설정된 EPDCCH 시작 심볼 값에 따라서 결정될 수 있다.
- 비-MBSFN 서브프레임에서 PDCCH를 통해서 전송되는 DCI 포맷 1A에 의해 PDSCH가 스케줄링되는 경우, 상기 PDSCH의 시작 심볼은 DL 서빙셀의 PCFICH 정보(즉, CFI)에 기초하여 결정된다.
- PDCCH 또는 EPDCCH를 통한 전송 여부에 무관하게, MBSFN 서브프레임에서 DCI 포맷 1A에 의해 PDSCH가 스케줄링되는 경우, 상기 PDSCH의 시작 심볼은 DCI 포맷 2D에 대해서 설정된 PQI 상태 값 중의 미리 결정된 하나에 따르는 PQI 파라미터에 따라서 결정된다. 여기서, DCI 포맷 2D는 PQI 필드를 포함하는 DCI 포맷을 예시적으로 칭하는 것이다. 또한, PQI 상태 값 중의 미리 결정된 하나는, 디폴트 PQI 상태 값을 의미하는 것으로서, 예를 들어, 첫 번째 PQI 상태 값, 또는 가장 낮은 PQI 상태 값 등으로 정의될 수 있다.
전술한 바와 같이 폴백 모드(예를 들어, DCI 포맷 1A에 의해서 PDSCH가 스케줄링되는 경우)에서 PDSCH 시작 심볼을 결정하는 방안에 대한 본 발명의 다양한 예시들은, CRS RM(Rate Matching) 패턴(예를 들어, CRS 포트 개수, CRS 주파수 시프트 정보, MBSFN 설정 정보 등)을 결정하는 동작에 대해서도 유사하게 적용될 수 있다. 이는, 폴백 모드 DCI 포맷 1A에 의해 스케줄링되는 CRS-기반 PDSCH 전송(예를 들어, 안테나 포트 0 전송 또는 전송 다이버시티 모드)에 대해서는 서빙셀의 PCFICH 정보(즉, CFI)에 따라서 PDSCH 시작 심볼을 결정하여 불명료성을 제거하고 안정성을 도모한다는 것이므로, CRS RM 패턴의 결정도 이와 마찬가지 목적으로 서빙셀의 CRS RM 패턴에 따라서 PDSCH RE 매핑을 결정하는 것이 적절하다. 즉, DCI 포맷 2D에 대해서 설정된 특정 PQI 상태 값(예를 들어, 첫 번째 PQI 상태 값, 또는 가장 낮은 PQI 상태 값)에 대응하는 PQI 파라미터(예를 들어, PDSCH 시작 심볼 정보 또는 CRS RM 패턴 등)은, CRS-기반 PDSCH 전송(예를 들어, 안테나 포트 0 전송 또는 전송 다이버시티 모드)에 대해서는 적용하지 않고 그 이외의 PDSCH 전송(예를 들어, DMRS-기반 PDSCH 전송)에 대해서만 한정적으로 적용하는 것이 바람직하다. 이와 같이 CRS RM 패턴이 결정되면, 그에 따라 PDSCH RE 매핑이 결정될 수 있다.
여기서, CRS-기반으로 전송되는 PDSCH의 복조에 대해서는, PQI 파라미터 중에서 일부는 이용하되, 그 외의 파라미터는 PQI 파라미터를 따르지 않고 서빙 셀의 정보를 따르도록 동작할 수도 있다. 예를 들어, CRS-기반으로 전송되는 PDSCH의 복조에 대해서는, PQI 파라미터 세트에 포함되는 파라미터들 중에서 ZP CSI-RS 설정 및/또는 PDSCH 시작 심볼에 대한 정보만 적용하고, CRS RM 패턴에 대한 정보는 적용하지 않도록 (즉, CRS RM 패턴에 대해서는 서빙 셀의 정보에 따르도록) 할 수 있다. 이에 따른 단말 동작은 다음과 같이 정의할 수 있다.
- 비-MBSFN 서브프레임에서 공통 탐색 공간 상의 DCI 포맷 1A에 의해 PDSCH가 스케줄링되는 경우, CRS RM 패턴은 DL 서빙셀의 CRS RM 패턴 정보에 따라서 결정된다. 여기서, 서빙 셀의 CRS RM 패턴 정보는, 예를 들어, 서빙셀의 CRS 포트 개수, 서빙셀의 CRS 주파수 시프트, 서빙셀의 MBSFN 서브프레임 설정 등을 포함할 수 있다.
- MBSFN 서브프레임에서 또는 비-MBSFN 서브프레임에서 단말-특정 탐색 공간 상의 DCI 포맷 1A에 의해서 PDSCH가 스케줄링되는 경우, CRS RM 패턴은 DCI 포맷 2D에 대해서 설정된 PQI 상태 값 중의 미리 결정된 하나에 따르는 PQI 파라미터 중에서 CRS RM 패턴에 관련된 파라미터에 따라서 결정된다. 여기서, DCI 포맷 2D는 PQI 필드를 포함하는 DCI 포맷을 예시적으로 칭하는 것이다. 또한, PQI 상태 값 중의 미리 결정된 하나는, 디폴트 PQI 상태 값을 의미하는 것으로서, 예를 들어, 첫 번째 PQI 상태 값, 또는 가장 낮은 PQI 상태 값 등으로 정의될 수 있다. 또한, PQI 파라미터 중에서 CRS RM 패턴에 관련된 파라미터는, CRS 포트 개수(예를 들어, 1, 2, 4, 또는 유보된 값), CRS 주파수 시프트, MBSFN 서브프레임 설정 등에 해당한다.
상기 CRS RM 패턴의 결정에 대한 본 발명의 예시에 있어서, 비-MBSFN 서브프레임에서 단말-특정 탐색 공간 상에서 전송되는 DCI에 의해서 PDSCH가 스케줄링되는 경우에도 폴백 모드로서 동작할 수 있도록 하기 단말 동작을 정의할 수도 있다. 이에 따라, MBSFN 서브프레임인 경우와 비-MBSFN 서브프레임인 경우로 조건을 나누어, 다음과 같이 단말 동작을 정의할 수도 있다.
- 비-MBSFN 서브프레임에서 DCI 포맷 1A에 의해 PDSCH가 스케줄링되는 경우, CRS RM 패턴은 DL 서빙셀의 CRS RM 패턴 정보에 따라서 결정된다. 여기서, 서빙 셀의 CRS RM 패턴 정보는, 예를 들어, 서빙셀의 CRS 포트 개수, 서빙셀의 CRS 주파수 시프트, 서빙셀의 MBSFN 서브프레임 설정 등을 포함할 수 있다.
- MBSFN 서브프레임에서 DCI 포맷 1A에 의해 PDSCH가 스케줄링되는 경우, CRS RM 패턴은 DCI 포맷 2D에 대해서 설정된 PQI 상태 값 중의 미리 결정될 하나에 따르는 PQI 파라미터 중에서 CRS RM 패턴에 관련된 파라미터에 따라서 결정된다. 여기서, DCI 포맷 2D는 PQI 필드를 포함하는 DCI 포맷을 예시적으로 칭하는 것이다. 또한, PQI 상태 값 중의 미리 결정된 하나는, 디폴트 PQI 상태 값을 의미하는 것으로서, 예를 들어, 첫 번째 PQI 상태 값, 또는 가장 낮은 PQI 상태 값 등으로 정의될 수 있다. 또한, PQI 파라미터 중에서 CRS RM 패턴에 관련된 파라미터는, CRS 포트 개수(예를 들어, 1, 2, 4, 또는 유보된 값), CRS 주파수 시프트, MBSFN 서브프레임 설정 등에 해당한다.
본 발명의 또 다른 변형예로서, 서브프레임 타입(예를 들어, MBSFN 또는 비-MBSFN) 및 탐색 공간의 타입(예를 들어, 공통 탐색 공간 또는 단말-특정 탐색 공간)에 대한 조건과 무관하게, DCI 포맷 1A에 의해서 PDSCH가 스케줄링되는 경우에는 항상 DCI 포맷 2D에 대해서 설정된 PQI 상태 값 중의 미리 결정된 하나(예를 들어, 가장 낮은 PQI 상태 값)에 해당하는 PQI 파라미터에 따르도록 하되, CRS-기반 PDSCH가 스케줄링된 경우에는 상기 PQI 파라미터 중에서 PDSCH 시작 심볼 정보 및/또는 CRS RM 패턴 정보는 서빙셀 이외의 다른 셀의 정보에 따라서 RRC-설정되는 것으로 예상하는 것이 허용되지 않는다고 정의될 수도 있다. 이에 따른 단말 동작은 다음과 같이 정리할 수 있다.
먼저, CRS RM 정보에 대한 단말 동작은 다음과 같이 정의될 수 있다.
- 비-MBSFN 서브프레임에서 DCI 포맷 1A에 의해서 PDSCH가 스케줄링되는 경우, 단말은 DCI 포맷 2D에 대해서 설정된 PQI 상태 값 중의 미리 결정된 하나에 의해서 지시되는 CRS RM 패턴에 관련된 파라미터는 상기 단말의 서빙셀의 CRS RM 정보와 상이할 것으로 예상하는(expect) 것이 허용되지 않는다. 여기서, DCI 포맷 2D는 PQI 필드를 포함하는 DCI 포맷을 예시적으로 칭하는 것이다. 또한, PQI 상태 값 중의 미리 결정된 하나는, 디폴트 PQI 상태 값을 의미하는 것으로서, 예를 들어, 첫 번째 PQI 상태 값, 또는 가장 낮은 PQI 상태 값 등으로 정의될 수 있다. 또한, PQI 파라미터 중에서 CRS RM 패턴에 관련된 파라미터는, CRS 포트 개수(예를 들어, 1, 2, 4, 또는 유보된 값), CRS 주파수 시프트, MBSFN 서브프레임 설정 등에 해당한다.
상기 단말 동작은 다음과 같이 표현될 수도 있다.
- TM10으로 설정된 단말이 포트 0 내지 3으로 복조되는 PDSCH를 수신하는 경우, 단말은 해당 PDSCH의 RE 매핑을 정의하는 PQI 상태의 CRS 포트 개수, v-shift(또는 주파수 시프트), MBSFN 서브프레임 설정 정보가 서빙절의 그것과 동일하게 주어지는 것으로 가정할 수 있다. 여기서, 포트 0 내지 3은 CRS 안테나 포트 인덱스를 의미한다.
다음으로, PDSCH 시작 심볼 정보에 대한 단말 동작은 다음과 같이 정의될 수 있다.
- 비-MBSFN 서브프레임에서 DCI 포맷 1A에 의해서 PDSCH가 스케줄링되는 경우, 단말은 DCI 포맷 2D에 대해서 설정된 PQI 상태 값 중의 미리 결정된 하나에 의해서 지시되는 PDSCH 시작 심볼 정보는 상기 단말의 서빙셀의 PDSCH 시작 심볼 정보와 상이할 것으로 예상하는(expect) 것이 허용되지 않는다. 여기서, DCI 포맷 2D는 PQI 필드를 포함하는 DCI 포맷을 예시적으로 칭하는 것이다. 또한, PQI 상태 값 중의 미리 결정된 하나는, 디폴트 PQI 상태 값을 의미하는 것으로서, 예를 들어, 첫 번째 PQI 상태 값, 또는 가장 낮은 PQI 상태 값 등으로 정의될 수 있다.
상기 단말 동작은 다음과 같이 표현될 수도 있다.
- TM10으로 설정된 단말이 포트 0 내지 3으로 복조되는 PDSCH를 수신하는 경우, 단말은 해당 PDSCH의 시작 심볼을 정의하는 PQI 상태의 시작 심볼 정보가 서빙셀의 그것과 동일하게 주어지는 것으로 가정할 수 있다. 여기서, 포트 0 내지 3은 CRS 안테나 포트 인덱스를 의미한다.
본 발명의 또 다른 변형예로서, DCI 포맷 1A에 의해서 PDSCH가 스케줄링되는 경우에는 항상 DCI 포맷 2D에 대해서 설정된 PQI 상태 값 중의 미리 결정된 하나(예를 들어, 가장 낮은 PQI 상태 값)에 해당하는 PQI 파라미터에 따르도록 하되, 비-MBSFN 서브프레임에서 공통 탐색 공간 상에서 전송되는 DCI 포맷 1A에 의해서 PDSCH가 스케줄링되는 경우에는 상기 PQI 파라미터 중에서 PDSCH 시작 심볼 정보 및/또는 CRS RM 패턴 정보는 서빙셀 이외의 다른 셀의 정보에 따라서 RRC-설정되는 것으로 예상하는 것이 허용되지 않는다고 정의될 수도 있다. 이에 따른 단말 동작은 다음과 같이 정리할 수 있다.
먼저, CRS RM 정보에 대한 단말 동작은 다음과 같이 정의될 수 있다.
- 비-MBSFN 서브프레임에서 공통 탐색 공간 상의 DCI 포맷 1A에 의해서 PDSCH가 스케줄링되는 경우, 단말은 DCI 포맷 2D에 대해서 설정된 PQI 상태 값 중의 미리 결정된 하나에 의해서 지시되는 CRS RM 패턴에 관련된 파라미터는 상기 단말의 서빙셀의 CRS RM 정보와 상이할 것으로 예상하는(expect) 것이 허용되지 않는다. 여기서, DCI 포맷 2D는 PQI 필드를 포함하는 DCI 포맷을 예시적으로 칭하는 것이다. 또한, PQI 상태 값 중의 미리 결정된 하나는, 디폴트 PQI 상태 값을 의미하는 것으로서, 예를 들어, 첫 번째 PQI 상태 값, 또는 가장 낮은 PQI 상태 값 등으로 정의될 수 있다. 또한, PQI 파라미터 중에서 CRS RM 패턴에 관련된 파라미터는, CRS 포트 개수(예를 들어, 1, 2, 4, 또는 유보된 값), CRS 주파수 시프트, MBSFN 서브프레임 설정 등에 해당한다.
다음으로, PDSCH 시작 심볼 정보에 대한 단말 동작은 다음과 같이 정의될 수 있다.
- 비-MBSFN 서브프레임에서 공통 탐색 공간 상의 DCI 포맷 1A에 의해서 PDSCH가 스케줄링되는 경우, 단말은 DCI 포맷 2D에 대해서 설정된 PQI 상태 값 중의 미리 결정된 하나에 의해서 지시되는 PDSCH 시작 심볼 정보는 상기 단말의 서빙셀의 PDSCH 시작 심볼 정보와 상이할 것으로 예상하는(expect) 것이 허용되지 않는다. 여기서, DCI 포맷 2D는 PQI 필드를 포함하는 DCI 포맷을 예시적으로 칭하는 것이다. 또한, PQI 상태 값 중의 미리 결정된 하나는, 디폴트 PQI 상태 값을 의미하는 것으로서, 예를 들어, 첫 번째 PQI 상태 값, 또는 가장 낮은 PQI 상태 값 등으로 정의될 수 있다.
PDSCH QCL 동작방식(Behavior)과 EPDCCH QCL 동작방식
전술한 본 발명의 다양한 제안들 중에서, PDSCH에 대한 QC 동작방식(또는 PDSCH QCL 동작방식)으로서 Behavior A, Behavior B를 정의하였다. 간략하게 다시 정리하면, PDSCH QCL Behavior A는 서빙셀 CRS, CSI-RS 및 PDSCH DMRS 간의 QCL을 가정하는 동작방식이고, PDSCH QCL Behavior B는 CSI-RS(예를 들어, 특정 셀의 CRS와 QCL된 CSI-RS)와 PDSCH DMRS 간의 QCL을 가정하는 동작방식이다.
전술한 본 발명의 다양한 제안들 중에서 EPDCCH에 대한 QC 동작방식(또는 EPDCCH QCL 동작방식)으로서 Behavior A, Behavior B를 정의하였다. 간략하게 다시 정리하면, EPDCCH QCL Behavior A는 EPDCCH DMRS와 서빙셀 CRS 간의 QCL을 가정하는 동작방식이고, EPDCCH QCL Behavior B는 EPDCCH DMRS와 CSI-RS 간의 QCL을 가정하는 동작방식이다.
본 발명의 추가적인 제안으로서, EPDCCH QCL Behavior A와 EPDCCH QCL Behavior B는, PDSCH QCL Behavior가 무엇으로 RRC-설정되는지에 따라서 제약(restriction)을 가지고 설정되도록 할 수 있다.
예를 들어, 단말이 PDSCH QCL Behavior A(즉, 서빙셀 CRS, CSI-RS 및 DMRS 간의 QCL)로 설정되는 경우, EPDCCH QCL Behavior A(즉, 서빙셀 CRS와 EPDCCH DMRS 간의 QCL)가 자동적으로 설정될 수 있다. 동일한 의미를 달리 표현하자면, 단말이 PDSCH QCL Behavior A로 설정되는 경우, EPDCCH QCL Behavior는 반드시 EPDCCH QCL Behavior A로만 설정되어야 한다. 동일한 의미를 또 다른 방식으로 표현하자면, 단말이 PDSCH QCL Behavior A로 설정되는 경우, 해당 단말은 EPDCCH QCL Behavior B(즉, CSI-RS와 EPDCCH DMRS 간의 QCL)로 설정되는 것을 예상하는 것이 허용되지 않는다. 단말이 PDSCH QCL Behavior A로 설정되면 PQI 파라미터에서 QCL 목적의 NZP CSI-RS 설정에 대한 정보가 포함되지 않을 수도 있으므로, EPDCCH QCL Behavior B로 설정될 경우 어떤 CSI-RS와 EPDCCH DMRS가 QCL인지를 특정할 수 없게 된다. 따라서, 이러한 불명료성을 방지하기 위해서, PDSCH QCL Behavior A로 설정되면, EPDCCH QCL Behavior A가 설정되는 것이 적절하다. 이와 유사한 목적으로, EPDCCH Behavior A가 설정되는 경우에는 PDSCH Behavior A가 설정되도록 할 수도 있다.
추가적인 예시로서, 단말이 PDSCH QCL Behavior B(즉, CSI-RS 및 DMRS 간의 QCL)로 설정되는 경우, EPDCCH QCL Behavior B(즉, CSI-RS와 EPDCCH DMRS 간의 QCL)가 자동적으로 설정될 수 있다. 동일한 의미를 달리 표현하자면, 단말이 PDSCH QCL Behavior B로 설정되는 경우, EPDCCH QCL Behavior는 반드시 EPDCCH QCL Behavior B로만 설정되어야 한다. 동일한 의미를 또 다른 방식으로 표현하자면, 단말이 PDSCH QCL Behavior B로 설정되는 경우, 해당 단말은 EPDCCH QCL Behavior A(즉, 서빙셀 CRS와 EPDCCH DMRS 간의 QCL)로 설정되는 것을 예상하는 것이 허용되지 않는다. 이는, PDSCH QCL Behavior와 EPDCCH QCL Behavior의 통일성을 유지하기 위함이다. 유사하게, EPDCCH Behavior B가 설정되는 경우에는 PDSCH Behavior B가 설정되도록 할 수도 있다.
이러한 본 발명의 제안을 달리 표현하면, PDSCH QCL Behavior와 EPDCCH QCL Behavior가 모두 QCL Behavior A로 설정되거나, 아니면 모두 QCL Behavior B로 설정되도록 제약을 둘 수 있다. 즉, PDSCH QCL Behavior와 EPDCCH QCL Behavior는 서로 연결 또는 의존성을 가지도록 RRC-설정될 수 있다.
한편, 단말이 PDSCH QCL Behavior B(즉, CSI-RS 및 DMRS 간의 QCL)로 설정되는 경우, EPDCCH QCL Behavior는 EPDCCH QCL Behavior A(즉, 서빙셀 CRS와 EPDCCH DMRS 간의 QCL) 또는 EPDCCH QCL Behavior B(즉, CSI-RS와 EPDCCH DMRS 간의 QCL) 중의 어느 하나로 설정될 수도 있다. 즉, PDSCH QCL Behavior B인 경우에만, EPDCCH QCL Behavior는 A 또는 B 중에서 RRC-설정될 수 있도록 제약을 완화할 수도 있다.
이와 유사하게, EPDCCH QCL Behavior B가 설정되는 경우에는, PDSCH QCL Behavior A 또는 B 중에서 어느 하나로 설정될 수도 있다.
또는, PDSCH QCL Behavior와 EPDCCH QCL Behavior 간의 설정 상의 독립성을 제공하기 위해서는 전술한 바와 같은 제약을 두지 않을 수도 있다. 즉, 단말이 PDSCH QCL Behavior A(즉, 서빙셀 CRS, CSI-RS 및 DMRS 간의 QCL)로 설정되는 경우, EPDCCH QCL Behavior는 EPDCCH QCL Behavior A(즉, 서빙셀 CRS와 EPDCCH DMRS 간의 QCL) 또는 EPDCCH QCL Behavior B(즉, CSI-RS와 EPDCCH DMRS 간의 QCL) 중의 어느 하나로 설정될 수도 있다.
이와 유사하게, EPDCCH QCL Behavior A가 설정되는 경우에는, PDSCH QCL Behavior A 또는 B 중에서 어느 하나로 설정될 수도 있다.
한편, 각각의 EPDCCH 세트 별로 적용될 (EPDCCH를 통해 전송되는 DCI에 의해 스케줄링되는 PDSCH의 복조를 위해서 사용될, 및/또는 EPDCCH 자체의 디코딩을 위해서 사용될) 특정 하나의 PQI 상태 값이 RRC-설정될 수 있다. 이 경우, EPDCCH Behavior A(즉, 서빙셀 CRS와 EPDCCH DMRS 간의 QCL)가 설정되었다면, 단말은 PDSCH 복조 및/또는 EPDCCH 디코딩을 위해서, 상기 지시된 특정 하나의 PQI 상태 값에 링크된 PQI 파라미터 세트에 포함되는 PQI 파라미터들 중에서 일부에는 따르지만, 다른 PQI 파라미터는 DL 서빙셀의 것을 따르도록 동작할 수 있다.
여기서, RRC 지시된 특정 하나의 PQI 상태 값에 링크된 PQI 파라미터 세트에 포함되는 PQI 파라미터들은, CRS 포트의 개수, CRS 주파수 시프트, MBSFN 서브프레임 설정 정보, NZP CSI-RS 설정 정보, ZP CSI-RS 설정 정보, PDSCH 시작 심볼 정보 등을 포함할 수 있다.
예를 들어, RRC 지시된 특정 하나의 PQI 상태 값에 링크된 PQI 파라미터 세트에 포함되는 PQI 파라미터들 중에서, 단말은 오직 PDSCH 시작 심볼 정보만 따르고, 다른 파라미터들은 서빙셀의 것을 따르도록 동작할 수 있다.
다른 예시로서, RRC 지시된 특정 하나의 PQI 상태 값에 링크된 PQI 파라미터 세트에 포함되는 PQI 파라미터들 중에서, 단말은 오직 CRS RM 패턴 정보(예를 들어, 서빙셀의 CRS 포트 개수, 서빙셀의 CRS 주파수 시프트, 및 서빙셀의 MBSFN 서브프레임 설정)만 따르고, 다른 파라미터들은 서빙셀의 것을 따르도록 동작할 수 있다.
또 다른 예시로서, RRC 지시된 특정 하나의 PQI 상태 값에 링크된 PQI 파라미터 세트에 포함되는 PQI 파라미터들 중에서, 단말은 오직 하나의 ZP CSI-RS 설정 정보만 따르고, 다른 파라미터들은 서빙셀의 것을 따르도록 동작할 수 있다.
또 다른 예시로서, RRC 지시된 특정 하나의 PQI 상태 값에 링크된 PQI 파라미터 세트에 포함되는 PQI 파라미터들 중에서, 단말은 오직 PDSCH 시작 심볼 정보와 CRS RM 패턴 정보(예를 들어, 서빙셀의 CRS 포트 개수, 서빙셀의 CRS 주파수 시프트, 및 서빙셀의 MBSFN 서브프레임 설정)만 따르고, 다른 파라미터들은 서빙셀의 것을 따르도록 동작할 수 있다.
또 다른 예시로서, RRC 지시된 특정 하나의 PQI 상태 값에 링크된 PQI 파라미터 세트에 포함되는 PQI 파라미터들 중에서, 단말은 오직 PDSCH 시작 심볼 정보와 하나의 ZP CSI-RS 설정 정보만 따르고, 다른 파라미터들은 서빙셀의 것을 따르도록 동작할 수 있다.
또 다른 예시로서, RRC 지시된 특정 하나의 PQI 상태 값에 링크된 PQI 파라미터 세트에 포함되는 PQI 파라미터들 중에서, 단말은 오직 CRS RM 패턴 정보(예를 들어, 서빙셀의 CRS 포트 개수, 서빙셀의 CRS 주파수 시프트, 및 서빙셀의 MBSFN 서브프레임 설정)와 하나의 ZP CSI-RS 설정 정보만 따르고, 다른 파라미터들은 서빙셀의 것을 따르도록 동작할 수 있다.
또 다른 예시로서, RRC 지시된 특정 하나의 PQI 상태 값에 링크된 PQI 파라미터 세트에 포함되는 PQI 파라미터들 중에서, 단말은 오직 PDSCH 시작 심볼 정보, CRS RM 패턴 정보(예를 들어, 서빙셀의 CRS 포트 개수, 서빙절의 CRS 주파수 시프트, 및 서빙셀의 MBSFN 서브프레임 설정) 및 하나의 ZP CSI-RS 설정 정보만 따르고, 다른 파라미터들은 서빙셀의 것을 따르도록 동작할 수 있다.
PQI 필드의 구성
CoMP 동작을 지원하는 것을 큰 특징으로 하는 새로운 전송모드(예를 들어, TM10)에 대한 DCI 포맷 2D에는 PQI 필드가 포함될 수 있다. PQI 필드는 N 비트 크기로 정의될 수 있고, 이에 따라 2^N 개의 상태 값 중의 하나를 지시할 수 있다. 2^N 개의 PQI 상태 값의 각각에 대응하는 PQI 파라미터 세트가 RRC-설정될 수 있다. 하나의 PQI 파라미터 세트에는, CRS 포트의 개수, CRS 주파수 시프트, MBSFN 서브프레임 설정 정보, NZP CSI-RS 설정 정보, ZP CSI-RS 설정 정보, PDSCH 시작 심볼 정보 등이 포함될 수 있다. 따라서, PQI 상태 값에 따라서 2^N개의 PQI 파라미터 세트 중에서 어떤 하나가 동적으로 지시 또는 스위칭될 수 있다.
한편, TM10에서의 폴백 동작을 위한 DCI 포맷 1A에는 PQI 필드가 포함되지 않도록 정의된다. 즉, TM10에서의 DCI 포맷 1A에 PQI 필드가 없다는 것은, DCI 포맷 1A에 의해서는 비-CoMP 동작이 지원된다는 의미이고, 예를 들어 DL 서빙셀로부터의 비-CoMP 전송만 스케줄링 된다는 의미로 해석될 수 있다.
다른 예시로서, 공통 탐색 공간 상에서 전송되는 DCI 포맷 1A는 다른 DCI 포맷과의 길이를 동일하게 유지하기 위해서 PQI 필드를 포함하지 않는 것으로 정의되지만, 단말-특정 탐색 공간 상에서 전송되는 DCI 포맷 1A는 DCI 포맷 2D와 마찬가지로 PQI 필드를 포함하는 것으로 정의될 수 있고, 이에 따라 CoMP 동작이 지원될 수 있다.
또 다른 예시로서, 비-MBSFN 서브프레임에서 전송되는 DCI 포맷 1A는 PQI 필드를 포함하지 않고, MBSFN 서브프레임에서 전송되는 DCI 포맷 1A는 DCI 포맷 2D와 마찬가지로 PQI 필드를 포함하는 것으로 정의될 수 있고, 이에 따라 CoMP 동작이 지원될 수 있다.
또 다른 예시로서, 비-MBSFN 서브프레임에서 공통 탐색 공간 상에서 전송되는 DCI 포맷 1A는 PQI 필드를 포함하지 않고, MBSFN 서브프레임에서 전송되는 DCI 포맷 1A 및 비-MBSFN 서브프레임에서 단말-특정 탐색 공간 상에서 전송되는 DCI 포맷 1A는 DCI 포맷 2D와 마찬가지로 PQI 필드를 포함하는 것으로 정의될 수 있고, 이에 따라 CoMP 동작이 지원될 수 있다.
또 다른 예시로서, 비-MBSFN 서브프레임에서 전송되는 DCI 포맷 1A 및 MBSFN 서브프레임에서 공통 탐색 공간 상에서 전송되는 DCI 포맷 1A는 PQI 필드를 포함하지 않고, MBSFN 서브프레임에서 단말-특정 탐색 공간 상에서 전송되는 DCI 포맷 1A는 DCI 포맷 2D 와 마찬가지로 PQI 필드를 포함하는 것으로 정의될 수 있고, 이에 따라 CoMP 동작이 지원될 수 있다.
한편, PQI 비트 폭(즉, N)는 단말의 캐퍼빌리티(UE capability)에 따라서 상이하게 정의될 수 있다. 예를 들어, (TM10에서) 최대 지원되는 CSI 프로세스의 개수(N_P)에 대한 단말 캐퍼빌리티가 정의되고, 단말은 이를 기지국에게 알려줄 수 있다. 예를 들어, N_P = 1, 3, 또는 4로 정의될 수 있다.
본 발명에서는, N_P 값에 따라서 PQI 비트 폭(N)이 결정되는 것을 제안한다(N은 PQI 비트 폭, PQI 상태의 개수, 또는 PQI 상태의 인코딩 패턴 등을 나타내는 값으로서 정의될 수도 있다).
N_P=1인 경우에, PQI를 위한 명시적인 비트는 DCI 포맷 상에서 존재하지 않는 것으로 정의될 수 있다 (즉, N=0). 이 경우, PQI를 위한 명시적인 비트는 없지만 디폴트 PQI 상태 하나에 대한 PQI 파라미터 세트는, 디폴트 정보로서 RRC 시그널링되거나, 별도의 RRC 시그널링 없이 DCI 포맷 1A에서 사용하는 디폴트 PQI 상태에 해당하는 RRC-설정된 파라미터들이 DCI 포맷 2D에서도 그대로 사용되는 것으로 정의될 수도 있다.
또는, N_P=1인 경우에, PQI를 위한 명시적인 비트를 정의하지 않는 한편, nSCID 필드의 값에 따라서 연계되는 2 개의 상태 값(0 또는 1)을 PQI 상태 값으로서 사용할 수도 있다.
또는, N_P=1인 경우에, PQI를 위한 명시적인 1 비트를 DCI 포맷 상에 포함시킬 수도 있다. 이에 따라, 2 개의 PQI 상태 값이 표현될 수 있다.
N_P=3 또는 4인 경우에, PQI를 위한 명시적인 2 비트가 DCI 포맷 상에 포함되는 것으로 정의할 수도 있다.
또는, N_P=3 또는 4인 경우에, PQI를 위한 명시적인 1 비트가 DCI 포맷 상에 포함되고, 이 1 비트와 nSCID 필드의 값에 따라서 연계되는 2 개의 상태 값(0 또는 1)을 조합하여 3 개의 또는 4 개의 PQI 상태 중의 어느 하나가 지시되도록 할 수도 있다.
또는, N_P=3인 경우에는 PQI를 위한 명시적인 비트를 1 비트만 적용하고, 2 개의 상태 값만을 제한적으로 사용하도록 하는 방안도 적용가능하다.
전술한 예시들에서와 같이 최대 지원되는 CSI 프로세스 개수에 대한 단말 캐퍼빌리티 값 N_P에 따라서 고정적으로 PQI 비트 폭 (또는 PQI 상태의 개수) N을 결정하는 방안과 유사하게, N_P 값에 따라서 PQI 비트 폭 (또는 PQI 상태의 개수)의 최대값을 결정할 수도 있다. 즉, PQI 비트 폭의 최대값 이내에서 PQI 파라미터 세트가 RRC-설정될 수도 있다.
한편, DCI 포맷 1A에서 사용할 PQI 상태의 RRC 파라미터 세트 정보는, DCI 포맷 2D의 특정 PQI 상태(예를 들어, 가장 낮은 상태 인덱스)로 고정적으로 사용하도록 할 수도 있다. 또한, DCI 포맷 1A의 경우에 적용할 PQI 파라미터로서 DCI 포맷 2D의 특정 PQI 상태에 의해 지시되는 PQI 파라미터를 사용하도록 하는 동작의 적용 여부가, RRC-설정될 수도 있다.
도 12는 본 발명에 따른 PDSCH 신호 송수신 방법을 설명하기 위한 흐름도이다.
단계 S1210에서 단말은 PQI 파라미터 세트에 포함되는 PDSCH 시작 심볼 값이 상위 계층에 의해서 설정되어 있는지 여부를 결정할 수 있다.
단계 S1210의 결과가 YES인 경우에는 단계 S1220으로 진행하여, PQI 파라미터 세트에 포함되는 PDSCH 시작 심볼 값에 따라서 PDSCH 시작 심볼 인덱스를 결정할 수 있다. 이는 전술한 PDSCH 시작 심볼 결정의 우선순위에 대한 본 발명의 예시들에서, 첫 번째 우선순위에 따른 동작에 해당한다.
단계 S1210의 결과가 NO 인 경우에는 단계 S1230으로 진행하여, PDSCH가 수신되는 셀에 대한 PDSCH 시작 심볼 값이 상위 계층에 의해서 설정되어 있는지 여부를 결정할 수 있다. 여기서, PDSCH가 수신되는 셀은, PDCCH/EPDCCH가 수신되는 셀과 서로 다른 셀일 수 있다.
단계 S1230의 결과가 YES인 경우에는 단계 S1240으로 진행하여, PDSCH가 수신되는 셀에 대한 PDSCH 시작 심볼 값에 따라서 PDSCH 시작 심볼 인덱스를 결정할 수 있다. 이는 전술한 PDSCH 시작 심볼 결정의 우선순위에 대한 본 발명의 예시들에서, 두 번째 우선순위에 따른 동작에 해당한다.
단계 S1230의 결과가 NO인 경우에는 단계 S1250으로 진행하여, PDSCH 시작 심볼에 대한 상위계층 설정 값이 존재하지 않는 경우의 디폴트 동작을 수행할 수 있다. 예를 들어, PCFICH 정보(즉, CFI 값)에 기초하여 PDCCH 전송에 사용되는 OFDM 심볼 개수를 결정하고, PDCCH 전송에 사용되는 마지막 OFDM 심볼 바로 다음의 OFDM 심볼이 PDSCH 시작 심볼이라고 결정할 수 있다. 이는 전술한 PDSCH 시작 심볼 결정의 우선순위에 대한 본 발명의 예시들에서, 세 번째 우선순위에 따른 동작에 해당한다.
이와 같이 PDSCH 시작 심볼 결정의 우선순위 동작에 따라서 PDSCH 시작 심볼을 결정한 단말은, 이에 따라 PDSCH 신호를 수신할 수 있다.
도 12를 참조하여 설명한 PDSCH 신호 송수신 방법에 대해서, 전술한 본 발명의 다양한 실시예에서 설명한 사항들이 독립적으로 적용되거나 또는 2 이상의 실시예가 동시에 적용될 수 있으며, 중복되는 설명은 생략한다.
도 13은 본 발명에 따른 단말 장치 및 기지국 장치의 바람직한 실시예의 구성을 도시한 도면이다.
도 13을 참조하여 본 발명에 따른 기지국 장치(10)는, 수신 모듈(11), 전송 모듈(12), 프로세서(13), 메모리(14) 및 복수개의 안테나(15)를 포함할 수 있다. 수신 모듈(11)은 외부 장치(예를 들어, 단말)로부터 각종 신호, 데이터 및 정보를 수신할 수 있다. 전송 모듈(12)은 외부 장치(예를 들어, 단말)로 각종 신호, 데이터 및 정보를 전송할 수 있다. 프로세서(13)는 기지국 장치(10) 전반의 동작을 제어할 수 있다. 복수개의 안테나(15)는 기지국 장치(10)가 MIMO 송수신을 지원하는 것을 의미한다.
본 발명의 일례에 따른 기지국 장치(10)는, 단말 장치(20)에게 PDSCH 신호를 전송하도록 구성될 수 있다. 프로세서(13)는, PQI 파라미터 세트에 포함되는 PDSCH 시작 심볼 값을 상위계층 시그널링을 통해서 단말 장치(20)에게 설정하여 주는 경우, 이에 따라서 PDSCH 신호를 하향링크 서브프레임에 매핑하고 전송 모듈(12)을 통하여 단말 장치(20)에게 전송할 수 있다. 그렇지 않은 경우, 프로세서(13)는, PDSCH가 전송되는 셀에 대한 PDSCH 시작 심볼 값을 단말 장치(20)에게 상위계층 시그널링을 통해서 단말 장치(20)에게 설정하여 주고, 이에 따라서 PDSCH 신호를 하향링크 서브프레임에 매핑하고 전송 모듈(12)을 통하여 단말 장치(20)에게 전송할 수 있다. 그렇지 않은 경우, 프로세서(13)는, PCFICH 정보(즉, CFI 값)를 통해서 PDCCH가 매핑되는 OFDM 심볼의 개수를 단말 장치(20)에게 알려주고, PDCCH가 매핑되는 마지막 OFDM 심볼의 바로 다음 OFDM 심볼을 PDSCH 시작 심볼로 하여, PDSCH 신호를 하향링크 서브프레임에 매핑하고 전송 모듈(12)을 통하여 단말 장치(20)에게 전송할 수 있다.
기지국 장치(10)의 프로세서(13)는 그 외에도 기지국 장치 (10)가 수신한 정보, 외부로 전송할 정보 등을 연산 처리하는 기능을 수행하며, 메모리(14)는 연산 처리된 정보 등을 소정시간 동안 저장할 수 있으며, 버퍼(미도시) 등의 구성요소로 대체될 수 있다.
도 13을 참조하여 본 발명에 따른 단말 장치(20)는, 수신 모듈(21), 전송 모듈(22), 프로세서(23), 메모리(24) 및 복수개의 안테나(25)를 포함할 수 있다. 수신 모듈(21)은 외부 장치(예를 들어, 기지국)로부터 각종 신호, 데이터 및 정보를 수신할 수 있다. 전송 모듈(22)은 외부 장치(예를 들어, 기지국)로 각종 신호, 데이터 및 정보를 전송할 수 있다. 프로세서(23)는 단말 장치(20) 전반의 동작을 제어할 수 있다. 복수개의 안테나(25)는 단말 장치(20)가 MIMO 송수신을 지원하는 것을 의미한다.
본 발명의 일례에 따른 단말 장치(20)는 기지국 장치(10)로부터 PDSCH 신호를 수신하도록 구성될 수 있다. 프로세서(23)는, 하향링크 서브프레임에서 상기 PDSCH의 시작 심볼 인덱스를 결정하도록 설정될 수 있다. 또한, 프로세서(23)는, 상기 시작 심볼 인덱스에 기초하여 상기 PDSCH 신호를 수신 모듈(21)을 통하여 수신하도록 설정될 수 있다. 여기서, 프로세서(23)는, PQI 파라미터 세트에 포함되는 PDSCH 시작 심볼 값이 상위계층에 의해서 설정되는 경우, 이에 따라서 상기 시작 심볼 인덱스를 결정하도록 설정될 수 있다. 그렇지 않은 경우, 프로세서(23)는, 상기 PDSCH가 수신되는 셀에 대한 PDSCH 시작 심볼 값이 상위계층에 의해서 설정되는 경우, 이에 따라서 상기 시작 심볼 인덱스를 결정하도록 설정될 수 있다. 그렇지 않은 경우, 프로세서(23)는, CFI 값에 기초하여 상기 시작 심볼 인덱스를 결정하도록 설정될 수 있다.
단말 장치(20)의 프로세서(23)는 그 외에도 단말 장치(20)가 수신한 정보, 외부로 전송할 정보 등을 연산 처리하는 기능을 수행하며, 메모리(24)는 연산 처리된 정보 등을 소정시간 동안 저장할 수 있으며, 버퍼(미도시) 등의 구성요소로 대체될 수 있다.
위와 같은 기지국 장치(10) 및 단말 장치(20)의 구체적인 구실은, 전술한 본 발명의 다양한 실시예에서 설명한 사항들이 독립적으로 적용되거나 또는 2 이상의 실시예가 동시에 적용되도록 구현될 수 있으며, 중복되는 내용은 설명을 생략한다.
또한, 본 발명의 다양한 실시예들을 설명함에 있어서, 하향링크 전송 주체(entity) 또는 상향링크 수신 주체는 주로 기지국을 예로 들어 설명하였고, 하향링크 수신 주체 또는 상향링크 전송 주체는 주로 단말을 예로 들어 설명하지만, 본 발명의 범위가 이에 제한되는 것은 아니다. 예를 들어, 상기 기지국에 대한 설명은 셀, 안테나 포트, 안테나 포트 그룹, RRH, 전송 포인트, 수신 포인트, 액세스 포인트, 중계기 등이 단말로의 하향링크 전송 주체가 되거나 단말로부터의 상향링크 수신 주체가 되는 경우에 동일하게 적용될 수 있다. 또한, 중계기가 단말로의 하향링크 전송 주체가 되거나 단말로부터의 상향링크 수신 주체가 되는 경우, 또는 중계기가 기지국으로의 상향링크 전송 주체가 되거나 기지국으로부터의 하향링크 수신 주체가 되는 경우에도 본 발명의 다양한 실시예를 통하여 설명한 본 발명의 원리가 동일하게 적용될 수도 있다.
상술한 본 발명의 실시예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다.
하드웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 하나 또는 그 이상의 ASICs(Application Specific Integrated Circuits), DSPs(Digital Signal Processors), DSPDs(Digital Signal Processing Devices), PLDs(Programmable Logic Devices), FPGAs(Field Programmable Gate Arrays), 프로세서, 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
상술한 바와 같이 개시된 본 발명의 바람직한 실시예들에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시예들을 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 본 발명의 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 예를 들어, 당업자는 상술한 실시예들에 기재된 각 구성을 서로 조합하는 방식으로 이용할 수 있다. 따라서, 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다. 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다. 또한, 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함할 수 있다.
상술한 바와 같은 본 발명의 실시형태들은 다양한 이동통신 시스템에 적용될 수 있다.

Claims (11)

  1. 무선 통신 시스템에서 단말이 물리하향링크공유채널(PDSCH) 신호를 수신하는 방법에 있어서,
    상위 계층 시그널링을 통해 PQI(PDSCH resource element mapping and Quasi co-location indicator) 파라미터 세트를 수신하는 단계;
    하향링크 서브프레임에서 상기 PDSCH 신호의 시작 심볼 인덱스를 결정하는 단계; 및
    상기 시작 심볼 인덱스에 기초하여 상기 PDSCH 신호를 수신하는 단계를 포함하고,
    상기 PQI 파라미터 세트에 의해 제1 PDSCH 시작 심볼 값이 설정되고, 상기 하향링크 서브프레임이 MBSFN (Multicast Broadcast Single Frequency Network) 서브프레임인 경우, 상기 시작 심볼 인덱스는 상기 제1 PDSCH 시작 심볼 값과 소정의 임계치 중 작은 값으로 결정되고,
    상기 PQI 파라미터 세트에 의해 상기 제1 PDSCH 시작 심볼 값이 설정되지 않고, 상기 PDSCH가 수신되는 셀에 대한 제2 PDSCH 시작 심볼 값이 반송파 집성(carrier aggregation)을 위하여 상위계층에 의해서 설정되는 경우, 상기 시작 심볼 인덱스는 상기 PDSCH가 수신되는 셀에 대한 상기 제2 PDSCH 시작 심볼 값에 따라서 결정되는, PDSCH 신호 수신 방법.
  2. 제 1 항에 있어서,
    물리하향링크제어채널(PDCCH) 또는 EPDCCH(Enhanced PDCCH)를 통해 상기 PDSCH 신호를 스케줄 하는 하향링크제어정보(DCI)를 수신하는 단계를 더 포함하는, PDSCH 신호 수신 방법.
  3. 제 2 항에 있어서,
    상기 DCI가 DCI 포맷 2D에 따라서 구성되는 경우, 상기 PQI 파라미터 세트는 상기 DCI 포맷 2D의 PQI 필드의 상태 값에 따라서 결정되는, PDSCH 신호 수신 방법.
  4. 제 2 항에 있어서,
    상기 DCI가 DCI 포맷 1A에 따라서 구성되는 경우, 상기 PQI 파라미터 세트는 가장 낮은 인덱스를 가지는 PQI 파라미터 세트인, PDSCH 신호 수신 방법.
  5. 제 2 항에 있어서,
    상기 PDCCH 또는 상기 EPDCCH가 수신되는 셀과, 상기 PDSCH가 수신되는 셀이 서로 상이한 셀인 경우,
    상기 시작 심볼 인덱스는 상기 PDSCH가 수신되는 셀에 대한 상기 제2 PDSCH 시작 심볼 값에 따라서 결정되는, PDSCH 신호 수신 방법.
  6. 제 1 항에 있어서,
    상기 PQI 파라미터 세트는,
    CRS(Cell-specific Reference Signal) 포트 개수 정보, CRS 주파수 시프트 정보, MBSFN 서브프레임 설정 정보, ZP CSI-RS(Zero Power Channel State Information Reference Signal) 설정 정보, 상기 제1 PDSCH 시작 심볼 값, 또는 NZP(Non-Zero Power) CSI-RS 설정 정보 중의 하나 이상의 파라미터를 포함하는, PDSCH 신호 수신 방법.
  7. 제 1 항에 있어서,
    상기 PQI 파라미터 세트에 포함되는 상기 PDSCH 시작 심볼 값은, 1, 2, 3, 또는 4 중의 하나인, PDSCH 신호 수신 방법.
  8. 제 1 항에 있어서,
    상기 PQI 파라미터 세트에 의해 상기 제1 PDSCH 시작 심볼 값이 설정되지 않고, 또한 상기 PDSCH가 수신되는 셀에 대한 상기 제2 PDSCH 시작 심볼 값이 상위계층에 의해서 설정되지 않는 경우, 상기 시작 심볼 인덱스는 CFI(Control Format Indicator) 값에 기초하여 결정되는, PDSCH 신호 수신 방법.
  9. 제 1 항에 있어서,
    상기 단말은 전송모드 10(TM10)으로 설정되는, PDSCH 신호 수신 방법.
  10. 제 1 항에 있어서,
    상기 PDSCH 시작 심볼 인덱스는, 상기 하향링크 서브프레임에서 PDSCH가 매핑되는 시작 OFDM(Orthogonal Frequency Division Multiplexing) 심볼을 지시하는, PDSCH 신호 수신 방법.
  11. 무선 통신 시스템에서 물리하향링크공유채널(PDSCH) 신호를 수신하는 단말 장치에 있어서,
    전송 모듈;
    수신 모듈; 및
    프로세서를 포함하고,
    상기 프로세서는, 상위 계층 시그널링을 통해 PQI(PDSCH resource element mapping and Quasi co-location indicator) 파라미터 세트를 상기 수신 모듈을 이용하여 수신하고, 하향링크 서브프레임에서 상기 PDSCH 신호의 시작 심볼 인덱스를 결정하고; 상기 시작 심볼 인덱스에 기초하여 상기 PDSCH 신호를 상기 수신 모듈을 통하여 수신하도록 설정되며,
    상기 PQI 파라미터 세트에 의해 제1 PDSCH 시작 심볼 값이 설정되고, 상기 하향링크 서브프레임이 MBSFN (Multicast Broadcast Single Frequency Network) 서브프레임인 경우, 상기 시작 심볼 인덱스는 상기 제1 PDSCH 시작 심볼 값과 소정의 임계치 중 작은 값으로 결정되고,
    상기 PQI 파라미터 세트에 의해 상기 제1 PDSCH 시작 심볼 값이 설정되지 않고, 상기 PDSCH가 수신되는 셀에 대한 제2 PDSCH 시작 심볼 값이 반송파 집성(carrier aggregation)을 위하여 상위계층에 의해서 설정되는 경우, 상기 시작 심볼 인덱스는 상기 PDSCH가 수신되는 셀에 대한 상기 제2 PDSCH 시작 심볼 값에 따라서 결정되는, PDSCH 신호 수신 단말 장치.
KR1020157004665A 2012-09-16 2013-09-16 무선 통신 시스템에서 안테나 포트 관계를 고려한 하향링크 신호 송수신 방법 및 장치 KR102086515B1 (ko)

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
US201261701710P 2012-09-16 2012-09-16
US61/701,710 2012-09-16
US201261703738P 2012-09-20 2012-09-20
US61/703,738 2012-09-20
US201261725451P 2012-11-12 2012-11-12
US61/725,451 2012-11-12
US201261725972P 2012-11-13 2012-11-13
US61/725,972 2012-11-13
US201261729301P 2012-11-21 2012-11-21
US61/729,301 2012-11-21
PCT/KR2013/008339 WO2014042475A1 (ko) 2012-09-16 2013-09-16 무선 통신 시스템에서 안테나 포트 관계를 고려한 하향링크 신호 송수신 방법 및 장치

Publications (2)

Publication Number Publication Date
KR20150058171A KR20150058171A (ko) 2015-05-28
KR102086515B1 true KR102086515B1 (ko) 2020-03-09

Family

ID=50278483

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020157004665A KR102086515B1 (ko) 2012-09-16 2013-09-16 무선 통신 시스템에서 안테나 포트 관계를 고려한 하향링크 신호 송수신 방법 및 장치

Country Status (6)

Country Link
US (4) US9521665B2 (ko)
EP (1) EP2897314B1 (ko)
JP (1) JP6392227B2 (ko)
KR (1) KR102086515B1 (ko)
CN (2) CN108183784B (ko)
WO (1) WO2014042475A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180122919A (ko) * 2017-05-04 2018-11-14 삼성전자주식회사 멀티 빔 기반 시스템에서 잔여 시스템 정보 전송 방법 및 장치
US11576198B2 (en) 2017-05-04 2023-02-07 Samsung Electronics Co., Ltd. Method and apparatus for transmitting remaining minimum system information in multibeam-based system

Families Citing this family (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013055078A2 (ko) * 2011-10-09 2013-04-18 엘지전자 주식회사 무선통신 시스템에서 데이터 채널의 시작 위치 설정 방법 및 상기 방법을 이용하는 장치
US9686772B2 (en) * 2012-08-01 2017-06-20 Qualcomm Incorporated Methods and apparatus for coordinated multipoint (CoMP) communications
KR102169958B1 (ko) 2012-10-04 2020-10-26 엘지전자 주식회사 무선 통신 시스템에서 안테나 포트 관계를 고려한 하향링크 신호 송수신 방법 및 장치
US11139862B2 (en) * 2012-11-02 2021-10-05 Samsung Electronics Co., Ltd. Configuration of rate matching and interference measurement resources for coordinated multi-point transmission
KR102061700B1 (ko) * 2012-11-02 2020-01-02 삼성전자주식회사 무선 통신 시스템에서 간섭 인지 검출 방법 및 장치
US9572159B2 (en) * 2012-11-09 2017-02-14 Sharp Kabushiki Kaisha Terminal device, communication method and integrated circuit
US9698892B2 (en) * 2013-04-01 2017-07-04 Panasonic Intellectual Property Corporation Of America Transmission apparatus and control signal mapping method
JP6313545B2 (ja) * 2013-05-09 2018-04-18 株式会社Nttドコモ 移動局
US10263741B2 (en) * 2013-05-10 2019-04-16 Qualcomm Incorporated Coordinated multipoint (CoMP) and network assisted interference suppression/cancellation
CN104378826B (zh) * 2013-08-14 2018-08-07 电信科学技术研究院 一种传输资源的确定、指示方法及终端、基站
EP3249830B1 (en) 2013-12-04 2019-02-20 Telefonaktiebolaget LM Ericsson (publ) Downlink subframe shortening in time-division duplex (tdd) systems
JP6267796B2 (ja) 2013-12-04 2018-01-24 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 時分割複信(tdd)システムにおけるアップリンクサブフレームの短縮
CN103825664B (zh) * 2014-02-21 2016-05-18 电信科学技术研究院 信道状态信息测量方法和装置、以及信号传输方法和装置
CN104202115B (zh) * 2014-05-09 2019-05-07 中兴通讯股份有限公司 高阶编码的调制处理方法及装置、基站、终端
EP3633908B1 (en) 2014-12-23 2021-08-11 LG Electronics Inc. Method for reporting channel state information in wireless access system supporting unlicensed bands, and apparatus supporting same
US11064480B2 (en) * 2015-01-29 2021-07-13 Ntt Docomo, Inc. User terminal, radio base station and radio communication method
KR102524587B1 (ko) 2015-03-27 2023-04-21 삼성전자주식회사 대규모 안테나 시스템에서 자원 할당 장치 및 방법
JP6660382B2 (ja) * 2015-05-15 2020-03-11 シャープ株式会社 端末装置
CN107925536B (zh) * 2015-07-06 2021-10-29 瑞典爱立信有限公司 用于无线系统中数据传送的资源分配
JP2018152625A (ja) * 2015-08-05 2018-09-27 シャープ株式会社 端末装置、基地局装置、および通信方法
US10200168B2 (en) * 2015-08-27 2019-02-05 Futurewei Technologies, Inc. Systems and methods for adaptation in a wireless network
WO2017045096A1 (zh) 2015-09-14 2017-03-23 华为技术有限公司 解调上行信息的方法,装置及系统
KR102486805B1 (ko) 2015-09-18 2023-01-11 삼성전자 주식회사 무선 통신 시스템에서 피드백 신호를 송수신하는 방법 및 장치
CN106559879B (zh) * 2015-09-25 2019-08-02 中兴通讯股份有限公司 信息发送及确定、关系确定的方法及装置
CN106685873A (zh) * 2015-11-05 2017-05-17 夏普株式会社 物理信道的配置方法以及基站和用户设备
CN106685872B (zh) * 2015-11-05 2020-07-14 夏普株式会社 物理信道的配置方法以及基站和用户设备
EP3402105B1 (en) * 2016-01-08 2021-10-06 LG Electronics Inc. Method by which terminal receives downlink signal from base station in wireless communication system, and device therefor
CN106973437B (zh) * 2016-01-13 2021-10-01 华为技术有限公司 一种参考信号的配置方法及设备
US11038557B2 (en) * 2016-03-31 2021-06-15 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving reference signals in wireless communication
CN108781444B (zh) * 2016-03-31 2023-09-29 索尼公司 终端装置、基站装置和通信方法
US10887143B2 (en) * 2016-05-06 2021-01-05 Samsung Electronics Co., Ltd. Method and apparatus for initial access in wireless communication systems
CN113746521A (zh) * 2016-05-10 2021-12-03 诺基亚技术有限公司 天线共置和接收器假设
US10680855B2 (en) * 2016-05-13 2020-06-09 Huawei Technologies Co., Ltd. Measurement in non-cellular wireless networks
WO2017196398A1 (en) * 2016-05-13 2017-11-16 Intel Corporation Qcl (quasi co-location) for dm-rs (demodulation reference signal) antenna ports for comp (coordinated multi-point)
CN109479303B (zh) * 2016-07-12 2021-01-01 Oppo广东移动通信有限公司 传输数据的方法和终端设备
ES2760349T3 (es) * 2016-07-21 2020-05-13 Velos Media Int Ltd Indicación flexible para posición de comienzo de canal de datos
CN107733480B (zh) * 2016-08-10 2023-06-20 华为技术有限公司 一种信息处理方法和装置
US11006303B2 (en) 2016-08-11 2021-05-11 Lg Electronics Inc. Channel state reporting method in wireless communication system and device therefor
US20180062801A1 (en) * 2016-08-24 2018-03-01 Qualcomm Incorporated Techniques for wireless communications in coordinated multi-point operation
US10791012B2 (en) * 2016-09-30 2020-09-29 Motorola Mobility Llc Flexible radio resource allocation
ES2955133T3 (es) 2016-10-31 2023-11-28 Kt Corp Método y dispositivo para asignar un recurso de canal de datos para una red de acceso inalámbrico de próxima generación
KR102114940B1 (ko) 2016-10-31 2020-05-26 주식회사 케이티 차세대 무선 액세스망을 위한 데이터 채널 자원 할당 방법 및 장치
US10505697B2 (en) 2016-11-03 2019-12-10 At&T Intellectual Property I, L.P. Facilitating a mobile device specific physical downlink shared channel resource element mapping indicator
CN106714322B (zh) * 2016-11-04 2019-02-15 展讯通信(上海)有限公司 跨子带/载波调度方法、基站及用户设备
CN109150250B (zh) 2016-11-04 2020-03-10 华为技术有限公司 准共址信息的发送接收方法、装置、网络设备及终端
US10925081B2 (en) * 2016-11-15 2021-02-16 Lg Electronics Inc. Method for transmitting information regarding available resource, and apparatus therefor
CN117500060A (zh) * 2016-12-30 2024-02-02 华为技术有限公司 控制信道的资源指示方法、用户设备和网络设备
CN117998637A (zh) * 2017-01-05 2024-05-07 日本电气株式会社 用于指示资源分配的方法和设备
US11071172B2 (en) * 2017-01-09 2021-07-20 Apple Inc. Bandwidth adaptation for wireless communication system
US10498507B2 (en) * 2017-03-21 2019-12-03 Samsung Electronics Co., Ltd. Method and apparatus for channel state information reference signal (CSI-RS)
US10091777B1 (en) 2017-03-31 2018-10-02 At&T Intellectual Property I, L.P. Facilitating physical downlink shared channel resource element mapping indicator
US10476623B2 (en) 2017-04-03 2019-11-12 Qualcomm Incorporated Techniques and apparatuses for tertiary synchronization signal design for new radio
EP3619856A1 (en) 2017-05-03 2020-03-11 IDAC Holdings, Inc. Method and apparatus for improving hybrid automatic repeat request (harq) feedback performance of enhanced mobile broadband (embb) when impacted by low latency traffic
US10554262B2 (en) * 2017-05-12 2020-02-04 Qualcomm Incorporated Cross-sub-band quasi co-location signaling
EP3471306B1 (en) 2017-06-09 2023-08-02 LG Electronics Inc. Method and apparatus for receiving or transmitting downlink signal in wireless communication system
CN109150441B (zh) * 2017-06-16 2021-05-14 维沃移动通信有限公司 一种dmrs的发送方法、接收方法、相关设备和系统
US10834689B2 (en) * 2017-08-15 2020-11-10 At&T Intellectual Property I, L.P. Base station wireless channel sounding
US10856263B2 (en) * 2017-09-08 2020-12-01 Qualcomm Incorporated Randomized search space for downlink control channel
WO2019048932A2 (en) * 2017-09-11 2019-03-14 Lenovo (Singapore) Pte. Ltd. METHODS AND DEVICES FOR TRANSMITTING DEVICE CAPABILITY INFORMATION
CN109802732B (zh) * 2017-11-17 2021-02-12 华为技术有限公司 下行控制信道的监测方法和相关装置
CN110034865B (zh) * 2018-01-12 2020-09-15 维沃移动通信有限公司 Pucch资源的确定方法及其接收方法、终端设备和网络侧设备
CN114374419B (zh) * 2018-02-09 2024-07-12 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN110391882B (zh) 2018-04-16 2022-04-05 中兴通讯股份有限公司 一种信号传输方法和装置
KR20210008295A (ko) 2018-05-10 2021-01-21 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 정보 결정 방법, 단말 기기 및 네트워크 기기
WO2019241934A1 (zh) 2018-06-20 2019-12-26 华为技术有限公司 Csi-rs发送方法、设备及基站
US11095415B2 (en) * 2018-07-02 2021-08-17 Samsung Electronics Co., Ltd. Enhancements to reception reliability for data and control information
WO2020019250A1 (zh) * 2018-07-26 2020-01-30 华为技术有限公司 一种信道检测方法及相关设备
CN110798296B (zh) * 2018-08-03 2021-11-09 维沃移动通信有限公司 下行信号指示、接收方法和设备
CN112534750B (zh) * 2018-08-09 2024-06-11 鸿颖创新有限公司 用于在无线通信系统中执行侧行链路通信的方法和设备
WO2020029258A1 (zh) * 2018-08-10 2020-02-13 富士通株式会社 信息发送和接收方法以及装置
EP3840316A4 (en) * 2018-08-17 2022-03-23 NTT DoCoMo, Inc. USER DEVICE AND RADIO COMMUNICATION METHOD
JP7107428B2 (ja) 2018-08-20 2022-07-27 富士通株式会社 ダウンリンク信号の監視方法、送信方法、パラメータ構成方法及び装置
WO2020042160A1 (zh) * 2018-08-31 2020-03-05 富士通株式会社 随机接入方法,数据接收方法及其装置、通信系统
EP3623833A1 (en) * 2018-09-11 2020-03-18 Volkswagen Aktiengesellschaft Apparatus, method and computer program for a mobile transceiver and for a base station transceiver
US10897754B2 (en) * 2018-09-28 2021-01-19 Qualcomm Incorporated Cross-carrier reference signal scheduling offset and threshold determination
CN111342940B (zh) * 2018-12-18 2022-06-10 北京紫光展锐通信技术有限公司 Pdsch的配置、接收方法及装置、存储介质、基站、终端
US11089555B2 (en) * 2019-01-07 2021-08-10 Qualcomm Incorporated Dynamic configuration of operation power parameters
KR20200087023A (ko) 2019-01-10 2020-07-20 삼성전자주식회사 네트워크 협력통신을 위한 데이터 송수신 방법 및 장치
EP3697013A1 (en) * 2019-02-14 2020-08-19 Panasonic Intellectual Property Corporation of America User equipment and system performing transmission and reception operations
WO2020167014A1 (ko) * 2019-02-15 2020-08-20 엘지전자 주식회사 상향링크 전송을 수행하는 방법, 사용자기기, 장치, 저장 매체, 그리고 상향링크 수신을 수행하는 방법 및 기지국
US20220131586A1 (en) * 2019-03-07 2022-04-28 Ntt Docomo, Inc. Method of channel state information (csi) feedback, method of identifying space domain (sd) and frequency domain (fd) basis subsets, and user equipment
CN110139342B (zh) * 2019-05-17 2021-07-06 中磊电子(苏州)有限公司 基站及其搜索空间分配方法
CN111800241B (zh) * 2019-07-31 2021-10-15 维沃移动通信有限公司 信息传输方法、装置、设备及介质
CN113068265B (zh) * 2019-09-30 2023-03-24 Oppo广东移动通信有限公司 上行控制信息的传输方法及装置
KR102493059B1 (ko) * 2019-10-03 2023-01-31 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신하는 방법 및 장치
WO2021066499A1 (en) * 2019-10-04 2021-04-08 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving data in wireless communication network
WO2021066590A1 (ko) * 2019-10-04 2021-04-08 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
CN114762285A (zh) * 2019-10-15 2022-07-15 瑞典爱立信有限公司 用于发信号通知多个pdsch传输时机中的开始符号的系统和方法
CN115053485B (zh) * 2020-02-13 2024-04-12 Lg电子株式会社 无线通信系统中发送和接收无线信号的方法和装置
CN116830496A (zh) * 2020-10-21 2023-09-29 欧芬诺有限责任公司 多播和广播服务的可靠传输
CN116132236B (zh) * 2022-12-15 2024-05-31 西安电子科技大学 应用于5g nr系统的单符号自适应频偏估计与补偿方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011063244A2 (en) 2009-11-19 2011-05-26 Interdigital Patent Holdings, Inc. Component carrier activation/deactivation in multi-carrier systems

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101012391B1 (ko) * 2008-11-11 2011-02-09 엘지전자 주식회사 무선 통신 시스템에 있어서, 하향링크로 서브프레임 지정 정보를 전송하는 방법
KR101946226B1 (ko) * 2009-06-15 2019-02-08 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 캐리어 집성을 위한 제어 채널 공유 시스템 및 방법
KR101641388B1 (ko) * 2009-08-19 2016-07-21 엘지전자 주식회사 중계국의 참조신호 이용 방법 및 상기 방법을 이용하는 중계국
CN102076076B (zh) * 2009-11-20 2015-11-25 夏普株式会社 一种解调参考信号的资源分配通知方法
WO2012044088A2 (ko) * 2010-09-29 2012-04-05 엘지전자 주식회사 다중 안테나 지원 무선 통신 시스템에서 효율적인 피드백 방법 및 장치
US9130725B2 (en) * 2010-11-02 2015-09-08 Qualcomm Incorporated Interaction of PDSCH resource mapping, CSI-RS, and muting
US8837525B2 (en) 2011-03-21 2014-09-16 Xiao-an Wang Carrier-phase difference detection and tracking in multipoint broadcast channels
US9113463B2 (en) * 2011-11-04 2015-08-18 Qualcomm Incorporated Resource management for enhanced PDCCH
US8902842B1 (en) * 2012-01-11 2014-12-02 Marvell International Ltd Control signaling and resource mapping for coordinated transmission
US9106386B2 (en) * 2012-08-03 2015-08-11 Intel Corporation Reference signal configuration for coordinated multipoint

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011063244A2 (en) 2009-11-19 2011-05-26 Interdigital Patent Holdings, Inc. Component carrier activation/deactivation in multi-carrier systems

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
3GPP R1-123142
3GPP R1-123646
3GPP R1-123940
Draft Report of 3GPP TSG RAN WG1 #70 v0.1.0 (Qingdao, China, 13th-17th August 2012)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180122919A (ko) * 2017-05-04 2018-11-14 삼성전자주식회사 멀티 빔 기반 시스템에서 잔여 시스템 정보 전송 방법 및 장치
KR102372517B1 (ko) 2017-05-04 2022-03-11 삼성전자 주식회사 멀티 빔 기반 시스템에서 잔여 시스템 정보 전송 방법 및 장치
US11576198B2 (en) 2017-05-04 2023-02-07 Samsung Electronics Co., Ltd. Method and apparatus for transmitting remaining minimum system information in multibeam-based system

Also Published As

Publication number Publication date
US9967874B2 (en) 2018-05-08
US10499385B2 (en) 2019-12-03
CN108183784A (zh) 2018-06-19
CN104641582B (zh) 2018-03-16
KR20150058171A (ko) 2015-05-28
EP2897314B1 (en) 2018-11-07
EP2897314A4 (en) 2016-05-25
US20170303252A1 (en) 2017-10-19
WO2014042475A1 (ko) 2014-03-20
US20180227893A1 (en) 2018-08-09
CN108183784B (zh) 2021-10-29
US20170064678A1 (en) 2017-03-02
CN104641582A (zh) 2015-05-20
JP6392227B2 (ja) 2018-09-19
US9730211B2 (en) 2017-08-08
JP2016500208A (ja) 2016-01-07
US9521665B2 (en) 2016-12-13
US20150208392A1 (en) 2015-07-23
EP2897314A1 (en) 2015-07-22

Similar Documents

Publication Publication Date Title
KR102086515B1 (ko) 무선 통신 시스템에서 안테나 포트 관계를 고려한 하향링크 신호 송수신 방법 및 장치
KR102086516B1 (ko) 무선 통신 시스템에서 안테나 포트 관계를 고려한 하향링크 신호 송수신 방법 및 장치
KR102067062B1 (ko) 무선 통신 시스템에서 안테나 포트 관계를 고려한 하향링크 신호 송수신 방법 및 장치
KR102157651B1 (ko) 무선 통신 시스템에서 안테나 포트 관계를 고려한 하향링크 신호 송수신 방법 및 장치
KR102169958B1 (ko) 무선 통신 시스템에서 안테나 포트 관계를 고려한 하향링크 신호 송수신 방법 및 장치

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant