WO2019241934A1 - Csi-rs发送方法、设备及基站 - Google Patents
Csi-rs发送方法、设备及基站 Download PDFInfo
- Publication number
- WO2019241934A1 WO2019241934A1 PCT/CN2018/092019 CN2018092019W WO2019241934A1 WO 2019241934 A1 WO2019241934 A1 WO 2019241934A1 CN 2018092019 W CN2018092019 W CN 2018092019W WO 2019241934 A1 WO2019241934 A1 WO 2019241934A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- csi
- transmission
- rss
- transmission schemes
- schemes
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0621—Feedback content
- H04B7/0626—Channel coefficients, e.g. channel state information [CSI]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0014—Three-dimensional division
- H04L5/0023—Time-frequency-space
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
- H04L5/0057—Physical resource allocation for CQI
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0091—Signaling for the administration of the divided path
- H04L5/0094—Indication of how sub-channels of the path are allocated
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/10—Scheduling measurement reports ; Arrangements for measurement reports
Definitions
- Embodiments of the present application relate to the field of communications technologies, and in particular, to a method, a device, and a system for sending channel state information-reference signal (CSI-RS).
- CSI-RS channel state information-reference signal
- LTE and 5th-generation (5G) systems support base stations using multiple antennas to transmit signals on the same time-frequency resource.
- User equipment A communication technology for receiving signals on two antennas. This technology is a massive multiple input multiple output (massive multiple output, Massive MIMO) technology.
- RS reference signal
- RE resource element
- the reference signal configuration is determined by the base station. For example, when a cell estimates a channel state, the base station configures CSI-RS resources.
- the LTE protocol defines multiple downlink transmission modes (TM), where each downlink transmission mode corresponds to its own transmission protocol and is suitable for transmitting different downlink reference signals.
- TM9 is suitable for transmitting CSI-RS.
- TM9 is also equipped with multiple transmission schemes. Different transmission schemes are applicable to UEs of different capabilities, and the number of antenna ports configured for different transmission schemes is different, so the number of REs occupied also different.
- the protocol stipulates that a maximum of 40 REs in one RB are used for CSI-RS, and the cell includes UEs with multiple capability types.
- the base station uses TM9 to send CSI-RS, it may need to support At least two transmission schemes are compatible with UEs with different capabilities. Since the RE required to support at least two transmission schemes is likely to occupy more than 40 REs, there will be a problem of insufficient RE resources required for CSI-RS, resulting in incompatibility between different transmission schemes when using TM9 to send CSI-RS.
- the embodiments of the present application provide a CSI-RS sending method, a device, and a base station to solve the problem that configuration resources are limited and different transmission solutions are incompatible.
- an embodiment of the present application provides a CSI-RS sending method, including:
- N is greater than or equal to 2
- the total number of CSI-RSs corresponding to the N transmission schemes is greater than 40
- CSI-RS resources refer to wireless transmission resources carrying CSI-RS corresponding to the N transmission schemes
- a corresponding CSI-RS corresponding to a corresponding transmission scheme carried on the CSI-RS resources is sent to a corresponding UE.
- sending CSI-RS corresponding to different transmission schemes by multiplexing resources is not only compatible with multiple transmission schemes, but also can improve resource utilization.
- configuring the CSI-RS multiplexing CSI-RS resources corresponding to the N transmission schemes includes:
- this implementation method is adopted to correspond to N transmission schemes.
- CSI-RS time-division multiplexing, and / or, frequency-division multiplexing, and / or code-division multiplexing CSI-RS resources so that each RB CSI-RS occupies less than or equal to 40 RE resources, so that In the case of meeting the protocol requirements, all CSI-RSs corresponding to the N transmission schemes are configured with CSI-RS resources, so that the N transmission schemes are compatible.
- the time domain resources occupied by the CSI-RS corresponding to each transmission scheme in the N transmission schemes are configured, so that the time domain resources occupied by the CSI-RS corresponding to each transmission scheme are different from other time domain resources.
- the time domain resources occupied by the CSI-RS corresponding to the transmission scheme are different, including:
- the base station periodically sends the CSI-RS, and the sending period of the CSI-RS includes two parameters: a transmission interval duration and a subframe offset.
- a radio frame is 10 milliseconds (ms), including 10 subframes.
- the time domain resources occupied by the CSI-RS corresponding to each transmission scheme in the N transmission schemes are configured, so that the time domain resources occupied by the CSI-RS corresponding to each transmission scheme are different from other time domain resources.
- the time domain resources occupied by the CSI-RS corresponding to the transmission scheme are different, and include:
- the starting transmission time of the CSI-RS of each transmission scheme in the N transmission schemes can be further set, so that each transmission The initial transmission time of the CSI-RS of the scheme is different from the initial transmission time of the CSI-RS of other transmission schemes. Therefore, the transmission time domains of the N transmission schemes are staggered from each dimension of the time domain to achieve time division multiplexing RE. Effect of resources.
- the configuration of the CSI-RS interleaved resource block RB corresponding to the N transmission schemes includes:
- the i + nN RBs are sequentially configured as the RBs used by the CSI-RS corresponding to the i-th transmission scheme among the N transmission schemes, where i is greater than or equal to 1 and less than or equal to N, and n is An integer greater than or equal to 0.
- the base station When using a transmission scheme to send CSI-RS to the UE, the base station configures RE resources to be transmitted in each RB, that is, each RB carries the CSI-RS corresponding to the transmission scheme.
- the embodiment of the present application adopts this implementation manner, and the REs of different RBs are respectively allocated to the CSI-RSs of the N transmission schemes through the frequency domain de-density manner, so that the N transmission schemes multiplex the frequency domain resources.
- the configuration of the CSI-RS interleaved resource block RB corresponding to the N transmission schemes includes:
- the j + nm RBs are sequentially configured as the RB corresponding to each group of CSI-RSs in the m group of CSI-RSs, where j is greater than or equal to 1 and less than or equal to m, and n is greater than or equal to 0. Integer.
- grouping CSI-RSs of N transmission schemes and configuring resources as CSI-RSs in units of groups can reduce the unit usage of RBs by N transmission schemes, thereby improving RB resource utilization.
- the code resources are configured for each of the N transmission schemes, so that CSI-RSs of different transmission schemes occupying the same RE are coded according to different code resources.
- a code group is configured corresponding to each of the N / 2 transmission scheme groups, and the code group includes two mutually orthogonal mask sequences.
- the two mask sequences are one of the two transmission schemes in the corresponding transmission scheme group.
- the code resource is configured for each of the N transmission schemes, so that CSI-RSs of different transmission schemes occupying the same RE are coded according to different code resources.
- a code group is configured corresponding to each of the (N + 1) / 2 transmission scheme groups, and the code group includes two mutually orthogonal mask sequences, and the (N + 1) / 2 does not include the virtual group.
- the principle of code division multiplexing is that two mask sequences are respectively configured for two signal sequences, and the two mask sequences meet the rule of mutual quasi-orthogonality. Among them, a signal in a signal sequence is encoded according to a mask in one mask sequence, and a signal in another signal sequence is encoded according to a mask in another mask sequence.
- the encoded two signals can be carried by a same time-frequency resource. . Based on this, using this implementation manner, it is possible to configure mask sequences for the CSI-RSs of the N transmission schemes separately, so that the CSI-RSs of the N transmission schemes are multiplexed with RE resources.
- the configuration of code resources for each of the N transmission schemes so that CSI-RSs occupying different transmission schemes of the same RE are coded according to different code resources includes:
- the number of CSI-RSs of the Z-1 CSI-RS sequences is equal to the number of CSI-RSs with the most CSI-RSs in the N transmission schemes, and the CSI-RS of one CSI-RS sequence is The number of RSs is less than or equal to the number of CSI-RSs with the most CSI-RSs in the N transmission schemes, and Z is less than or equal to N;
- recombining the CSI-RSs of the N transmission schemes can reduce the number of mask sequences and increase the usage rate of masks in the mask sequences.
- the corresponding transmission scheme group configuration code group includes:
- the number of masks in the mask sequence is configured as the target number, and the target number is the CSI-RS with the most CSI-RSs among the N transmission schemes.
- the number of masks in the code group is configured to be the number of CSI-RSs with the largest CSI-RS.
- a CSI-RS is encoded according to a mask
- at least two CSI-RSs occupying the same RE need to be encoded. Based on this, using this implementation manner, it can be ensured that at least two CSI-RSs occupying the same RE correspond to corresponding masks, thereby ensuring the normal execution of code division multiplexing.
- the method further includes:
- the base station Since one RE carries CSI-RSs of multiple transmission schemes, and multiple CSI-RS codes carried on the same RE are different, in order to enable the corresponding UE to accurately identify the corresponding CSI-RS, in this embodiment, the base station The corresponding mask sequence and the RE corresponding to each mask are sent to the corresponding UE in advance, so as to facilitate decoding to obtain the corresponding CSI-RS.
- an embodiment of the present application provides a CSI-RS sending device, and the device includes a module for executing the method steps in the first aspect and the implementation manners of the first aspect.
- an embodiment of the present application provides a base station, including a transceiver, a processor, and a memory.
- the transceiver, the processor, and the memory may be connected through a bus system.
- the memory is configured to store a program, an instruction, or a code
- the processor is configured to execute the program, the instruction, or the code in the memory to complete a method in a possible design of the first aspect.
- an embodiment of the present application provides a computer-readable storage medium, where the computer-readable storage medium stores instructions, and when the computer-readable storage medium runs on the computer, the computer executes the first aspect or any possibility of the first aspect. In design.
- the base station configures N types
- the CSI-RS corresponding to the transmission scheme multiplexes the transmission resources, so that the CSI-RS corresponding to different transmission schemes is carried by limited transmission resources.
- N is 2 or more.
- Figure 1 is a schematic diagram of a Massive MIMO scenario
- FIG. 2 is a method flowchart of a CSI-RS transmission method according to an embodiment of the present application
- FIG. 3 is a schematic diagram of a CSI-RS transmission timing according to an embodiment of the present application.
- FIG. 4 is a schematic diagram of a frequency domain resource distribution structure provided by an embodiment of the present application.
- FIG. 5 is a schematic diagram of a frequency domain resource distribution structure according to a second implementation manner provided by an embodiment of the present application.
- FIG. 6 is a schematic diagram of an effect of code division multiplexing provided by an embodiment of the present application.
- FIG. 7 is a schematic diagram of an effect of code division multiplexing according to a second implementation manner provided by an embodiment of the present application.
- FIG. 8 is a schematic structural diagram of a CSI-RS sending device according to an embodiment of the present application.
- FIG. 9 is a schematic structural diagram of a base station according to an embodiment of the present application.
- FIG. 1 is a schematic diagram of a Massive MIMO scenario.
- a base station is shown.
- the base station includes at least one antenna array composed of m transmitting antennas (mT) and m receiving antennas (mR). .
- the UE covered by the base station includes n receiving antennas and n transmitting antennas in total. Among them, m and n are both greater than 1.
- the MIMO technology is a wireless communication technology in which a transmitting end sends signals to multiple receiving antennas at a receiving end through multiple transmitting antennas.
- m is generally greater than or equal to 16.
- the MIMO technology includes two types of open-loop MIMO and closed-loop MIMO.
- Open-loop MIMO does not require UE feedback channel information
- closed-loop MIMO requires UE feedback channel information
- the base station performs weighted transmission according to the channel information fed back by the UE.
- TM9 is a transmission mode of closed loop MIMO. Based on this transmission mode, the base station can configure the CSI-RS pilot information for the UE for UE measurement and feedback channel information.
- TM9 includes multiple transmission schemes.
- the R13 / R14 standard protocol supports two transmission schemes of CSI-RS pilot information, including a Class A scheme and a Class B scheme.
- Class A solution The base station configures a set of CSI-RS pilots without precoding. Among them, if it is R13, the CSI-RS pilot supports 16 ports (port, P), and if it is R14, the CSI-RS pilot supports 32P.
- CSI-RS pilots When configuring CSI-RS pilots, generally configure one RE resource for each port in each RB. For example, corresponding to the Class A solution above, if the CSI-RS pilot supports 32P, you need to configure 32 in each RB. For the CSI-RS RE resources, similarly, corresponding to the above-mentioned Class B solution, it is necessary to configure 16 CSI-RS RE resources in each RB.
- TM9 stipulates that one RB supports a maximum of 40 REs configured to transmit CSI-RS pilot information
- the total number of CSI-RS RE resources required for at least two transmission schemes is generally greater than 40. Therefore, in order to meet the protocol It specifies and guarantees that each UE with receiving capability can receive CSI-RS.
- One existing implementation method is to send the CSI-RS according to the transmission scheme applicable to the UE with the worst receiving capability.
- FIG. 2 is a method flowchart of a CSI-RS transmission method provided in an embodiment of the present application.
- the method 100 provided in the embodiment of the present application multiplexes transmission resources to carry CSI-RS corresponding to different transmission schemes in a limited manner. It can not only be compatible with multiple transmission schemes, but also improve resource utilization.
- the method 100 includes the following steps:
- Step S101 Receive capability indication information of each UE in a cell.
- the capability indication information refers to a Capabilty message reported by the UE to the base station when the UE initially accesses the base station.
- the Capabilty message indicates multiple capabilities of the corresponding UE, including the access capability of the UE.
- the access capability refers to the corresponding capability.
- Step S102 Determine N transmission schemes according to the capability indication information.
- N is greater than or equal to 2, which is the number of transmission schemes supported by the base station at the same time, and the total number of CSI-RSs corresponding to the N transmission schemes is greater than 40.
- the base station can determine a CSI-RS transmission scheme suitable for each specific UE according to the access capability of the UE.
- UEs can be classified according to access capabilities.
- One type of UE can correspond to one type of specific transmission scheme, and different types of UE can correspond to different transmission schemes.
- determining a transmission scheme applicable to the UE according to the access capability of the UE is a relatively mature technology in the art, and details are not described herein again in the embodiment of the present application.
- the cell includes, for example, two types of UEs.
- Step S103 Configure CSI-RS multiplexed CSI-RS resources corresponding to the N transmission schemes.
- the CSI-RS resource refers to a wireless transmission resource that carries a CSI-RS corresponding to the N transmission schemes.
- RS is the reference signal corresponding to the antenna port. After determining the sending port and number of CSI-RS pilots, configure the wireless transmission resources of the CSI-RS corresponding to the N transmission schemes by configuring the Radio Resource Control (RRC) information. .
- RRC Radio Resource Control
- N CSI-RS time division multiplexing, and / or, frequency division multiplexing, and / or, code division multiplexing CSI-RS resources corresponding to this transmission scheme so that the RE resources occupied by the CSI-RS in each RB are less than or equal to 40 Therefore, in the case that the protocol requirements are met, the CSI-RS resources corresponding to the N transmission schemes are all configured with CSI-RS resources, so that the N transmission schemes are compatible.
- configuring the CSI-RS time division multiplexing resources corresponding to the N transmission schemes includes configuring the time domain resources occupied by the CSI-RS corresponding to each transmission scheme in the N transmission schemes, so that the CSI-RS corresponding to each transmission scheme The time domain resources occupied by RS are different from the time domain resources occupied by CSI-RS corresponding to other transmission schemes; configuring CSI-RS frequency division multiplexing resources corresponding to N transmission schemes, including configuring CSI corresponding to N transmission schemes -RS interleaves resource block RBs, and the total number of resource element REs occupied by each RB is less than or equal to 40; CSI-RS code division multiplexing resources corresponding to N transmission schemes are included, including N transmission schemes.
- Each transmission scheme is configured with code resources so that CSI-RSs of different transmission schemes occupying the same RE are coded according to different code resources.
- the 32 CSI-RSs corresponding to the scheme occupy RBs alternately, and / or, different code resources are configured for the Class A and Class B schemes respectively, so that the 32 CSI-RSs corresponding to the Class A scheme and 32 for the Class B scheme
- the CSI-RS codes are different.
- Step S104 Send a CSI-RS corresponding to a corresponding transmission scheme carried on the CSI-RS resource to a corresponding UE according to each of the N transmission schemes.
- the CSI-RS resources corresponding to the N transmission schemes are time-division multiplexed, the CSI-RS is transmitted to the corresponding UE in different time domains using different transmission schemes; when the CSI-RS corresponding to the N transmission schemes is When RS frequency-division multiplexing CSI-RS resources, the RBs carrying the CSI-RSs of the corresponding transmission schemes are transmitted to the corresponding UEs using the corresponding transmission schemes; when N-channel transmission schemes correspond to the CSI-RS code-division multiplexing CSI-RS resources At this time, the code sequences corresponding to the N types of transmission schemes are sent to the corresponding UEs respectively. After the N CSI-RS transmission schemes are used to send the corresponding CSI-RSs to the corresponding UEs, the UE decodes the code sequences received in advance to obtain the corresponding CSI-RSs.
- CSI-RS can be transmitted by using N transmission schemes, thereby enabling different CSI-RS transmission schemes.
- the base station configures CSI-RS resources by configuring RRC.
- the RRC information includes information about the CSI-RS transmission period, the starting transmission time, the subframe offset, the RB, and the encoding. Operation information. Therefore, the configuration of the following information belongs to the configuration of RRC information.
- the base station periodically sends the CSI-RS, and the sending period of the CSI-RS includes two parameters: a transmission interval duration and a subframe offset.
- a transmission interval duration 10 milliseconds (ms), including 10 subframes, one subframe is 1 ms, and one subframe includes two time slots.
- the subframe offset indicates how many subframes in each period the CSI-RS is transmitted. For example, if the interval is 10 ms and the subframe offset is 1, the CSI-RS is sent in the first subframe of each cycle.
- the subframe offset of the transmission period of the CSI-RS corresponding to each transmission scheme in the N transmission schemes may be configured, so that the subframe of the transmission period of the CSI-RS corresponding to each transmission scheme is configured.
- the subframe offsets of the transmission periods of the CSI-RS corresponding to other transmission schemes are different, so the CSI-RS transmission times of the N transmission schemes are staggered, so that the CSI-RS of the N transmission schemes can occupy the same RE, in addition, enables N types of transmission schemes to be compatible when RE resources for CSI-RS are limited.
- the two transmission schemes are, for example, the R14ClassA scheme and the R13ClassB scheme, and the CSI-RS resource configuration table of the R14ClassA scheme is shown in Table 1:
- the CSI-RS resource configuration table for the R13ClassB scheme is shown in Table 2:
- the CSI-RS transmission period of the R14ClassA scheme is 10ms and the subframe offset is 6. That is, the CSI-RS is transmitted in the sixth subframe of each period, and the CSI-RS transmission period of the R13ClassB scheme is 10ms, the subframe offset is 1, that is, the CSI-RS is transmitted in the first subframe of each cycle.
- FIG. 3 is a schematic diagram of a CSI-RS transmission timing provided by an embodiment of the present application, showing a complete transmission cycle, and subframe 01 is the first subframe in this cycle.
- the CSI-RS of the R13ClassB scheme is transmitted at this moment, and the subframe 06 is the sixth subframe in this period.
- the CSI-RS of the R14ClassA scheme is transmitted at this moment.
- the time corresponding to the subframe 11 is reached, the CSI-RS of the R13ClassB scheme is sent again.
- RS no signal is configured in other subframes, so no operation is performed at the time corresponding to the other subframes.
- the CSI-RS of the R14ClassA scheme and the CSI-RS of the R13ClassB scheme can be carried in the same frequency domain location without affecting the performance of each other, thereby making the R14ClassA scheme and the R13ClassB scheme compatible.
- the CSI-RS transmission period of the N transmission schemes may be configured the same or different.
- the CSI-RS transmission period of the R14ClassA scheme may also be set. It is 5ms, which is not limited in the embodiment of the present application.
- the initial transmission time of the CSI-RS of each transmission scheme in the N transmission schemes can be further set, so that each The initial transmission time of the CSI-RS of one transmission scheme is different from the initial transmission time of the CSI-RS of other transmission schemes, so that the transmission time domains of the N transmission schemes are staggered from each dimension of the time domain.
- the CSI-RS start transmission time of the R14ClassA scheme may be set to Xms
- the CSI-RS start transmission time of the R13ClassB scheme may be set to Yms, where Yms is 0.5ms later than Xms.
- the base station determines the total number of RBs according to the bandwidth and configures in each RB the RE resources to be transmitted CSI-RS, that is, Each RB carries a CSI-RS corresponding to the transmission scheme.
- REs of different RBs may be configured to CSI-RSs of N transmission schemes in a frequency domain de-density manner.
- the RB can be configured in the following two ways.
- Method 1 After the total number of RBs and the RB number of the starting RB are determined according to the bandwidth, starting from the starting RB, the i + nN RBs are sequentially configured as the CSI-RS corresponding to the ith transmission scheme of the N transmission schemes.
- RB used, i is greater than or equal to 1 and less than or equal to N, n is an integer greater than or equal to 0.
- each RB corresponds to a corresponding RB number.
- the base station can determine the starting RB corresponding to the corresponding transmission scheme by configuring the Comb value, and configure the Density parameter to configure the CSI-RS of the corresponding transmission scheme.
- Distribution density of RB is used to indicate that one RB is taken at intervals of several RBs as the CSI-RS RBs of the corresponding transmission scheme.
- the starting frequency domain RB of the CSI-RS in the R14ClassA scheme is RB0, and the distribution density in the RB is 1/2.
- the starting frequency domain RB of the CSI-RS in the R13ClassB scheme is RB0, and the distribution density in the RB is 1/2. .
- RB0 and RB2 shown in FIG. 4 are configured as CSI-RS resources of the R14ClassA scheme.
- RB1 and RB3 shown in FIG. 4 and REs in other RBs with odd RB numbers not shown in FIG. 4 are configured as CSI-RS resources of the R13ClassB scheme.
- N is equal to 3
- RB includes RB0 to RB29.
- This configuration mode indicates that the CSI-RS of the first transmission scheme, the CSI-RS of the second transmission scheme, and the CSI-RS of the third transmission scheme are all 1/3 in the RB.
- the first transmission scheme The starting frequency domain RB of the CSI-RS of the scheme is RB0, the starting frequency domain RB of the CSI-RS of the second transmission scheme is RB1, and the starting frequency domain RB of the CSI-RS of the third transmission scheme is RB2.
- FIG. 5 is a schematic diagram of a frequency domain resource distribution structure when N is equal to 3.
- RB0 shown in FIG. 5 and RE in RB3 not shown in FIG. 5 are configured as CSI-RS resources of a first transmission scheme.
- the RB1 shown in FIG. 5 and the RE in RB4 not shown in FIG. 5 are configured as CSI-RS resources of the second transmission scheme.
- the RB2 shown in FIG. 5 and the RE in RB5 not shown in FIG. 5 are configured.
- the total number of CIS-RSs corresponding to each transmission scheme should be less than 40. If the total number of CIS-RSs corresponding to at least one of the N transmission schemes If it is greater than 40, the first method will not be implemented normally. In view of this, the embodiment of the present application also provides the second method.
- Method 2 The CSI-RSs corresponding to the N transmission schemes are divided into m groups. Among them, the CSI-RSs included in the m-1 group are 40, and the CSI-RSs included in one group are less than or equal to 40. After the starting RB is determined, starting from the starting RB, the j + nm RBs are sequentially configured as the RB corresponding to each group of CSI-RSs in m groups of CSI-RS, where j is greater than or equal to 1 and less than or equal to m, and n is greater than or equal An integer of 0.
- the base station may divide multiple shares according to a set minimum unit, and further, combine the divided CSI-RSs into multiple groups to form the above-mentioned m group.
- the minimum unit for dividing the CSI-RS should be a common divisor of the number of antenna ports configured by 40 and N transmission schemes, for example, 4.
- the minimum unit for dividing the CSI-RS should be a common divisor of the number of antenna ports configured by 40 and N transmission schemes, for example, 4.
- when grouping multiple CSI-RSs try to group the CSI-RSs corresponding to one transmission scheme into one group, so as to facilitate the determination of the correspondence between the transmission scheme and the RB and the UE. Furthermore, transmission of CSI-RS is facilitated.
- the base station may also transfer some or all of the CSI-RSs corresponding to the second transmission scheme of the N transmission schemes to the CSI of the first transmission scheme.
- -RS combination obtains 40 CSI-RSs to form the first group of CSI-RSs, and combines some or all of the CSI-RSs corresponding to the third transmission scheme with the remaining CSI-RSs of the second transmission scheme to obtain 40 CSI-RSs.
- the cell includes three transmission schemes.
- the first transmission scheme and the third transmission scheme each correspond to 32 CIS-RSs
- the second transmission scheme corresponds to 16 CIS-RSs.
- the 8 CIS-RSs in the second transmission scheme are combined with the 32 CSI-RSs in the first transmission scheme to obtain the first group of CSI-RSs
- the other 8 CIS-RSs in the second transmission scheme are combined.
- the eight CIS-RSs in the second transmission scheme are combined with the 32 CSI-RSs in the first transmission scheme to obtain the first set of CSI-RSs.
- RS, combining the 16 CIS-RSs in the third transmission scheme with the remaining 24 CSI-RSs in the second transmission scheme to obtain the second set of CSI-RSs, and the remaining 16 CSI-RSs in the third transmission scheme As the third group of CSI-RS.
- RBs are configured for each group of CSI-RSs.
- m groups of CSI-RSs are configured to use RBs interleaved.
- the configuration is similar to the configuration of the first method, which is not repeated in this embodiment.
- one RB carries CSI-RSs of multiple transmission schemes. Therefore, when sending CSI-RS to the UE, one RB is sent to the UE corresponding to the multiple transmission schemes.
- the base station may send the correspondence between the RE and the CSI-RS to the corresponding UE, so that the UE can read the corresponding CSI-RS.
- the unit usage rate of the RBs by the N transmission schemes can be reduced, thereby improving the RB resource utilization rate.
- the CSI-RSs of the N transmission schemes can also be used to define a mask, so that the CSI-RSs of different transmission schemes use different codes to occupy the same RE resource.
- the UE receives the corresponding CSI-RS, it decodes using the corresponding mask to obtain the corresponding CSI-RS.
- two mask sequences are usually configured respectively for the two signal sequences, and the two mask sequences satisfy the rule of mutual quasi-orthogonality.
- a signal in a signal sequence is encoded according to a mask in one mask sequence
- a signal in another signal sequence is encoded according to a mask in another mask sequence.
- the encoded two signals can be carried by a same time-frequency resource.
- two mutually orthogonal mask sequences are referred to as a code group.
- a code group when N is equal to 2, a code group can be configured; when N is greater than 2, multiple code groups can be configured to configure mask sequences for the CSI-RSs of N transmission schemes respectively. , So that CSI-RSs of N transmission schemes share RE resources.
- N transmission schemes may be grouped in pairs to obtain N / 2 transmission scheme groups, corresponding to each transmission scheme group in the N / 2 transmission scheme groups.
- a code group is configured, where each code group includes two mutually orthogonal mask sequences, and the two mask sequences correspond to the two transmission schemes in the corresponding transmission scheme group one by one. Then, according to the mask in the corresponding mask sequence, the CSI-RS corresponding to each of the N transmission schemes is encoded.
- the first transmission scheme and the second transmission scheme can be grouped into a group
- the third transmission scheme and the fourth transmission scheme can be grouped into a group
- two code groups are configured.
- Both code groups include two mutually orthogonal mask sequences.
- the two mask sequences in the first code group correspond to the first transmission scheme and the second transmission scheme
- the two mask sequences in the second code group correspond to the third transmission scheme and the first transmission scheme.
- the four transmission schemes correspond one-to-one.
- N is an odd number
- a virtual transmission scheme with all CSI-RSs of 0 is added to obtain N + 1 transmission schemes, and then the N + 1 transmission schemes are grouped in pairs.
- (N + 1) / 2 transmission scheme groups are obtained.
- a code group is configured for each transmission scheme group, and each code group includes two mutually orthogonal mask sequences.
- (N + 1) / 2 does not include the virtual transmission scheme (N + 1) / 2-1 transmission scheme groups, which correspond to the two mask sequences in its corresponding code group one-to-one, including transmission of the virtual transmission scheme.
- the transmission scheme corresponds to any mask sequence in its code group.
- the CSI-RS codes corresponding to each of the N transmission schemes are encoded.
- N 3
- N 3
- both code groups include two mutually orthogonal mask sequences.
- the two mask sequences in the first code group correspond one-to-one with the first transmission scheme and the second transmission scheme
- the third transmission scheme corresponds with any one of the mask sequences in the second code group.
- the number of CSI-RSs corresponding to the N types of transmission schemes may be different.
- this embodiment of the present application may determine the number of CSI-RSs with the largest number of N types of transmission schemes.
- the number of W and the number of CSI-RSs of the transmission scheme less than W are combined to finally obtain Z CSI-RS sequences.
- Z mask sequences are respectively configured for the corresponding Z CSI-RS sequences, and each CSI-RS in the Z CSI-RS sequences is encoded according to a mask in the corresponding mask sequence.
- W is a multiple of 8, and Z is less than or equal to N.
- the number of CSI-RSs of the Z-1 CSI-RS sequences is W, and the number of CSI-RSs of one CSI-RS sequence is less than or equal to W.
- the Z mask sequences corresponding to the Z CSI-RS sequences are configured similarly to the above description. Similarly, you can first determine whether Z is an even number, and then group the Z CSI-RS sequences into groups, and Corresponds to each group configuration code group. Specifically, refer to the foregoing description for details, and the embodiments of the present application are not described in detail here.
- the second transmission scheme and the third transmission scheme each include 16 CSI-RSs
- the 32 CSI-RS is the first CSI-RS sequence.
- the 16 CSI-RSs in the second transmission scheme and the 16 CSI-RSs in the third transmission scheme are combined as the second CSI-RS sequence.
- Two CSI-RS sequences are configured with one code group, and the two mask sequences in the code group each include 32 masks.
- code division multiplexing may define two, four, or eight masks as a group according to a protocol, and one mask sequence includes at least one mask group.
- a mask group is defined to include 8 masks, and if a mask sequence needs to be configured with 32 masks, 4 mask groups are included.
- the mask sequence may be an orthogonal cover code (OCC) sequence.
- the number of CSI-RSs corresponding to N transmission schemes may be different. Based on this, in order to ensure that CSI-RSs of N transmission schemes share a RE, at least two of the same RE are occupied Each CSI-RS needs to be encoded. Therefore, when the number of CSI-RSs corresponding to the N transmission schemes are equal, the number of masks included in any mask sequence is the same as the number of CSI-RSs. If the number of CSI-RS corresponding to the N transmission schemes is not equal, if the transmission scheme with the largest number of CSI-RSs is one, then the number of masks contained in any mask sequence is equal to that of the CSI-RS with the most CSI-RSs.
- the number of CSI-RSs, or the number of CSI-RSs with the next-largest number of CSI-RSs is equal to the number of CSI-RSs with the most CSI-RSs.
- one orthogonal code group may be configured.
- the orthogonal code group includes a first mask sequence and a second mask sequence, the first mask sequence includes mask groups 1 to 4, and the second mask sequence 5 to 8, wherein each mask group includes 8 Mask.
- the 32 masks of the first mask sequence correspond to the 32 CSI-RSs of the R14ClassA scheme, and are used to encode the 32 CSI-RSs of the R14ClassA scheme.
- the 32 masks of the second mask sequence are related to the R13ClassB scheme.
- One-to-one correspondence of 32 CSI-RSs is used to encode the 32 CSI-RSs of the R13ClassB scheme.
- FIG. 6 A schematic diagram of code division multiplexing after encoding and configuring resources is shown in FIG. 6, where one RE carries one CSI-RS of the R14ClassA scheme and one CSI-RS of the R13ClassB scheme, thereby achieving the purpose of RE multiplexing and making the R14ClassA scheme Compatible with R13ClassB scheme.
- each mask sequence should include at least 16 masks.
- FIG. 7 A schematic diagram of code division multiplexing after encoding and configuring resources is shown in FIG. 7.
- each mask sequence should include 32 masks.
- one RE carries CSI-RSs of multiple transmission schemes, and multiple CSI-RS codes carried on the same RE are different. Therefore, in order for the corresponding UE to accurately identify the corresponding CSI-RS.
- the base station sends the corresponding mask sequence and the RE corresponding to each mask to the corresponding UE in advance to facilitate decoding to obtain the corresponding CSI-RS.
- N is equal to 4, then the CSI-RS of the first transmission scheme and the CSI-RS of the second transmission scheme can be configured for code division multiplexing, and the CSI of the third transmission scheme can be configured.
- -RS and CSI-RS code division multiplexing of the fourth transmission scheme and then configure the first transmission scheme and second transmission scheme after code division multiplexing, and the third transmission scheme after code division multiplexing And the fourth transmission scheme time division multiplexing.
- the first transmission scheme and the second transmission scheme after the code division multiplexing are configured, and the third transmission scheme and the fourth transmission scheme after the code division multiplexing are frequency division multiplexed.
- the CSI-RS of the first transmission scheme and the CSI-RS of the second transmission scheme occupy the same RB, but they are time-division multiplexed.
- the CSI-RS of the third transmission scheme and the fourth transmission scheme CSI-RS occupies the same RB, but the two are time-division multiplexed, and the CSI-RS of the first transmission scheme and the CSI-RS of the second transmission scheme, and the CSI-RS of the third transmission scheme and the fourth
- the CSI-RS interleaving of the transmission scheme occupies the RB.
- the base station configures CSI-RS resources for N different transmission schemes in a time division, and / or, frequency division, and / or code division manner, so that the RE resources can be limited in
- N different transmission schemes to send CSI-RS is not only compatible with multiple transmission schemes, but also can improve the utilization rate of resources.
- FIG. 8 is a schematic structural diagram of a CSI-RS sending device according to an embodiment of the present application.
- the CSI-RS transmitting device 800 may be configured to execute a CSI-RS transmitting method corresponding to FIG. 2 to FIG. 7.
- the CSI-RS sending device 800 includes a receiving module 801, a determining module 802, a configuration module 803, and a sending module 804.
- the receiving module 801 and the sending module 804 may be specifically configured to perform transmission and reception of information in the method 100; the determination module 802 and the configuration module 803 are specifically configured to perform processing other than information transmission and reception in the method 100.
- the receiving module 801 may be configured to receive capability indication information of each UE in a cell.
- the determining module 802 may be used to determine N transmission schemes according to the capability indication information, where N is greater than or equal to 2, and the total number of CSI-RSs corresponding to the N transmission schemes is greater than 40.
- the configuration module 803 may be configured to configure CSI-RS multiplexed CSI-RS resources corresponding to the N types of transmission schemes.
- the CSI-RS resources refer to wireless transmission resources that carry CSI-RS corresponding to the N types of transmission schemes. .
- the sending module 804 may be configured to send a CSI-RS corresponding to a corresponding transmission scheme carried on the CSI-RS resource to a corresponding UE according to each of the N transmission schemes.
- the division of each of the above modules is only a division of logical functions. In actual implementation, it may be fully or partially integrated into a physical entity, or it may be physically separated.
- the receiving module 801 and the sending module 804 may be implemented by a transceiver
- the determining module 802 and the configuration module 803 may be implemented by a processor.
- the base station 900 may include a processor 901, a transceiver 902, and a memory 903.
- the memory 903 may be used to store programs / codes pre-installed when the base station 900 is shipped from the factory, or may be used to store codes and the like when the processor 901 is executed.
- the base station 900 according to the embodiment of the present application and the method implemented in the method 100 of the embodiment of the present application, wherein the transceiver 902 is used to perform the transmission and reception of information in the method 100, and the processor 901 is used to execute the information in the method 100 Processing other than sending and receiving. I will not repeat them here.
- an embodiment of the present application further provides a computer storage medium, where the computer storage medium provided in the base station may store a program, and when the program is executed, the methods including FIG. 2 to FIG. 7 may be implemented. Some or all of the steps in the embodiments.
- the storage medium in the base station may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).
- the transceiver may be a wired transceiver, a wireless transceiver, or a combination thereof.
- the wired transceiver may be, for example, an Ethernet interface.
- the Ethernet interface can be an optical interface, an electrical interface, or a combination thereof.
- the wireless transceiver may be, for example, a wireless local area network transceiver, a cellular network transceiver, or a combination thereof.
- the processor may be a central processing unit (CPU), a network processor (NP), or a combination of a CPU and an NP.
- the processor may further include a hardware chip.
- the above hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
- ASIC application-specific integrated circuit
- PLD programmable logic device
- the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a generic array logic (GAL), or any combination thereof.
- the memory may include volatile memory (for example, random-access memory (RAM); the memory may also include non-volatile memory (for example, read-only memory) memory (ROM), flash memory (flash memory), hard disk (HDD) or solid-state drive (SSD); the memory may also include a combination of the above types of memory.
- FIG. 9 may further include a bus interface.
- the bus interface may include any number of interconnected buses and bridges, and one or more processors specifically represented by the processor and various circuits of the memory represented by the memory are linked together.
- the bus interface can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art, and therefore, they are not described further herein.
- the bus interface provides an interface.
- the transceiver provides a unit for communicating with various other devices over a transmission medium.
- the processor is responsible for managing the bus architecture and general processing, and the memory can store data used by the processor when performing operations.
- Various illustrative logic units and circuits described in the embodiments of the present application may be implemented by a general-purpose processor, a digital signal processor, an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or other programmable logic devices. Discrete gate or transistor logic, discrete hardware components, or any combination of the above are designed to implement or operate the described functions.
- the general-purpose processor may be a microprocessor. Alternatively, the general-purpose processor may also be any conventional processor, controller, microcontroller, or state machine.
- the processor may also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a digital signal processor core, or any other similar configuration. achieve.
- a software unit may be stored in a RAM memory, a flash memory, a ROM memory, an EPROM memory, an EEPROM memory, a register, a hard disk, a removable disk, a CD-ROM, or any other form of storage medium in the art.
- the storage medium may be connected to the processor, so that the processor can read information from the storage medium and can write information to the storage medium.
- the storage medium may be integral to the processor.
- the processor and the storage medium may be provided in an ASIC, and the ASIC may be provided in a UE.
- the processor and the storage medium may also be provided in different components in the UE.
- the size of the sequence number of each process does not mean the order of execution.
- the execution order of each process should be determined by its function and internal logic.
- the implementation process constitutes any limitation.
- the computer program product includes one or more computer instructions.
- the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
- the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, a computer, a server, or a data center.
- the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that includes one or more available medium integration.
- the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a digital video disc (DVD)), or a semiconductor medium (for example, a solid state disk).
- ordinal numbers such as “first” and “second” are used to distinguish multiple objects, and are not used to limit the order of multiple objects.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请实施例提供了一种CSI-RS发送方法、设备及基站,所述CSI-RS发送方法,包括:接收小区内每个用户设备UE的能力指示信息;根据所述能力指示信息确定N种传输方案;配置所述N种传输方案对应的CSI-RS复用CSI-RS资源;按照所述N种传输方案中的每种传输方案,向对应UE发送所述CSI-RS资源上承载的相应传输方案对应的CSI-RS。由此可见,本申请实施例的技术方案,在资源受限的条件下,通过复用资源的方式发送不同传输方案对应的CSI-RS,不仅能够兼容多种传输方案,而且还能够提高资源的利用率。
Description
本申请实施例涉及通信技术领域,尤其涉及一种信道状态信息-参考信号(channel state information-reference signal,CSI-RS)发送方法、设备及系统。
长期演进(long term evolution,LTE)和第五代移动通信技术(5th-generation,5G)系统,支持基站使用多个天线在同一时频资源上发射信号,用户设备(user equipment,UE)在多个天线上接收信号的通信技术,该技术即为大规模多输入多输出(massive multiple input and multiple output,Massive MIMO)技术。基于此,基站的每个天线端口(antenna port)对应一个参考信号(reference signal,RS),并占用时频资源中一个特定的资源元素(resource element,RE)。对于基站覆盖的小区在不同状态时所支持的天线端口,由基站对参考信号配置确定。例如,小区在估计信道状态时,基站配置CSI-RS资源。
此外,LTE协议定义了多种下行传输模式(transmission mode,TM),其中,每种下行传输模式均对应有自己的传输协议,并适用于传输不同的下行参考信号。例如,TM9适用于传输CSI-RS。进一步的,按照UE能力的不同,TM9还设置有多种传输方案(transmission scheme),不同传输方案适用于不同能力类型的UE,且不同传输方案配置的天线端口数量不同,从而占用的RE数量也不同。例如,支持TM9协议的R14Class A方案,配置32个天线端口,即,R14Class A方案在每个资源块(resource block,RB)上需要配置32个CSI-RS的RE资源;支持TM9协议的R10方案中,例如需要配置4个波束,每个波束对应4个CSI-RS,则该场景中R10方案需要配置4*4=16个CSI-RS的RE资源。
通常,在使用TM9发送下行参考信号时,协议规定一个RB中最多40个RE用于CSI-RS,而小区内包括多种能力类型的UE,导致基站使用TM9发送CSI-RS时,可能需要支持至少两种传输方案来兼容不同能力的UE。由于支持至少两种传输方案需要占用的RE很可能大于40个,所以,将会存在CSI-RS需要的RE资源不足的问题,从而导致使用TM9发送CSI-RS时,不同传输方案无法兼容。
发明内容
本申请实施例提供了一种CSI-RS发送方法、设备及基站,以解决配置资源受限, 导致不同传输方案无法兼容的问题。
第一方面,本申请实施例提供了一种CSI-RS发送方法,包括:
接收小区内每个用户设备UE的能力指示信息;
根据所述能力指示信息确定N种传输方案,N大于等于2,所述N种传输方案对应的CSI-RS的总数量大于40;
配置所述N种传输方案对应的CSI-RS复用CSI-RS资源,所述CSI-RS资源是指承载所述N种传输方案对应的CSI-RS的无线发送资源;
按照所述N种传输方案中的每种传输方案,向对应UE发送所述CSI-RS资源上承载的相应传输方案对应的CSI-RS。
采用本实现方式,通过复用资源的方式发送不同传输方案对应的CSI-RS,不仅能够兼容多种传输方案,而且还能够提高资源的利用率。
一种可选的设计中,所述配置所述N种传输方案对应的CSI-RS复用CSI-RS资源,包括:
配置所述N种传输方案中每种传输方案对应的CSI-RS占用的时域资源,使每种传输方案对应的CSI-RS占用的时域资源与其他传输方案对应的CSI-RS占用的时域资源均不相同;和/或,
配置所述N种传输方案对应的CSI-RS交错使用资源块RB,所使用的每个RB被占用的资源元素RE总数小于或者等于40;和/或,
为所述N种传输方案中每种传输方案配置码资源,使占用相同RE的不同传输方案的CSI-RS根据不同码资源编码。
由于需要配置RE的CSI-RS总数量大于40个,若在一个RB中为每个CSI-RS分别配置一个RE,将不满足协议规定,因此,采用本实现方式,通过配置N种传输方案对应的CSI-RS时分复用,和/或,频分复用,和/或,码分复用CSI-RS资源,使得每个RB中CSI-RS占用的RE资源小于或者等于40个,从而能够在满足协议规定的情况下,将N种传输方案对应的CSI-RS全部配置CSI-RS资源,使得N种传输方案能够兼容。
一种可选的设计中,所述配置所述N种传输方案中每种传输方案对应的CSI-RS占用的时域资源,使每种传输方案对应的CSI-RS占用的时域资源与其他传输方案对应的CSI-RS占用的时域资源均不相同,包括:
配置所述N种传输方案中每种传输方案对应的CSI-RS的发送周期的子帧偏置,使每种传输方案对应的CSI-RS的发送周期的子帧偏置与其他传输方案对应的CSI-RS的发送周期的子帧偏置均不相同。
通常,基站周期性发送CSI-RS,而CSI-RS的发送周期包括发送间隔时长和子帧偏置两项参数。在时域中,一个无线帧是10毫秒(ms),包括10个子帧。基于此,采用本实现方式,将N种传输方案的CSI-RS发送时间错开,使得N种传输方案的CSI-RS能够占用相同的RE,进而,在用于CSI-RS的RE资源有限的情况下,使N种传输方案能够兼容。
一种可选的设计中,所述配置所述N种传输方案中每种传输方案对应的CSI-RS占用的时域资源,使每种传输方案对应的CSI-RS占用的时域资源与其他传输方案对应的CSI-RS占用的时域资源均不相同,还包括:
配置所述N种传输方案中每种传输方案对应的CSI-RS的起始发送时刻,使每种传输方案对应的CSI-RS的起始发送时刻与其他传输方案对应的CSI-RS的起始发送时刻均不相同。
在将N种传输方案的CSI-RS发送周期的子帧偏置设置为不同的基础上,还可以进一步设置N种传输方案中各传输方案的CSI-RS的起始发送时间,使每种传输方案的CSI-RS的起始发送时间与其他传输方案的CSI-RS的起始发送时间均不相同,从而从时域的各个维度将N种传输方案的发送时域错开,达到时分复用RE资源的效果。
一种可选的设计中,所述配置所述N种传输方案对应的CSI-RS交错使用资源块RB,包括:
确定发送所述N种传输方案对应的CSI-RS的起始RB;
从所述起始RB开始,顺次将第i+nN个RB配置为所述N种传输方案中第i种传输方案对应的CSI-RS使用的RB,i大于等于1小于等于N,n是大于等于0的整数。
其中,使用一种传输方案向UE发送CSI-RS时,基站在每个RB中配置待发送CSI-RS的RE资源,即,每个RB均承载该传输方案对应的CSI-RS。而本申请实施例采用本实现方式,通过频域降密度的方式,将不同RB的RE分别配置给N种传输方案的CSI-RS,从而使得N种传输方案复用频域资源。
一种可选的设计中,所述配置所述N种传输方案对应的CSI-RS交错使用资源块RB,包括:
确定发送所述N种传输方案对应的CSI-RS的起始RB;
将所述N种传输方案对应的CSI-RS分为m组,其中,m-1组中包含的CSI-RS为40个,一组中包含的CSI-RS少于或者等于40个;
从所述起始RB开始,顺次将第j+nm个RB配置为所述m组CSI-RS中每组CSI-RS对应的RB,j大于等于1小于等于m,n是大于等于0的整数。
采用本实现方式,将N种传输方案的CSI-RS分组,并以组为单位为CSI-RS配 置资源,能够减少N种传输方案对RB的单位使用率,从而提高RB资源利用率。
一种可选的设计中,当N是偶数时,所述为所述N种传输方案中每种传输方案配置码资源,使占用相同RE的不同传输方案的CSI-RS根据不同码资源编码,包括:
将所述N种传输方案两两分组,得到N/2个传输方案组;
对应所述N/2个传输方案组分别配置一个码组,所述码组包括两个互相正交的掩码序列,所述两个掩码序列与相应传输方案组中的两种传输方案一一对应;
根据相应掩码序列中的掩码,对所述N种传输方案中每种传输方案对应的CSI-RS编码。
一种可选的设计中,当N是奇数时,所述为所述N种传输方案中每种传输方案配置码资源,使占用相同RE的不同传输方案的CSI-RS根据不同码资源编码,包括:
添加一个CSI-RS全部为0的虚拟传输方案;
将所述N+1种传输方案两两分组,得到(N+1)/2个传输方案组;
对应所述(N+1)/2个传输方案组分别配置一个码组,所述码组包括两个互相正交的掩码序列,所述(N+1)/2中不包括所述虚拟传输方案(N+1)/2-1个传输方案组,与其相应码组中的两个掩码序列一一对应,所述包括所述虚拟传输方案的传输方案组中,所述传输方案对应其码组中任一个掩码序列;
根据相应掩码序列中的掩码,对所述N种传输方案中每种传输方案对应的CSI-RS编码。
其中,码分复用的原理在于,为两个信号序列分别配置两个掩码序列,该两个掩码序列满足相互准正交的规则。其中,一个信号序列中信号根据其中一个掩码序列中的掩码编码,另一个信号序列中的信号根据另一个掩码序列中的掩码编码,编码后的两信号可以通过同一时频资源承载。基于此,采用本实现方式,能够为N种传输方案的CSI-RS分别配置掩码序列,从而使N种传输方案的CSI-RS码分复用RE资源。
一种可选的设计中,所述为所述N种传输方案中每种传输方案配置码资源,使占用相同RE的不同传输方案的CSI-RS根据不同码资源编码,包括:
当所述N种传输方案对应的CSI-RS数量不相同时,组合所述N种传输方案中数量小于CSI-RS最多的传输方案的CSI-RS,共得到Z个CSI-RS序列,所述Z个CSI-RS序列中,Z-1个CSI-RS序列的CSI-RS数量,等于所述N种传输方案中CSI-RS最多的CSI-RS的数量,1个CSI-RS序列的CSI-RS数量,小于或者等于所述N种传输方案中CSI-RS最多的CSI-RS的数量,Z小于或者等于N;
为所述Z个CSI-RS序列分别配置Z个掩码序列;
根据相应掩码序列中的掩码,对所述Z个CSI-RS序列中的每个CSI-RS编码。
采用本实现方式,将N种传输方案的CSI-RS重新组合,能够减少掩码序列的数量,且,能够提高掩码序列中掩码的使用率。
一种可选的设计中,对应传输方案组配置码组,包括:
当所述N种传输方案对应的CSI-RS数量不相同时,判断CSI-RS数量最多的传输方案是否是一种;
若CSI-RS数量最多的传输方案是一种,配置所述掩码序列中掩码的数量均为目标数量,所述目标数量是所述N种传输方案中CSI-RS最多的CSI-RS的数量,或者CSI-RS数量次多的CSI-RS的数量;
若CSI-RS数量最多的传输方案不是一种,配置所述码组中掩码的数量均为CSI-RS最多的CSI-RS的数量。
由于一个CSI-RS根据一个掩码进行编码,为了保证N种传输方案的CSI-RS共用RE,占用同一RE的至少两个CSI-RS均需要编码。基于此,采用本实现方式,能够保证占用同一个RE的至少两个CSI-RS均对应有相应的掩码,从而保证码分复用的正常执行。
一种可选的设计中,在配置所述码组之后,还包括:
将每组掩码发送到相应传输方案对应的UE。
由于一个RE承载多种传输方案的CSI-RS,并且,同一个RE上承载的多个CSI-RS编码均不同,因此,为了使相应UE准确识别对应的CSI-RS,本实施例中,基站预先将相应掩码序列及每个掩码对应的RE,发送到相对应的UE,以便于解码得到自身对应的CSI-RS。
第二方面,本申请实施例提供了一种CSI-RS发送设备,该设备包括用于执行第一方面及第一方面各实现方式的中方法步骤的模块。
第三方面,本申请实施例提供了一种基站,包括收发器,处理器以及存储器。其中,收发器、处理器以及所述存储器之间可以通过总线系统相连。该存储器用于存储程序、指令或代码,所述处理器用于执行所述存储器中的程序、指令或代码,完成第一方面可能的设计中的方法。
第四方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行第一方面或第一方面任意可能的设计中的方法。
采用本申请实施例的CSI-RS发送方法、设备及基站,在根据小区内UE的能力确定N种传输方案,且N种传输方案对应的CSI-RS的总数量大于40时,基站配置N种传输方案对应的CSI-RS复用发送资源,使得不同传输方案对应的CSI-RS,通过有限的发送资源承载。其中,N大于等于2。由此可见,本申请实施例的技术方案, 在资源受限的条件下,通过复用资源的方式发送不同传输方案对应的CSI-RS,不仅能够兼容多种传输方案,而且还能够提高资源的利用率。
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是Massive MIMO的场景示意图;
图2是本申请实施例提供的CSI-RS发送方法的方法流程图;
图3是本申请实施例提供的CSI-RS的发送时序示意图;
图4是本申请实施例提供的频域资源分布结构示意图;
图5是本申请实施例提供的第二种实施方式的频域资源分布结构示意图;
图6是本申请实施例提供的码分复用的效果示意图;
图7是本申请实施例提供的第二种实施方式的码分复用的效果示意图;
图8是本申请实施例提供的CSI-RS发送设备的结构示意图;
图9是本申请实施例提供的基站的结构示意图。
参见图1,图1是Massive MIMO的场景示意图,其中,图1中示出了一个基站,该基站包括至少一个由m根发射天线(mT)和m根接收天线(mR)的组成的天线阵列。该基站覆盖下的UE共包括n根接收天线和n根发射天线。其中,m和n均大于1。基于此,MIMO技术即为发射端通过多根发射天线向接收端的多根接收天线发送信号的无线通信技术,而Massive MIMO场景下,m一般大于或者等于16。
其中,MIMO技术包括开环MIMO和闭环MIMO两种,开环MIMO不需要UE反馈信道信息,闭环MIMO需要UE反馈信道信息,基站根据UE反馈的信道信息进行加权发射。TM9即是闭环MIMO的一种传输模式,基于此传输模式基站可以给UE配置CSI-RS导频信息,用于UE测量和反馈信道信息。
具体的,TM9包括多种传输方案,例如,R13/R14标准协议支持两种CSI-RS导频信息的传输方案,包括Class A方案和Class B方案。Class A方案:基站配置一套不做预编码的CSI-RS导频,其中,若是R13,CSI-RS导频支持16端口(port,P),若是R14,CSI-RS导频支持32P。Class B方案:基站通过波束权值预加权配置多个固定波束,分别覆盖小区范围内的不同区域,例如是4个固定波束,每个固定波束支 持2P、4P或者8P,例如是4P,那么,本实施例基站所配置的CSI-RS导频支持4*4=16P。
在配置CSI-RS导频时,一般为每个端口在每个RB中配置一个RE资源,例如,对应上述Class A方案,若CSI-RS导频支持32P,需要在每个RB中配置32个CSI-RS的RE资源,同样的,对应上述Class B方案,需要在每个RB中配置16个CSI-RS的RE资源。
其中,不同传输方案适用于不同接收能力的UE,而基站覆盖下的UE接受能力参差不齐,通常需要使用至少两种传输方案发送CSI-RS。由于TM9的协议规定一个RB最多支持配置40个RE用于传输CSI-RS导频信息,至少两种传输方案需要配置的CSI-RS的RE资源总数量,一般大于40个,因此,为了满足协议规定,并保证每种接收能力的UE都能接收到CSI-RS,一种现有的执行方式是,按照接收能力最差的UE所适用的传输方案发送CSI-RS。
由此可见,受限于CSI-RS所需的RE资源不足的问题,现有的CSI-RS发送方法,不同传输方案无法兼容。有鉴于此,提出了本申请实施例的技术方案。
下面结合附图,对本申请的实施例进行描述。
参见图2,图2是本申请实施例提供的CSI-RS发送方法的方法流程图,本申请实施例提供的方法100,通过复用发送资源,将不同传输方案对应的CSI-RS承载在有限的RE资源上,从而不仅能够兼容多种传输方案,而且还能够提高资源的利用率。方法100包括如下步骤:
步骤S101,接收小区内每个UE的能力指示信息。
其中,能力指示信息是指UE在初始接入基站时,向基站上报的能力(Capabilty)消息,该Capabilty消息指示相应UE的多项能力,包括UE的接入能力,该接入能力是指相应UE所支持的传输速率。
步骤S102,根据所述能力指示信息确定N种传输方案。
其中,本申请实施例中,N大于等于2,是基站同时支持的传输方案的数量,N种传输方案对应的CSI-RS的总数量大于40。
接步骤S101,TM9的不同传输方案对应不同的传输速率,因此,基站可以根据UE的接入能力确定适用于每个具体UE的CSI-RS传输方案。具体的,可以按照接入能力将UE分类,一类UE可以对应一类具体的传输方案,不同类的UE可以对应的不同的传输方案。其中,根据UE的接入能力确定该UE适用的传输方案是本领域较为成熟的技术,本申请实施例此处不再赘述。
在本申请的一个可选实施例中,小区中例如包括两类UE,该两类UE分别适用于Class A方案和Class B方案,并且,Class A方案需配置32个CSI-RS,Class B方案需配置8*4=32个CSI-RS。
步骤S103,配置所述N种传输方案对应的CSI-RS复用CSI-RS资源。
其中,CSI-RS资源是指承载所述N种传输方案对应的CSI-RS的无线发送资源。
RS是天线端口对应的参考信号,在确定CSI-RS导频的发送端口及数量后,通过配置无线资源控制(Radio Resource Control,RRC)信息配置N种传输方案对应的CSI-RS的无线发送资源。
本申请实施例中,由于需要配置RE的CSI-RS总数量大于40个,若在一个RB中为每个CSI-RS分别配置一个RE,将不满足协议规定,因此,本实施例通过配置N种传输方案对应的CSI-RS时分复用,和/或,频分复用,和/或,码分复用CSI-RS资源,使得每个RB中CSI-RS占用的RE资源小于或者等于40个,从而能够在满足协议规定的情况下,将N种传输方案对应的CSI-RS全部配置CSI-RS资源,使得N种传输方案能够兼容。
具体的,配置N种传输方案对应的CSI-RS时分复用资源,包括,配置N种传输方案中每种传输方案对应的CSI-RS占用的时域资源,使每种传输方案对应的CSI-RS占用的时域资源与其他传输方案对应的CSI-RS占用的时域资源均不相同;配置N种传输方案对应的CSI-RS频分复用资源,包括,配置N种传输方案对应的CSI-RS交错使用资源块RB,所使用的每个RB被占用的资源元素RE总数小于或者等于40;配置N种传输方案对应的CSI-RS码分复用资源,包括,为N种传输方案中每种传输方案配置码资源,使占用相同RE的不同传输方案的CSI-RS根据不同码资源编码。
例如,配置Class A方案对应的32个CSI-RS,与Class B方案对应的32个CSI-RS,发送时域不同,和/或,配置Class A方案对应的32个CSI-RS,与Class B方案对应的32个CSI-RS交错占用RB,和/或,为Class A方案与Class B方案分别配置不同的码资源,使得Class A方案对应的32个CSI-RS,与Class B方案对应的32个CSI-RS编码不同。
步骤S104,按照所述N种传输方案中的每种传输方案,向对应UE发送所述CSI-RS资源上承载的相应传输方案对应的CSI-RS。
具体的,当N种传输方案对应的CSI-RS时分复用CSI-RS资源时,在不同的时域分别采用不同传输方案向相应UE发送相应CSI-RS;当N种传输方案对应的CSI-RS频分复用CSI-RS资源时,将承载相应传输方案的CSI-RS的RB采用对应的传输方案发送到相应UE;当N种传输方案对应的CSI-RS码分复用CSI-RS资源时,预先N种传输方案对应的码序列分别发送到相应UE,在分别采用N种传输方案将相应CSI-RS发送到相应UE之后,UE按照预先接收的码序列解码得到相应CSI-RS。
由此可见,本申请实施例通过配置N种传输方案的CSI-RS复用资源,在资源受限的条件下,能够采用N种传输方案发送CSI-RS,从而使得不同的CSI-RS传输方案能够兼容。
下面结合配置过程对N种传输方案的CSI-RS复用资源的场景分别进行描述。
其中,基于上述对CSI-RS发送过程的描述,基站通过配置RRC配置CSI-RS资源,RRC信息包括对CSI-RS的发送周期、起始发送时刻、子帧偏置、RB以及编码等项目的操作信息,因此,下述信息的配置均属于对RRC信息配置。
配置N种传输方案的CSI-RS复用时域资源:
通常,基站周期性发送CSI-RS,而CSI-RS的发送周期包括发送间隔时长和子帧偏置两项参数。其中,在时域中,一个无线帧是10毫秒(ms),包括10个子帧,一个子帧是1ms,一个子帧包括两个时隙。子帧偏置指示在每个周期内第几个子帧发送CSI-RS。例如,间隔时长是10ms,子帧偏置是1,则在每个周期的第一个子帧发送CSI-RS。
基于此,本申请实施例中,可以配置N种传输方案中每种传输方案对应的CSI-RS的发送周期的子帧偏置,使每种传输方案对应的CSI-RS的发送周期的子帧偏置与其他传输方案对应的CSI-RS的发送周期的子帧偏置均不相同,从而将N种传输方案的CSI-RS发送时间错开,使得N种传输方案的CSI-RS能够占用相同的RE,进而,在用于CSI-RS的RE资源有限的情况下,使N种传输方案能够兼容。
本申请的一个可选实施例中,2种传输方案例如是R14ClassA方案和R13ClassB方案,则R14ClassA方案的CSI-RS资源配置表如表1所示:
表1
R13ClassB方案的CSI-RS资源配置表如表2所示:
表2
可见,本实施例中,R14ClassA方案的CSI-RS发送周期是10ms,子帧偏置是6,即,在每个周期的第六个子帧发送CSI-RS,R13ClassB方案的CSI-RS发送周期是 10ms,子帧偏置是1,即,在每个周期的第一个子帧发送CSI-RS。
结合表1和表2,参见图3,图3是本申请实施例提供的CSI-RS的发送时序示意图,示出了一个完整的发送周期,子帧01是本周期内第一个子帧,在该时刻发送R13ClassB方案的CSI-RS,子帧06是本周期内第六个子帧,在该时刻发送R14ClassA方案的CSI-RS,当到达子帧11对应的时刻,再次发送R13ClassB方案的CSI-RS,其他子帧并未配置信号,因此,其他子帧对应的时刻不做任何操作。
由此可见,R14ClassA方案的CSI-RS与R13ClassB方案的CSI-RS,可以在不影响彼此性能的条件下,承载在相同的频域位置,从而使得R14ClassA方案和R13ClassB方案能够兼容。
需要说明的是,本申请实施例中,N种传输方案的CSI-RS的发送周期可以配置为相同,也可以配置为不同,例如,结合上述示例,R14ClassA方案的CSI-RS发送周期也可以设置为5ms,本申请实施例对此不做限制。当N种传输方案的CSI-RS的发送周期配置为不同时,在配置各种传输方案对应的子帧偏置时,保证N种传输方案对应的发送子帧始终不会重叠。
此外,在将N种传输方案的CSI-RS发送周期的子帧偏置设置为不同的基础上,还可以进一步设置N种传输方案中各传输方案的CSI-RS的起始发送时间,使每种传输方案的CSI-RS的起始发送时间与其他传输方案的CSI-RS的起始发送时间均不相同,从而从时域的各个维度将N种传输方案的发送时域错开。
例如,在上述子帧偏置基础上,R14ClassA方案的CSI-RS起始发送时刻可以设置为Xms,R13ClassB方案的CSI-RS起始发送时刻可以设置为Yms,其中,Yms较Xms晚0.5ms。
应理解,本实施例仅仅是为了支持本方案,对本申请实施例的技术方案不构成限制,基于此,本申请实施例不仅适用于N等于2的场景,对于N大于2的场景同样适用,并且,当N大于2时,配置内容与上述描述类似,本申请实施例不再详述。
配置N种传输方案的CSI-RS复用频域资源:
通常,使用一种传输方案向UE发送CSI-RS时,为了提高CSI-RS的传输性能,基站根据带宽确定RB总数量,并在每个RB中配置待发送CSI-RS的RE资源,即,每个RB均承载该传输方案对应的CSI-RS。
基于此,本申请实施例可以通过频域降密度的方式,将不同RB的RE分别配置给N种传输方案的CSI-RS。具体的,可以以下述两种方式配置RB。
方式一:在根据带宽确定RB总数以及起始RB的RB号后,从起始RB开始,顺次将第i+nN个RB配置为N种传输方案中第i种传输方案对应的CSI-RS使用的RB,i大于等于1小于等于N,n是大于等于0的整数。
具体的,每个RB均对应相应的RB号,在配置时,基站可以通过配置Comb的值确定相应传输方案对应的起始RB,并通过配置Density的参数配置相应传输方案的CSI-RS所在的RB的分布密度。本申请实施例中,RB的分布密度用于指示间隔几个RB取一个RB作为相应传输方案的CSI-RS的RB。
例如,设置Comb=0,表示频域RB的起始offset为RB0,设置Density=d2,表示相应传输方案的CSI-RS在RB的分布密度为1/2,即,从RB0对应的RB开始,间隔一个RB作为相应传输方案的CSI-RS的RB。
结合R14ClassA方案和R13ClassB方案两类传输方案,RB总数例如是30个,起始RB例如是RB0,则可以将R14ClassA方案的CSI-RS资源配置为Comb=0,Density=d2,将R13ClassB方案的CSI-RS资源配置为Comb=1,Density=d2。表示R14ClassA方案的CSI-RS的起始频域RB为RB0,在RB的分布密度为1/2,R13ClassB方案的CSI-RS的起始频域RB为RB0,在RB的分布密度为1/2。
即,如图4所示的频域资源分布结构示意图,图4示出的RB0和RB2,以及图4未示出的其他RB号为偶数的RB的RE,配置为R14ClassA方案的CSI-RS资源,图4示出的RB1和RB3,以及图4未示出的其他RB号为奇数的RB中的RE,配置为R13ClassB方案的CSI-RS资源。
应理解,上述N等于2时,相应的将频域密度降为1/2的实施方式,仅为本申请的可选实施方式。与该实施方式相似的,当N大于2时,可以将频域密度相应的降为1/N。
例如,本申请的另一种可选实施方式,N等于3,RB包括RB0至RB29,在配置CSI-RS资源时,配置第一种传输方案的CSI-RS资源为Comb=0,Density=d3,配置第二种传输方案的CSI-RS资源为Comb=1,Density=d3,配置第三种传输方案的CSI-RS资源为Comb=2,Density=d3。该配置模式表示:第一种传输方案的CSI-RS,第二种传输方案的CSI-RS和第三种传输方案的CSI-RS,在RB的分布密度均是1/3,第一种传输方案的CSI-RS的起始频域RB为RB0,第二种传输方案的CSI-RS的起始频域RB为RB1,第三种传输方案的CSI-RS的起始频域RB为RB2。
参见图5,图5是N等于3时的频域资源分布结构示意图,图5示出的RB0以及图5未示出的RB3中的RE,配置为第一种传输方案的CSI-RS资源,图5示出的RB1以及图5未示出的RB4中的RE,配置为第二种传输方案的CSI-RS资源,图5示出的RB2以及图5未示出的RB5中的RE,配置为第三种传输方案的CSI-RS资源。每个RB的配置,依此顺序顺延。
应理解,既然方式一以传输方案为单位交错配置RB,应当以每种传输方案对应的CIS-RS总数均小于40为前提,若N种传输方案中至少一种传输方案对应的CIS-RS总数大于40个,方式一将无法正常实施。有鉴于此,本申请实施例还提供了方式二。
方式二:将N种传输方案对应的CSI-RS分为m组,其中,m-1组中包含的CSI-RS为40个,一组中包含的CSI-RS少于或者等于40个,在确定起始RB后,从起始RB开始,顺次将第j+nm个RB配置为m组CSI-RS中每组CSI-RS对应的RB,j大于等于1小于等于m,n是大于等于0的整数。
具体的,基站可以按照设定的最小单位划分多份,进而,将划分为多份的CSI-RS组合形成上述的m组。其中,为了便于配置资源和发送,所述划分CSI-RS的最小单位,应当是40和N种传输方案所配置的天线端口数的公约数,例如是4。并且,为了便于发送CSI-RS,在将多份CSI-RS分组时,尽量将一种传输方案对应的CSI-RS分在一组中,从而便于确定传输方案与RB,以及UE的对应关系,进而,便于CSI-RS的发送。
或者,若N种传输方案对应的CSI-RS总数量均小于40时,基站还可以将N种传输方案中第二种传输方案对应的部分或全部CSI-RS,与第一种传输方案的CSI-RS组合得到40个CSI-RS,形成第一组CSI-RS,将第三种传输方案对应的部分或全部CSI-RS,与第二种传输方案剩余的CSI-RS组合得到40个CSI-RS,形成第二组CSI-RS,依次类推,得到m组CSI-RS。
例如,本申请的一个可选实施例中,小区包括三种传输方案,第一种传输方案和第三种传输方案均对应32个CIS-RS,第二种传输方案对应16个CIS-RS,那么,将第二种传输方案中的8个CIS-RS与第一种传输方案的32个CSI-RS合并,得到第一组CSI-RS,将第二种传输方案中另外8个CIS-RS与第三种传输方案的32个CSI-RS合并,得到第二组CSI-RS。再如,若三种传输方案均对应32个CIS-RS,则将第二种传输方案中的8个CIS-RS与第一种传输方案的32个CSI-RS合并,得到第一组CSI-RS,将第三种传输方案中的16个CIS-RS与第二种传输方案剩余的24个CSI-RS合并,得到第二组CSI-RS,第三种传输方案剩余的16个CSI-RS作为第三组CSI-RS。
接上述,在将N种传输方案的CSI-RS分组之后,为每组CSI-RS配置RB,本实施例中,配置m组CSI-RS交错使用RB。具体的,与方式一的配置方式类似,本实施例不再赘述。
需要指出的是,由于本实施例中,一个RB承载多种传输方案的CSI-RS,因此,在向UE发送CSI-RS时,一个RB发送到多种传输方案对应的UE。为了使相应UE准确识别对应的CSI-RS,本实施例中,基站可以将RE与CSI-RS的对应关系,发送到相应UE,以便于UE读取自身对应的CSI-RS。
本实施例通过将N种传输方案的CSI-RS分组,并以组为单位为CSI-RS配置资源,能够减少N种传输方案对RB的单位使用率,从而提高RB资源利用率。
配置N种传输方案的CSI-RS复用码资源:
本申请实施例,还可以通过为N种传输方案的CSI-RS定义掩码的方式,使不同 传输方案的CSI-RS通过不同编码,占用同一RE资源。当UE接收到相应CSI-RS时,使用相应掩码解码得到对应的CSI-RS。
基于码分复用的原理,通常为两个信号序列分别配置两个掩码序列,而该两个掩码序列满足相互准正交的规则。其中,一个信号序列中信号根据其中一个掩码序列中的掩码编码,另一个信号序列中的信号根据另一个掩码序列中的掩码编码,编码后的两信号可以通过同一时频资源承载。本申请实施例将两个相互正交的掩码序列称为一个码组。基于此,本实施例中,当N等于2时,可以配置一个码组,当N大于2时,可以通过配置多个码组的方式,为N种传输方案的CSI-RS分别配置掩码序列,使N种传输方案的CSI-RS共用RE资源。
具体的,本申请实施例中,当N是偶数时,可以先将N种传输方案两两分组,得到N/2个传输方案组,对应N/2个传输方案组中的每个传输方案组配置码组,其中,每个码组中包括两个相互正交的掩码序列,该两个掩码序列与相应传输方案组中的两种传输方案一一对应。然后,根据相应掩码序列中的掩码,对N种传输方案中每种传输方案对应的CSI-RS编码。
例如,当N是4时,可以将第一种传输方案和第二种传输方案归为一个组,将第三种传输方案和第四种传输方案归为一个组,然后,配置两个码组,两个码组均包括两个相互正交的掩码序列。其中,第一个码组中的两个掩码序列与第一种传输方案和第二种传输方案一一对应,第二个码组中的两个掩码序列与第三种传输方案和第四种传输方案一一对应。
当N是奇数时,由于掩码序列成对配置,所以,添加一个CSI-RS全部为0的虚拟传输方案,得到N+1个传输方案,然后,将N+1种传输方案两两分组,得到(N+1)/2个传输方案组,进而,同样的,分别为每个传输方案组配置码组,并且,每个码组均包括两个相互正交的掩码序列。其中,(N+1)/2中不包括虚拟传输方案(N+1)/2-1个传输方案组,与其相应码组中的两个掩码序列一一对应,包括虚拟传输方案的传输方案组中,传输方案对应其码组中任一个掩码序列。进而,根据相应掩码序列中的掩码,对N种传输方案中每种传输方案对应的CSI-RS编码。
例如,当N是3时,添加一个信号全部都是0的虚拟传输方案,然后,将第一种传输方案和第二种传输方案归为一个组,将第三种传输方案和虚拟传输方案归为一个组,然后,同样配置两个码组,两个码组均包括两个相互正交的掩码序列。其中,第一个码组中的两个掩码序列与第一种传输方案和第二种传输方案一一对应,第三种传输方案与第二个码组中的任意一个掩码序列对应。
此外,N种传输方案对应的CSI-RS数量可能各不相等,当N种传输方案对应的CSI-RS数量不相同时,本申请实施例可以确定N种传输方案中数量最多的CSI-RS的数量W,并组合数量小于W的传输方案的CSI-RS,最终得到Z个CSI-RS序列。进而,对应Z个CSI-RS序列分别配置Z个掩码序列,并根据相应掩码序列中的掩码, 对Z个CSI-RS序列中的每个CSI-RS编码。其中,W是8的倍数,Z小于或者等于N。
其中,Z个CSI-RS序列中,Z-1个CSI-RS序列的CSI-RS数量是W,1个CSI-RS序列的CSI-RS数量小于或者等于W。
需要指出的,对应Z个CSI-RS序列分别配置Z个掩码序列,其配置方法与上述描述类似,同样的,可以先判断Z是否是偶数,进而,将Z个CSI-RS序列分组,并分别对应每个组配置码组。具体的,详见上述描述,本申请实施例此处不再详述。
例如,当N是3,且第一种传输方案包括32个CSI-RS,第二种传输方案和第三种传输方案均包括16个CSI-RS,则可以将第一种传输方案的32个CSI-RS作为第一个CSI-RS序列,将第二种传输方案的16个CSI-RS和第三种传输方案的16个CSI-RS组合,作为第二个CSI-RS序列,然后,对应两个CSI-RS序列,配置一个码组,所述码组中的两个掩码序列均包括32个掩码。
需要说明的是,码分复用可以按照协议定义2个、4个或者8个掩码作为一组,一个掩码序列包括至少一个掩码组。例如,本申请的一个可选示例中,定义一个掩码组包括8个掩码,若一个掩码序列需要配置32个掩码,则包括4个掩码组。本实施例中,掩码序列可以是正交覆盖码(orthogonal cover code,OCC)序列。
由于一个CSI-RS根据一个掩码进行编码,而N种传输方案对应的CSI-RS数量可能各不相等,基于此,为了保证N种传输方案的CSI-RS共用RE,占用同一RE的至少两个CSI-RS均需要编码。所以,当N种传输方案对应的CSI-RS数量均相等时,则任一掩码序列中包含的掩码数量与CSI-RS的数量相同。若N种传输方案对应的CSI-RS数量不相等,若CSI-RS数量最多的传输方案是一种,则任一掩码序列中包含的掩码数量,等于CSI-RS最多的CSI-RS的数量,或者CSI-RS数量次多的CSI-RS的数量。若CSI-RS数量最多的传输方案不是一种,任一掩码序列中包含的掩码数量,等于CSI-RS最多的CSI-RS的数量。
例如,当传输方案包括R14ClassA方案和R13ClassB方案两类,且该两类传输方案均包括32个CSI-RS时,则可以配置一个正交码组。该正交码组包括第一掩码序列和第二掩码序列,第一掩码序列包括掩码组1至4,第二掩码序列5至8,其中,每个掩码组包括8个掩码。第一掩码序列的32个掩码与R14ClassA方案的32个CSI-RS一一对应,用于为R14ClassA方案的32个CSI-RS编码,第二掩码序列的32个掩码与R13ClassB方案的32个CSI-RS一一对应,用于为R13ClassB方案的32个CSI-RS编码。编码并配置资源后的码分复用示意图如图6所示,其中,一个RE上承载一个R14ClassA方案的CSI-RS和一个R13ClassB方案的CSI-RS,从而达到RE复用的目的,使R14ClassA方案和R13ClassB方案能够兼容。
再如,若R14ClassA方案对应32个CIS-RS,R13ClassB方案对应16个CIS-RS, 那么,16个RE承载2个CSI-RS,每个RE承载的两个CSI-RS均需要编码,另外16个RE承载一个CSI-RS,每个RE承载的CSI-RS可以不编码,所以,每个掩码序列至少应该包括16个掩码。编码并配置资源后的码分复用示意图如图7所示。
再如,当N是3,且第一种传输方案和第二种传输方案均包括32个CSI-RS,第三种传输方案包括16个CSI-RS时,有32个RE承载至少2个CSI-RS,该32个RE上承载的至少2个CSI-RS均需要编码,因此,本实施方案中,每个掩码序列应该包括32个掩码。
需要指出的是,由于本实施例中,一个RE承载多种传输方案的CSI-RS,并且,同一个RE上承载的多个CSI-RS编码均不同,因此,为了使相应UE准确识别对应的CSI-RS,本实施例中,基站预先将相应掩码序列及每个掩码对应的RE,发送到相对应的UE,以便于解码得到自身对应的CSI-RS。
上述是对三种资源复用方式独立使用时的描述,在本申请实施例中,上述三种资源复用方式还可以组合使用。
例如,在一个可选实施例中,N等于4,那么,可以配置第一种传输方案的CSI-RS与第二种传输方案的CSI-RS码分复用,配置第三种传输方案的CSI-RS与第四种传输方案的CSI-RS码分复用,然后,配置码分复用后的第一种传输方案和第二种传输方案,与码分复用后的第三种传输方案和第四种传输方案时分复用。或者,配置码分复用后的第一种传输方案和第二种传输方案,与码分复用后的第三种传输方案和第四种传输方案频分复用。或者,配置第一种传输方案的CSI-RS与第二种传输方案的CSI-RS占用同一RB,但二者时分复用,配置第三种传输方案的CSI-RS与第四种传输方案的CSI-RS占用同一RB,但二者时分复用,而配置第一种传输方案的CSI-RS与第二种传输方案的CSI-RS,和第三种传输方案的CSI-RS与第四种传输方案的CSI-RS交错占用RB。
具体的,本申请实施例可以任意组合,此处不再详述。
综合上述,本申请实施例中,基站通过时分,和/或,频分,和/或,码分的方式,为N种不同的传输方案配置CSI-RS资源,从而能够在RE资源受限的情况下,采用N种不同的传输方案发送CSI-RS,不仅能够兼容多种传输方案,而且还能够提高资源的利用率。
图8是本申请实施例提供的CSI-RS发送设备的结构示意图。该CSI-RS发送设备800可以用于执行图2至图7所对应的CSI-RS发送方法。如图8所示,该CSI-RS发送设备800包括接收模块801,确定模块802,配置模块803和发送模块804。该接收模块801和该发送模块804具体可以用于执行方法100中信息的收发;确定模块802和配置模块803具体用于执行上述方法100中信息收发之外的处理。
例如,该接收模块801可以用于接收小区内每个UE的能力指示信息。该确定模 块802可以用于根据所述能力指示信息确定N种传输方案,N大于等于2,所述N种传输方案对应的CSI-RS的总数量大于40。该配置模块803可以用于配置所述N种传输方案对应的CSI-RS复用CSI-RS资源,所述CSI-RS资源是指承载所述N种传输方案对应的CSI-RS的无线发送资源。该发送模块804可以用于按照所述N种传输方案中的每种传输方案,向对应UE发送所述CSI-RS资源上承载的相应传输方案对应的CSI-RS。
具体内容可以参考方法100中相关部分的描述,此处不再赘述。
应理解,以上各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。本申请实施例中,接收模块801和发送模块804可以由收发器实现,确定模块802和配置模块803可以由处理器实现。如图9所示,基站900可以包括处理器901、收发器902和存储器903。其中,存储器903可以用于存储基站900出厂时预装的程序/代码,也可以存储用于处理器901执行时的代码等。
应理解,根据本申请实施例的基站900与本申请实施例的方法100中实现方法的对应,其中,收发器902用于执行方法100中信息的收发,处理器901用于执行方法100中信息收发之外的处理。在此不再赘述。
具体实现中,对应基站900,本申请实施例还提供一种计算机存储介质,其中,设置在基站中计算机存储介质可存储有程序,该程序执行时,可实施包括图2至图7提供的方法的各实施例中的部分或全部步骤。基站中的存储介质均可为磁碟、光盘、只读存储记忆体(read-only memory,ROM)或随机存储记忆体(random access memory,RAM)等。
本申请实施例中,收发器可以是有线收发器,无线收发器或其组合。有线收发器例如可以为以太网接口。以太网接口可以是光接口,电接口或其组合。无线收发器例如可以为无线局域网收发器,蜂窝网络收发器或其组合。处理器可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。处理器还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。存储器可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器也可以包括非易失性存储器(non-volatile memory),例如只读存储器(read-only memory,ROM),快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器还可以包括上述种类的存储器的组合。
图9中还可以包括总线接口,总线接口可以包括任意数量的互联的总线和桥,具 体由处理器代表的一个或多个处理器和存储器代表的存储器的各种电路链接在一起。总线接口还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发器提供用于在传输介质上与各种其他设备通信的单元。处理器负责管理总线架构和通常的处理,存储器可以存储处理器在执行操作时所使用的数据。
本领域技术任何还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字信号处理器,专用集成电路(ASIC),现场可编程门阵列(FPGA)或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的软件单元、或者这两者的结合。软件单元可以存储于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理器连接,以使得处理器可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理器中。处理器和存储媒介可以设置于ASIC中,ASIC可以设置于UE中。可选地,处理器和存储媒介也可以设置于UE中的不同的部件中。
应理解,在本申请的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线 (例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD))、或者半导体介质(例如固态硬盘)等。
本说明书的各个部分均采用递进的方式进行描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点介绍的都是与其他实施例不同之处。尤其,对于装置和系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例部分的说明即可。
另外,除非有相反的说明,本申请实施例提及“第一”以及“第二”等序数词用于对多个对象进行区分,不用于限定多个对象的顺序。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。
Claims (14)
- 一种信道状态信息-参考信号CSI-RS发送方法,其特征在于,包括:接收小区内每个用户设备UE的能力指示信息;根据所述能力指示信息确定N种传输方案,N大于等于2,所述N种传输方案对应的CSI-RS的总数量大于40;配置所述N种传输方案对应的CSI-RS复用CSI-RS资源,所述CSI-RS资源是指承载所述N种传输方案对应的CSI-RS的无线发送资源;按照所述N种传输方案中的每种传输方案,向对应UE发送所述CSI-RS资源上承载的相应传输方案对应的CSI-RS。
- 如权利要求1所述的CSI-RS发送方法,其特征在于,所述配置所述N种传输方案对应的CSI-RS复用CSI-RS资源,包括:配置所述N种传输方案中每种传输方案对应的CSI-RS占用的时域资源,使每种传输方案对应的CSI-RS占用的时域资源与其他传输方案对应的CSI-RS占用的时域资源均不相同;和/或,配置所述N种传输方案对应的CSI-RS交错使用资源块RB,所使用的每个RB被占用的资源元素RE总数小于或者等于40;和/或,为所述N种传输方案中每种传输方案配置码资源,使占用相同RE的不同传输方案的CSI-RS根据不同码资源编码。
- 如权利要求2所述的CSI-RS发送方法,其特征在于,所述配置所述N种传输方案中每种传输方案对应的CSI-RS占用的时域资源,使每种传输方案对应的CSI-RS占用的时域资源与其他传输方案对应的CSI-RS占用的时域资源均不相同,包括:配置所述N种传输方案中每种传输方案对应的CSI-RS的发送周期的子帧偏置,使每种传输方案对应的CSI-RS的发送周期的子帧偏置与其他传输方案对应的CSI-RS的发送周期的子帧偏置均不相同。
- 如权利要求3所述的CSI-RS发送方法,其特征在于,所述配置所述N种传输方案中每种传输方案对应的CSI-RS占用的时域资源,使每种传输方案对应的CSI-RS占用的时域资源与其他传输方案对应的CSI-RS占用的时域资源均不相同,还包括:配置所述N种传输方案中每种传输方案对应的CSI-RS的起始发送时刻,使每种传输方案对应的CSI-RS的起始发送时刻与其他传输方案对应的CSI-RS的起始发送时刻均不相同。
- 如权利要求2所述的CSI-RS发送方法,其特征在于,所述配置所述N种传输方案对应的CSI-RS交错使用资源块RB,包括:确定发送所述N种传输方案对应的CSI-RS的起始RB;从所述起始RB开始,顺次将第i+nN个RB配置为所述N种传输方案中第i种传输方案对应的CSI-RS使用的RB,i大于等于1小于等于N,n是大于等于0的整数。
- 如权利要求2所述的CSI-RS发送方法,其特征在于,所述配置所述N种传输方案对应的CSI-RS交错使用资源块RB,包括:确定发送所述N种传输方案对应的CSI-RS的起始RB;将所述N种传输方案对应的CSI-RS分为m组,其中,m-1组中包含的CSI-RS为40个,一组中包含的CSI-RS少于或者等于40个;从所述起始RB开始,顺次将第j+nm个RB配置为所述m组CSI-RS中每组CSI-RS对应的RB,j大于等于1小于等于m,n是大于等于0的整数。
- 如权利要求2所述的CSI-RS发送方法,其特征在于,当N是偶数时,所述为所述N种传输方案中每种传输方案配置码资源,使占用相同RE的不同传输方案的CSI-RS根据不同码资源编码,包括:将所述N种传输方案两两分组,得到N/2个传输方案组;对应所述N/2个传输方案组分别配置一个码组,所述码组包括两个互相正交的掩码序列,所述两个掩码序列与相应传输方案组中的两种传输方案一一对应;根据相应掩码序列中的掩码,对所述N种传输方案中每种传输方案对应的CSI-RS编码。
- 如权利要求2所述的CSI-RS发送方法,其特征在于,当N是奇数时,所述为所述N种传输方案中每种传输方案配置码资源,使占用相同RE的不同传输方案的CSI-RS根据不同码资源编码,包括:添加一个CSI-RS全部为0的虚拟传输方案;将所述N+1种传输方案两两分组,得到(N+1)/2个传输方案组;对应所述(N+1)/2个传输方案组分别配置一个码组,所述码组包括两个互相正交的掩码序列,所述(N+1)/2中不包括所述虚拟传输方案(N+1)/2-1个传输方案组,与其相应码组中的两个掩码序列一一对应,所述包括所述虚拟传输方案的传输方案组中,所述传输方案对应其码组中任一个掩码序列;根据相应掩码序列中的掩码,对所述N种传输方案中每种传输方案对应的CSI-RS编码。
- 如权利要求2所述的CSI-RS发送方法,其特征在于,所述为所述N种传输方案中每种传输方案配置码资源,使占用相同RE的不同传输方案的CSI-RS根据不同码资源编码,包括:当所述N种传输方案对应的CSI-RS数量不相同时,组合所述N种传输方案中数量小于CSI-RS最多的传输方案的CSI-RS,共得到Z个CSI-RS序列,所述 Z个CSI-RS序列中,Z-1个CSI-RS序列的CSI-RS数量,等于所述N种传输方案中CSI-RS最多的CSI-RS的数量,1个CSI-RS序列的CSI-RS数量,小于或者等于所述N种传输方案中CSI-RS最多的CSI-RS的数量,Z小于或者等于N;为所述Z个CSI-RS序列分别配置Z个掩码序列;根据相应掩码序列中的掩码,对所述Z个CSI-RS序列中的每个CSI-RS编码。
- 如权利要求7至9中任一项所述的CSI-RS发送方法,其特征在于,对应传输方案组配置码组,包括:当所述N种传输方案对应的CSI-RS数量不相同时,判断CSI-RS数量最多的传输方案是否是一种;若CSI-RS数量最多的传输方案是一种,配置所述掩码序列中掩码的数量均为目标数量,所述目标数量是所述N种传输方案中CSI-RS最多的CSI-RS的数量,或者CSI-RS数量次多的CSI-RS的数量;若CSI-RS数量最多的传输方案不是一种,配置所述码组中掩码的数量均为CSI-RS最多的CSI-RS的数量。
- 如权利要求7至9中任一项所述的CSI-RS发送方法,其特征在于,在配置所述码组之后,还包括:将每组掩码发送到相应传输方案对应的UE。
- 一种信道状态信息-参考信号CSI-RS发送设备,其特征在于,包括用于执行权利要求1至11中任一项所述的CSI-RS发送方法的模块。
- 一种基站,其特征在于,包括处理器和存储器,其中:所述存储器,用于存储程序指令;所述处理器,用于调用并执行所述存储器中存储的程序指令,以使所述基站执行权利要求1至11中任一项所述的CSI-RS发送方法。
- 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得所述计算机执行权利要求1至11中任一项所述的CSI-RS发送方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880090174.8A CN111801905B (zh) | 2018-06-20 | 2018-06-20 | Csi-rs发送方法、设备及基站 |
PCT/CN2018/092019 WO2019241934A1 (zh) | 2018-06-20 | 2018-06-20 | Csi-rs发送方法、设备及基站 |
EP18923450.3A EP3780453B1 (en) | 2018-06-20 | 2018-06-20 | Csi-rs sending method and device, and base station |
US17/127,486 US11483115B2 (en) | 2018-06-20 | 2020-12-18 | CSI-RS sending method and device, and base station |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2018/092019 WO2019241934A1 (zh) | 2018-06-20 | 2018-06-20 | Csi-rs发送方法、设备及基站 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/127,486 Continuation US11483115B2 (en) | 2018-06-20 | 2020-12-18 | CSI-RS sending method and device, and base station |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019241934A1 true WO2019241934A1 (zh) | 2019-12-26 |
Family
ID=68983159
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/092019 WO2019241934A1 (zh) | 2018-06-20 | 2018-06-20 | Csi-rs发送方法、设备及基站 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11483115B2 (zh) |
EP (1) | EP3780453B1 (zh) |
CN (1) | CN111801905B (zh) |
WO (1) | WO2019241934A1 (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103703712A (zh) * | 2013-09-11 | 2014-04-02 | 华为技术有限公司 | 配置信道状态信息参考信号的方法和基站 |
US20170332359A1 (en) * | 2016-05-11 | 2017-11-16 | Convida Wireless, Llc | Radio Download Control Channel |
CN108183784A (zh) * | 2012-09-16 | 2018-06-19 | Lg 电子株式会社 | 接收物理下行链路共享信道信号的方法和用户设备 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011085510A1 (en) * | 2010-01-12 | 2011-07-21 | Telefonaktiebolaget L M Ericsson (Publ) | Method and apparatus for channel estimation and detection in mimo system |
MX2011006037A (es) * | 2010-02-17 | 2011-10-28 | Zte Usa Inc | Metodos y sistemas para transmision de csi-rs en sistemas de lte avanzada. |
CN101924610B (zh) * | 2010-08-02 | 2012-12-26 | 西安电子科技大学 | Lte-a系统中信道状态信息参考信号csi-rs的设计与分配方法 |
JP5356339B2 (ja) * | 2010-09-03 | 2013-12-04 | シャープ株式会社 | 端末装置、基地局装置、通信システムおよび通信方法 |
US9137698B2 (en) * | 2012-02-24 | 2015-09-15 | Samsung Electronics Co., Ltd. | Beam management for wireless communication |
US20130286960A1 (en) * | 2012-04-30 | 2013-10-31 | Samsung Electronics Co., Ltd | Apparatus and method for control channel beam management in a wireless system with a large number of antennas |
US10470194B2 (en) * | 2015-04-09 | 2019-11-05 | Lg Electronics Inc. | Method for transmitting interference downlink control information in a wireless communication system and apparatus therefor |
WO2017105129A1 (ko) * | 2015-12-17 | 2017-06-22 | 엘지전자(주) | 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 이를 위한 장치 |
US10680855B2 (en) * | 2016-05-13 | 2020-06-09 | Huawei Technologies Co., Ltd. | Measurement in non-cellular wireless networks |
US20180084539A1 (en) * | 2016-09-21 | 2018-03-22 | Qualcomm Incorporated | User equipment capability determination for multiple radio capability groups |
CN109716797A (zh) * | 2016-09-29 | 2019-05-03 | 华为技术有限公司 | 信道状态信息参考信号发送方法与接收方法及设备 |
JP6763435B2 (ja) * | 2016-10-26 | 2020-09-30 | 日本電気株式会社 | ソースコアネットワークのノード、端末、及び方法 |
US10778293B2 (en) * | 2018-02-16 | 2020-09-15 | Nokia Technologies Oy | Methods and apparatuses for dynamic transmit diversity fallback |
-
2018
- 2018-06-20 WO PCT/CN2018/092019 patent/WO2019241934A1/zh unknown
- 2018-06-20 EP EP18923450.3A patent/EP3780453B1/en active Active
- 2018-06-20 CN CN201880090174.8A patent/CN111801905B/zh active Active
-
2020
- 2020-12-18 US US17/127,486 patent/US11483115B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108183784A (zh) * | 2012-09-16 | 2018-06-19 | Lg 电子株式会社 | 接收物理下行链路共享信道信号的方法和用户设备 |
CN103703712A (zh) * | 2013-09-11 | 2014-04-02 | 华为技术有限公司 | 配置信道状态信息参考信号的方法和基站 |
US20170332359A1 (en) * | 2016-05-11 | 2017-11-16 | Convida Wireless, Llc | Radio Download Control Channel |
Non-Patent Citations (3)
Title |
---|
GUANGDONG OPPO MOBILE TELECOM: "CSI-RS Design for NR", 3GPP TSG RAN WGI NR-ADHOC, R1-1700551, 9 January 2017 (2017-01-09), XP051202283 * |
HUAWEI ET AL.: "CSI-RS Design for Beam Management", 3GPP TSG RAN WG1 NR AD-HOC MEETING, R1-1700069, 9 January 2017 (2017-01-09), XP051202495 * |
See also references of EP3780453A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP3780453A1 (en) | 2021-02-17 |
EP3780453A4 (en) | 2021-05-05 |
US20210105123A1 (en) | 2021-04-08 |
CN111801905B (zh) | 2021-10-01 |
CN111801905A (zh) | 2020-10-20 |
US11483115B2 (en) | 2022-10-25 |
EP3780453B1 (en) | 2022-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7121800B2 (ja) | アンライセンス無線バンドシナリオのための一時的フローティングdlタイミングアプローチ | |
CN114826534A (zh) | Ta信息、对应关系的确定方法,电子装置及存储介质 | |
WO2019192501A1 (zh) | 资源指示值的获取方法及装置 | |
CN114208100A (zh) | 每监测跨段的非重叠cce和盲解码的最大数量 | |
KR102267183B1 (ko) | 다운 링크 리소스 집합을 결정하기 위한 방법 및 장치, 및 리소스 위치 정보를 송신하기 위한 방법 및 장치 | |
WO2013007088A1 (zh) | 一种信道状态信息的处理方法、装置及系统 | |
EP4195735A1 (en) | Method for monitoring control channels and determining transmission configuration indication, and terminal | |
BR112019004329A2 (pt) | método de configuração de recursos, aparelho e sistema, dispositivo terminal de transmissão, dispositivo terminal de recepção, aparelho terminal de transmissão, aparelho terminal de recepção, meio de armazenamento legível por computador e produto de programa de computador | |
WO2019029693A1 (zh) | 一种数据传输方法和网络设备以及终端设备 | |
TW202207719A (zh) | 下行定位參考信號收發方法、終端、基地台、設備及裝置 | |
CN110034897A (zh) | 一种参考信号传输方法及装置 | |
CN111277375B (zh) | 一种资源分配的方法及装置 | |
TW202218473A (zh) | 傳輸資源確定方法、裝置及存儲介質 | |
WO2019241934A1 (zh) | Csi-rs发送方法、设备及基站 | |
WO2018171683A1 (zh) | 信道状态信息导频的传输方法、设备、处理器及存储介质 | |
WO2018171687A1 (zh) | 信道状态信息导频的传输方法、设备、处理器及存储介质 | |
JP2024528267A (ja) | M-trp pdcch反復のための異なるqcl-typedを有するコアセット選択 | |
CN114071480A (zh) | 一种监测控制信道、确定传输配置指示的方法及终端 | |
EP3618334B1 (en) | Pilot sending and receiving method and device | |
JP2023543124A (ja) | アップリンク伝送を向上させるためのシステムおよび方法 | |
CN114554600A (zh) | 一种分配pucch资源的方法、基站及存储介质 | |
CN114337948A (zh) | 参考信号配置方法、天线切换方法、装置和存储介质 | |
US20240163896A1 (en) | Methods and nodes for updating aperiodic srs slot offset | |
WO2023051689A1 (zh) | 上行信息发送方法、接收方法、终端和网络设备 | |
EP4429151A1 (en) | Resource configuration method and apparatus, network device, and terminal device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18923450 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018923450 Country of ref document: EP Effective date: 20201113 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |