KR101805704B1 - Lead recovery way the disintegration of the metal oil prices from anode slime electrolytic refining - Google Patents
Lead recovery way the disintegration of the metal oil prices from anode slime electrolytic refining Download PDFInfo
- Publication number
- KR101805704B1 KR101805704B1 KR1020160104820A KR20160104820A KR101805704B1 KR 101805704 B1 KR101805704 B1 KR 101805704B1 KR 1020160104820 A KR1020160104820 A KR 1020160104820A KR 20160104820 A KR20160104820 A KR 20160104820A KR 101805704 B1 KR101805704 B1 KR 101805704B1
- Authority
- KR
- South Korea
- Prior art keywords
- separating
- anode
- induction furnace
- lead
- electrolytic refining
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B9/00—General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
- C22B9/16—Remelting metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B11/00—Obtaining noble metals
- C22B11/02—Obtaining noble metals by dry processes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B30/00—Obtaining antimony, arsenic or bismuth
- C22B30/02—Obtaining antimony
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B30/00—Obtaining antimony, arsenic or bismuth
- C22B30/06—Obtaining bismuth
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B9/00—General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
- C22B9/16—Remelting metals
- C22B9/18—Electroslag remelting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B9/00—General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
- C22B9/16—Remelting metals
- C22B9/22—Remelting metals with heating by wave energy or particle radiation
- C22B9/226—Remelting metals with heating by wave energy or particle radiation by electric discharge, e.g. plasma
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C1/00—Electrolytic production, recovery or refining of metals by electrolysis of solutions
- C25C1/18—Electrolytic production, recovery or refining of metals by electrolysis of solutions of lead
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/36—Coil arrangements
- H05B6/367—Coil arrangements for melting furnaces
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Electromagnetism (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
본 발명은 납 전해 정련의 양극 슬라임에 포함된 유가금속 분리회수방법에 관한 것으로, 더욱 상세하게는 납축전지 납 재생 공정에 발생하는 양극 슬라임에 포함된 Bi, Ag, Sb, Pb 등과 같은 유가금속을 분리회수할 수 있도록 하는 납 전해 정련의 양극 슬라임에 포함된 유가금속 분리회수방법에 관한 것이다.
The present invention relates to a method for separating and recovering valuable metals contained in a positive electrode slime of lead electrolytic refining, and more particularly, to a method for separating and recovering valuable metals such as Bi, Ag, Sb and Pb contained in a positive electrode slime Which is contained in a positive electrode slime of lead electrolytic refining so as to be separated and recovered.
일반적으로 납축전지 납 재생 전해 정련에서 침적되거나 부유되는 잔여 찌꺼기를 양극 슬라임이라 한다.In general, the residual residues that are deposited or suspended in lead-acid battery lead-acid electrolytic refining are called the anode slime.
아울러 납축전지 재생 공정에서 발생하는 납은 대부분 조납의 형태를 지니게 된다. In addition, the lead in the lead-acid battery recycling process is mostly lead-free.
이러한 조납 성분에는 Ag, Bi, Sb등이 포함되어 있는데 이들은 축전지재료에 있어서 많은 문제점을 일으키고 있다.These included components include Ag, Bi, Sb and the like, which cause many problems in battery materials.
특히 전해정련 공정에서는 불순물을 함유한 조납을 사용하여 고순도의 전기동을 제조하고 있다. In particular, in the electrolytic refining process, high-purity copper is manufactured by using lead-containing impurities.
그러나 납 제련의 주원료인 납 광석 중의 Pb 함량은 점차 감소추세에 있으며, 상대적으로 불순물 함량은 증가하게 되므로 전해정련 조업에서 불순물 조납을 사용하게 된다. However, the Pb content in the lead ore, which is the main material of lead smelting, is gradually decreasing, and the impurity content is relatively increased.
이들 불순물 중에는 Bi, Sb, Ag, Pb 등이 유가금속이 포함되어 있어 이들을 회수하는 것이 필수불가결하다.Among these impurities, Bi, Sb, Ag, Pb and the like are included in the valuable metal, and it is indispensable to recover them.
따라서 납축전지 재생공정에서는 플라스틱성분과 유가금속성분을 구분하여 선별한 후, 선별된 유가금속 Pb성분을 다시 건식제련 공정이나 전기화학공정 등의 정련공정을 필요에 따라 선택적으로 사용하여 최종적으로 Bi, Sb, Ag 등과 같은 귀금속 등의 유가금속을 분류 회수하여 재활용하게 된다. Therefore, in the lead-acid battery recycling process, the plastic component and the valuable metal component are separated and sorted, and then the selected valuable metal Pb component is selectively used for the refining process such as the dry-smelting process or the electrochemical process, Sb, Ag, and the like to be recycled.
그러나 종래에는 양극 슬라임으로부터 귀금속을 회수하기 위한 방법으로 습식법이 있으나, 이러한 방법은 분리 및 회수과정에 복잡하고 어려울 뿐만 아니라 은과 주석의 순도가 낮아 활용범위가 제한되는 문제점을 갖게 되었다.
Conventionally, there is a wet method as a method for recovering a noble metal from a cathode slime. However, this method is complicated and difficult in the separation and recovery process, and has a problem that the purity of silver and tin is low and the application range is limited.
이처럼 본 발명은 상기와 같은 종래의 문제점을 해결하기 위해 안출한 것으로서,The present invention has been made to solve the above-mentioned problems occurring in the prior art,
본 발명은 일련적인 단계를 통해서 납 전해정련 공정에서 발생하는 양극 슬라임에 포함된 Bi, Ag, Sb 등과 같은 유가금속을 선택적으로 분리하여 회수할 수 있는 납 전해 정련의 양극 슬라임에 포함된 유가금속 분리회수방법을 제공함에 목적이 있다.
The present invention relates to a process for recovering valuable metals such as Bi, Ag, Sb and the like contained in a cathode slime generated in a lead electrolytic refining process through a series of steps, And to provide a recovery method.
상기 목적을 달성하기 위한 본 발명 납 전해 정련의 양극 슬라임에 포함된 유가금속 분리회수방법은,In order to accomplish the above object, the present invention provides a method for separating and recovering valuable metals contained in a positive electrode slime of electrolytic refining of lead,
유가금속을 포함하는 납 전해 정련의 양극 슬라임을 유도로에서 산화시켜 블랙메탈, 분진, 슬래그로 각각 분리하는 제1단계;A first step of separating the anode slime of the lead electrolytic refining including a valuable metal by oxidization in an induction furnace to black metal, dust, and slag, respectively;
상기 제1단계에서 얻어진 블랙메탈을 재산화하여 Bi-리사지, 은양극, 분진, 안티몬 슬래그로 분리하는 제2단계; A second step of reoxidizing the black metal obtained in the first step and separating the black metal into bi-lysage, silver anode, dust, and antimony slag;
상기 제1단계와 제2단계에서 얻어진 분진을 전기로에서 산화시켜 Sb-Pb합금, Sb-Pb슬래그로 분리하여 회수하는 제3단계;를 포함하는 것을 특징으로 한다.And a third step of separating the dusts obtained in the first and second steps into Sb-Pb alloy and Sb-Pb slag by oxidation in an electric furnace.
여기서 상기 제1단계에서 사용하는 유도로는 고주파 유도로를 사용하는 것을 특징으로 한다.The induction furnace used in the first step is characterized by using a high frequency induction furnace.
이때 상기 고주파 유도로는 내부에 양극 슬라임을 용해하고 연소시키는 세라믹 도가니를 포함하되, 상기 세라믹 도가니의 외측에 빙둘러 코일을 배치하고, 상기 코일에는 교류 전원을 접속하며, 상기 고주파 유도로의 내부에는 산소를 공급한 상태로 상기 코일에 20 내지 50㎒의 교류 전류를 인가하여 상기 세라믹 도가니 내부에 장입한 양극 슬라임을 신속하게 가열 및 용해할 수 있는 것을 특징으로 한다.The high frequency induction furnace includes a ceramic crucible for dissolving and burning the anode slime therein. The crucible is disposed outside the ceramic crucible, an AC power source is connected to the coil, and the inside of the high frequency induction furnace And an alternating current of 20 to 50 MHz is applied to the coil in a state of supplying oxygen to rapidly heat and dissolve the anode slime charged into the ceramic crucible.
특히 상기 제1단계에서 산화과정에서 산소 또는 공기를 유도로의 상부로 공급하는 침지형 렌스를 사용하는 것을 특징으로 한다.In particular, the first step is characterized by using an immersion lance for supplying oxygen or air to the upper portion of the induction furnace during the oxidation process.
또한, 상기 제2단계에서 은양극은 전해 채취하는 것을 특징으로 한다.In the second step, the silver anode is electrolytically sampled.
한편, 상기 제3단계에서 Sb-Pb합금은 양극으로 재주조하는 것을 특징으로 한다.
Meanwhile, in the third step, the Sb-Pb alloy is recharged as an anode.
본 발명은 납축전지 납 재생 공정에서 전기화학적으로 용해되지 않고 남은 유가금속을 분리회수하여 자원을 재활용할 수 있음은 물론 환경오염을 최소화할 수 있는 효과를 갖는다.INDUSTRIAL APPLICABILITY The present invention has the effect of minimizing environmental pollution as well as recycling resources by separating and recovering the remaining valuable metals without being electrochemically dissolved in the lead-acid battery lead recycling process.
특히 본 발명은 유가금속을 선택적으로 분리하여 높은 회수율로 고가의 금속을 수득할 수 있는 효과를 갖는다.Particularly, the present invention has the effect of selectively separating a valuable metal and obtaining a high-priced metal at a high recovery rate.
또한, 본 발명은 반응속도를 향상시켜 처리시간 및 비용을 절감할 수 있는 효과를 갖는다.
Further, the present invention has the effect of improving the reaction rate and reducing the processing time and cost.
도 1은 본 발명에서 회수된 유가금속의 회수율을 기존 공법과 대비한 그래프.FIG. 1 is a graph comparing the recovered yield of valuable metals recovered in the present invention with the existing method.
이하에서는 본 발명의 바람직한 실시예에 관하여 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described.
본 발명은 유가금속을 포함하는 납 전해 정련의 양극 슬라임을 유도로에서 산화시켜 블랙메탈, 분진, 슬래그로 각각 분리하는 제1단계;The present invention relates to a method for manufacturing a lead-acid electrolytic cell, which comprises a first step of separating a cathode slime of a lead-containing electrolytic refining containing a valuable metal by oxidation in an induction furnace and separating the cathode slurry into black metal,
상기 제1단계에서 얻어진 블랙메탈을 재산화하여 Bi-리사지, 은양극, 분진, 안티몬 슬래그로 분리하는 제2단계; A second step of reoxidizing the black metal obtained in the first step and separating the black metal into bi-lysage, silver anode, dust, and antimony slag;
상기 제1단계와 제2단계에서 얻어진 분진을 전기로에서 산화시켜 Sb-Pb합금, Sb-Pb슬래그로 분리하여 회수하는 제3단계;를 포함하는 것을 특징으로 한다.And a third step of separating the dusts obtained in the first and second steps into Sb-Pb alloy and Sb-Pb slag by oxidation in an electric furnace.
본 발명에 따른 납 전해 정련의 양극 슬라임에 포함된 유가금속 분리회수방법은 금속을 양극으로 하여 전해하면 전기화학적으로 용해되지 않고 슬라임으로부터 유가금속을 고순도로 회수할 수 있고, Bi, Ag, Sb, Pb으로 선택적으로 분리하여 높은 회수율로 회수할 수 있다.The method of recovering valuable metals contained in the positive electrode slime of lead electrolytic refining according to the present invention is characterized in that when a metal is electrolyzed as a positive electrode, it is not electrochemically dissolved and can recover high-purity metal from slime, and Bi, Ag, Sb, Pb and can be recovered at a high recovery rate.
상기 제1단계에서 납 전해 정련 양극 슬라임을 전기화학적으로 용해되지 않은 양극 슬라임을 건조한 후 유도로에서 산화하였다.In the first step, the anodic slime, which was not electrochemically dissolved, was dried and then oxidized in an induction furnace.
여기서 상기 유도로는 고주파 유도로를 사용하였다.Here, a high frequency induction furnace was used as the induction furnace.
본 발명에서 상기 고주파 유도로의 내부에는 양극 슬라임을 용해하고 연소시키는 세라믹 도가니를 포함하되, 상기 세라믹 도가니의 외측에 빙둘러 코일을 배치하고, 상기 코일에는 교류 전원을 접속하며, 상기 고주파 유도로의 내부에는 산소를 공급한 상태로 상기 코일에 20 내지 50㎒의 교류 전류를 인가하여 상기 세라믹 도가니 내부에 장입한 양극 슬라임을 신속하게 가열 및 용해할 수 있다.In the present invention, the high-frequency induction furnace includes a ceramic crucible for dissolving and burning the anode slime, an ice-circling coil is disposed outside the ceramic crucible, an AC power source is connected to the coil, An alternating current of 20 to 50 MHz is applied to the coil while oxygen is supplied to the inside of the ceramic crucible to quickly heat and dissolve the cathode slime charged into the ceramic crucible.
이때 양극 슬라임을 산화시킬 때에는 주석이나 텅스텐 등의 조연제를 이용하는 것이 바람직하다.At this time, when the anode slime is oxidized, it is preferable to use a combustion stabilizer such as tin or tungsten.
따라서 고주파 유도로에서 납 전해 정련의 양극 슬라임을 유도로에서 산화시켜 블랙메탈, 분진, 슬래그로 각각 분리할 수 있다.Therefore, the anode slime of the lead electrolytic refining in the high frequency induction furnace can be oxidized in the induction furnace and separated into black metal, dust, and slag respectively.
그리고 상기 산화과정에서 산소 또는 공기를 유도로의 상부로 공급하는 침지형 렌스를 사용함이 바람직한데, 그 이유는 분진 중 은의 손실이 많아 회수율이 낮고, 분진 내부에 수분이 들어 있는 상태에서 바로 용융을 하면 조업시간을 단축하기 위함이다.In addition, it is preferable to use an immersion type lance for supplying oxygen or air to the upper part of the induction furnace in the oxidation process. This is because when the recovery rate is low due to a large loss of silver in the dust, This is to shorten the operating time.
아울러 본 발명에 따른 납 전해 정련 양극 슬라임으로부터 Bi-리사지를 분리회수방법은 상기 산화공정으로 얻어진 블랙메탈을 재산화시켜, 은양극, 분진을 얻고 안티몬 슬래그를 회전로로 공급하여 분리한다.Further, in the method of separating and recovering Bi-lysedge from the lead electrolytic refining anodic slime according to the present invention, the black metal obtained by the oxidation process is reoxidized to obtain silver anode and dust, and the antimony slag is supplied to the rotary furnace to separate.
이러한 상기 Bi-리사지는 Bi-전기로에서 재처리하고, 은양극은 전해 채취를 하여 은 및 주석을 분리회수한다.Such Bi-lysing is reprocessed in a Bi-electric furnace, and the silver anode is electrolytically collected to separate and recover silver and tin.
그리고 상기 분진은 Sb전기로에서 환원하여 Sb-Pb 슬래그를 얻는다. And the dust is reduced in the Sb electric furnace to obtain Sb-Pb slag.
여기서 상기 Sb-Pb 합금은 양극주조하며 Sb-Pb슬래그는 합금 전기로에서 응용한다.Here, the Sb-Pb alloy is anodically cast and the Sb-Pb slag is applied to an alloy electric furnace.
납 전해 양극 슬라임 케이크의 톤당 유가금속 평균 함량은 Ag15%, Au0.1%, Pb7%, Cu3%, Sb40%, Bi15%이며, 이 양극 슬라임을 유도로에서 용융, 정제하는 공정을 거쳐 블랙메탈 톤당 유가금속 평균 함량이 Ag40%, Au0.2%, Pb7%, Cu6%, Sb10%, Bi25%에 이르렀다.The average value of the precious metal content per ton of the lead-acid electrolytic slime cake was 15% of Ag, 0.1% of Au, 7% of Pb, 3% of Cu, 40% of Sb and 15% of Bi. After melting and refining the anode slime in the induction furnace, The average value of the valuable metals was 40% of Ag, 0.2% of Au, 7% of Pb, 6% of Cu, 10% of Sb and 25% of Bi.
블랙메탈중 Sb 및 Bi를 산화, 정제하는 공정은 하기와 같이 진행되며 The step of oxidizing and purifying Sb and Bi in black metal proceeds as follows
De-Sb 조업: 2Sb + 3/2O2 Sb2O3 De-Sb operation: 2Sb + 3 / 2O 2 Sb 2 O 3
De-Bi 조업: 2Bi + 3/2O2 Bi2O3 De-Bi operation: 2Bi + 3 / 2O 2 Bi 2 O 3
이때 분진 톤당 유가금속 평균함량은 Ag0.5%, Au0.7%, Pb3%, Cu0.2%, Sb50%, Bi5%에 이르렀다.At that time, the average value of the precious metal per ton of dust was 0.5% of Ag, 0.7% of Au, Pb3%, Cu of 0.2%, Sb of 50% and Bi of 5%.
고주파 유도로에서의 분진을 용용, 코크스를 투입하여 환원, 정제하는 공정은 하기식과 같다. The process for melting and refining dust by introducing dust and coke into the high frequency induction furnace is as follows.
Sb2O3 + 2C → 2Sb0 + CO2 + COSb 2 O 3 + 2C? 2Sb 0 + CO 2 + CO
Ag양극을 전기분해하여 99.99% Ag음극을 제조하는 공정은 은전해액으로 AgNO3을 사용 Ag+ + e → Ag0 반응으로 석출된다.The process of producing 99.99% Ag cathode by electrolysis of Ag anode is precipitated by Ag + + e → Ag 0 reaction using AgNO 3 as silver electrolytic solution.
Ag 슬라임 톤당 유가금속 평균함량은 Ag40%, Au10%에 이르고 Ag슬라임을 HNO3에 용해, Ag분말을 회수하는 공정은 하기와 같다. The average value of the valence metal per ton of Ag slime is 40% of Ag and 10% of Au. The Ag slime is dissolved in HNO 3 and the Ag powder is recovered as follows.
3 Ag + 4HNO3 → 3AgNO3 + 2H2O + NO 3 Ag + 4HNO 3 → 3AgNO 3 + 2H 2 O + NO
상기와 같은 공정을 거쳐 회수된 유거금속의 회수율을 도 1에 나타난 바와 같이 기존 공법과 대비하여 유가금속의 손실율이 2 내지 3% 상승됨을 확인할 수가 있었다. As shown in FIG. 1, it can be seen that the recovery rate of the recovered migratory metal through the above-described process is increased by 2 to 3% compared to the conventional method.
이처럼 상기와 같이 본 발명의 실시예에 대하여 상세히 설명하였으나, 본 발명의 권리범위는 이에 한정되지 않으며, 본 발명의 실시예와 실질적으로 균등의 범위에 있는 것까지 본 발명의 권리범위가 포함되는 것은 당연하다.Although the embodiments of the present invention have been described above in detail, it is to be understood that the scope of the present invention is not limited to the above embodiments and that various changes and modifications may be made without departing from the scope of the present invention. Of course.
Claims (6)
상기 제1단계에서 얻어진 블랙메탈을 재산화하여 Bi-리사지, 은양극, 분진, 안티몬 슬래그로 분리하는 제2단계;
상기 제1단계와 제2단계에서 얻어진 분진을 전기로에서 산화시켜 Sb-Pb합금, Sb-Pb슬래그로 분리하여 회수하는 제3단계;를 포함하는 것을 특징으로 하는 납 전해 정련의 양극 슬라임에 포함된 유가금속 분리회수방법.A first step of separating the anode slime of the lead electrolytic refining including a valuable metal by oxidization in an induction furnace to black metal, dust, and slag, respectively;
A second step of reoxidizing the black metal obtained in the first step and separating the black metal into bi-lysage, silver anode, dust, and antimony slag;
And a third step of oxidizing the dusts obtained in the first and second steps in an electric furnace to separate and recover the Sb-Pb alloy and the Sb-Pb slag. In the anode slurry of the lead electrolytic refining, A method for recovering valuable metals.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160104820A KR101805704B1 (en) | 2016-08-18 | 2016-08-18 | Lead recovery way the disintegration of the metal oil prices from anode slime electrolytic refining |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160104820A KR101805704B1 (en) | 2016-08-18 | 2016-08-18 | Lead recovery way the disintegration of the metal oil prices from anode slime electrolytic refining |
Publications (1)
Publication Number | Publication Date |
---|---|
KR101805704B1 true KR101805704B1 (en) | 2017-12-08 |
Family
ID=60920037
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020160104820A KR101805704B1 (en) | 2016-08-18 | 2016-08-18 | Lead recovery way the disintegration of the metal oil prices from anode slime electrolytic refining |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101805704B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109097587A (en) * | 2018-10-18 | 2018-12-28 | 郴州市金贵银业股份有限公司 | A kind of method of precious metal in high efficiente callback lead anode slurry |
KR20190118347A (en) | 2018-04-10 | 2019-10-18 | 주식회사 어스텍 | Separation of valuable metals from waste secondary batteries by alkaline fritting method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002012907A (en) | 2000-06-29 | 2002-01-15 | Nkk Corp | Method for operating metal melting furnace, smelting furnace, refining furnace and vacuum refining furnace |
-
2016
- 2016-08-18 KR KR1020160104820A patent/KR101805704B1/en active IP Right Grant
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002012907A (en) | 2000-06-29 | 2002-01-15 | Nkk Corp | Method for operating metal melting furnace, smelting furnace, refining furnace and vacuum refining furnace |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190118347A (en) | 2018-04-10 | 2019-10-18 | 주식회사 어스텍 | Separation of valuable metals from waste secondary batteries by alkaline fritting method |
CN109097587A (en) * | 2018-10-18 | 2018-12-28 | 郴州市金贵银业股份有限公司 | A kind of method of precious metal in high efficiente callback lead anode slurry |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4219947B2 (en) | How to recover lead | |
AU758931C (en) | Removal of oxygen from metal oxides and solid solutions by electrolysis in a fused salt | |
CN108913898B (en) | Treatment process of high-bismuth-lead anode slime | |
CN108138343B (en) | Metal refining method using electrolytic reduction and electrolytic refining process | |
CN106381399B (en) | A method of recycling tellurium from high tellurium slag charge | |
JP4505843B2 (en) | Copper dry refining method | |
KR101805704B1 (en) | Lead recovery way the disintegration of the metal oil prices from anode slime electrolytic refining | |
JP5755572B2 (en) | Method for producing bismuth anode for electrolytic purification | |
CN101245471A (en) | Method for producing bismuth and enriched silver from high-silver bismuth alloy | |
JP7107927B2 (en) | Process for recycling cobalt-bearing materials | |
CN104498724B (en) | A kind of remove dilute noble alloy blowing slag in lead, arsenic, antimony, the method for bismuth | |
JP2013234356A (en) | Pyrometallurgy process for lead using high impurity-containing lead slag as raw material | |
JP2009074128A (en) | Method for recovering tin | |
JP6127902B2 (en) | Method for leaching nickel and cobalt from mixed sulfides | |
JP2001279344A (en) | Method for recovering tin | |
JP4538802B2 (en) | Method for producing crude nickel sulfate | |
JP2014196560A (en) | Metal recovery method | |
JP7515880B2 (en) | Electrochemical separation of tramp elements from steel scrap | |
JP2020147811A (en) | Precious metal recovery method | |
JP6662260B2 (en) | Chlorine leaching method of nickel from mixed sulfide | |
JP4155176B2 (en) | Method for recovering silver from silver-lead-containing materials | |
JP2004190135A (en) | Method of recovering silver from silver and lead-containing material | |
JP2002080988A (en) | Method of recovering mixed rare earth metal from scrap | |
CN104805294A (en) | Method for recovering silver from scrap copper anode slime | |
CN118166402A (en) | Tungsten extraction method based on liquid cathode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |