Nothing Special   »   [go: up one dir, main page]

JP4538802B2 - Method for producing crude nickel sulfate - Google Patents

Method for producing crude nickel sulfate Download PDF

Info

Publication number
JP4538802B2
JP4538802B2 JP2005100621A JP2005100621A JP4538802B2 JP 4538802 B2 JP4538802 B2 JP 4538802B2 JP 2005100621 A JP2005100621 A JP 2005100621A JP 2005100621 A JP2005100621 A JP 2005100621A JP 4538802 B2 JP4538802 B2 JP 4538802B2
Authority
JP
Japan
Prior art keywords
nickel
iron
sulfate
concentration
nickel sulfate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005100621A
Other languages
Japanese (ja)
Other versions
JP2006283047A5 (en
JP2006283047A (en
Inventor
聖臣 金澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2005100621A priority Critical patent/JP4538802B2/en
Publication of JP2006283047A publication Critical patent/JP2006283047A/en
Publication of JP2006283047A5 publication Critical patent/JP2006283047A5/ja
Application granted granted Critical
Publication of JP4538802B2 publication Critical patent/JP4538802B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

本発明は、粗硫酸ニッケルの製造方法に関する。更に詳しくは、銅電解の浄液工程において、電解液中のニッケルを濃縮冷却により硫酸ニッケルとして除去する方法において、電解液中のニッケル濃度を制御することにより粗硫酸ニッケル中の鉄品位を制御する方法に関する。 The present invention relates to a method for producing crude nickel sulfate. More specifically, in the copper electrolysis process, in the method of removing nickel in the electrolyte as nickel sulfate by concentration cooling, the iron quality in the crude nickel sulfate is controlled by controlling the nickel concentration in the electrolyte. Regarding the method.

銅電解液中の不純物を除去するため、始めに電解液を加熱濃縮した後冷却することで銅を硫酸銅として取り除く。次に電解採取工程にて銅、砒素、アンチモン、ビスマス等の不純物を陰極側で還元除去する。
この電解採取後液を−15〜0℃まで冷却し、液中のニッケルを粗硫酸ニッケルとして析出させた後、遠心分離することで液中からニッケルを除去し、銅電解液中のニッケル濃度をバランスさせている。
In order to remove impurities in the copper electrolyte, the electrolyte is first heated and concentrated, and then cooled to remove copper as copper sulfate. Next, impurities such as copper, arsenic, antimony, and bismuth are reduced and removed on the cathode side in an electrowinning process.
After the electrolytic collection, the solution is cooled to -15 to 0 ° C., and nickel in the solution is precipitated as crude nickel sulfate. Then, the nickel is removed from the solution by centrifugation, and the nickel concentration in the copper electrolyte is reduced. Balance.

ニッケルは、銅鉱石中あるいは銅溶錬工程で溶解処理するスクラップ類から銅アノードに移行し、銅電解工程へ持ち込まれる。
アノード中のニッケルは電解精製工程で陽極反応により電解液中へ溶出する。溶出したニッケルは硫酸ニッケルとして系外除去し、電解液中のニッケル濃度をバランスさせる。
Nickel moves from the scraps that are dissolved in the copper ore or in the copper smelting process to the copper anode and is brought into the copper electrolysis process.
Nickel in the anode is eluted into the electrolytic solution by an anodic reaction in the electrolytic purification process. The eluted nickel is removed out of the system as nickel sulfate to balance the nickel concentration in the electrolyte.

鉄はニッケルと挙動を共にする。すなわち、アノード中の鉄は、陽極反応により電解液中へ溶出し、ニッケルと共に粗硫酸ニッケルに含まれ系外除去される。このときの形態は硫酸鉄と考えられる。
一方、公開された特許としては、例えば特開2004-169158(特許文献1)が、あるが、不純物として鉄を意識していない。
また、特許第3546911号(特許文献2)では、溶媒抽出法により鉄を除去している。
特開2004-169158 特許第3546911号
Iron behaves like nickel. That is, iron in the anode is eluted into the electrolytic solution by the anodic reaction, and is included in the crude nickel sulfate together with nickel and removed outside the system. The form at this time is considered to be iron sulfate.
On the other hand, as an open patent, for example, there is JP-A-2004-169158 (Patent Document 1), but iron is not conscious of impurities.
In Japanese Patent No. 3546911 (Patent Document 2), iron is removed by a solvent extraction method.
JP2004-169158 Patent No. 3546911

本発明の目的は、電解液中のニッケル濃度を制御することにより、粗硫酸ニッケル中の鉄品位を一定品位以内にする方法を提供する。 The object of the present invention is to provide a method for controlling the iron concentration in the crude nickel sulfate within a certain range by controlling the nickel concentration in the electrolytic solution.

本発明は、以上の課題を解決するため、
(1)銅電解の浄液工程において、電解液中のニッケルを濃縮冷却により粗硫酸ニッケルとして除去する方法において、
電解液中のニッケル濃度を12〜24g/Lに制御することにより、粗硫酸ニッケル中の鉄品位を0.5%以下に抑える粗硫酸ニッケルの製造方法。
を提供する。
In order to solve the above problems, the present invention
(1) In a method of removing nickel in an electrolytic solution as crude nickel sulfate by concentration cooling in a copper electrolysis process,
A method for producing crude nickel sulfate, which controls the nickel concentration in the electrolytic solution to 12 to 24 g / L, thereby suppressing the iron quality in the crude nickel sulfate to 0.5% or less.
I will provide a.

本発明を実施することにより以下の効果を得ることができる。
(1)電解液中のニッケル濃度を制御することにより粗硫酸ニッケル中の鉄品位を低減することができる。
By implementing the present invention, the following effects can be obtained.
(1) The iron quality in crude nickel sulfate can be reduced by controlling the nickel concentration in the electrolytic solution.

本発明の処理フローを図1により説明する。
銅の電解液は、不純物除去のため浄液工程へ送られる。銅の電解液は、通常銅を45〜50g/L、ニッケル12〜15g/L、鉄0.75〜1.00g/L、硫酸170〜200g/Lを含む。浄液工程において、該電解液は加熱濃縮される。
The processing flow of the present invention will be described with reference to FIG.
The copper electrolyte is sent to the liquid purification process to remove impurities. Copper electrolyte usually contains 45-50 g / L of copper, 12-15 g / L of nickel, 0.75-1.00 g / L of iron, and 170-200 g / L of sulfuric acid. In the liquid purification process, the electrolytic solution is concentrated by heating.

このときの銅濃度は、90〜100g/L、ニッケルは24〜30g/L、鉄は1.5〜2.0g/L、硫酸は340〜400g/Lとなる。この濃縮液を10℃まで冷却することにより、硫酸銅が析出する。この硫酸は、固液分離した後、別途精製され製品硫酸銅となる。
冷却後液の銅は10g/L、ニッケルは24〜30g/L、鉄は1.5〜2.0g/Lである。
さらにこの液を電解採取工程へ送ることにより、銅、砒素、アンチモン、ビスマスが除去される。
この電解採取後液は、銅0.5g/L、ニッケル24〜30g/L、鉄1.5〜2.0g/Lである。
The copper concentration at this time is 90 to 100 g / L, nickel is 24 to 30 g / L, iron is 1.5 to 2.0 g / L, and sulfuric acid is 340 to 400 g / L. By cooling the concentrated solution to 10 ° C., copper sulfate is precipitated. The copper sulfate, after solid-liquid separation, the product copper sulfate is separately purified.
After cooling, the liquid copper is 10 g / L, nickel is 24-30 g / L, and iron is 1.5-2.0 g / L.
Furthermore, copper, arsenic, antimony, and bismuth are removed by sending this solution to the electrowinning process.
The solution after electrolytic collection is copper 0.5 g / L, nickel 24 to 30 g / L, and iron 1.5 to 2.0 g / L.

更に、電解採取後液を−15〜0℃に冷却することにより、ニッケルは
粗硫酸ニッケルとして析出する。
この粗硫酸ニッケルは、不純物を少量含むので粗硫酸ニッケルと称している。
代表的な不純物は、鉄、アルミ、銅、亜鉛である。鉄は一部が硫酸鉄の形
態で粗硫酸ニッケルに混入すると考えている。
Furthermore, nickel is deposited as crude nickel sulfate by cooling the solution after electrolytic collection to −15 to 0 ° C.
This crude nickel sulfate is called crude nickel sulfate because it contains a small amount of impurities.
Typical impurities are iron, aluminum, copper, and zinc. Part of the iron is considered to be mixed with the crude nickel sulfate in the form of iron sulfate.

本発明では、電解液中のニッケル濃度を制御し、粗硫酸ニッケル中の不純
物品位を制御する。すなわち、電解液のニッケル濃度をある範囲に制御する
ことにより、粗硫酸ニッケル中鉄品位を制御することを見出した。
In the present invention, the nickel concentration in the electrolytic solution is controlled, and the impurity quality in the crude nickel sulfate is controlled. That is, it has been found that the iron grade in the crude nickel sulfate is controlled by controlling the nickel concentration of the electrolytic solution within a certain range.

図2および図3により詳細を説明する。
図2は、実操業における電解液中のニッケル、鉄濃度及び粗硫酸ニッケル中の鉄品位の推移を表している。電解液中の鉄濃度は0.75〜1.0g/Lの間であるが、電解液中のニッケル濃度の低下と共に粗硫酸ニッケル中の鉄が上昇していることを確認できる。
また電解液中の鉄濃度も0.75〜1.0g/Lの範囲に、保持することが望ましい。 これは、粗硫酸ニッケル中の鉄品位を低く保持するためである。
このときの電解液中のニッケル濃度と粗硫酸ニッケル中の鉄品位の関係をグラフ化したものが図3である。
図3より、電解液中のニッケル濃度が低下すると粗硫酸ニッケル中の鉄品位が加速度的に上昇し、電解液中のニッケル濃度が12g/L以下になると、粗硫酸ニッケル中の鉄品位が0.5以上となることが確認できる。
ニッケル濃度の低い液を冷却した場合、硫酸鉄の核発生が促進され、硫酸
鉄が生成しやすくなるためと推定している。
Details will be described with reference to FIGS.
FIG. 2 shows the transition of nickel and iron concentrations in the electrolytic solution and the iron quality in the crude nickel sulfate in actual operation. Although the iron concentration in electrolyte solution is between 0.75-1.0 g / L, it can confirm that the iron in rough | crude nickel sulfate is rising with the fall of the nickel concentration in electrolyte solution.
Further, it is desirable to keep the iron concentration in the electrolytic solution in the range of 0.75 to 1.0 g / L. This is to keep the iron grade in the crude nickel sulfate low.
FIG. 3 is a graph showing the relationship between the nickel concentration in the electrolytic solution and the iron quality in the crude nickel sulfate.
From FIG. 3, when the nickel concentration in the electrolytic solution decreases, the iron grade in the crude nickel sulfate increases at an accelerated rate, and when the nickel concentration in the electrolytic solution becomes 12 g / L or less, the iron grade in the crude nickel sulfate is 0. .5 or more can be confirmed.
It is estimated that when a liquid with a low nickel concentration is cooled, the nucleation of iron sulfate is promoted and iron sulfate is easily generated.

図4は、電解液中のニッケル濃度と電解槽の電圧の関係を表している。
電解液中のニッケル濃度が高いと電解精製時の通電抵抗が大きくなり、電解槽の電圧を上昇させることが確認できる。電解槽の電圧上昇は、電解電力原単位を悪化させるため、電解液中のニッケル濃度は、低い方が好ましい。
FIG. 4 shows the relationship between the nickel concentration in the electrolyte and the voltage of the electrolytic cell.
It can be confirmed that when the nickel concentration in the electrolytic solution is high, the energization resistance at the time of electrolytic refining is increased, and the voltage of the electrolytic cell is increased. Since the increase in the voltage of the electrolytic cell deteriorates the electrolysis power unit, the nickel concentration in the electrolytic solution is preferably low.

電解液中のニッケル濃度は、12〜24g/Lの範囲であれば、粗硫酸ニッケル中の鉄品位を0.5%以下に制御できる。
しかしながら、高濃度のニッケルは電解精製時の通電抵抗となり、電解電力原単位の悪化を招来する。したがって、電解液中のニッケル濃度は、12〜14g/Lの範囲が好ましい。
If the nickel concentration in the electrolytic solution is in the range of 12 to 24 g / L, the iron quality in the crude nickel sulfate can be controlled to 0.5% or less.
However, a high concentration of nickel serves as an energization resistance at the time of electrolytic refining, and causes a deterioration in the basic unit of electrolytic power. Therefore, the nickel concentration in the electrolytic solution is preferably in the range of 12 to 14 g / L.

電解液中のニッケル濃度を制御する方法として、アノード中のニッケル品位の制御、系外除去する硫酸ニッケル量の制御等が挙げられる。 Examples of methods for controlling the nickel concentration in the electrolyte include control of nickel quality in the anode and control of the amount of nickel sulfate removed outside the system.

実際の操業データを解析した結果、電解液中のニッケル濃度と粗硫酸ニッ
ケル品位の間には、図3に示すような関係が見られた。このときの冷却温
度は−15〜−10℃である。
As a result of analyzing actual operation data, a relationship as shown in FIG. 3 was found between the nickel concentration in the electrolyte and the quality of the crude nickel sulfate. The cooling temperature at this time is −15 to −10 ° C.

すなわち、電解液中のニッケル濃度を下げていくと、粗硫酸ニッケル中の鉄品位が上昇する。これは電解液中のニッケル濃度が14g/Lを下回ると顕著であり、12g/Lを下回ると粗硫酸ニッケル中鉄品位が0.5%を超えることが確認できる。 That is, as the nickel concentration in the electrolytic solution is lowered, the iron quality in the crude nickel sulfate increases. This is remarkable when the nickel concentration in the electrolytic solution is lower than 14 g / L, and when it is lower than 12 g / L, it can be confirmed that the iron grade in the crude nickel sulfate exceeds 0.5%.

浄液工程フローを示す。The liquid purification process flow is shown. 銅電解液中のニッケル濃度、鉄濃度及び粗硫酸ニッケル中の鉄品位の推移を示す。Changes in nickel concentration in copper electrolyte, iron concentration, and iron grade in crude nickel sulfate are shown. 銅電解液中のニッケル濃度と粗硫酸ニッケル中の鉄品位の関係を示す。The relationship between the nickel concentration in the copper electrolyte and the iron quality in the crude nickel sulfate is shown. 銅電解液中のニッケル濃度と電解槽電圧の関係を示す。The relationship between the nickel concentration in the copper electrolyte and the electrolytic cell voltage is shown.

Claims (1)

銅電解の浄液工程において、電解液中のニッケルを濃縮冷却することにより硫酸ニッケルとして除去する方法において、
電解液中のニッケル濃度を12〜24g/Lに制御することにより、粗硫酸ニッケル中の鉄品位を0.5%以下に抑えることを特徴とする粗硫酸ニッケルの製造方法。

In the copper electrolysis process, in the method of removing nickel in the electrolyte as nickel sulfate by concentrating and cooling,
A method for producing crude nickel sulfate, comprising controlling the nickel concentration in the electrolytic solution to 12 to 24 g / L, thereby suppressing the iron grade in the crude nickel sulfate to 0.5% or less.

JP2005100621A 2005-03-31 2005-03-31 Method for producing crude nickel sulfate Active JP4538802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005100621A JP4538802B2 (en) 2005-03-31 2005-03-31 Method for producing crude nickel sulfate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005100621A JP4538802B2 (en) 2005-03-31 2005-03-31 Method for producing crude nickel sulfate

Publications (3)

Publication Number Publication Date
JP2006283047A JP2006283047A (en) 2006-10-19
JP2006283047A5 JP2006283047A5 (en) 2007-11-08
JP4538802B2 true JP4538802B2 (en) 2010-09-08

Family

ID=37405262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005100621A Active JP4538802B2 (en) 2005-03-31 2005-03-31 Method for producing crude nickel sulfate

Country Status (1)

Country Link
JP (1) JP4538802B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5642987B2 (en) * 2010-03-31 2014-12-17 パンパシフィック・カッパー株式会社 Method for recovering nickel from copper electrolyte
CN110983070B (en) * 2019-11-29 2020-12-15 长沙华时捷环保科技发展股份有限公司 Method for preparing refined nickel sulfate from copper electrolyte decoppered liquid

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10147823A (en) * 1996-09-19 1998-06-02 Nikko Kinzoku Kk Method for recovering nickel from copper electrolytic solution and method for purifying the same copper electrolytic solution
JPH11286797A (en) * 1998-03-31 1999-10-19 Nippon Mining & Metals Co Ltd Method for purifying copper electrolyte

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10147823A (en) * 1996-09-19 1998-06-02 Nikko Kinzoku Kk Method for recovering nickel from copper electrolytic solution and method for purifying the same copper electrolytic solution
JPH11286797A (en) * 1998-03-31 1999-10-19 Nippon Mining & Metals Co Ltd Method for purifying copper electrolyte

Also Published As

Publication number Publication date
JP2006283047A (en) 2006-10-19

Similar Documents

Publication Publication Date Title
JP5043027B2 (en) Recovery method of valuable metals from ITO scrap
JP4745400B2 (en) Recovery method of valuable metals from ITO scrap
JP4298712B2 (en) Method for electrolytic purification of copper
WO2009101864A1 (en) Method of recovering valuable metals from izo scrap
CN1500892A (en) Refined method for copper materials containing copper sulphide minerals
JP5755572B2 (en) Method for producing bismuth anode for electrolytic purification
CN101045963A (en) Dry type refining method for copper
EP0068469B1 (en) Refining copper-bearing material contaminated with nickel, antimony and/or tin
JP5589854B2 (en) How to recover bismuth
JP4538802B2 (en) Method for producing crude nickel sulfate
JP2008208441A (en) Solvent extraction method for chloride aqueous solution
WO2018138917A1 (en) Bismuth purification method
JP2015086436A (en) Method for recovering valuable material
JP5066025B2 (en) Method for producing copper sulfate
CN106555060A (en) It is a kind of to adopt the method dechlorinated from zinc solution except surface autoxidation copper ashes after cadmium
KR101805704B1 (en) Lead recovery way the disintegration of the metal oil prices from anode slime electrolytic refining
JP5482461B2 (en) Method for recovering copper from copper electrolysis waste liquid
JP4544414B2 (en) High purity metallic indium and its production method and application
JP5780230B2 (en) Gallium recovery method
JP2008106348A (en) Method of separating and recovering zinc
JP4979751B2 (en) Electrolysis method of lead (1)
JP4797163B2 (en) Method for electrolysis of tellurium-containing crude lead
CN113355701A (en) Method for separating and recovering silver and gallium
JP4787951B2 (en) Method for electrolytic purification of silver
JP2014196560A (en) Metal recovery method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100610

R150 Certificate of patent or registration of utility model

Ref document number: 4538802

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140702

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250