KR101767848B1 - 비수전해질 이차 전지용 부극재, 비수전해질 이차 전지용 부극재의 제조 방법 및 리튬 이온 이차 전지 - Google Patents
비수전해질 이차 전지용 부극재, 비수전해질 이차 전지용 부극재의 제조 방법 및 리튬 이온 이차 전지 Download PDFInfo
- Publication number
- KR101767848B1 KR101767848B1 KR1020160176786A KR20160176786A KR101767848B1 KR 101767848 B1 KR101767848 B1 KR 101767848B1 KR 1020160176786 A KR1020160176786 A KR 1020160176786A KR 20160176786 A KR20160176786 A KR 20160176786A KR 101767848 B1 KR101767848 B1 KR 101767848B1
- Authority
- KR
- South Korea
- Prior art keywords
- lithium
- silicon
- negative electrode
- secondary battery
- electrode material
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/02—Pretreatment of the material to be coated
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/26—Deposition of carbon only
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/4417—Methods specially adapted for coating powder
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/56—After-treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0421—Methods of deposition of the material involving vapour deposition
- H01M4/0428—Chemical vapour deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/133—Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/364—Composites as mixtures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/386—Silicon or alloys based on silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/483—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y02E60/122—
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y02T10/7011—
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
본 발명은, 첫회 효율 및 사이클 내구성이 종래보다 우수한 규소 산화물계의 비수전해질 이차 전지용 부극재를 제공한다.
본 발명의 비수전해질 이차 전지용 부극재는 비수전해질을 사용하는 이차 전지용 부극재로서, 적어도 규소-규소 산화물계 복합체와, 상기 규소-규소 산화물계 복합체의 표면에 피복된 탄소 피막으로 이루어지고, 적어도 상기 규소-규소 산화물계 복합체에 리튬이 도핑되며, Cu-Kα선의 X선 회절에서 2θ=35.8±0.2°의 SiC에 귀속되는 피크 강도 I(SiC)와, 2θ=28.4±0.2°의 Si에 귀속되는 피크 강도 I(Si)의 비 I(SiC)/I(Si)가 I(SiC)/I(Si)≤0.03의 관계를 만족하는 것임을 특징으로 한다.
본 발명의 비수전해질 이차 전지용 부극재는 비수전해질을 사용하는 이차 전지용 부극재로서, 적어도 규소-규소 산화물계 복합체와, 상기 규소-규소 산화물계 복합체의 표면에 피복된 탄소 피막으로 이루어지고, 적어도 상기 규소-규소 산화물계 복합체에 리튬이 도핑되며, Cu-Kα선의 X선 회절에서 2θ=35.8±0.2°의 SiC에 귀속되는 피크 강도 I(SiC)와, 2θ=28.4±0.2°의 Si에 귀속되는 피크 강도 I(Si)의 비 I(SiC)/I(Si)가 I(SiC)/I(Si)≤0.03의 관계를 만족하는 것임을 특징으로 한다.
Description
본 발명은, 리튬 이온 이차 전지 등의 비수전해질을 사용하는 이차 전지용 부극재로서 유용한 것으로 알려진 규소-규소 산화물-리튬계 복합체로 이루어지는 비수전해질 이차 전지용 부극재와 그의 제조 방법 및 이것을 사용한 리튬 이온 이차 전지에 관한 것이다.
현재, 리튬 이온 이차 전지는 에너지 밀도가 높기 때문에 휴대 전화나 노트북 PC 등의 모바일 전자 기기에 폭넓게 사용되고 있다. 또한, 최근 환경 문제에 대한 의식이 높아짐과 동시에, 환경 친화적 자동차인 전기 자동차용의 전원으로서 이 리튬 이온 이차 전지를 이용하고자 하는 움직임이 활발해지고 있다.
그러나, 현재의 리튬 이온 이차 전지의 성능은 전기 자동차에 적용하기에는 용량, 사이클 내구성이 충분하다고 할 수 없기 때문에, 더욱 고용량이면서도 사이클 내구성이 우수한 차세대형의 리튬 이온 이차 전지의 개발이 진행되고 있다.
이러한 차세대형의 리튬 이온 이차 전지의 개발에서의 과제 중 하나로서, 부극재의 성능 향상을 들 수 있다.
현재는 탄소계의 부극재가 폭넓게 사용되고 있지만, 비약적으로 성능을 높이기 위해 탄소계 이외의 재료도 개발이 진행되고 있으며, 그 대표적인 것으로서 규소 산화물이 있다.
이 규소 산화물은, 탄소의 수배의 이론 용량이 되기 때문에 우수한 부극재가 될 가능성이 있다.
그러나, 개발 초기에는 첫회 효율이 낮고, 전자 도전성이 낮고, 사이클 내구성이 낮다는 문제점이 있었으며, 현재까지 다양한 개량이 이루어지고 있다.
여기서, 첫회 효율이란 첫회의 충방전에서의 충전 용량에 대한 방전 용량의 비율이며, 이것이 낮으면 결과적으로 리튬 이온 이차 전지의 에너지 밀도가 저하된다. 규소 산화물의 첫회 효율이 낮은 원인은, 첫회 충전시에 충방전에 기여하지 않는 리튬 화합물이 많이 생성되기 때문인 것으로 생각되고 있다.
그 대책으로서, 첫회 충전 전에 미리 규소 산화물과 리튬 금속 또는 리튬 화합물(산화리튬, 수산화리튬, 수소화리튬, 유기 리튬 등)을 반응시켜 이러한 리튬 화합물을 생성시키는 방법이 알려져 있다.
예를 들면, 특허문헌 1에는 부극 활성 물질로서 리튬 이온을 흡장 방출 가능한 규소의 산화물을 사용하며, 상기 규소의 산화물 중 규소와 리튬과 산소의 원자수의 비를 1:x:y로 나타냈을 때 x>0, 2>y>0의 관계를 만족하는 부극재가 개시되어 있다.
이러한 조성식이 LixSiOy인 리튬을 함유하는 규소의 산화물의 제조 방법으로서, 미리 리튬을 함유하지 않는 규소의 저급 산화물 SiOy를 합성하고, 얻어진 규소의 저급 산화물 SiOy와 리튬 또는 리튬을 함유하는 물질의 전기 화학적 반응에 의해 리튬 이온을 흡장시키는 방법이 개시되어 있다. 또한, 리튬과 규소 각각의 단체 또는 그의 화합물을 소정의 몰비로 혼합하고, 비산화성 분위기 중 또는 산소를 규제한 분위기 중에서 가열하여 합성하는 방법이 개시되어 있다.
출발 원료로서는 각각의 산화물, 수산화물, 또는 탄산염, 질산염 등의 염 또는 유기 화합물 등을 들 수 있으며, 가열 온도로서 통상적으로 400 ℃ 이상에서 합성이 가능하지만, 800 ℃ 이상에서는 규소와 이산화규소에 불균일화 반응하는 경우가 있기 때문에 400 내지 800 ℃의 온도가 바람직하다.
또한, 특허문헌 2 내지 4에는, 부극 활성 물질을 전지 용기에 수납하기 전에 미리 리튬을 삽입하는 방법으로서 화학적 방법 또는 전기 화학적 방법을 이용하는 것이 기재되어 있다.
여기서 화학적 방법으로서는, 부극 활성 물질과 리튬 금속, 리튬 합금(리튬-알루미늄 합금 등), 리튬 화합물(n-부틸리튬, 수소화리튬, 수소화리튬알루미늄 등)을 직접 반응시키는 방법이 있으며, 화학적 방법에서는 리튬 삽입 반응을 25 내지 80 ℃의 온도에서 행하는 것이 바람직하다. 또한, 전기 화학적 방법으로서는, 정극 활성 물질로서 상기 부극 활성 물질, 부극 활성 물질로서 리튬 금속 또는 리튬 합금, 리튬염을 포함하는 비수전해질로 이루어지는 산화 환원계를 개방계에서 방전하는 방법과, 정극 활성 물질로서 리튬 함유 전이 금속 산화물, 상기 부극 활성 물질, 리튬염을 포함하는 비수전해질로 이루어지는 산화 환원계를 충전하는 방법이 개시되어 있다.
또한, 특허문헌 5에는, 화학식 SiLixOy로 표시되는 리튬 함유 산화규소 분말로서, x, y의 범위가 0<x<1.0, 0<y<1.5이고, 리튬이 융합화되고, 그 일부가 결정화되어 있는 것을 특징으로 하는 리튬 함유 산화규소 분말, 및 SiO 가스를 발생하는 원료 분말과 금속 리튬 또는 리튬 화합물의 혼합물을 불활성 가스 분위기 또는 감압하에 800 내지 1300 ℃의 온도에서 가열하여 반응시키는 것을 특징으로 하는 리튬 함유 산화규소 분말의 제조 방법이 개시되어 있다.
여기서, SiO 가스를 발생하는 원료 분말로서는 산화규소(SiOz) 분말(0<z<2)이나 이산화규소 분말을 사용할 수 있으며, 필요에 따라 환원 분말(금속 규소 화합물, 탄소 함유 분말)을 첨가하여 사용하는 것이 개시되어 있다. 또한, 금속 리튬 또는 리튬 화합물은 특별히 한정되지 않으며, 금속 리튬 이외에 리튬 화합물로서 예를 들면 산화리튬, 수산화리튬, 탄산리튬, 질산리튬, 규산리튬 또는 이들의 수화물 등을 사용할 수 있다.
한편, 전자 도전성이 낮으면 리튬 이온 이차 전지의 고부하시의 용량이 저하되거나, 특히 사이클 내구성이 저하된다.
이 전자 도전성을 높이는 개량으로서, 특허문헌 6에는 규소 산화물 입자의 표면에 전자 도전성 재료층을 구비한 부극 재료가 개시되어 있다. 이 중, 규소 산화물은 원소 조성이 Si와 O로 이루어지는 산화규소이며, SiOx(0<x<2)로 표시되는 규소의 저급 산화물이 바람직하고, 상기 산화규소에 Li를 도핑시킨 규소산리튬일 수도 있다. 또한, 도전성 재료로서는 탄소 재료가 바람직하고, CVD법 또는 액상법 또는 소성법을 이용하여 제작할 수 있다.
또한, 사이클 내구성을 높이는, 즉 충방전을 반복하여도 용량의 저하를 발생하기 어렵게 하는 개량 수단 중 하나로서, 특허문헌 7에는 X선 회절에서 Si(111)에 귀속되는 회절 피크가 관찰되고, 그 회절선의 반치폭에 기초하여 셰러법에 의해 구한 규소의 결정 크기가 1 내지 500 nm인 규소의 미결정이 규소계 화합물에 분산된 구조를 갖는, 그 입자의 표면이 탄소로 코팅된 도전성 규소 복합체, 특히 규소계 화합물이 이산화규소이며, 그 표면의 적어도 일부가 탄소와 융착되어 있는 도전성 규소 복합체가 개시되어 있다.
그의 제조 방법의 일례로서는, 산화규소를 900 내지 1400 ℃의 온도에서 유기물 가스 및/또는 증기로 불균일화함과 동시에, 탄소를 화학 증착 처리하는 방법이 있다.
또한, 초기 효율과 사이클 내구성을 함께 개량한 것으로서, 특허문헌 8에는 리튬 도핑이 실시된 규소-규소 산화물계 복합체로서, 입자의 크기가 0.5 내지 50 nm인 규소가 원자 오더 및/또는 미결정 상태로 규소 산화물에 분산된 구조를 갖는 것을 특징으로 하는 규소-규소 산화물-리튬계 복합체, 특히 표면이 카본에 의해 표면 처리된 후의 복합 입자 전체에 대하여 5 내지 50 질량%의 부착량으로 피복되어 있는 도전화 규소-규소 산화물-리튬계 복합체가 개시되어 있다.
그의 제조 방법으로서, 규소 산화물을 리튬 도핑제로서 리튬 금속 및/또는 유기 리튬 화합물을 사용하여 1300 ℃ 이하에서 리튬 도핑하는 방법, 소정의 입자 크기로 분쇄한 규소-규소 산화물-리튬계 복합체를 900 ℃ 내지 1400 ℃에서 유기 탄화수소 가스 및/또는 증기로 열 CVD를 실시하고, 카본의 부착량이 표면 처리 후의 복합 입자 전체에 대하여 5 내지 50 질량%가 되도록 피복하는 방법이 기재되어 있다.
이와 같이 개량이 진행된 규소 산화물계 부극재이지만, 가장 개량이 진행된 특허문헌 8에 기재된 기술도 아직 실용화에는 불충분하였다.
즉, 특허문헌 8에 기재되어 있는 바와 같은 방법으로 제조한 도전화 규소-규소 산화물-리튬계 복합체는, 첫회 효율은 리튬 도핑되어 있지 않은 도전화 규소-규소 산화물계 복합체보다 대폭 향상되었지만, 사이클 내구성은 열화되었다.
본 발명은 상기 문제를 감안하여 이루어진 것이며, 첫회 효율 및 사이클 내구성이 종래보다 우수한 규소 산화물계의 비수전해질 이차 전지용 부극재와 그의 제조 방법 및 리튬 이온 이차 전지를 제공하는 것을 목적으로 한다.
상기 과제를 해결하기 위해, 본 발명에서는 비수전해질을 사용하는 이차 전지용 부극재로서, 적어도 규소-규소 산화물계 복합체와, 상기 규소-규소 산화물계 복합체의 표면에 피복된 탄소 피막으로 이루어지고, 적어도 상기 규소-규소 산화물계 복합체에 리튬이 도핑되며, Cu-Kα선의 X선 회절에서 2θ=35.8±0.2°의 SiC에 귀속되는 피크 강도 I(SiC)와, 2θ=28.4±0.2°의 Si에 귀속되는 피크 강도 I(Si)의 비 I(SiC)/I(Si)가 I(SiC)/I(Si)≤0.03의 관계를 만족하는 것임을 특징으로 하는 비수전해질 이차 전지용 부극재를 제공한다.
이와 같이, 리튬이 도핑되고 탄소 피막이 피복된 규소-규소 산화물계 복합체에 있어서, Cu-Kα선의 X선 회절에서 2θ=35.8±0.2°의 SiC에 귀속되는 피크 강도 I(SiC)와, 2θ=28.4±0.2°의 Si에 귀속되는 피크 강도 I(Si)의 비 I(SiC)/I(Si)가 I(SiC)/I(Si)≤0.03의 관계를 만족하는 비수전해질 이차 전지용 부극재이면, 규소-규소 산화물계 복합체와 탄소 피막의 계면에서의 SiC의 양이 충분히 적고, 부극재로서 사용하는 경우의 전자 전도성이나 방전 용량, 특히 사이클 내구성을 양호하게 할 수 있다. 또한, 리튬이 도핑되고, 탄소 피막이 피복된 규소-규소 산화물계 복합체가 베이스이기 때문에 종래의 부극재에 비해 고용량이며, 특히 첫회 효율이 우수한 부극재가 된다.
여기서, 상기 비수전해질 이차 전지용 부극재는, 추가로 상기 Cu-Kα선의 X선 회절에서 알루민산리튬에 귀속되는 피크가 관찰될 수 있다.
이와 같이, 리튬의 도핑에는 후술하는 바와 같이 바람직하게는 알루미늄을 포함하는 수소화리튬알루미늄도 사용할 수 있지만, 이와 같이 알루미늄을 포함하는 부극재여도 규소-규소 산화물계 복합체와 탄소 피막의 계면에서의 SiC의 양이 충분히 적고, 특히 사이클 내구성 및 첫회 효율이 우수한 부극재로 할 수 있다.
또한, 본 발명에서는, 적어도 정극, 부극, 리튬 이온 도전성의 비수전해질로 이루어지는 리튬 이온 이차 전지로서, 상기 부극에 본 발명에 기재된 비수전해질 이차 전지용 부극재가 사용된 것임을 특징으로 하는 리튬 이온 이차 전지를 제공한다.
상술한 바와 같이, 본 발명의 비수전해질 이차 전지용 부극재는, 비수전해질의 이차 전지의 부극으로서 사용한 경우 전지 특성(첫회 효율 및 사이클 내구성)을 양호하게 할 수 있는 것이다. 그 때문에, 본 발명의 비수전해질 이차 전지용 부극재가 사용된 리튬 이온 이차 전지는 전지 특성, 특히 첫회 효율 및 사이클 내구성이 우수해진다.
또한, 본 발명에서는, 비수전해질을 사용하는 이차 전지용 부극재의 제조 방법으로서, 적어도 산화규소와 규소-규소 산화물계 복합체 중 적어도 어느 하나로 이루어지는 분말의 표면에 열 CVD 처리에 의해 탄소를 피복하고, 상기 탄소 피복 후의 분말과 리튬 도핑제를 혼합한 후 가열하여 리튬을 상기 탄소 피복 후의 분말에 대하여 도핑하는 것을 특징으로 하는 비수전해질 이차 전지용 부극재의 제조 방법을 제공한다.
리튬을 도핑한 후 탄소를 열 CVD 처리에 의해 피복하면, 도핑된 리튬에 의해 규소-규소 산화물계 복합체와 피복 탄소의 계면의 규소와 탄소가 반응하여 SiC의 생성이 촉진되고, 규소-규소 산화물계 복합체 중 규소의 결정화가 촉진되기 때문에, 전자 전도성이나 사이클 내구성이 양호한 부극재라고 할 수 없게 된다. 그러나, 이와 같이 탄소를 피복한 후 리튬을 도핑함으로써, 규소-규소 산화물계 복합체와 피복 탄소의 계면의 SiC 생성량을 충분히 적게 할 수 있으며, 규소-규소 산화물계 복합체 중 규소의 결정이 필요 이상으로 성장하는 것을 억제할 수 있고, 부극으로 했을 때 사이클 내구성 등의 전지 특성이 양호한 부극재로 할 수 있다.
또한, 규소-규소 산화물계 복합체에 탄소를 피복하고, 리튬을 도핑함으로써 용량을 종래에 비해 개선할 수 있음과 동시에, 도전성 및 첫회 효율이 개선된 비수전해질 이차 전지용 부극재로 할 수 있다.
여기서, 상기 리튬 도핑제로서 수소화리튬 및/또는 수소화리튬알루미늄을 사용하는 것이 바람직하다.
이와 같이, 리튬 도핑제로서 수소화리튬 및/또는 수소화리튬알루미늄을 사용함으로써, 리튬 금속을 리튬 도핑제에 사용하는 경우에 비해 반응이 온화하고, 용이하게 온도 제어하면서 리튬 도핑을 행할 수 있다. 또한, 수산화리튬이나 산화리튬 등 산소를 포함하는 것을 사용하는 경우에 비해 규소 산화물을 환원할 수 있기 때문에, 제조된 부극재의 방전 용량을 높일 수 있으며, 공업적인 양산에 매우 적합한 고용량 부극재의 제조 방법으로 할 수 있다.
또한, 상기 리튬 도핑을 상기 열 CVD 처리시의 온도 이하의 온도에서 행하는 것이 바람직하다.
이와 같이, 리튬 도핑시의 가열 온도를 탄소 피복의 열 CVD 온도 이하의 온도에서 행함으로써, 규소-규소 산화물계 복합체와 피복 탄소의 계면에서 SiC 생성의 촉진이나 규소의 결정화가 촉진되는 것을 보다 확실하게 억제할 수 있으며, 전지 특성이 우수한 부극재를 제조할 수 있다.
또한, 상기 리튬 도핑의 온도를 800 ℃ 이하로 하는 것이 바람직하다.
이와 같이, 800 ℃ 이하의 온도에서 가열하여 리튬 도핑을 행함으로써, SiC 생성이나 규소-규소 산화물계 복합체 중 규소 결정이 필요 이상으로 성장하는 것을 방지할 수 있으며, 방전 용량이나 사이클 내구성이 열화되는 것을 보다 확실하게 방지할 수 있고, 고용량이면서도 고사이클 내구성인 비수전해질 이차 전지용 부극재를 제조할 수 있다.
또한, 상기 열 CVD 처리의 온도를 800 ℃ 이상으로 하는 것이 바람직하다.
이와 같이, 열 CVD 처리의 온도를 800 ℃ 이상으로 함으로써, 탄소 피막 중의 탄소의 결정화나 탄소 피막과 규소-규소 산화물계 복합체의 결합을 촉진시킬 수 있으며, 치밀하고 고품질인 탄소 피막을 고생산성으로 피복할 수 있음과 동시에, 보다 고용량이며 사이클 내구성이 우수한 비수전해질 이차 전지용 부극재를 제조할 수 있다.
이상 설명한 바와 같이, 본 발명에 따르면 첫회 효율 및 사이클 내구성이 종래보다 우수한 규소 산화물계의 비수전해질 이차 전지용 부극재와 그의 제조 방법 및 리튬 이온 이차 전지가 제공된다.
[도 1] 실시예 1의 비수전해질 이차 전지용 부극재의 X선 회절 차트를 나타낸 도면이다.
[도 2] 실시예 2의 비수전해질 이차 전지용 부극재의 X선 회절 차트를 나타낸 도면이다.
[도 3] 비교예 2의 비수전해질 이차 전지용 부극재의 X선 회절 차트를 나타낸 도면이다.
[도 2] 실시예 2의 비수전해질 이차 전지용 부극재의 X선 회절 차트를 나타낸 도면이다.
[도 3] 비교예 2의 비수전해질 이차 전지용 부극재의 X선 회절 차트를 나타낸 도면이다.
이하, 본 발명에 대하여 보다 구체적으로 설명한다.
본 발명자들은 상기 목적을 달성하기 위해, 종래의 비수전해질을 사용하는 이차 전지용 부극재의 문제점과 그 해결법에 대하여 예의 검토를 거듭했다.
그 중, 가장 개선이 진행된 특허문헌 8의 기술의 문제점을 철저히 검증하여, 전자 도전성과 사이클 내구성이 열화되는 원인을 구명하였다.
즉, 특허문헌 8에 개시된 방법으로 제조한 도전화 규소-규소 산화물-리튬계 복합체는, 리튬 도핑하는 것이 원인이 되어, 이후 고온의 열 CVD 처리를 실시할 때 탄소 피막이 SiC화되기 쉬워지고, 규소의 결정화가 진행되기 쉬워진다는 것을 발견하였다.
그 메커니즘은 정확하지는 않지만, 리튬 금속 및/또는 유기 리튬 화합물에 의해 리튬을 도핑할 때 규소 산화물의 일부가 리튬에 의해 환원되어 규소가 되며, 이 규소가 불균일화에 의해 발생한 규소보다 SiC화 및 결정화되기 쉽고, 부극으로 했을 때 전지 특성, 특히 사이클 내구성과 방전 용량의 열화를 초래하고 있기 때문인 것으로 생각된다.
상기한 검토 결과에 기초하여 더욱 예의 검토를 거듭한 결과, 산화규소 또는 규소가 규소 산화물에 분산되어 이루어지는 규소-규소 산화물계 복합체의 표면을 탄소에 의해 피복한 후 리튬 도핑을 행함으로써, SiC화 및 규소의 결정화의 진행을 억제하면서 리튬을 도핑할 수 있으며, 이 규소-규소 산화물계 복합체를 리튬 이온 이차 전지 등의 비수전해질을 사용하는 이차 전지의 부극 활성 물질로서 사용함으로써, 종래보다 고용량이고, 첫회 효율이 높고, 사이클 내구성이 우수한 비수전해질 이차 전지가 얻어진다는 것을 발견하여, 본 발명을 완성시켰다.
이하, 본 발명에 대하여 도면을 참조하여 상세히 설명하지만, 본 발명은 이것으로 한정되지 않는다.
본 발명의 비수전해질을 사용하는 이차 전지용 부극재는, 적어도 규소-규소 산화물계 복합체와, 상기 규소-규소 산화물계 복합체의 표면에 피복된 탄소 피막으로 이루어지는 것이다.
또한, 적어도 규소-규소 산화물계 복합체에 리튬이 도핑되고, Cu-Kα선에 의한 X선 회절의 결과에서 2θ=35.8±0.2°의 SiC에 귀속되는 피크 강도 I(SiC)와, 2θ=28.4±0.2°의 Si에 귀속되는 피크 강도 I(Si)의 비 I(SiC)/I(Si)가 I(SiC)/I(Si)≤0.03의 관계를 만족하는 것이다.
예를 들면, 탄소 피복이 실시된 도전화 규소-규소 산화물-리튬계 복합체로서, 규소가 원자 오더 및/또는 미결정 상태에서 규소 산화물 및/또는 규산리튬 중에 분산된 미세한 구조를 갖는 것이고, 탄소 피복에 의해 도전성이, 리튬 도핑에 의해 첫회 효율이 우수한 방전 용량이 종래보다 크고, 사이클 내구성이 양호한 규소-규소 산화물계 복합체로 이루어지는 것이다. 또한, 이 분산 구조는 투과 전자 현미경에 의해 관찰할 수 있다.
또한, Cu-Kα선의 X선 회절에서 2θ=35.8±0.2°의 SiC에 귀속되는 피크 강도 I(SiC)와 2θ=28.4±0.2°의 Si에 귀속되는 피크 강도 I(Si)의 비가 I(SiC)/I(Si)≤0.03의 관계를 만족하는 것이다.
이 I(SiC)/I(Si)는 탄소 피막의 SiC화의 척도로서 사용할 수 있으며, I(SiC)/I(Si)>0.03에서는 탄소 피복 중의 SiC화되어 있는 부분이 지나치게 많기 때문에, 전자 전도성이나 방전 용량이 열화되는 부극재가 된다. 그 이유는, 탄소 피막과 규소-규소 산화물계 복합체의 계면에 매우 얇은 SiC층이 생성되는 것은 피막의 부착 강도가 높아진다는 점에서는 유용하지만, 다량의 SiC의 생성은 계면 및 탄소 피막의 전자 도전성을 저하시키고, 리튬 이온 이차 전지의 고부하시의 용량이 저하되거나 특히 사이클 내구성이 저하되기 때문이다.
그 때문에, Cu-Kα선의 X선 회절에서 I(SiC)/I(Si)≤0.03의 관계를 만족하는 양의 SiC 생성량이면 충분히 허용할 수 있지만, I(SiC)/I(Si)>0.03에서는 전지 특성의 열화가 현저하다. 따라서, 본 발명의 비수전해질 이차 전지용 부극재에서는 I(SiC)/I(Si)≤0.03으로 한다.
여기서, 본 발명의 비수전해질 이차 전지용 부극재는, 추가로 Cu-Kα선의 X선 회절에서 알루민산리튬에 귀속되는 피크가 관찰될 수 있다. 나아가서는, 규산리튬에 귀속되는 피크가 관찰될 수 있다.
여기서, 규산리튬은 화학식 LixSiOy(1≤x≤4, 2.5≤y≤4)로 표시되고, 알루민산리튬은 화학식 LixAlOy(0.2≤x≤1, 1.6≤y≤2)로 표시되는 화합물을 나타낸다.
즉, 도핑된 리튬은 비수전해질 이차 전지용 부극재 중에서는 주로 규산리튬 및/또는 알루민산리튬이 되어 존재하고 있는 것으로 할 수 있으며, 이에 따라 리튬이 안정적으로 규소-규소 산화물계 복합체에 존재하게 된다.
본 발명의 부극재는 알루미늄을 포함하는 수소화리튬알루미늄을 사용하여 리튬이 도핑된 것으로 할 수도 있지만, 이러한 부극재도 규소-규소 산화물계 복합체와 탄소 피막의 계면에서의 SiC의 양이 충분히 적고, 사이클 내구성 및 첫회 효율이 우수한 부극재이다.
이어서, 본 발명의 비수전해질 이차 전지용 부극재의 제조 방법에 대하여 상세히 설명하지만, 물론 이것으로 한정되는 것은 아니다.
우선, 바람직하게는 화학식 SiOx(0.5≤x<1.6)로 표시되는 산화규소나, 바람직하게는 규소가 원자 오더 및/또는 미결정 상태에서 규소 산화물에 분산된 구조를 갖는 Si/O의 몰비가 1/0.5 내지 1.6이 되는 규소-규소 산화물계 복합체의 적도 어느 하나로 이루어지는 분말을 준비한다.
또한, 이 분말은 원하는 입도 분포까지 분쇄·분급된 것으로 할 수 있다.
또한, 그 분말에 열 CVD 처리에 의해 탄소를 피복함으로써, 표면에 도전성을 부여한다.
또한, 이 열 CVD 처리의 시간은 피복 탄소량과의 관계로 적절히 설정된다. 준비한 분말에 산화규소가 포함되는 경우에는, 이 처리에 의한 열의 작용으로 산화규소가 규소-규소 산화물계 복합체로 변화된다.
또한, 이 처리에서 입자가 응집되는 경우에는, 응집물을 볼밀 등으로 해쇄할 수 있다. 또한, 해쇄한 경우, 재차 마찬가지로 열 CVD 처리를 반복하여 행할 수 있다.
여기서, 이 열 CVD 처리의 온도를 800 ℃ 이상으로 할 수 있다.
예를 들면, 산화규소 또는 규소-규소 산화물계 복합체 중 적어도 어느 하나로 이루어지는 분말에 대하여 불활성 가스 기류하에 800 ℃ 내지 1300 ℃에서 가열한 반응 장치를 사용하고, 적어도 유기물 가스 및/또는 증기를 포함하는 분위기 하에 800 ℃ 이상, 바람직하게는 1300 ℃ 이하(보다 바람직하게는 900 ℃ 내지 1300 ℃, 나아가서는 900 ℃ 내지 1200 ℃)의 온도로 가열함으로써 탄소 피복 처리를 행할 수 있다.
이와 같이, 열 CVD 처리의 온도를 800 ℃ 이상으로 함으로써, 탄소 피막과 규소-규소 산화물계 복합체의 융합, 탄소 원자의 정렬(결정화)을 충분하면서도 확실하게 행할 수 있으며, 보다 고용량이고 사이클 내구성이 우수한 비수전해질 이차 전지용 부극재가 얻어진다. 또한, 규소의 미결정의 형성에 장시간을 요하지 않고 효율적이다.
이 때, 본 발명에서 탄소 피복되는 규소-규소 산화물계 복합체의 분말에는 아직 리튬이 도핑되어 있지 않다. 따라서, 800 ℃ 이상, 특히는 900 ℃ 이상의 고온에서 열 CVD가 행해져도 SiC의 형성은 억제된다.
또한, 탄소 피복 후의 분말과 리튬 도핑제를 혼합한다.
이 혼합은 건조 분위기하에 균일하게 혼합할 수 있는 장치를 사용할 수 있으며, 특별히 한정은 되지 않지만, 소형 장치로서는 텀블러 믹서가 예시된다.
구체적으로는, 건조 공기 분위기하의 글로브 박스 내에서, 탄소 피복한 규소-규소 산화물계 복합체의 분말과 리튬 도핑제를 소정량씩 칭량하고, 스테인리스 밀폐 용기에 넣고 텀블러 믹서에 세팅하여 실온에서 소정 시간 회전시킴으로써, 균일해지도록 혼합할 수 있다.
그 후, 가열하여 리튬을 상기 탄소 피복 후의 분말에 대하여 도핑한다.
이 리튬 도핑제에는, 수소화리튬 또는 수소화리튬알루미늄을 사용할 수 있으며, 수소화리튬을 사용하면 동질량의 수소화리튬알루미늄을 사용한 경우에 비해 첫회 효율이 높아지기 때문에, 전지 특성적으로는 수소화리튬을 사용하는 것이 보다 바람직하다. 또한, 수소화리튬과 수소화리튬알루미늄을 병용할 수도 있다. 또한, 수소화리튬알루미늄은 환원제로서 시판된 것이 일반적으로 유통되고 있으며, 입수가 용이하다.
금속 리튬 등의 반응성이 높은 것을 리튬 도핑제에 사용하는 경우에는, 리튬화제의 반응성이 지나치게 높기 때문에 혼합을 건조 분위기뿐만 아니라 아르곤 등의 불활성 가스 분위기하에 취급할 필요가 있었지만, 수소화리튬 및/또는 수소화리튬알루미늄을 사용하는 경우 건조 분위기하에서만 혼합할 수 있기 때문에, 취급이 매우 용이하다.
또한, 금속 리튬 등을 사용하는 경우에는 연쇄적으로 반응이 발생하고, 작열 상태를 형성할 위험성이 높고, 작열 상태가 되면 규소의 결정이 지나치게 성장하여 용량 및 사이클 내구성이 낮아지는 경우가 있다는 문제점이 있지만, 수소화리튬 및/또는 수소화리튬알루미늄이면 반응이 온화하게 진행되기 때문에, 반응열에 의한 온도 상승은 수십 ℃이고, 작열하지 않고, 용이하게 고용량이면서도 사이클 내구성이 우수한 부극재를 공업적 규모로 제조할 수 있다.
또한, 수산화리튬이나 산화리튬 등 산소를 포함하는 도핑제를 사용하는 경우에는, 제조된 부극재의 규소 산화물의 환원량이 불충분함에 따른 방전 용량의 저하의 위험성도 있지만, 수소화리튬 및/또는 수소화리튬알루미늄이면 이러한 위험도 확실하게 회피할 수 있으며, 고용량의 부극재를 확실하게 제조할 수 있다.
또한, 미반응된 수소화리튬 또는 수소화리튬알루미늄이 잔존하면, 특성적으로도 안전면에서도 바람직하지 않다.
또한, 리튬 도핑 반응은 탄소 피복된 규소-규소 산화물계 복합체와 리튬 도핑제와의 고체-고체 반응이지만, 고체 내로의 리튬의 확산 속도는 일반적으로 작기 때문에, 리튬이 탄소 피복된 규소-규소 산화물계 복합체 내부에 완전히 균일하게 침입하는 것은 곤란하다.
따라서, 안전을 위해서도 리튬의 첨가량은 전체 불가역 용량분(첫회 충방전에서의 충전 용량과 방전 용량의 차)을 보충하는 양 이하, 즉 Li/O≤1로 하는 것이 바람직하다.
또한, 이 리튬 도핑의 가열 온도를 열 CVD 처리시의 온도 이하의 온도에서 행할 수 있다.
탄소 피복의 열 CVD 온도 이하의 온도에서 리튬 도핑 반응 처리를 행함으로써, 리튬 존재화의 가열에 의해 촉진되는 규소-규소 산화물계 복합체와 피복 탄소의 계면에서의 SiC 생성을 강하게 억제할 수 있으며, 이에 따라 전지 특성, 특히 사이클 내구성이 우수한 부극재가 얻어진다.
또한, 이 리튬 도핑의 온도는 800 ℃ 이하로 할 수 있다.
리튬 도핑을 800 ℃ 이하의 온도에서 행함으로써, 규소-규소 산화물계 복합체 중 규소 결정의 성장이 필요 이상으로 진행되는 것을 방지할 수 있기 때문에, 방전 용량이나 사이클 내구성이 열화되는 것을 확실하게 방지할 수 있다. 즉, 고용량이면서도 사이클 내구성이 보다 양호한 비수전해질 이차 전지용 부극재를 제조할 수 있다.
또한, 이 리튬 도핑 온도는 200 ℃ 이상으로 하는 것이 반응성의 면에서 바람직하다.
이 상기 리튬 도핑 반응은 불활성 가스 분위기하에서 가열 기구를 갖는 반응 장치를 사용하는 것이 바람직하고, 그 세부적인 사항은 특별히 한정되지 않는다.
예를 들면, 연속법, 회분법으로 처리가 가능하며, 구체적으로는 회전로, 수직형 이동층 반응로, 터널로, 배치로, 로터리 킬른 등을 그 목적에 따라 적절하게 선택할 수 있다. 소형 장치로서는 관상 전기로가 예시된다.
보다 구체적으로는, 아르곤 가스 유통하의 석영관 내에 상기 혼합물을 넣고, 관상 전기로로 가열하여 소정 시간 동안 반응시킴으로써 행할 수 있다.
산화규소나 규소-규소 산화물계 복합체로 이루어지는 분말에 대하여 리튬 도핑을 행한 후 열 CVD 처리하면, 도핑된 리튬의 영향에 의해 탄소가 규소와 반응하여, SiC가 생성되어 도전율이 저하되거나, 규소의 결정이 지나치게 성장하여 사이클 내구성이 열화됨으로써 전지 특성이 열화된다. 그러나, 본 발명과 같이 탄소를 피복한 후 리튬을 저온에서 도핑하면, 규소-규소 산화물계 복합체와 피복 탄소의 계면의 SiC의 생성량이나 규소 결정의 성장을 충분히 억제할 수 있기 때문에, 부극으로 했을 때의 사이클 내구성 등의 전지 특성이 우수한 부극재가 얻어진다.
따라서, 비수전해질을 사용하는 이차 전지용 부극재로서 사용했을 때, 큰 방전 용량을 가짐과 동시에 양호한 사이클 내구성과, 산화규소 및 규소-규소 산화물계 복합체의 결점이었던 낮은 첫회 효율이 개선된 비수전해질 이차 전지용 부극재가 얻어진다.
이와 같이, 본 발명에서 얻어진 비수전해질 이차 전지용 부극재는, 비수전해질 이차 전지의 부극 활성 물질로서 사용한 경우 고용량이며, 사이클 특성이 우수하고, 첫회 효율이 양호한 우수한 비수전해질 이차 전지, 특히 고성능인 리튬 이온 이차 전지를 제조하는 것에 크게 공헌할 수 있는 것이다.
이 경우, 얻어진 리튬 이온 이차 전지는 상기 부극 활성 물질을 사용한다는 점에 특징을 갖고, 그 이외의 정극, 부극, 전해질, 세퍼레이터 등의 재료 및 전지 형상 등은 한정되지 않는다.
예를 들면, 정극 활성 물질로서는 LiCoO2, LiNiO2, LiMn2O4, V2O5, MnO2, TiS2, MoS2 등의 전이 금속의 산화물 및 칼코겐 화합물 등이 사용된다.
또한, 전해질로서는, 예를 들면 과염소산리튬 등의 리튬염을 포함하는 비수용액이 사용되며, 비수용매로서는 프로필렌카르보네이트, 에틸렌카르보네이트, 디메톡시에탄, γ-부티로락톤, 2-메틸테트라히드로푸란 등을 단독으로 또는 2종 이상 조합하여 사용한다. 또한, 그 이외의 다양한 비수계 전해질이나 고체 전해질도 사용할 수 있다.
또한, 상기 비수전해질 이차 전지용 부극재를 사용하여 부극을 제작하는 경우, 부극 활성 물질에 흑연 등의 도전제를 첨가할 수 있다.
이 경우에도 도전제의 종류는 특별히 한정되지 않으며, 구성된 전지에서 분해나 변질을 일으키지 않는 전자 전도성의 재료가 바람직하고, 구체적으로는 Al, Ti, Fe, Ni, Cu, Zn, Ag, Sn, Si 등의 금속 분말이나 금속 섬유, 또는 천연 흑연, 인조 흑연, 각종 코크스 분말, 메조상(mesophase) 탄소, 기상 성장 탄소 섬유, 피치계 탄소 섬유, PAN계 탄소 섬유, 각종 수지 소성체 등의 흑연을 사용할 수 있다.
또한, 상기 도전제의 첨가량은, 상기 본 발명의 비수전해질 이차 전지용 부극재와 도전제의 혼합물 중 도전제량은 1 내지 60 질량%(보다 바람직하게는 5 내지 60 질량%, 더욱 바람직하게는 10 내지 50 질량%, 특히 20 내지 50 질량%)가 바람직하다.
도전제의 첨가량을 1 질량% 이상으로 함으로써, 충방전에 따른 팽창·수축에 견딜 수 없게 되는 위험을 피할 수 있다. 또한, 60 질량% 이하로 함으로써, 충방전 용량이 작아지는 위험성을 최대한 낮출 수 있다.
또한, 도전제에 탄소계인 것을 사용하여 부극으로 했을 때, 부극 활성 물질량의 전체 탄소량은 5 내지 90 질량%(보다 바람직하게는 25 내지 90 질량%, 특히는 30 내지 50 질량%)인 것이 바람직하다.
5 질량% 이상으로 함으로써, 충방전에 따른 팽창·수축에 충분히 견딜 수 있게 된다. 또한, 90 질량% 이하로 함으로써, 충방전 용량이 작아지는 경우도 없다.
[실시예]
이하, 실시예 및 비교예를 나타내어 본 발명을 구체적으로 설명하지만, 본 발명은 하기 실시예로 한정되지 않는다.
또한, 하기 예에서 %는 질량%를 나타내고, 평균 입경은 레이저 회절법에 의한 입도 분포 측정에서의 누적 중량 평균값(또는 메디안 직경) D50으로서 측정한 값이다. 또한, 규소의 결정 크기는 Cu-Kα선의 X선 회절 데이터로부터 셰러법에 의해 구한 Si(111)면의 결정자의 크기이다.
(실시예 1)
금속 규소와 이산화규소를 몰비 1:1로 혼합하고, 100 Pa의 감압하에 1400 ℃에서 반응시켜 산화규소의 가스를 발생시키고, 이 가스를 50 Pa의 감압하에 900 ℃에서 냉각하여 석출시킴으로써 괴상의 생성물을 얻었다. 또한, 이 생성물을 건식 볼밀로 분쇄하여, 평균 입경 5 ㎛의 분말을 얻었다.
화학 분석에 의해 이 분말의 조성은 SiO0 .95이며, 투과 전자 현미경에 의해 규소가 원자 오더 내지 미결정 상태에서 규소 산화물에 분산된 구조가 관찰되고, 규소-규소 산화물계 복합체라는 것을 알 수 있었다. 이 규소-규소 산화물계 복합체의 규소의 결정 크기는 4 nm였다.
이 규소-규소 산화물계 복합체 분말에 메탄 가스를 원료로 하고, 1000 Pa의 감압하에 1100 ℃에서 열 CVD 처리를 5 시간 동안 행하여 분말의 표면을 탄소로 피복하였다. 그 결과, 피복 탄소량은 피복을 포함시킨 분말 전체에 대하여 5 %였다.
이어서, 건조 공기 분위기의 글로브 박스 내에서 내용적 약 500 ml의 자기제 유발에 수소화리튬(와코 쥰야꾸 제조 시약)의 분말 2.7 g을 넣어 분쇄한 후, 상기 탄소 피복된 규소-규소 산화물계 복합체 분말 28.4 g을 추가하고(수소화리튬:규소-규소 산화물계 복합체(탄소를 제외함)=1:10(질량비)), 충분히 균일해질 때까지 교반·혼합하였다.
또한, 이 혼합물 29 g을 알루미나제 70 ml 보트에 투입하고, 내경 50 mm의 알루미나 노심관을 구비한 관상 전기로의 노심관의 중앙에 정치하였다. 또한, 아르곤 가스를 매분 2 l 통기하면서, 매분 5 ℃로 600 ℃까지 가열하고, 1 시간 동안 유지한 후 방냉하였다.
이와 같이 하여 얻어진 비수전해질 이차 전지용 부극재는, 리튬 도핑량이 8%였다. 또한, 투과 전자 현미경에 의해 규소가 원자 오더 내지 미결정 상태에서 규소 산화물에 분산된 구조가 관찰되었다.
또한, Cu-Kα선의 X선 회절에서 규소와 규산리튬에 귀속되는 피크가 관찰되었으며, 규소의 결정 크기는 10 nm로 규소의 결정 성장이 억제되어 있다는 것을 확인할 수 있었다. 또한, Cu-Kα선의 X선 회절에서 2θ=35.8±0.2°의 SiC에 귀속되는 피크 강도 I(SiC)와 2θ=28.4±0.2°의 Si에 귀속되는 피크 강도 I(Si)의 비가 I(SiC)/I(Si)=0으로, SiC의 생성이 억제되어 있다는 것을 확인할 수 있었다. 이 X선 회절 차트를 도 1에 나타낸다.
(실시예 2)
실시예 1에서 리튬 도핑제에 수소화리튬알루미늄을 사용한 것 이외에는, 동일한 조건으로 비수전해질 이차 전지용 부극재를 제작하고, 동일한 평가를 행하였다.
그 결과, 리튬 도핑량이 2 %였다. 또한, 투과 전자 현미경에 의해 규소가 원자 오더 내지 미결정 상태에서 규소 산화물에 분산된 구조가 관찰되었다.
또한, Cu-Kα선의 X선 회절에서 규소와 규산리튬, 및 알루민산리튬에 귀속되는 피크가 관찰되었으며, 규소의 결정 크기는 10 nm로 규소의 결정 성장이 억제되어 있다는 것을 확인할 수 있었다. 또한, I(SiC)/I(Si)=0으로, SiC의 생성이 억제되어 있다는 것을 확인할 수 있었다. 이 X선 회절 차트를 도 2에 나타낸다.
(실시예 3)
실시예 1과 동일한 방법으로 규소의 결정 크기가 4 nm인 규소-규소 산화물계 복합체 분말을 얻었다.
이 규소-규소 산화물계 복합체 분말을 처리 온도 1300 ℃, 처리 시간 1 시간으로 한 것 이외에는, 실시예 1과 동일한 조건으로 열 CVD 처리하여 피복 탄소량이 5 %인 탄소 피복된 규소-규소 산화물계 복합체 분말을 얻었다.
이어서, 이 탄소 피복된 규소-규소 산화물계 복합체 분말을 실시예 1과 동일한 조건으로 수소화리튬과 반응시켰다.
이와 같이 하여 얻어진 비수전해질 이차 전지용 부극재는, 투과 전자 현미경에 의해 규소가 원자 오더 내지 미결정 상태에서 규소 산화물에 분산된 구조가 관찰되었다.
또한, Cu-Kα선의 X선 회절에서 규소, 규산리튬에 귀속되는 피크가 관찰되었으며, 규소의 결정 크기는 28 nm로 규소의 결정 성장이 억제되어 있다는 것을 확인할 수 있었다. 또한, I(SiC)/I(Si)=0.026으로, SiC의 생성이 억제되어 있다는 것을 확인할 수 있었다.
(실시예 4)
실시예 1과 동일한 방법으로 규소의 결정 크기가 4 nm인 규소-규소 산화물계 복합체 분말을 얻었다.
이 규소-규소 산화물계 복합체 분말을 처리 시간 63 시간으로 한 것 이외에는, 실시예 1과 동일한 조건으로 열 CVD 처리하여 피복 탄소량이 40 %인 탄소 피복된 규소-규소 산화물계 복합체 분말을 얻었다.
이어서, 이 탄소 피복된 규소-규소 산화물계 복합체 분말을 실시예 1과 동일한 조건으로 수소화리튬과 반응시켰다.
이와 같이 하여 얻어진 비수전해질 이차 전지용 부극재는, 투과 전자 현미경에 의해 규소가 원자 오더 내지 미결정 상태에서 규소 산화물에 분산된 구조가 관찰되었다.
또한, Cu-Kα선의 X선 회절에서 규소, 규산리튬에 귀속되는 피크가 관찰되으며, 규소의 결정 크기는 13 nm로 규소의 결정 성장이 억제되어 있다는 것을 확인할 수 있었다. 또한, I(SiC)/I(Si)=0.011로, SiC의 생성이 억제되어 있다는 것을 확인할 수 있었다.
(비교예 1)
실시예 1과 동일한 방법으로 규소의 결정 크기가 4 nm인 규소-규소 산화물계 복합체 분말을 얻었다.
이 규소-규소 산화물계 복합체 분말을 실시예 1과 동일하게 열 CVD 처리하여, 피복 탄소량이 5 %인 탄소 피복된 규소-규소 산화물계 복합체 분말을 얻었다. 이 분말의 규소의 결정 크기는 7 nm였다.
이것을 리튬을 도핑하지 않고 그대로 비수전해질 이차 전지용 부극재로 하였다.
(비교예 2)
실시예 1에서 열 CVD 공정(1100 ℃에서 5 시간)과 리튬 도핑 공정(수소화리튬을 사용하고, 수소화리튬:규소-규소 산화물계 복합체=1:10, 600 ℃로 가열하여 1 시간 동안 유지)을 행하는 순서를 반대로 한 것 이외에는, 동일한 조건으로 비수전해질 이차 전지용 부극재를 제작하여 동일한 평가를 행하였다.
얻어진 비수전해질 이차 전지용 부극재의 Cu-Kα선의 X선 회절의 결과는, 규소의 결정 크기가 37 nm로 리튬에 의해 규소의 결정 성장이 상당히 촉진되어 있다는 것을 알 수 있었다.
또한, I(SiC)/I(Si)=0.034로, SiC가 다량으로 생성되어 있다는 것이 확인되었다. 이 X선 회절 차트를 도 3에 나타낸다.
(비교예 3, 4, 5)
비교예 2에서 열 CVD 처리 공정의 온도·시간을 1300 ℃에서 1 시간(비교예 3), 1300 ℃에서 10 시간(비교예 4), 800 ℃에서 120 시간(비교예 5)으로 한 것 이외에는, 동일한 조건으로 비수전해질 이차 전지용 부극재를 제작하여 동일한 평가를 행하였다.
그 결과, 규소의 결정 크기는 각각 45 nm(비교예 3), 60 nm(비교예 4), 35 nm(비교예 5)로, 비교예 2와 마찬가지로 리튬에 의해 규소의 결정 성장이 상당히 촉진되어 있다는 것을 알 수 있었다.
또한, I(SiC)/I(Si)=0.041(비교예 3), 0.050(비교예 4), 0.034(비교예 5)로, SiC가 다량으로 생성되어 있다는 것이 확인되었다.
(비교예 6)
비교예 2에서 수소화리튬:규소-규소 산화물계 복합체(탄소를 제외함)=1:2000(질량비)으로 한 것 이외에는, 동일한 조건으로 비수전해질 이차 전지용 부극재를 제작하여 동일한 평가를 행하였다.
그 결과, 규소의 결정 크기는 34 nm였으며, 리튬 도핑량이 적음에도 불구하고 비교예 2 내지 5와 마찬가지로 규소의 결정 성장이 촉진되어 있다는 것을 알 수 있었다.
또한, I(SiC)/I(Si)=0.032로 SiC가 다량으로 생성되어 있다는 것이 확인되었다.
[전지 평가]
리튬 이온 이차 전지 부극 활성 물질로서의 평가는 모든 실시예 및 비교예를 동일하게 이하의 방법·절차로 행하였다.
우선, 얻어진 비수전해질 이차 전지용 부극재 20 g에 인편상 흑연 분말(평균 입경 D50=5 ㎛)을 인편상 흑연의 탄소와 비수전해질 이차 전지용 부극재의 피복 탄소가 합계 42 %가 되도록 첨가하여, 혼합물을 제조하였다.
이 혼합물에 신에쓰 가가꾸 고교(주) 제조 바인더 KSC-4011를 고형물 환산으로 10 % 첨가하고, 20 ℃ 이하의 온도에서 슬러리로 하였다. 또한, N-메틸피롤리돈을 첨가하여 점도 조정을 행하고, 빠르게 이 슬러리를 두께 20 ㎛의 동박에 도포하여 120 ℃에서 1 시간 동안 건조한 후, 롤러 프레스에 의해 전극을 가압 성형하고, 최종적으로 2 cm2로 펀칭하여 부극으로 하였다. 여기서, 부극의 질량을 측정하고, 이로부터 동박과 인편상 흑연과 바인더의 질량을 뺌으로써 부극재의 질량을 구하였다.
또한, 얻어진 부극의 충방전 특성을 평가하기 위해 상대극에 리튬박을 사용하고, 비수전해질로서 육불화인리튬을 에틸렌카르보네이트와 1,2-디메톡시에탄의 1/1(부피비) 혼합액에 1 몰/L의 농도로 용해한 비수전해질 용액을 사용하고, 세퍼레이터에 두께 30 ㎛의 폴리에틸렌제 미다공질 필름을 사용한 평가용 리튬 이온 이차 전지를 제작하였다.
또한, 제작한 리튬 이온 이차 전지를 밤새 실온에서 방치한 후, 이차 전지 충방전 시험 장치((주)나가노 제조)를 사용하여 실온에서 테스트 셀의 전압이 5 mV에 달할 때까지 1.5 mA의 정전류로 충전을 행하고, 5 mV에 달한 후에는 셀 전압을 5 mV로 유지하도록 전류를 감소시켜 충전을 행하였다. 또한, 전류값이 200 μA를 하회하는 시점에 충전을 종료하였다. 방전은 0.6 mA의 정전류로 행하고, 셀 전압이 2.0 V를 상회하는 시점에 방전을 종료하였다.
이와 같이 하여 얻어진 충전 및 방전 용량으로부터 인편상 흑연 분말의 충전 및 방전 용량을 뺌으로써 부극재 단위 질량당의 충전 및 방전 용량을 구하였다.
질량당 용량(mAh/g)=부극재의 방전 용량(mAh)/부극재 질량(g)
첫회 효율(%)=부극재의 방전 용량(mAh)/부극재의 충전 용량(mAh)×100
또한, 이상의 충방전 시험을 반복하여 평가용 리튬 이온 이차 전지의 충방전 시험을 50회 행하고, 사이클 내구성의 평가를 행하였다.
용량 유지율(%)=사이클 50회 후의 부극재의 방전 용량(mAh)/첫회의 부극재의 방전 용량(mAh)×100
상기한 방법으로 실시예 1 내지 4 및 비교예 1 내지 6의 비수전해질 이차 전지용 부극재를 평가한 결과를 표 1에 나타낸다.
표 1에 나타낸 바와 같이 탄소 피복 후 리튬을 도핑하고, I(SiC)/I(Si)≤0.03의 관계를 만족하는 실시예 1 내지 4의 부극재에서는, 질량당의 용량·첫회 효율·50사이클 후의 용량 유지율(사이클 내구성) 모두 양호한 값이 된다는 것을 알 수 있었다.
이에 비해, 리튬을 도핑하지 않은 비교예 1에서는 첫회 효율이 악화되고, I(SiC)/I(Si)의 값이 0.03보다 큰 비교예 2 내지 6에서는 질량당의 용량이나 첫회 효율은 문제없지만, 사이클 내구성이 열화되어 있으며, SiC의 생성량이 많고, 부극재로서의 특성에 문제가 있다는 것을 알 수 있었다.
이와 같이, 탄소 피복 후 리튬을 도핑하면, 열 CVD 온도가 높거나 리튬의 도핑량이 많아도 SiC의 생성이 억제되어 I(SiC)/I(Si)≤0.03이 되며, 전지 특성이 양호해진다는 것을 알 수 있었다.
이에 비해, 리튬을 도핑한 후 열 CVD 처리를 행하면, 열 CVD 처리 온도가 낮거나 리튬 도핑량이 적어도 SiC가 많이 생성되어 I(SiC)/I(Si)가 0.03보다 커지며, 전지 특성이 양호해지지 않는다는 것을 알 수 있었다.
또한, 본 발명은 상기 실시 형태로 한정되지 않는다. 상기 실시 형태는 예시이며, 본 발명의 특허청구범위에 기재된 기술적 사상과 실질적으로 동일한 구성을 갖고, 동일한 작용 효과를 발휘하는 것은 어떠한 것이라도 본 발명의 기술적 범위에 포함된다.
Claims (2)
- 비수전해질을 사용하는 이차 전지용 부극재이며, 적어도 규소-규소 산화물계 복합체와 상기 규소-규소 산화물계 복합체의 표면에 피복된 탄소 피막을 포함하고,
적어도 상기 탄소가 피복된 규소-규소 산화물계 복합체에 리튬이 도핑되며, Cu-Kα선의 X선 회절에서 2θ=35.8±0.2°의 SiC에 귀속되는 피크 강도 I(SiC)와, 2θ=28.4±0.2°의 Si에 귀속되는 피크 강도 I(Si)의 비 I(SiC)/I(Si)가 I(SiC)/I(Si)≤0.03의 관계를 만족하는 것임을 특징으로 하는 비수전해질 이차 전지용 부극재. - 적어도 정극, 부극, 리튬 이온 도전성의 비수전해질을 포함하는 리튬 이온 이차 전지이며,
상기 부극에, 제1항에 기재된 비수전해질 이차 전지용 부극재가 사용된 것임을 특징으로 하는 리튬 이온 이차 전지.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JPJP-P-2010-086922 | 2010-04-05 | ||
JP2010086922A JP5411781B2 (ja) | 2010-04-05 | 2010-04-05 | 非水電解質二次電池用負極材及び非水電解質二次電池用負極材の製造方法並びにリチウムイオン二次電池 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020110030663A Division KR101728171B1 (ko) | 2010-04-05 | 2011-04-04 | 비수전해질 이차 전지용 부극재, 비수전해질 이차 전지용 부극재의 제조 방법 및 리튬 이온 이차 전지 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20170001947A KR20170001947A (ko) | 2017-01-05 |
KR101767848B1 true KR101767848B1 (ko) | 2017-08-11 |
Family
ID=44247536
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020110030663A KR101728171B1 (ko) | 2010-04-05 | 2011-04-04 | 비수전해질 이차 전지용 부극재, 비수전해질 이차 전지용 부극재의 제조 방법 및 리튬 이온 이차 전지 |
KR1020160176786A KR101767848B1 (ko) | 2010-04-05 | 2016-12-22 | 비수전해질 이차 전지용 부극재, 비수전해질 이차 전지용 부극재의 제조 방법 및 리튬 이온 이차 전지 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020110030663A KR101728171B1 (ko) | 2010-04-05 | 2011-04-04 | 비수전해질 이차 전지용 부극재, 비수전해질 이차 전지용 부극재의 제조 방법 및 리튬 이온 이차 전지 |
Country Status (6)
Country | Link |
---|---|
US (4) | US8889294B2 (ko) |
EP (1) | EP2372817B1 (ko) |
JP (1) | JP5411781B2 (ko) |
KR (2) | KR101728171B1 (ko) |
CN (1) | CN102214823B (ko) |
TW (1) | TWI501456B (ko) |
Families Citing this family (81)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5411781B2 (ja) * | 2010-04-05 | 2014-02-12 | 信越化学工業株式会社 | 非水電解質二次電池用負極材及び非水電解質二次電池用負極材の製造方法並びにリチウムイオン二次電池 |
CA2752844A1 (en) | 2011-09-19 | 2013-03-19 | Hydro-Quebec | Method for preparing a particulate of si or siox-based anode material, and material thus obtained |
US11502326B2 (en) | 2011-09-21 | 2022-11-15 | Samsung Sdi Co., Ltd. | Negative active material for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same |
KR101772113B1 (ko) * | 2011-11-08 | 2017-08-29 | 삼성에스디아이 주식회사 | 음극 활물질, 그 제조방법, 이를 포함하는 전극 및 이를 채용한 리튬 전지 |
KR101733736B1 (ko) * | 2012-01-06 | 2017-05-10 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 음극 활물질, 그 제조 방법 및 이를 포함하는 리튬 이차 전지 |
JP5831268B2 (ja) * | 2012-02-07 | 2015-12-09 | 株式会社豊田自動織機 | 二次電池用活物質およびその製造方法 |
US20150072220A1 (en) * | 2012-03-30 | 2015-03-12 | Nec Corporation | Lithium Secondary Battery and Method for Manufacturing Same |
JP5761761B2 (ja) | 2012-04-19 | 2015-08-12 | エルジー・ケム・リミテッド | 多孔性電極活物質、その製造方法及び二次電池 |
US9780357B2 (en) | 2012-04-19 | 2017-10-03 | Lg Chem, Ltd. | Silicon-based anode active material and secondary battery comprising the same |
CN103427069B (zh) * | 2012-05-19 | 2016-03-16 | 湖南省正源储能材料与器件研究所 | 一种锂离子电池复合负极材料及其制备 |
WO2013180083A1 (ja) * | 2012-05-29 | 2013-12-05 | 日本電気株式会社 | リチウムイオン二次電池 |
KR101578262B1 (ko) | 2012-07-24 | 2015-12-28 | 주식회사 엘지화학 | 다공성 규소계 전극 활물질 및 이를 포함하는 이차전지 |
KR101634843B1 (ko) | 2012-07-26 | 2016-06-29 | 주식회사 엘지화학 | 이차전지용 전극 활물질 |
CN103579593A (zh) * | 2012-08-03 | 2014-02-12 | 株式会社Lg化学 | 电极活性材料、二次电池和制备多孔氧化硅基复合物的方法 |
JP5447618B2 (ja) * | 2012-08-28 | 2014-03-19 | 株式会社豊田自動織機 | 非水電解質二次電池用負極材料、その製造方法、非水電解質二次電池用負極及び非水電解質二次電池 |
JP6092558B2 (ja) * | 2012-09-27 | 2017-03-08 | 三洋電機株式会社 | 負極活物質の製造方法 |
JP6388594B2 (ja) * | 2012-11-30 | 2018-09-12 | エルジー・ケム・リミテッド | 負極活物質、それを含むリチウム二次電池、及び該負極活物質の製造方法 |
KR101610995B1 (ko) * | 2012-11-30 | 2016-04-08 | 주식회사 엘지화학 | 규소계 복합체 및 이의 제조방법 |
CN103258992B (zh) * | 2013-04-28 | 2016-02-24 | 浙江大学 | 一种首次库仑效率高的锂离子电池负极材料的制备方法 |
KR102204928B1 (ko) * | 2013-05-16 | 2021-01-18 | 알베마를 저머니 게엠베하 | 리튬-이온 배터리를 위한 활성 리튬 저장소 |
US9893353B2 (en) * | 2013-05-23 | 2018-02-13 | Shin-Etsu Chemical Co., Ltd. | Negative electrode material for nonaqueous electrolyte secondary batteries, and secondary battery |
JPWO2014188654A1 (ja) * | 2013-05-24 | 2017-02-23 | 株式会社大阪チタニウムテクノロジーズ | リチウム含有酸化珪素粉末 |
WO2014196615A1 (ja) * | 2013-06-06 | 2014-12-11 | 日本電気株式会社 | リチウムイオン二次電池用正極材料及びその製造方法 |
DE102014111781B4 (de) * | 2013-08-19 | 2022-08-11 | Korea Atomic Energy Research Institute | Verfahren zur elektrochemischen Herstellung einer Silizium-Schicht |
KR102245868B1 (ko) | 2013-09-02 | 2021-04-28 | 미츠비시 가스 가가쿠 가부시키가이샤 | 전고체 전지 및 전극 활물질의 제조 방법 |
JP5679485B1 (ja) * | 2013-09-11 | 2015-03-04 | 株式会社大阪チタニウムテクノロジーズ | リチウム含有酸化珪素粉末 |
CN105684197B (zh) * | 2013-10-29 | 2018-10-30 | 信越化学工业株式会社 | 负极活性物质、负极活性物质的制造方法、及锂离子二次电池 |
CN104701509B (zh) * | 2013-12-06 | 2017-11-14 | 奇瑞汽车股份有限公司 | 锂离子电池负极材料及其制备方法、锂离子电池 |
CN105849953B (zh) * | 2013-12-25 | 2019-09-06 | 信越化学工业株式会社 | 非水电解质二次电池用负极活性物质及其制造方法 |
JP6397262B2 (ja) * | 2014-02-07 | 2018-09-26 | 信越化学工業株式会社 | 非水電解質二次電池 |
JP5870129B2 (ja) * | 2014-02-12 | 2016-02-24 | 株式会社大阪チタニウムテクノロジーズ | リチウムイオン二次電池の負極用粉末、およびその製造方法 |
JP6178493B2 (ja) * | 2014-03-12 | 2017-08-09 | 三洋化成工業株式会社 | リチウムイオン電池用被覆負極活物質、リチウムイオン電池用スラリー、リチウムイオン電池用負極、リチウムイオン電池、及び、リチウムイオン電池用被覆負極活物質の製造方法 |
JP6196183B2 (ja) * | 2014-04-22 | 2017-09-13 | 信越化学工業株式会社 | 非水電解質二次電池用負極材及びその製造方法、並びに非水電解質二次電池用負極活物質層、非水電解質二次電池用負極、非水電解質二次電池 |
US20150364755A1 (en) * | 2014-06-16 | 2015-12-17 | The Regents Of The University Of California | Silicon Oxide (SiO) Anode Enabled by a Conductive Polymer Binder and Performance Enhancement by Stabilized Lithium Metal Power (SLMP) |
JP6268049B2 (ja) * | 2014-06-23 | 2018-01-24 | 信越化学工業株式会社 | 非水電解質二次電池用負極材及び非水電解質二次電池並びに負極活物質粒子の製造方法 |
WO2016035290A1 (ja) | 2014-09-03 | 2016-03-10 | 三洋電機株式会社 | 非水電解質二次電池用負極活物質及び非水電解質二次電池 |
JP6215804B2 (ja) * | 2014-09-25 | 2017-10-18 | 信越化学工業株式会社 | 非水電解質二次電池用負極活物質、非水電解質二次電池用負極、及び非水電解質二次電池、並びに負極活物質粒子の製造方法 |
JP6685939B2 (ja) | 2015-01-28 | 2020-04-22 | 三洋電機株式会社 | 非水電解質二次電池用負極活物質及び非水電解質二次電池 |
CN107210435B (zh) | 2015-01-28 | 2021-03-26 | 三洋电机株式会社 | 非水电解质二次电池用负极活性物质和非水电解质二次电池 |
JP6685938B2 (ja) | 2015-01-28 | 2020-04-22 | 三洋電機株式会社 | 非水電解質二次電池用負極活物質及び非水電解質二次電池 |
CN107534136B (zh) * | 2015-03-02 | 2020-09-08 | Eo细胞有限公司 | 具有嵌入于硅:硅锂硅酸盐复合物基体中的纳米硅颗粒的硅-氧化硅-锂复合物材料及其制造方法 |
KR101701331B1 (ko) * | 2015-04-15 | 2017-02-02 | 울산과학기술원 | 리튬 이차 전지용 음극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지 |
KR101825619B1 (ko) * | 2015-04-22 | 2018-02-05 | 주식회사 엘지화학 | 음극 활물질, 이를 포함하는 리튬 이차전지 및 상기 음극 활물질의 제조방법 |
JP6386414B2 (ja) * | 2015-04-22 | 2018-09-05 | 信越化学工業株式会社 | 非水電解質二次電池用負極活物質及びその製造方法、並びにその負極活物質を用いた非水電解質二次電池及び非水電解質二次電池用負極材の製造方法 |
JP6403638B2 (ja) * | 2015-06-15 | 2018-10-10 | 信越化学工業株式会社 | 非水電解質二次電池用負極活物質、非水電解質二次電池用負極、及び非水電解質二次電池、並びに非水電解質二次電池用負極材の製造方法 |
JP6407804B2 (ja) | 2015-06-17 | 2018-10-17 | 信越化学工業株式会社 | 非水電解質二次電池用負極活物質及び非水電解質二次電池、並びに非水電解質二次電池用負極材の製造方法 |
KR102017470B1 (ko) | 2015-08-28 | 2019-09-04 | 오사카 티타늄 테크놀로지스 캄파니 리미티드 | Li 함유 산화 규소 분말 및 그 제조 방법 |
JP6389159B2 (ja) * | 2015-10-08 | 2018-09-12 | 信越化学工業株式会社 | 非水電解質二次電池用負極活物質、非水電解質二次電池、非水電解質二次電池用負極材の製造方法、及び非水電解質二次電池の製造方法 |
KR20170048184A (ko) * | 2015-10-23 | 2017-05-08 | 주식회사 엘지화학 | 이차전지용 음극활물질, 이의 제조 방법 및 이를 포함하는 이차전지 |
KR101902071B1 (ko) | 2015-10-26 | 2018-11-02 | 주식회사 엘지화학 | 음극 활물질 입자 및 이의 제조방법 |
JP6448510B2 (ja) * | 2015-11-05 | 2019-01-09 | 信越化学工業株式会社 | 非水電解質二次電池用負極活物質の製造方法及び非水電解質二次電池の製造方法 |
JP6862091B2 (ja) * | 2016-02-15 | 2021-04-21 | 信越化学工業株式会社 | 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池、及び負極活物質の製造方法 |
JP6765984B2 (ja) * | 2016-03-16 | 2020-10-07 | 信越化学工業株式会社 | 非水電解質二次電池用負極活物質の製造方法及び非水電解質二次電池用負極の製造方法 |
JP2017168406A (ja) * | 2016-03-18 | 2017-09-21 | 信越化学工業株式会社 | 非水電解質二次電池負極活物質、負極及び電池の製造方法 |
WO2017170751A1 (ja) * | 2016-03-29 | 2017-10-05 | 株式会社大阪チタニウムテクノロジーズ | Li含有酸化珪素粉末 |
JP2018032602A (ja) * | 2016-08-26 | 2018-03-01 | 株式会社豊田自動織機 | 負極材料の製造方法 |
WO2018101072A1 (ja) * | 2016-11-30 | 2018-06-07 | パナソニックIpマネジメント株式会社 | 負極材料および非水電解質二次電池 |
CN106816594B (zh) * | 2017-03-06 | 2021-01-05 | 贝特瑞新材料集团股份有限公司 | 一种复合物、其制备方法及在锂离子二次电池中的用途 |
JP6981338B2 (ja) | 2018-03-28 | 2021-12-15 | トヨタ自動車株式会社 | 負極材料、非水電解質二次電池およびそれらの製造方法 |
US11417886B2 (en) | 2018-03-30 | 2022-08-16 | Osaka Titanium Technologies Co., Ltd. | Method for producing silicon oxide powder and negative electrode material |
CN110970600B (zh) * | 2018-09-28 | 2023-06-30 | 贝特瑞新材料集团股份有限公司 | 一种锂离子二次电池负极材料及其制备方法和应用 |
JP7098543B2 (ja) | 2019-01-16 | 2022-07-11 | 信越化学工業株式会社 | 非水電解質二次電池用負極活物質及び非水電解質二次電池、並びに、非水電解質二次電池用負極材の製造方法 |
KR20210022238A (ko) | 2019-08-19 | 2021-03-03 | 대주전자재료 주식회사 | 이차전지의 제조방법 |
KR20210022239A (ko) | 2019-08-19 | 2021-03-03 | 대주전자재료 주식회사 | 이차전지 및 이의 제조방법 |
WO2021034097A1 (ko) | 2019-08-19 | 2021-02-25 | 대주전자재료 주식회사 | 이차전지 및 이의 제조방법 |
KR20210077642A (ko) * | 2019-12-17 | 2021-06-25 | 주식회사 엘지에너지솔루션 | 음극 및 상기 음극을 포함하는 이차 전지 |
KR20210077487A (ko) * | 2019-12-17 | 2021-06-25 | 주식회사 엘지에너지솔루션 | 음극 및 상기 음극을 포함하는 이차 전지 |
WO2021133128A1 (ko) * | 2019-12-25 | 2021-07-01 | 주식회사 엘지에너지솔루션 | 음극 활물질, 상기 음극 활물질을 포함하는 음극 및 이차전지 |
EP4160726A4 (en) | 2020-05-28 | 2024-07-03 | Resonac Corp | COMPOSITE PARTICLES, NEGATIVE ELECTRODE ACTIVE MATERIAL AND LITHIUM SECONDARY BATTERY |
CN114079050A (zh) * | 2020-08-31 | 2022-02-22 | 贝特瑞新材料集团股份有限公司 | 硅氧复合材料、其制备方法、负极材料及锂离子电池 |
KR20220052541A (ko) | 2020-10-21 | 2022-04-28 | 에스케이온 주식회사 | 리튬 이차 전지용 음극 조성물 및 이를 사용해 제조된 리튬 이차 전지 |
CN112467096B (zh) * | 2020-10-30 | 2022-09-23 | 安普瑞斯(南京)有限公司 | 一种负极材料及其制备方法、电极、二次电池 |
CN114520313A (zh) | 2020-11-20 | 2022-05-20 | 华为技术有限公司 | 一种硅碳复合材料及其制备方法和应用 |
CN112687853B (zh) * | 2020-12-10 | 2022-08-16 | 安普瑞斯(南京)有限公司 | 硅氧颗粒团聚体及其制备方法、负极材料、电池 |
KR102539600B1 (ko) | 2021-02-18 | 2023-06-02 | 에스케이온 주식회사 | 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차 전지 |
JP2023105614A (ja) | 2022-01-19 | 2023-07-31 | 信越化学工業株式会社 | 非水電解質二次電池用負極活物質及びその製造方法 |
CN114784233A (zh) * | 2022-03-02 | 2022-07-22 | 安普瑞斯(南京)有限公司 | 一种负极活性材料及其制备方法和应用 |
WO2024071116A1 (ja) * | 2022-09-30 | 2024-04-04 | パナソニックエナジー株式会社 | 二次電池用負極活物質、二次電池、および二次電池用負極活物質の製造方法 |
CN116042247B (zh) * | 2022-11-04 | 2024-09-20 | 湖南中科星城石墨有限公司 | 一种改性生焦材料及其制备方法和应用 |
KR20240071872A (ko) | 2022-11-16 | 2024-05-23 | 에스케이온 주식회사 | 리튬 이차 전지용 음극 조성물 및 이를 사용해 제조된 리튬 이차 전지 |
CN117727916A (zh) * | 2024-02-07 | 2024-03-19 | 长沙矿冶研究院有限责任公司 | 一种含有碳化硅涂层的硅氧碳复合材料及其制备方法、应用 |
Family Cites Families (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2997741B2 (ja) | 1992-07-29 | 2000-01-11 | セイコーインスツルメンツ株式会社 | 非水電解質二次電池及びその製造方法 |
JPH07235295A (ja) * | 1994-02-21 | 1995-09-05 | Fuji Photo Film Co Ltd | 非水二次電池 |
JPH08102331A (ja) | 1994-09-29 | 1996-04-16 | Fuji Photo Film Co Ltd | 非水二次電池 |
US5567539A (en) | 1994-05-23 | 1996-10-22 | Fuji Photo Film Co., Ltd. | Non-aqueous secondary cell |
CA2127621C (en) * | 1994-07-08 | 1999-12-07 | Alfred Macdonald Wilson | Carbonaceous insertion compounds and use as anodes in rechargeable batteries |
US5543021A (en) * | 1994-09-01 | 1996-08-06 | Le Carbone Lorraine | Negative electrode based on pre-lithiated carbonaceous material for a rechargeable electrochemical lithium generator |
JPH08130011A (ja) | 1994-09-05 | 1996-05-21 | Fuji Photo Film Co Ltd | 非水二次電池 |
JPH08130036A (ja) | 1994-09-08 | 1996-05-21 | Fuji Photo Film Co Ltd | 非水二次電池 |
US5707756A (en) | 1994-11-29 | 1998-01-13 | Fuji Photo Film Co., Ltd. | Non-aqueous secondary battery |
US6350543B2 (en) | 1999-12-29 | 2002-02-26 | Kimberly-Clark Worldwide, Inc. | Manganese-rich quaternary metal oxide materials as cathodes for lithium-ion and lithium-ion polymer batteries |
JP2002042806A (ja) | 2000-07-19 | 2002-02-08 | Japan Storage Battery Co Ltd | 非水電解質二次電池 |
WO2002047185A2 (en) | 2000-12-06 | 2002-06-13 | Huggins Robert A | Improved electrodes for lithium batteries |
JP4702510B2 (ja) | 2001-09-05 | 2011-06-15 | 信越化学工業株式会社 | リチウム含有酸化珪素粉末及びその製造方法 |
US8092940B2 (en) * | 2002-05-08 | 2012-01-10 | Gs Yuasa International Ltd. | Non-aqueous electrolyte secondary battery |
JP3952180B2 (ja) * | 2002-05-17 | 2007-08-01 | 信越化学工業株式会社 | 導電性珪素複合体及びその製造方法並びに非水電解質二次電池用負極材 |
TWI278429B (en) * | 2002-05-17 | 2007-04-11 | Shinetsu Chemical Co | Conductive silicon composite, preparation thereof, and negative electrode material for non-aqueous electrolyte secondary cell |
US20050130043A1 (en) * | 2003-07-29 | 2005-06-16 | Yuan Gao | Lithium metal dispersion in electrodes |
JP4519592B2 (ja) * | 2004-09-24 | 2010-08-04 | 株式会社東芝 | 非水電解質二次電池用負極活物質及び非水電解質二次電池 |
JP5008180B2 (ja) * | 2006-02-13 | 2012-08-22 | 日立マクセルエナジー株式会社 | 非水二次電池 |
US7776473B2 (en) | 2006-03-27 | 2010-08-17 | Shin-Etsu Chemical Co., Ltd. | Silicon-silicon oxide-lithium composite, making method, and non-aqueous electrolyte secondary cell negative electrode material |
US20070224509A1 (en) * | 2006-03-27 | 2007-09-27 | Shin-Etsu Chemical Co., Ltd. | SiCO-Li COMPOSITE, MAKING METHOD, AND NON-AQUEOUS ELECTROLYTE SECONDARY CELL NEGATIVE ELECTRODE MATERIAL |
JP4985949B2 (ja) * | 2006-03-27 | 2012-07-25 | 信越化学工業株式会社 | 珪素−珪素酸化物−リチウム系複合体の製造方法、並びに非水電解質二次電池用負極材 |
US20080070120A1 (en) * | 2006-09-14 | 2008-03-20 | Shin-Etsu Chemical Co., Ltd. | Non-aqueous electrolyte secondary battery and making method |
JP5192703B2 (ja) * | 2007-02-06 | 2013-05-08 | Necエナジーデバイス株式会社 | 非水電解質二次電池 |
KR101451801B1 (ko) * | 2007-02-14 | 2014-10-17 | 삼성에스디아이 주식회사 | 음극 활물질, 그 제조 방법 및 이를 채용한 음극과 리튬전지 |
US7736805B2 (en) * | 2007-05-16 | 2010-06-15 | Gm Global Technology Operations, Inc. | Lithium hydride negative electrode for rechargeable lithium batteries |
JP5329858B2 (ja) * | 2008-07-10 | 2013-10-30 | 株式会社東芝 | 非水電解質二次電池用負極活物質の製造方法およびこれによって得られる非水電解質電池用負極活物質 |
US20100203391A1 (en) * | 2009-02-09 | 2010-08-12 | Applied Materials, Inc. | Mesoporous carbon material for energy storage |
WO2011060023A2 (en) * | 2009-11-11 | 2011-05-19 | Amprius Inc. | Preloading lithium ion cell components with lithium |
JP5411780B2 (ja) * | 2010-04-05 | 2014-02-12 | 信越化学工業株式会社 | 非水電解質二次電池用負極材及び非水電解質二次電池用負極材の製造方法並びにリチウムイオン二次電池 |
JP5411781B2 (ja) * | 2010-04-05 | 2014-02-12 | 信越化学工業株式会社 | 非水電解質二次電池用負極材及び非水電解質二次電池用負極材の製造方法並びにリチウムイオン二次電池 |
-
2010
- 2010-04-05 JP JP2010086922A patent/JP5411781B2/ja active Active
-
2011
- 2011-03-21 US US13/052,732 patent/US8889294B2/en active Active
- 2011-03-22 EP EP11002386.8A patent/EP2372817B1/en active Active
- 2011-03-31 TW TW100111289A patent/TWI501456B/zh active
- 2011-04-02 CN CN201110085975.5A patent/CN102214823B/zh active Active
- 2011-04-04 KR KR1020110030663A patent/KR101728171B1/ko active IP Right Grant
-
2014
- 2014-09-09 US US14/481,521 patent/US9614222B2/en active Active
-
2016
- 2016-12-22 KR KR1020160176786A patent/KR101767848B1/ko active IP Right Grant
-
2017
- 2017-02-21 US US15/438,292 patent/US9825290B2/en active Active
- 2017-10-19 US US15/788,479 patent/US10622626B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
US20180040884A1 (en) | 2018-02-08 |
US10622626B2 (en) | 2020-04-14 |
US9614222B2 (en) | 2017-04-04 |
KR101728171B1 (ko) | 2017-04-18 |
US9825290B2 (en) | 2017-11-21 |
CN102214823B (zh) | 2016-03-16 |
TW201212356A (en) | 2012-03-16 |
JP5411781B2 (ja) | 2014-02-12 |
JP2011222153A (ja) | 2011-11-04 |
US20170170468A1 (en) | 2017-06-15 |
TWI501456B (zh) | 2015-09-21 |
US8889294B2 (en) | 2014-11-18 |
US20110244334A1 (en) | 2011-10-06 |
KR20170001947A (ko) | 2017-01-05 |
EP2372817B1 (en) | 2016-03-16 |
US20140377456A1 (en) | 2014-12-25 |
CN102214823A (zh) | 2011-10-12 |
KR20110112216A (ko) | 2011-10-12 |
EP2372817A1 (en) | 2011-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101767848B1 (ko) | 비수전해질 이차 전지용 부극재, 비수전해질 이차 전지용 부극재의 제조 방법 및 리튬 이온 이차 전지 | |
KR101783047B1 (ko) | 비수전해질 이차 전지용 부극재, 비수전해질 이차 전지용 부극재의 제조 방법 및 리튬 이온 이차 전지 | |
JP5406799B2 (ja) | 非水電解質二次電池用負極材とその製造方法及びリチウムイオン二次電池 | |
CN102959646B (zh) | 硫化物固体电解质材料的制造方法、锂固体电池的制造方法 | |
EP2337766A1 (en) | Lithium-containing transition metal sulfide compounds | |
JP5949194B2 (ja) | 非水電解質二次電池用負極活物質の製造方法 | |
JP6195936B2 (ja) | リチウムイオン二次電池の負極用粉末 | |
WO2020216182A1 (zh) | 硫化物固态电解质及其制备方法、全固态锂二次电池和包含全固态锂二次电池的装置 | |
JP2016106358A (ja) | 非水電解質二次電池用負極活物質の製造方法 | |
CN115241436A (zh) | 高首效锂掺杂硅氧化物复合负极材料及其制备方法 | |
JP5679485B1 (ja) | リチウム含有酸化珪素粉末 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A107 | Divisional application of patent | ||
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |