KR101610446B1 - A separator of lithium sulfur secondary battery - Google Patents
A separator of lithium sulfur secondary battery Download PDFInfo
- Publication number
- KR101610446B1 KR101610446B1 KR1020130167774A KR20130167774A KR101610446B1 KR 101610446 B1 KR101610446 B1 KR 101610446B1 KR 1020130167774 A KR1020130167774 A KR 1020130167774A KR 20130167774 A KR20130167774 A KR 20130167774A KR 101610446 B1 KR101610446 B1 KR 101610446B1
- Authority
- KR
- South Korea
- Prior art keywords
- membrane
- secondary battery
- lithium
- sulfur
- battery according
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/431—Inorganic material
- H01M50/434—Ceramics
- H01M50/437—Glass
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/381—Alkaline or alkaline earth metals elements
- H01M4/382—Lithium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/417—Polyolefins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/426—Fluorocarbon polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/429—Natural polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/429—Natural polymers
- H01M50/4295—Natural cotton, cellulose or wood
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/44—Fibrous material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
- H01M50/457—Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/46—Separators, membranes or diaphragms characterised by their combination with electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/463—Separators, membranes or diaphragms characterised by their shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
- H01M50/491—Porosity
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Wood Science & Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Cell Separators (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
본 발명은 리튬황 전지의 황-도전재 양극 쪽에 전해액을 충분히 보액할 수 있는 분리막을 추가로 적용하고, 이오노머 멤브레인을 리튬 음극 쪽에 사용하여 이중 분리막을 가지는 리튬황 전지에 관한 것이다.The present invention relates to a lithium sulfur battery having a separator membrane capable of sufficiently liquefying an electrolyte solution on the anode side of a sulfur-conductive material of a lithium sulfur battery and having a separator membrane by using an ionomer membrane on the lithium anode side.
Description
본 발명은 리튬황 전지의 황-도전재 양극 쪽에 전해액을 충분히 보액할 수 있는 분리막을 추가로 적용하고, 이오노머 멤브레인을 리튬 음극 쪽에 사용하여 이중 분리막을 가지는 리튬황 전지에 관한 것이다.The present invention relates to a lithium sulfur battery having a separator membrane capable of sufficiently liquefying an electrolyte solution on the anode side of a sulfur-conductive material of a lithium sulfur battery and having a separator membrane by using an ionomer membrane on the lithium anode side.
최근 리튬황 배터리의 분리막에 관한 것으로 폴리설파이드 이동을 억제하여 셔틀현상과 쿨롱효율 감소 문제를 해결하기 위해 기존에 연료전지에 쓰이던 PFSA 멤브레인의 SO3H- 기에 Li 을 치환하여(ionomer membrane) 리튬황 배터리에 적용하는 연구가 있다. In order to solve the problem of shuttle phenomenon and reduction of Coulomb efficiency by suppressing polysulfide migration, Li is substituted in the SO 3 H - group of the PFSA membrane used for the fuel cell, There are studies that apply to batteries.
특히 H+ 양이온을 리튬으로 치환하여 리튬황 배터리에 적용 시, 화학적으로 안정하고 높은 양이온 전도도와 리튬 transference number가 1에 가까움, 그 자체의 특이한 구조때문에 폴리설파이드 음이온의 이동을 막는 특성으로 Li+ 만 이동하는데 유리하다는 장점이 있다.In particular, when applying the H + cations by substitution with lithium for a lithium sulfur battery, chemically stable and has high proton conductivity and lithium transference number close to 1, since the unique structure of its own as a characteristic to block the movement of polysulfide anions Li + only It is advantageous to move.
하지만 기존에 액체 전해질을 사용하여 리튬 폴리설파이드를 용해시켜 리튬 이온이 이동되는 메커니즘과는 달리, 멤브레인 분리막을 사용함으로써 전해질을 보액할 수 있는 공간이 존재하지 않기 때문에 낮은 유황 로딩량을 갖는 양극 전극을 사용해야 한다는 제한이 존재하며, 특히 리튬이온 전도도가 낮다는 큰 문제도 있다(도1 참조). However, unlike the conventional mechanism in which lithium ions are transferred by dissolving lithium polysulfide by using a liquid electrolyte, there is no room for electrolyte retention by using a membrane separation membrane. Therefore, a positive electrode having a low sulfur loading amount There is a limitation that it must be used, and in particular, there is a big problem that the lithium ion conductivity is low (see FIG. 1).
학술논문 [Application of lithiated Nafion ionomer film as functional separator for lithium sulfur cells, Journal of Power Sources 218 (2012) 163-167, Zhaoqing Jin, Kai Xie, Xiaobin Hong, Zongqian Hu, Xiang Liu] (도 3 참조)에서 참조된 바에 따르면, PFSA 멤브레인의 반응 메커니즘은 다음과 같다.(See FIG. 3), a method of separating Nafion ion from a nonionic surfactant is disclosed in the following article: [Application of lithiated Nafion ionomer film for lithium sulfur cells, Journal of Power Sources 218 (2012) 163-167, Zhaoqing Jin, Kai Xie, Xiaobin Hong, Zongqian Hu, Xiang Liu] The reaction mechanism of the PFSA membrane is as follows.
-(CF2CF2)m-(CF2CF(OCF2CF(CF3)OCF2-CF2SO3H))n - (CF 2 CF 2 ) m - (CF 2 CF (OCF 2 CF (CF 3 ) OCF 2 -CF 2 SO 3 H)) n
⇒ -OCF2CF(CF3)OCF2-CF2SO3Li (Pendent side chain 존재)⇒ -OCF 2 CF (CF 3 ) OCF 2 -CF 2 SO 3 Li (presence of a pendent side chain)
⇒ -SO3 - + Li+ 분해 (Li+ 이온 이동, -SO3 - 전기장 형성)⇒ -SO 3 - + Li + decomposition (Li + ion transport, -SO 3 - electric field formation)
위와 같은 메커니즘을 따르는 경우 PS 이동이 차단되어 Li 음극과의 부반응이 억제되어 셀 성능 및 수명이 향상되고, 활물질의 유실도 방지될 수 있어 또한 셀 성능 및 수명이 향상될 수 있다. When the above mechanism is followed, the PS movement is blocked to suppress side reaction with the Li cathode, thereby improving cell performance and lifetime, preventing loss of active material, and improving cell performance and lifetime.
그러나, 낮은 리튬 이온 전도도로 인하여 셀 에너지 밀도 증가에 있어 치명적인 한계가 있다.However, due to the low lithium ion conductivity, there is a critical limitation in increasing the cell energy density.
이차전지의 분리막에 대한 종래의 기술로는 KR 10-2012-0135808에서,As a conventional technology for the separation membrane of a secondary battery, in KR 10-2012-0135808,
양극과 분리막 사이에 친수성의 폴리설파이드 구속층을 형성, 폴리설파이드 구속층(4)은 충방전 반응시 전해액 내 이동물질의 원활한 확산 이동을 위해 다수의 통공을 갖는 다공형 구조로 PE 재질의 다공성 막에 PEG를 그래프팅(Grafting)하여 표면에 친수성을 부여하고, [0044] 다공성 PE 막을 산소 플라즈마 처리하여 표면을 산화시킨 다음, 실란이 결합된 PEG를 반응시켜 다공성 PE 막 표면에 PEG 폴리머 브러쉬를 결합시킨 다공성 친수막을 개시하고 있다.A hydrophilic polysulfide confinement layer is formed between the anode and the separator. The polysulfide confinement layer (4) has a porous structure having a plurality of through holes to smoothly diffuse and move the migration material in the electrolyte during the charging / discharging reaction. The porous PE membrane is subjected to an oxygen plasma treatment to oxidize the surface, and then the PEG polymer membrane is bonded to the surface of the porous PE membrane by reacting the PEG with the silane attached thereto. Porous hydrophilic membrane.
KR 10-2012-0104358(WO 2011/084649)는,KR 10-2012-0104358 (WO 2011/084649)
산화환원 유동 에너지 저장 장치가 양극 활성 물질, 음극 활성 물질, 및 상기 양극 활성 물질과 음극 활성 물질을 분리하는 이온-투과성 매질을 포함하는 것으로서 미세다공성 분리막 필름에 의해 정지 Li 금속 음극으로부터 분리된, 20.3mL/분으로 연속적으로 유동하는 LiCoO2 현탁액의 다단계 갈바노스태틱 충전/방전을 포함하는 반고체 반쪽-유동-전지를 개시한다.Wherein the redox flow energy storage device comprises a positive electrode active material, a negative electrode active material, and an ion-permeable medium separating the positive electrode active material from the negative electrode active material, flow cell comprising a multistage galvanostatic charge / discharge of a LiCoO 2 suspension continuously flowing at a rate of 1 mL / mL / min.
KR 10-2005-0021131는, KR 10-2005-0021131,
유황전극의 손실 방지와 전기 전도성을 향상시키기 위해서 전도성이 우수한 재료인 금(Au)으로 코팅된 분리막을 사용하여 양극의 유황이 음극 쪽으로 용해되어 유황의 손실이 일어나는 것을 방지하는 방법을 개시한다.Disclosed is a method for preventing loss of sulfur by dissolving sulfur in an anode toward a cathode by using a separator coated with gold (Au), which is a material having excellent conductivity, to prevent loss of sulfur electrodes and improve electrical conductivity.
그러나 상기 방법으로는 리튬황 이차전지의 이오노머 멤브레인 특히 리튬이온 치환된 분리막과 함께 전해질을 보액하는 구조로서 부족한 실정이다.However, this method is insufficient as a structure for liquefying an electrolyte together with an ionomer membrane of a lithium-sulfur secondary battery, especially a lithium ion-substituted separator.
따라서 본 발명에서는 PFSA 멤브레인에 보액 구조체를 추가로 적용하여 리튬황 배터리의 유황 로딩량을 높여 용량을 증가시킬 수 있는 것에 관한 발명(도 2 참조)이다.Accordingly, the present invention is an invention (see FIG. 2) in which the capacity of the lithium sulfur battery can be increased by increasing the sulfur loading amount of the lithium sulfur battery by further applying a reflux structure to the PFSA membrane.
본 발명은, 유황 양극, 리튬음극 및 이오노머 멤브레인을 함유하는 리튬 황 이차전지에 있어서, 보액분리막을 더욱 함유하는 것인 이차전지를 제공한다.The present invention provides a lithium sulfur secondary battery containing a sulfur anode, a lithium anode, and an ionomer membrane, wherein the lithium secondary battery further comprises a lube separation membrane.
본 발명은 리튬황 전지에 한정하여 적용한 것으로, 리튬 폴리설파이드의 이동을 억제하고 리튬 이온만 이동시키는 특성을 가진 ionomer 멤브레인을 적용하여 고체전해질과 유사한 효과를 가지면서 보액 분리막을 추가로 적용하여 액체전해질을 보액할 수 있는 장점을 동시에 접목시켜 기존에 리튬-황 배터리의 주요 이슈사항인 리튬 폴리설파이드의 셔틀 현상, 음극에서의 부반응 등에 의한 용량 및 수명 저하 문제, 저로딩 황 양극 적용에 의한 셀 에너지밀도 증가 한계 문제를 획기적으로 개선할 수 있다.The present invention is applied to a lithium sulphate battery. By applying an ionomer membrane having the property of suppressing the movement of lithium polysulfide and moving only lithium ions, the present invention has an effect similar to that of a solid electrolyte, , Which is a main issue of lithium-sulfur battery, which is the main issue of lithium polysulfide shuttle phenomenon, capacity and life-shortening problem due to side reactions at the cathode, etc., cell energy density due to application of low loading sulfur anode The increase limit problem can be remarkably improved.
상세하게는, 본 발명은 종래의 구조대비 아래와 같은 장점이 있다.In detail, the present invention has the following advantages over the conventional structure.
1) 충분한 전해질을 함유하여 단위 면적당 높은 유황 로딩량(5~10 mg_유황/cm2)에서도 충분한 성능이 발현 가능하기 때문에 단위면적당 유황 로딩량을 증가 시킬 경우 셀의 전체 중량 에너지밀도 증가하고,1) Since sufficient performance can be exhibited even with a high sulfur loading amount per unit area (5 ~ 10 mg_ sulfur / cm 2 ) containing sufficient electrolyte, when the sulfur loading amount per unit area is increased, the total weight energy density of the cell increases,
2) 코팅층을 적용한 부직포 분리막을 통해 열폭주 시 폐쇄 작용을 통해 안전성 향상에 기여할 수 있다.2) Through the nonwoven fabric separator applying the coating layer, it can contribute to the safety improvement by closing action in the thermal runaway.
도 1은 이오노머 멤브레인만을 이용한 리튬황 배터리 구조를 도시화한 것이다.
도 2는 본 발명의 보액 분리막을 적용한 리튬 황 배터리를 도시화한 것이다.
도 3은 선행 문헌 [Application of lithiated Nafion ionomer film as functional separator for lithium sulfur cells]의 리튬 황 배터리 내부 구조를 도시화한 것이다.
도 4는 종래 기술과 본 발명의 리튬 황 배터리를 비교 도시화한 것이다.
도 5는 본 발명의 이오노머 멤브레인 제작 과정을 도시화한 것이다.
도 6은 보액 분리막 으로 사용할 수 있는 유리섬유 부직포 미세 구조 사진도이다.
도 7은 보액 분리막과 ionomer 멤브레인을 적용한 리튬 황 전지 내 화학반응을 모식화한 것이다.
도 8은 본 발명의 보액 분리막을 이용하는 구체예를 도식화한 것이다.1 shows a lithium sulfur battery structure using only ionomer membrane.
FIG. 2 is a view showing a lithium sulfur battery to which the luminescent separation membrane of the present invention is applied.
FIG. 3 is a view showing the internal structure of a lithium-sulfur battery of a lithium-sulfur battery as a separator for lithium ion secondary battery.
4 is a comparative diagram of the lithium sulfur battery of the present invention and the prior art.
FIG. 5 illustrates a process for producing an ionomer membrane of the present invention.
6 is a microstructure photograph of a glass fiber nonwoven fabric which can be used as a lap separating membrane.
FIG. 7 is a schematic representation of a chemical reaction in a lithium sulfur battery employing a lyse separator membrane and an ionomer membrane.
8 is a schematic view of a specific example using the lyophilic separation membrane of the present invention.
본 발명은,According to the present invention,
유황 양극, 리튬음극 및 이오노머 멤브레인을 함유하는 리튬 황 이차전지에 있어서, 보액분리막을 더욱 함유하는 것인 이차전지를 제공한다.A lithium secondary battery comprising a sulfur anode, a lithium anode, and a ionomer membrane, wherein the lithium secondary battery further comprises a lyophobic separation membrane.
이오노머 멤브레인은 하기 화학식 1로 나타낼 수 있는 PFSA(퍼플루오로술폰산) 폴리머 멤브레인일 수 있고, -SO3H 기의 H+ 이온이 Li+로 치환된 것일 수 있다.The ionomer membrane may be a PFSA (perfluorosulfonic acid) polymer membrane represented by the following formula (1), and the H + ion of the -SO 3 H group may be substituted with Li + .
[화학식 1][Chemical Formula 1]
상기 화학식 1에서 m = 0, 1, n = 0~5, x = 0~15, y= 0~2 범위를 가지며, 당량은 400 ~ 2000 사이의 폴리머이다.In the
보액분리막은 이오노머 멤브레인을 기준으로 양극 쪽에 위치하는 것이 바람직하고,기공도 30 ~ 80% 및 두께 30 ~ 300 ㎛인 것이 바람직하다. 보액분리막은 부직포, 셀룰로오스계 천연섬유, 또는 PE, PP, PTFE 및 PVDF로 이루어진 군에서 선택되는 1종 이상의 합성섬유일 수 있다. 한편, 보액분리막은 양면 또는 단면에 단열 코팅층이 존재하는 것이 바람직하며, 단열 코팅층은 폴리올레핀계로 이루어질 수 있다.The lube separation membrane is preferably located on the anode side with respect to the ionomer membrane, and it is preferable that the porosity is 30 to 80% and the thickness is 30 to 300 占 퐉. The lube separation membrane may be a nonwoven fabric, a cellulose-based natural fiber, or one or more synthetic fibers selected from the group consisting of PE, PP, PTFE and PVDF. On the other hand, it is preferable that the lube separation membrane has a heat insulating coating layer on both sides or a cross section, and the heat insulating coating layer may be made of a polyolefin type.
또한, 보액분리막은 내부에 단열 코팅층이 존재할 수도 있고, 이또한 폴리올레핀계로 이루어질 수 있다.In addition, a heat insulating coating layer may be present inside the lumped liquid separation membrane, or may be formed of a polyolefin type.
본 발명의 보액분리막을 적용한 리튬황 이차전지는 유황양극의 유황 로딩양을 최대 7 mg/cm2 로 제작할 수 있다.The lithium sulfur secondary battery to which the lap-liquid separating membrane of the present invention is applied can produce a sulfur loading amount of sulfur anode up to 7 mg / cm 2 .
더욱 상세하게는, PFSA 멤브레인의 H+ 양이온을 Li+ 이온으로 치환하여 lithiated ionomer 멤브레인을 만들고 분리막으로 적용하여 리튬황 셀을 구성한다. 황 및 도전재를 포함하는 양극과 리튬 음극 사이에 리튬 치환된 멤브레인을 넣고 전해질을 넣어 셀을 제작하는데, 이때 황과 도전재, 바인더의 종류 및 조성비는 본 기술분야 에서 한정 짓지 않고 모두 포함한다. 전해질의 종류는 carbonate계, ether계, ester계, sulfone계 등을 모두 포함한다.More specifically, the lithiated ionomer membrane is prepared by replacing the H + cations of the PFSA membrane with Li + ions, and applied as a separator to form a lithium sulfur cell. A cell is prepared by inserting a lithium-substituted membrane between a positive electrode containing sulfur and a conductive material and a lithium negative electrode, and an electrolyte is added to the positive electrode. In this case, the types and composition ratios of the sulfur, the conductive material and the binder are not limited thereto. The types of electrolytes include all of carbonate, ether, ester, and sulfone.
방전반응이 진행되면 폴리설파이드의 음이온은 전기장 형성에 의해 음극쪽으로 이동하지 못하고 리튬 이온만 hopping 방식으로 이동하게 되는데 이로 인해 폴리설파이드의 리튬 음극과의 부반응 및 활물질 손실, 셔틀현상을 억제할 수 있다. As the discharge reaction progresses, the anions of the polysulfide can not move toward the cathode due to the electric field formation, and only the lithium ions migrate to the hopping mode, which can suppress the side reaction with the lithium anode of the polysulfide, the active material loss, and the shuttle phenomenon.
하지만, 보액 분리막이 없으면 양극으로 저로딩 황(로딩량 ~1 mg/cm2)으로 셀을 제작해야 용량 발현이 가능한데, 셀 에너지밀도를 올리기 위해 일정량의 황 로딩량 증가가 필수적이기 때문에 이를 위해서는 ionomer 멤브레인만 사용하는 것은 부적절하다는 문제점이 존재한다. 또한, 이온전도 방식이 리튬 이온만 이동하기 때문에 기존에 비해 이온전도도가 낮은 단점이 있다.However, if there is no liquor separation membrane, it is necessary to fabricate the cell with a low loading sulfur (loading ~ 1 mg / cm 2 ) as an anode. In order to increase cell energy density, it is necessary to increase the amount of sulfur loading. There is a problem that it is inappropriate to use only the membrane. In addition, since the ion conduction method moves only lithium ions, there is a disadvantage that the ion conductivity is lower than that of the conventional one.
따라서 본 발명에서는 PFSA 멤브레인에 보액 구조체를 추가로 적용하여 리튬황 배터리의 유황 로딩량을 높여 용량을 증가시킬 수 있는 것에 관한 발명(도 2 참조)이다. ionomer 분리막은 - (CF2CF2)x-(CF2CF)y backbone 을 가지며 side chain으로 SO3 - 그룹을 가진 고분자인 PFSA 폴리머 멤브레인의 SO3H 기에 H+ 이온 대신 Li+ 이온을 치환하여 제작하며, 이때 두께는 10 ~ 100 ㎛ 범위로 제한하며 바람직하게는 20 ~ 50 ㎛ 두께를 갖는 것으로 한다. Accordingly, the present invention is an invention (see FIG. 2) in which the capacity of the lithium sulfur battery can be increased by increasing the sulfur loading amount of the lithium sulfur battery by further applying a reflux structure to the PFSA membrane. ionomer membranes were prepared by substituting Li + ions for H + ions in the SO 3 H groups of the PFSA polymer membrane, which has a - (CF 2 CF 2 ) x - (CF 2 CF) y backbone and a side chain of SO 3 - At this time, the thickness is limited to a range of 10 to 100 mu m, preferably 20 to 50 mu m.
또한 중합 구조는 m = 0, 1, n = 0~5, x = 0~15, y= 0~2 범위를 가지며, 당량은 400 ~ 2000 사이의 중합체 막이 바람직하다(하기 Table 1 참조).The polymer structure is preferably a polymer film having m = 0, 1, n = 0 to 5, x = 0 to 15, y = 0 to 2 and an equivalent weight of 400 to 2000 (see Table 1 below).
해당 조건을 만족시키는 PFSA 고분자 멤브레인의 SO3H 작용기를 H+ 이온을 Li+ 으로 치환하는데 이 과정에서 PFSA 멤브레인과 LiOH 용액의 질량비는 1:3 ~ 1:1000의 범위로 한다. The mass ratio of the SO 3 H functional groups of the PFSA polymer membrane satisfying the condition H + ions in the process for replacing the Li + PFSA membranes with LiOH solution of 1: in the range of 1000: 1 to 3 days.
이렇게 이중 분리막을 적용하면 양극 쪽에 위치한 보액 분리막은 전해액을 함습하고 있어 고로딩의 황 양극에서 황을 충분히 용해시켜 폴리설파이드로 만들어 리튬 이온의 양을 증가시키는 효과를 기대할 수 있으며, 그 뒤에 위치한 ionomer 멤브레인은 폴리설파이드의 음이온은 차단하고 양극 쪽에서 충분히 용해된 리튬 이온만을 음극쪽으로 이동시켜 폴리설파이드와 리튬 음극이 접촉하여 발생하는 부반응, 전해질 고갈 등의 문제를 개선할 수 있다. When the double membrane is used, the lube separator located on the anode side is filled with the electrolytic solution. Therefore, it is expected that the effect of increasing the amount of lithium ion by making polysulfide by dissolving the sulfur sufficiently in the high loading sulfur anode can be expected, Can block the anion of the polysulfide and move only the lithium ions sufficiently dissolved in the anode side to the cathode side, thereby improving problems such as side reactions and depletion of the electrolyte caused by the contact of the polysulfide and the lithium anode.
앞서 언급한 문제점을 보완하기 위하여, 리튬황 전지의 황-도전재 양극 쪽에 전해액을 충분히 보액할 수 있는 분리막을 추가로 적용하고, ionomer 멤브레인을 리튬 음극쪽에 사용하여 이중 분리막을 가진 리튬황 전지를 구성한다(도 4 참조).In order to overcome the above-mentioned problems, a separation membrane capable of sufficiently retaining the electrolyte solution on the anode side of the sulfur-conductive material of the lithium-sulfur battery was further applied, and a lithium-sulfur battery having the dual separation membrane was formed by using an ionomer membrane on the lithium- (See Fig. 4).
보액 분리막은 앞서 언급한 바와 같이 바람직하게 기공도 30 ~ 80%, 두께 30 ~ 300 ㎛ 를 가져야 하며 유기용매(전해질)에 화학적으로 안정한 소재를 모두 적용하는 것으로 하여 황 양극 쪽에 위치한다. 보액 분리막으로는 부직포가 바람직하며 부직포 종류는 유리 섬유(도 6 참조)가 사용될 수 있으며 추가로 천연섬유(셀룰로오즈계 물질), 합성섬유(PE, PP, PTFE, PVDF) 등이 가능하다. 또한 열 폭주시 부직포 자체의 폐쇄 기능을 위해 부직포 분리막 양면 혹인 단면에 코팅층을 두어 온도 상승 시 폐쇄 기능을 두게할 수 있다. As mentioned above, the lube separation membrane preferably has a porosity of 30 to 80% and a thickness of 30 to 300 μm, and is chemically stable to the organic solvent (electrolyte), and is located on the side of the sulfur anode. The non-woven fabric may be a glass fiber (see FIG. 6), a natural fiber (cellulose-based material), synthetic fibers (PE, PP, PTFE, PVDF) or the like. Also, in order to close the nonwoven fabric itself during thermal runaway, a coating layer may be provided on both sides of the nonwoven fabric separator membrane to provide a closure function at a temperature rise.
이하 본 발명의 이차전지를 하기 실시예로 더욱 상세하게 설명하며 이는 일례일 뿐본 발명의 청구하고자 하는 범위를 제한하는 것은 아니다.
Hereinafter, the secondary battery of the present invention will be described in further detail with reference to the following examples, which should not be construed as limiting the scope of the claimed invention.
<상용 <Commercial PFSAPFSA 폴리머Polymer 멤브레인의Membrane H+ 이온을 H + ions LiLi +으로 치환>+ Substitution>
Dupont社의 Nafion 212 를 사용하여 LiOH 수용액과 에탄올을 1:1 질량비로 섞어 용액으로 비커에 준비해두고, 히팅맨틀을 사용하여 80℃에서 12시간 이상 교반시키면서 중탕 가열한다(도 5 참조). Using a Nafion 212 from DuPont, LiOH aqueous solution and ethanol were mixed in a 1: 1 mass ratio to prepare a solution in a beaker. The mixture was heated with stirring in a heating mantle at 80 ° C for 12 hours or more (see FIG. 5).
용액 중 Li+ 이온의 농도가 높을수록 멤브레인에 Li 치환이 용이하다. 본 실시 예에서는 멤브레인과 용액의 질량비를 1: 100 으로 하여 Li 이온 치환 과정을 진행하였다. 치환 반응이 끝난 후 멤브레인에 남은 염을 제거하기 위해 증류수로 세척하고 120℃의 진공 오븐에서 하루 동안 건조하여 Li 이온 치환 ionomer 멤브레인을 제작하였고 글로브박스에 진공 보관한다.
The higher the concentration of Li + ions in the solution, the easier the Li substitution in the membrane. In this embodiment, the Li ion replacement process was performed at a mass ratio of 1: 100 between the membrane and the solution. After the substitution reaction, the membrane was washed with distilled water and dried in a vacuum oven at 120 ° C. for one day to prepare a Li ion-exchanged ionomer membrane and vacuum-stored in a glove box.
<< 이오노머Ionomer 멤브레인과With membrane 보액Liquor 분리막을 적용하여 By applying a membrane 리튬황Lithium sulfur 전지를 제작> Manufacture of batteries>
황 양극 쪽에 전해액 보액을 위한 분리막을 구성하고 리튬치환 ionomer 멤브레인과 리튬 음극을 순차적으로 배치하여 셀을 구성한다.
A separation membrane for electrolyte solution is formed on the sulfur anode side, and a lithium ion exchange membrane and a lithium negative electrode are sequentially arranged to constitute a cell.
<< 실시예Example 1~3> 1 to 3>
유황: 도전재(VGCF): 바인더(PVdF) = 70 wt% : 20 wt% : 10 wt% 로 믹싱하여 알루미늄 호일위에 슬러리를 캐스팅하여 80도에서 24시간 건조시켜 14파이 크기의 양극 전극을 제작한다. 음극은 리튬 호일 (100마이크로미터 두께)을 사용하여 16파이 크기로 준비한다. 분리막은 보액분리막과 ionomer membrane을 동시에 사용하여 음극인 리튬 호일 위에 ionomer mebrane을 넣고 그 위에 보액용 분리막을 넣고 양극 전극을 넣어 1M LiTFSI in TEGDME: DIOX(1:1) 전해질을 주입하고 코인셀을 제작(도 8의 보액 분리막 사용 1을 참조)하여 충방전 평가를 진행하였다.
Sulfur: Conductive material (VGCF): Mixed with binder (PVdF) = 70 wt%: 20 wt%: 10 wt%, slurry is cast on aluminum foil and dried at 80 degrees for 24 hours to produce a 14 pt positive electrode . The cathode is prepared in 16 pie size using lithium foil (100 micrometer thick). The ion-exchange membrane and the ionomer membrane were used simultaneously. The ionomer membrane was placed on the lithium foil and the electrolyte membrane was inserted thereinto. Then, 1M LiTFSI in TEGDME: DIOX (1: 1) (Refer to the use of the liner separator of Fig. 8).
<< 비교예Comparative Example 1~2 > 1 to 2>
유황: 도전재(VGCF): 바인더(PVdF) = 70 wt% : 20 wt% : 10 wt% 로 믹싱하여 알루미늄 호일 위에 슬러리를 캐스팅하여 80도에서 24시간 건조시켜 14파이 크기의 양극 전극을 제작한다. 음극은 리튬 호일 (100마이크로미터 두께)을 사용하여 16파이 크기로 준비한다. 분리막은 ionomer membrane만 사용하여 음극인 리튬 호일 위에 ionomer mebrane을 넣고 그 위에 양극 전극을 넣어 전해질 1M LiTFSI in TEGDME: DIOX(1:1) 주입후 코인셀을 제작(도 1 참조)하여 충방전 평가를 진행하였다.Sulfur: Conductive material (VGCF): Mixed with binder (PVdF) = 70 wt%: 20 wt%: 10 wt%, slurry is cast on aluminum foil and dried at 80 degrees for 24 hours to produce a 14 pt positive electrode . The cathode is prepared in 16 pie size using lithium foil (100 micrometer thick). The ionomer membrane was used as the separator, and an ionomer mebrane was placed on the lithium foil as the anode. Then, an anode electrode was placed on the lithium foil, and a coin cell was formed after the electrolyte 1M LiTFSI in TEGDME: DIOX (1: .
고로딩 유황(로딩량 5 mg/cm2) 전극의 보액 분리막 사용에 따른 실시 예 들의 용량 특성 평가 결과는 다음 그래프와 표1과 같다.Capacitance characteristics of the examples according to the use of the lumped liquid separation membrane of the high loading sulfur (loading amount 5 mg / cm 2 ) electrode are shown in the following graph and table 1.
보액분리막을 이용한 경우와 그렇지 않은 경우의 전지의 수명특성을 평가한 것은 다음 그래프와 표2와 같다.The evaluation of the lifetime characteristics of the battery with and without the lube liquid separator is shown in the following graph and Table 2.
로딩량 2 mg/cm2 이상의 고로딩 황 전극에서는 보액 분리막이 없을 시 용량 및 수명과 같은 성능 발현이 제대로 되지 않으며, 멤브레인과 보액분리막을 동시에 적용하면 수명 성능이 향상됨을 확인하였다.Loading amount 2 mg / cm 2 In the case of the high loading sulfur electrode, the performance such as capacity and lifetime can not be exhibited in the absence of the liquefied separator, and it is confirmed that when the membrane and the lube separator are simultaneously applied, the lifetime performance is improved.
즉, 양극의 유황 로딩량은 보액 분리막에 의해 저로딩에서 고로딩 (~5 mg/cm2)까지 모두 사용이 가능하고 또한 보액 분리막은 황 양극으로부터 리튬폴리설파이드를 용출시켜 함습하고 있으며, 용출된 리튬폴리설파이드는 ionomer Membrane에 의해 음극 쪽으로 더 이상 이동하지 않고 리튬 이온만 음극으로 이동하여 전달(도 7 참조)되기 때문에. 고로딩 양극을 적용하여 에너지 밀도 향상 효과와 폴리설파이드의 이동을 차단함으로써 리튬 음극과의 부반응을 억제할 수 있고, 셔틀 현상 및 클롱 효율 증가 효과를 기대할 수 있다.That is, the sulfur loading amount of the anode can be used from the low load to the high loading (~ 5 mg / cm 2 ) by the laminar separation membrane, and the lysate separator can dissolve the lithium polysulfide from the sulfur anode, Since the lithium polysulfide does not move further toward the cathode by the ionomer membrane and only the lithium ions migrate to the cathode (see FIG. 7). By applying a high loading anode, it is possible to prevent side reactions with the lithium anode by shutting off the movement of the polysulfide and improving the energy density, and the shuttle phenomenon and the clone efficiency increase effect can be expected.
본 발명의 보액 분리막은 도 8의 네 가지의 구체예로 활용이 가능하다.
The pervaporation separation membrane of the present invention can be utilized as the four concrete examples of Fig.
Claims (10)
[화학식 1]
상기 화학식 1에서 m = 0, 1, n = 0~5, x = 0~15, y= 0~2 범위를 가지며, 당량은 400 ~ 2000 사이의 폴리머이다:The secondary battery according to claim 1, wherein the ionomer membrane is a PFSA (perfluorosulfonic acid) polymer membrane represented by the following formula (1), and the H + ion of the -SO 3 H group is substituted with Li + .
[Chemical Formula 1]
In the formula 1, m = 0, 1, n = 0 to 5, x = 0 to 15, y = 0 to 2,
The secondary battery according to claim 9, wherein the heat insulating coating layer is made of a polyolefin type.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020130167774A KR101610446B1 (en) | 2013-12-30 | 2013-12-30 | A separator of lithium sulfur secondary battery |
JP2014248065A JP6431352B2 (en) | 2013-12-30 | 2014-12-08 | Secondary battery |
DE102014225182.6A DE102014225182B4 (en) | 2013-12-30 | 2014-12-09 | Separator for a lithium-sulfur secondary battery |
CN201410783889.5A CN104752661B (en) | 2013-12-30 | 2014-12-16 | Separator for lithium-sulfur secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020130167774A KR101610446B1 (en) | 2013-12-30 | 2013-12-30 | A separator of lithium sulfur secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20150078434A KR20150078434A (en) | 2015-07-08 |
KR101610446B1 true KR101610446B1 (en) | 2016-04-07 |
Family
ID=53372302
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020130167774A KR101610446B1 (en) | 2013-12-30 | 2013-12-30 | A separator of lithium sulfur secondary battery |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6431352B2 (en) |
KR (1) | KR101610446B1 (en) |
CN (1) | CN104752661B (en) |
DE (1) | DE102014225182B4 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018216866A1 (en) * | 2017-05-26 | 2018-11-29 | 주식회사 엘지화학 | Electrolyte solution for lithium-sulfur battery and lithium-sulfur battery comprising same |
US11217824B2 (en) | 2017-05-26 | 2022-01-04 | Lg Chem, Ltd. | Electrolyte solution for lithium-sulfur battery and lithium-sulfur battery comprising same |
WO2023158272A1 (en) * | 2022-02-21 | 2023-08-24 | 주식회사 엘지에너지솔루션 | Separator for lithium-sulfur battery and lithium-sulfur battery comprising same |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114122387B (en) | 2015-10-14 | 2024-05-31 | 株式会社杰士汤浅国际 | Nonaqueous electrolyte secondary battery |
JP6816146B2 (en) * | 2015-12-22 | 2021-01-20 | 宝山鋼鉄股▲ふん▼有限公司Baoshan Iron & Steel Co.,Ltd. | How to prepare the cathode material of a battery |
EP3405987A4 (en) * | 2016-01-20 | 2019-06-12 | Cornell University | Multi-domained sulfur electrodes, and manufacturing therefor |
WO2017196012A1 (en) | 2016-05-09 | 2017-11-16 | 주식회사 엘지화학 | Composition for polymer electrolyte and lithium secondary battery comprising same |
KR101984724B1 (en) * | 2016-09-09 | 2019-05-31 | 주식회사 엘지화학 | Lithium-sulfur battery |
CN109075293B (en) * | 2016-11-29 | 2021-06-22 | 株式会社Lg化学 | Separator comprising laser-induced graphene carbide layer and lithium-sulfur battery comprising same |
KR101997074B1 (en) | 2017-03-15 | 2019-07-08 | 한국과학기술연구원 | Polyethyleneimine carbon-based material attached and separator for lithium-sulfur battery comprising the same |
JP6940316B2 (en) * | 2017-06-23 | 2021-09-22 | 株式会社日立製作所 | Secondary battery and manufacturing method of secondary battery |
CN110996717B (en) * | 2017-08-07 | 2023-03-31 | 日本电信电话株式会社 | Sheet-like mask |
KR102244908B1 (en) * | 2017-10-25 | 2021-04-26 | 주식회사 엘지화학 | A separator for litithium-sulfur battery and lithium-sulfur battery comprising the same |
CN109546052A (en) * | 2018-09-29 | 2019-03-29 | 大连中比动力电池有限公司 | A kind of preparation method of perfluorinated sulfonic acid lithium coating diaphragm |
JP7193627B2 (en) | 2019-05-28 | 2022-12-20 | エルジー エナジー ソリューション リミテッド | lithium secondary battery |
CN110416477A (en) * | 2019-07-19 | 2019-11-05 | 田韬 | A kind of lithium-sulphur cell positive electrode ion infiltration type cladding membrane material |
CN110911662A (en) * | 2019-11-06 | 2020-03-24 | 华南理工大学 | Lithium cathode with protective layer and preparation method and application thereof |
CN116759672B (en) * | 2023-08-15 | 2023-11-17 | 江苏正力新能电池技术有限公司 | Battery shell, battery and electric equipment |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100467705B1 (en) | 2002-11-02 | 2005-01-24 | 삼성에스디아이 주식회사 | Seperator having inorganic protective film and lithium battery using the same |
KR20050021131A (en) | 2003-08-26 | 2005-03-07 | 대한민국 (경상대학교 총장) | Lithium/sulfur secondary batteries with coated separator having improved charge and discharge properties |
US20100227224A1 (en) * | 2009-03-06 | 2010-09-09 | Seeo, Inc | High performance sulfur-based dry polymer electrodes |
JP5944830B2 (en) | 2009-12-16 | 2016-07-05 | マサチューセッツ インスティテュート オブ テクノロジー | High energy density redox flow equipment |
KR101826990B1 (en) * | 2011-06-07 | 2018-02-07 | 현대자동차주식회사 | Lithium sulfur battery |
US20130181677A1 (en) * | 2012-01-18 | 2013-07-18 | E I Du Pont De Nemours And Company | Compositions, layerings, electrodes and methods for making |
KR20150032670A (en) | 2012-06-19 | 2015-03-27 | 이 아이 듀폰 디 네모아 앤드 캄파니 | Electrochemical cells comprising electrolyte additives and ionomer articles, and methods for making and using the same |
CN102903974B (en) * | 2012-10-22 | 2017-05-03 | 中国电子科技集团公司第十八研究所 | Lithium-sulfur secondary battery |
WO2015083314A1 (en) * | 2013-12-03 | 2015-06-11 | 株式会社アルバック | Lithium sulfur secondary battery |
-
2013
- 2013-12-30 KR KR1020130167774A patent/KR101610446B1/en active IP Right Grant
-
2014
- 2014-12-08 JP JP2014248065A patent/JP6431352B2/en active Active
- 2014-12-09 DE DE102014225182.6A patent/DE102014225182B4/en active Active
- 2014-12-16 CN CN201410783889.5A patent/CN104752661B/en active Active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018216866A1 (en) * | 2017-05-26 | 2018-11-29 | 주식회사 엘지화학 | Electrolyte solution for lithium-sulfur battery and lithium-sulfur battery comprising same |
US11217824B2 (en) | 2017-05-26 | 2022-01-04 | Lg Chem, Ltd. | Electrolyte solution for lithium-sulfur battery and lithium-sulfur battery comprising same |
WO2023158272A1 (en) * | 2022-02-21 | 2023-08-24 | 주식회사 엘지에너지솔루션 | Separator for lithium-sulfur battery and lithium-sulfur battery comprising same |
Also Published As
Publication number | Publication date |
---|---|
DE102014225182B4 (en) | 2021-12-30 |
JP2015128063A (en) | 2015-07-09 |
JP6431352B2 (en) | 2018-11-28 |
KR20150078434A (en) | 2015-07-08 |
DE102014225182A1 (en) | 2015-07-02 |
CN104752661B (en) | 2020-02-21 |
CN104752661A (en) | 2015-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101610446B1 (en) | A separator of lithium sulfur secondary battery | |
JP7281902B2 (en) | Non-negative lithium metal battery and manufacturing method thereof | |
Huang et al. | Ionic shield for polysulfides towards highly-stable lithium–sulfur batteries | |
Zhuang et al. | Rational integration of polypropylene/graphene oxide/nafion as ternary‐layered separator to retard the shuttle of polysulfides for lithium–sulfur batteries | |
Hu et al. | Recent progress in tackling Zn anode challenges for Zn ion batteries | |
CN105591154B (en) | The all solid state serondary lithium battery and its preparation of polycarbonate-based full solid state polymer electrolyte and its composition and application | |
KR102047300B1 (en) | Hybrid solid electrolyte and secondary battery using the same | |
WO2016127786A1 (en) | All-solid-state polymer electrolyte, and preparation and application thereof | |
Evans et al. | Electrospun polyacrylonitrile microfiber separators for ionic liquid electrolytes in Li-ion batteries | |
JP2015170595A (en) | Method for manufacturing battery using lithium | |
Sun et al. | Recent advances in solid‐state metal–air batteries | |
JP2019204765A (en) | Method for manufacturing all-solid lithium ion battery | |
Li et al. | Suppressing shuttle effect using Janus cation exchange membrane for high-performance lithium–sulfur battery separator | |
US20150188109A1 (en) | Separator for lithium-sulfur secondary battery | |
KR102126278B1 (en) | Lithium air battery | |
TWI706586B (en) | High performance all solid lithium sulfur battery with fast lithium ion conduction | |
CN111934020B (en) | High-pressure-resistant all-solid-state lithium battery interface layer and in-situ preparation method and application thereof | |
CN105870449A (en) | All-solid-state lithium-air battery composite positive electrode material and all-solid-state lithium-air battery | |
JP2016122650A (en) | All-solid metal-metal battery | |
Shaibani et al. | Permselective membranes in lithium–sulfur batteries | |
Chen et al. | A flexible semi-interpenetrating network-enhanced ionogel polymer electrolyte for highly stable and safe lithium metal batteries | |
CN114335700A (en) | Solid electrolyte membrane and preparation method thereof, secondary battery and preparation method | |
CN104183820B (en) | A kind of lithium-sulphur cell positive electrode membrane material | |
Li et al. | Composite solid electrolyte with Li+ conducting 3D porous garnet-type framework for all-solid-state lithium batteries | |
KR20170113333A (en) | Manufacturing method of secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20190327 Year of fee payment: 4 |