KR101494053B1 - Method for manufacturing asymmetric hollow fiber membrane and asymmetric hollow fiber membrane manufactured using the same - Google Patents
Method for manufacturing asymmetric hollow fiber membrane and asymmetric hollow fiber membrane manufactured using the same Download PDFInfo
- Publication number
- KR101494053B1 KR101494053B1 KR20120111853A KR20120111853A KR101494053B1 KR 101494053 B1 KR101494053 B1 KR 101494053B1 KR 20120111853 A KR20120111853 A KR 20120111853A KR 20120111853 A KR20120111853 A KR 20120111853A KR 101494053 B1 KR101494053 B1 KR 101494053B1
- Authority
- KR
- South Korea
- Prior art keywords
- hollow fiber
- fiber membrane
- asymmetric hollow
- polymer solution
- coating layer
- Prior art date
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 83
- 239000012510 hollow fiber Substances 0.000 title claims abstract description 73
- 238000000034 method Methods 0.000 title claims abstract description 44
- 238000004519 manufacturing process Methods 0.000 title claims description 22
- 239000002904 solvent Substances 0.000 claims abstract description 45
- 229920000642 polymer Polymers 0.000 claims abstract description 39
- 239000010410 layer Substances 0.000 claims abstract description 34
- 239000011247 coating layer Substances 0.000 claims abstract description 33
- 239000002033 PVDF binder Substances 0.000 claims abstract description 27
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims abstract description 27
- 239000000654 additive Substances 0.000 claims abstract description 22
- 230000000996 additive effect Effects 0.000 claims abstract description 20
- 238000005191 phase separation Methods 0.000 claims abstract description 13
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 claims description 16
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 11
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 11
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 11
- 239000011148 porous material Substances 0.000 claims description 11
- 238000007599 discharging Methods 0.000 claims description 9
- 229920000609 methyl cellulose Polymers 0.000 claims description 7
- 239000001923 methylcellulose Substances 0.000 claims description 7
- 239000003795 chemical substances by application Substances 0.000 claims description 6
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 claims description 5
- 239000007787 solid Substances 0.000 claims description 3
- 238000009987 spinning Methods 0.000 abstract description 11
- 238000002145 thermally induced phase separation Methods 0.000 abstract description 11
- 238000002156 mixing Methods 0.000 abstract description 4
- 239000002131 composite material Substances 0.000 abstract description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 238000000926 separation method Methods 0.000 description 11
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- 230000035699 permeability Effects 0.000 description 6
- 235000010981 methylcellulose Nutrition 0.000 description 5
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- 230000001112 coagulating effect Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- 238000000576 coating method Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000007711 solidification Methods 0.000 description 3
- 230000008023 solidification Effects 0.000 description 3
- NIQCNGHVCWTJSM-UHFFFAOYSA-N Dimethyl phthalate Chemical compound COC(=O)C1=CC=CC=C1C(=O)OC NIQCNGHVCWTJSM-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-ZSJDYOACSA-N Heavy water Chemical compound [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 229920002301 cellulose acetate Polymers 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000000635 electron micrograph Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 229920001477 hydrophilic polymer Polymers 0.000 description 2
- KQNPFQTWMSNSAP-UHFFFAOYSA-N isobutyric acid Chemical compound CC(C)C(O)=O KQNPFQTWMSNSAP-UHFFFAOYSA-N 0.000 description 2
- 238000001471 micro-filtration Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000000108 ultra-filtration Methods 0.000 description 2
- BCNBMSZKALBQEF-UHFFFAOYSA-N 1,3-dimethylpyrrolidin-2-one Chemical compound CC1CCN(C)C1=O BCNBMSZKALBQEF-UHFFFAOYSA-N 0.000 description 1
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 1
- 229930188620 butyrolactone Natural products 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010612 desalination reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- FBSAITBEAPNWJG-UHFFFAOYSA-N dimethyl phthalate Natural products CC(=O)OC1=CC=CC=C1OC(C)=O FBSAITBEAPNWJG-UHFFFAOYSA-N 0.000 description 1
- 229960001826 dimethylphthalate Drugs 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000008571 general function Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000006259 organic additive Substances 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920000131 polyvinylidene Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/08—Hollow fibre membranes
- B01D69/087—Details relating to the spinning process
- B01D69/088—Co-extrusion; Co-spinning
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0002—Organic membrane manufacture
- B01D67/0009—Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
- B01D67/0018—Thermally induced processes [TIPS]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/02—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/08—Hollow fibre membranes
- B01D69/085—Details relating to the spinneret
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/10—Supported membranes; Membrane supports
- B01D69/107—Organic support material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
- B01D69/1213—Laminated layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/30—Polyalkenyl halides
- B01D71/32—Polyalkenyl halides containing fluorine atoms
- B01D71/34—Polyvinylidene fluoride
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/24—Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/08—Specific temperatures applied
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/15—Use of additives
- B01D2323/218—Additive materials
- B01D2323/2182—Organic additives
- B01D2323/21839—Polymeric additives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/02—Details relating to pores or porosity of the membranes
- B01D2325/021—Pore shapes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/02—Details relating to pores or porosity of the membranes
- B01D2325/022—Asymmetric membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/02—Details relating to pores or porosity of the membranes
- B01D2325/0283—Pore size
- B01D2325/02833—Pore size more than 10 and up to 100 nm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/04—Characteristic thickness
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Textile Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Dispersion Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
본 발명은 삼중 구금을 사용하여 복합 중공사를 제막하는 방법으로 지지층은 열유도 상분리법(TIPS, thermally induced phase separation)을 이용하여 폴리비닐리덴플로라이드, 빈용매, 첨가제를 혼합하여 고분자 용액을 제조하고 코팅층은 비용매유도 상분리법(NIPS, non-solvent induced phase separation)을 이용하여 폴리비닐리덴플로라이드, 양용매, 빈용매, 첨가제를 혼합하여 고분자 용액을 제조한 후 삼중구금을 통해 두 종류의 고분자 용액을 동시에 토출하여 방사 공정 및 상전이 공정, 후처리 공정을 거쳐 비대칭성 중공사막을 제조하는 방법 및 이에 의해 제조된 비대칭성 중공사막에 관한 것이다.The present invention relates to a method of forming a composite hollow fiber using a triple sheathing method, wherein the support layer is prepared by mixing polyvinylidene fluoride, poor solvent, and additives using a thermally induced phase separation (TIPS) And the coating layer was prepared by mixing polyvinylidene fluoride, a good solvent, a poor solvent, and an additive using a non-solvent induced phase separation (NIPS) A polymer solution is discharged at the same time to produce an asymmetric hollow fiber membrane through a spinning process, a phase transfer process, and a post-process, and an asymmetric hollow fiber membrane produced thereby.
Description
본 발명은 비대칭성 중공사막의 제조방법 및 이에 의해 제조된 비대칭성 중공사막에 관한 것으로, 보다 상세하게는 삼중 구금을 사용하여 복합 중공사를 제막하는 방법으로 지지층은 열유도 상분리법(TIPS, thermally induced phase separation)을 이용하여 폴리비닐리덴플로라이드, 빈용매, 첨가제를 혼합하여 고분자 용액을 제조하고 코팅층은 비용매유도 상분리법(NIPS, non-solvent induced phase separation)을 이용하여 폴리비닐리덴플로라이드, 양용매, 빈용매, 첨가제를 혼합하여 고분자 용액을 제조한 후 삼중구금을 통해 두 종류의 고분자 용액을 동시에 토출하여 방사 공정 및 상전이 공정, 후처리 공정을 거쳐 비대칭성 중공사막을 제조하는 방법 및 이에 의해 제조된 비대칭성 중공사막에 관한 것이다.
The present invention relates to a method for producing an asymmetric hollow fiber membrane and an asymmetric hollow fiber membrane produced thereby. More particularly, the present invention relates to a method for forming a hollow fiber membrane using a triple sheathing method, induced phase separation. The polymer solution was prepared by mixing polyvinylidene fluoride, poor solvent, and additives, and the coating layer was formed using polyvinylidene fluoride (NPS) using non-solvent induced phase separation (NIPS) , A method of preparing an asymmetric hollow fiber membrane through a spinning process, a phase transfer process, and a post-treatment process by simultaneously discharging two kinds of polymer solutions through a triple inserting process after preparing a polymer solution by mixing a good solvent, a poor solvent and an additive, And an asymmetric hollow fiber membrane produced thereby.
최근에 에너지 절약 및 환경보호를 주목적으로 하여 여러 응용분야에 걸쳐 다양한 분리막 및 이를 이용한 막분리 공정이 활발히 전개되고 있다. 특히 한외여과막 및 정밀여과막 등의 분리막은 수백나노미터에서 수십마이크로 미터 크기의 기공을 가지기 때문에 오폐수처리, 용수제조, 식품 및 의료공업 등을 포함한 여러 분야에 적용되고 있으며, 최근 먹는 물에 대한 관심이 증가함에 따라 그 활용이 점차 증가하고 있는 추세이다. Recently, diverse membranes and membrane separation processes using these membranes have been actively developed in various application fields with the primary aim of energy saving and environmental protection. Particularly, since the separation membranes such as ultrafiltration membranes and microfiltration membranes have pores of several hundreds of nanometers to tens of micrometers in size, they are applied to various fields including waste water treatment, water production, food and medical industries, And the use thereof is gradually increasing.
이를 테면, 정수처리분야에선 적은 막면적으로도 대용량의 물을 처리할 수 있는 고투과성 및 심각한 운전조건하에서도 막손상 없이 기계적 성질이 우수한 고내압성 분리막이 요구되고 있다. 더불어 막 표면의 오염에 의한 투과성능의 저하 및 막표면에 부착된 오염물을 제거하기 위한 여러가지 수처리제의 도입에 따른 막손상의 문제를 근본적으로 방지하기 위해, 내오염성 및 내화학성이 우수한 분리막 소재가 또한 요구된다. 이러한 요구를 반영하기 위해 최근에 많은 주목을 받고 있는 분리막 소재가 폴리불화비닐리덴계 고분자이다. For example, in the field of water treatment, high permeability capable of treating a large amount of water even with a small membrane area, and a high-pressure-resistant membrane excellent in mechanical properties without damaging the membrane under severe operating conditions are required. In addition, in order to fundamentally prevent the problem of film damage due to the introduction of various water treatment agents for removing the contaminants adhering to the surface of the membrane, the separation membrane material having excellent stain resistance and chemical resistance is also used Is required. In order to reflect these demands, the polyvinylidene fluoride polymer has been attracting much attention recently.
종래에 널리 알려진 폴리술폰계 혹은 폴리올레핀계열의 분리막 소재에 비해 폴리불화비닐리덴계 고분자 소재는 낮은 표면에너지, 우수한 기계적, 내화학적 성질을 가진 것으로 잘 알려져 있기 때문에 오래전부터 정밀여과 혹은 한외여과형 분리소재 등에 많이 응용되어 왔다.Since polyvinylidene fluoride polymer materials are well known to have low surface energy and excellent mechanical and chemical properties compared to conventionally known polysulfone or polyolefin-based membrane materials, it has long been known that microfiltration or ultrafiltration type separation materials And so on.
한편, 폴리불화비닐리덴계 수지를 이용하여 분리여과막을 제조하는 방법 중 열유도 상분리법(TIPS)은 고온에서 용해된 고분자 용액을 저온의 매체와 접촉시켜 액체-고체 상분리 및 고화가 발생함으로써 다공성 분리막을 달성하는 방법이며, 비용매유도 상분리법(NIPS)은 고분자를 용해시킬 수 있는 용매에 고분자를 용해시켜 용매와 비용매가 고분자 용액 내에서 상호교환이 이루어짐으로써 액체-고체 상분리 및 고화를 유도하여 다공성 분리막을 달성하는 방법이다. 비용매유도 상분리법은 보다 경제적으로 막을 제조할 수는 있으나, 기계적 강도가 충분하지 않은 문제가 있으며, 열유도 상 분리법은 균질한 고강도 막을 얻을 수 있지만, 매크로보이드가 형성되고 핀홀과 같은 결함이 생길 가능성이 있다.On the other hand, the thermally induced phase separation method (TIPS), which is a method of producing a separation filtration membrane using a polyvinylidene fluoride resin, involves liquid-solid phase separation and solidification by bringing a polymer solution dissolved at a high temperature into contact with a medium at a low temperature, (NIPS) is a method in which a polymer is dissolved in a solvent capable of dissolving a polymer, and a solvent and a non-solvent are exchanged in a polymer solution to induce liquid-solid phase separation and solidification, It is a method of achieving a separator. Although the non-solvent-based phase separation method can produce a more economical film, there is a problem in that the mechanical strength is not sufficient, and the thermally induced phase separation method can obtain a homogeneous high strength film, but macroboids are formed and defects such as pinholes are generated There is a possibility.
폴리불화비닐리덴계 수지를 이용하여 분리여과막으로 제조한 종래의 예로, 대한민국 특허공개 제10-2010-0007245호에는 중공사 제막시 삼중 구금을 이용하여 중공사 표면에 분리활성층을 도입하여 제조하는 방법이 개시되어 있다. 그러나 이러한 방법은 종래의 TIPS를 이용한 중공사막에 비하여 높은 저지율은 지닐 수 있으나 표면의 기공 사이즈 제어가 힘든 문제점과 순수투과수량이 적은 단점이 있다. As a conventional example in which a polyvinylidene fluoride resin is used as a separation filtration membrane, Korean Patent Laid-Open No. 10-2010-0007245 discloses a method in which a separating active layer is introduced into the surface of a hollow fiber by using a triple- . However, this method has a higher rejection ratio than the conventional hollow fiber membrane using TIPS, but has a disadvantage in that it is difficult to control the pore size of the surface and has a disadvantage in that the pure water permeation amount is small.
한편 일본 공개특허 제2009-0034353호에는 중공사 제막시 TIPS를 이용하여 고강도 지지체 분리막을 제막한 후에 NIPS를 이용하여 기공크기를 제어할 수 코팅층 분리막을 입혀 비대칭성 복합 중공사를 제막하는 방법이 개시되어 있다. 그러나 이 방법은 코팅 방법이 지지체 중공사를 제막한 후 이루어지는 후코팅 방법이라 코팅층 분리막의 두께가 일정하지 않아 중공사의 성능이 저하되고 코팅층이 박리되는 문제점이 있다.
Japanese Patent Application Laid-Open No. 2009-0034353 discloses a method of forming an asymmetric composite hollow fiber by coating a coating layer with a coating layer capable of controlling the pore size using NIPS after forming a high strength support separator using TIPS at the time of forming a hollow fiber. . However, this method is a post-coating method in which the coating method is performed after the support hollow fiber is formed, so that the thickness of the coating layer separation is not uniform and the performance of the hollow fiber is deteriorated and the coating layer is peeled off.
본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위한 것으로, 본 발명의 하나의 목적은 TIPS와 NIPS를 이용하여 고강도, 고투수성의 기공제어가 용이한 중공사막을 제막할 수 있으며 삼중구금을 통해 지지층과 코팅층 용액을 동시에 방사함으로써 중공사를 제막한 후에도 균일한 두께를 지니고 코팅층이 박리가 되지 않는 비대칭성 중공사막의 제조방법을 제공하는 것이다.It is an object of the present invention to overcome the problems of the prior art as described above, and it is an object of the present invention to provide a hollow fiber membrane capable of forming a hollow fiber membrane having high strength, high water permeability and easy pore control using TIPS and NIPS, It is another object of the present invention to provide a method for producing an asymmetric hollow fiber membrane having a uniform thickness even after the hollow fiber membrane is formed by spinning the support layer and the coating layer solution simultaneously.
본 발명의 또 하나의 목적은 상기와 같은 본 발명에 따른 비대칭성 중공사막의 제조방법을 이용하여 제조되는 비대칭성 중공사막을 제공하는 것이다.
It is still another object of the present invention to provide an asymmetric hollow fiber membrane produced using the asymmetric hollow fiber membrane manufacturing method according to the present invention.
상기와 같은 목적을 달성하기 위한 본 발명의 하나의 양상은, 삼중 구금을 사용하여 비대칭성 중공사막을 제조하는 방법으로서 상기 방법은 상중 구금의 내부 노즐로 중공형성제를 토출시키고, 외부 노즐로 코팅층을 형성하는 고분자 용액을 토출시키며, 내부와 외부 사이의 노즐로 지지층을 형성하는 고분자 용액을 토출시키는 비대칭성 중공사막의 제조방법에 관한 것이다.According to an aspect of the present invention, there is provided a method of manufacturing an asymmetric hollow fiber membrane using a triple sheath, the method comprising the steps of: discharging a hollow forming agent into an inner nozzle of a upper hollow, And discharging a polymer solution forming a support layer with a nozzle between the inside and the outside. The present invention also relates to a method of manufacturing an asymmetric hollow fiber membrane.
본 발명의 일 구현예에 따른 비대칭성 중공사막의 제조방법에 있어서, 상기 방법은 지지층이 열유도 상분리법(TIPS)에 의해 상분리가 일어나며, 코팅층이 비용매유도 상분리법(NIPS)에 의해 상분리가 일어나는 것을 특징으로 한다.In the method of manufacturing an asymmetric hollow fiber membrane according to an embodiment of the present invention, the support layer is phase-separated by a heat induction phase separation method (TIPS), and the coating layer is phase-separated by the non-solvent induced phase separation method .
본 발명의 일 구현예에 따른 비대칭성 중공사막의 제조방법에 있어서, 상기 지지층을 형성하는 고분자 용액은 폴리비닐리덴플로라이드, 빈용매 및 첨가제를 포함하며, 코팅층을 형성하는 고분자 용액은 폴리비닐리덴플로라이드, 양용매, 빈용매 및 첨가제를 포함하는 것을 특징으로 한다.In the method of manufacturing an asymmetric hollow fiber membrane according to an embodiment of the present invention, the polymer solution forming the support layer includes polyvinylidene fluoride, a poor solvent, and an additive, and the polymer solution forming the coating layer is polyvinylidene Fluoride, a good solvent, a poor solvent and an additive.
본 발명의 일 구현예에 따른 비대칭성 중공사막의 제조방법에 있어서, 상기 지지층을 형성하는 고분자 용액은 폴리비닐리덴플로라이드 25~44 중량%, 빈용매로 감마부티로락톤 55~70 중량%, 첨가제로 폴리비닐피롤리돈 1~10 중량%를 포함하며, 코팅층을 형성하는 고분자 용액은 폴리비닐리덴플로라이드 10~20 중량%, 양용매로 디메틸아세트아마이드 40~70 중량%, 빈용매로 감마부티로락톤 10~40 중량%, 첨가제로 폴리비닐피롤리돈 0.1~5 중량%, 아세틸레이티드메틸셀룰로오스 0.1~5 중량%를 포함하는 것을 특징으로 한다.In the method for producing an asymmetric hollow fiber membrane according to an embodiment of the present invention, the polymer solution forming the support layer may contain 25 to 44% by weight of polyvinylidene fluoride, 55 to 70% by weight of gamma-butyrolactone as a poor solvent, And 10 to 20% by weight of polyvinylidene fluoride, 40 to 70% by weight of dimethylacetamide as a good solvent, and 2 to 10% by weight of a polyvinylpyrrolidone as an additive. 10 to 40% by weight of butyrolactone, 0.1 to 5% by weight of polyvinylpyrrolidone as an additive, and 0.1 to 5% by weight of acetylated methylcellulose.
본 발명의 일 구현예에 따른 비대칭성 중공사막의 제조방법에 있어서, 상기 방법은 지지층을 형성하는 고분자 용액의 온도가 130 내지 180 ℃의 온도범위인 것을 특징으로 한다.In the method of manufacturing an asymmetric hollow fiber membrane according to an embodiment of the present invention, the method is characterized in that the temperature of the polymer solution forming the support layer is in the range of 130 to 180 캜.
상기와 같은 목적을 달성하기 위한 본 발명의 또 하나의 양상은, 상기와 같은 본 발명의 방법에 의해 제조되는 비대칭성 중공사막에 관한 것이다.According to another aspect of the present invention, there is provided an asymmetric hollow fiber membrane produced by the method of the present invention as described above.
본 발명의 일 구현예에 따른 상기 비대칭성 복합 중공사막은 내부 지지층과 외부 코팅층의 중공사로 이루어지며, 상기 지지층은 평균직경 0.1 내지 10 ㎛ 범위의 구상형 고형분으로 이루어진 구상 구조의 층인 것을 특징으로 한다.The asymmetric composite hollow fiber membrane according to one embodiment of the present invention is composed of an inner support layer and a hollow fiber of an outer coating layer, and the support layer is a spherical structure layer having a spherical solid component with an average diameter ranging from 0.1 to 10 μm .
본 발명의 일 구현예에 따른 비대칭성 중공사막에 있어서, 상기 코팅층은 0.01 내지 0.1 ㎛ 범위의 크기를 갖는 다수의 기공으로 이루어지며, 그 두께가 30 내지 100 ㎛ 범위인 것을 특징으로 한다.
In the asymmetric hollow fiber membrane according to an embodiment of the present invention, the coating layer is composed of a plurality of pores having a size ranging from 0.01 to 0.1 mu m and has a thickness ranging from 30 to 100 mu m.
본 발명에 따른 비대칭성 중공사막의 제조방법은 TIPS와 NIPS를 이용하여 고강도, 고투수성의 기공제어가 용이한 중공사막을 제막할 수 있으며 삼중구금을 통해 지지층과 코팅층 용액을 동시에 방사함으로써 중공사를 제막한 후에도 균일한 두께를 지니고 코팅층이 박리가 되지 않는 비대칭성 중공사막을 제조할 수 있는 효과가 있다.The asymmetric hollow fiber membrane manufacturing method according to the present invention can form a hollow fiber membrane having high strength and high water permeability and easy pore control using TIPS and NIPS and can produce a hollow fiber by simultaneously spinning the support layer and the coating layer solution through the triple- It is possible to produce an asymmetric hollow fiber membrane having a uniform thickness even after film formation and in which the coating layer is not peeled off.
특히 본 발명의 제조방법에 의해 제조된 비대칭성 중공사막은 첨가제로 셀룰로오스 아세테이트 계통의 아세틸레이티드 메틸셀룰로오스를 첨가함으로써 소수성 중공사막인 폴리비닐리덴플로라이드(PVDF)계 중공사막의 친수성을 도입하는 효과가 있다.
In particular, the asymmetric hollow fiber membrane produced by the production method of the present invention is effective in introducing hydrophilicity of a polyvinylidene fluoride (PVDF) hollow fiber membrane, which is a hydrophobic hollow fiber membrane, by adding acetylated methyl cellulose of the cellulose acetate system as an additive .
도 1은 본 발명의 방법에 의해 제조된 비대칭성 중공사막의 전자현미경 사진이다. 1 is an electron micrograph of an asymmetric hollow fiber membrane produced by the method of the present invention.
이하, 본 발명의 바람직한 구현예에 대하여 실시예 등을 참조하여 더욱 상세히 설명한다. 또한, 본 발명을 설명함에 있어서, 관련된 공지의 범용적인 기능 또는 구성에 대한 상세한 설명은 생략한다.Hereinafter, preferred embodiments of the present invention will be described in more detail with reference to examples and the like. In the following description of the present invention, a detailed description of known general functions or configurations will be omitted.
본 발명은 삼중 구금을 사용하여 비대칭성 중공사막을 제조하는 방법으로서 상기 방법은 상중 구금의 내부 노즐로 중공형성제를 토출시키고, 외부 노즐로 코팅층을 형성하는 고분자 용액을 토출시키며, 내부와 외부 사이의 노즐로 지지층을 형성하는 고분자 용액을 토출시키는 비대칭성 중공사막의 제조방법에 관한 것이다.The present invention relates to a method of producing an asymmetric hollow fiber membrane using a triple sheathing method, wherein the method comprises discharging a hollowing agent with an inner nozzle of a upper sheath, discharging a polymer solution forming a coating layer with an outer nozzle, And a method of manufacturing an asymmetric hollow fiber membrane.
이하에서, 본 발명의 중공사 분리막의 제조공정을 더욱 상세하게 설명한다.
Hereinafter, the production process of the hollow fiber membrane of the present invention will be described in more detail.
지지층을 형성하는 고분자 용액의 제조공정 ; A process for producing a polymer solution forming a support layer ;
본 발명의 일 구현예에 따른 비대칭성 중공사막의 제조방법에 있어서, 지지층을 형성하는 고분자 용액은 폴리비닐리덴플로라이드, 빈용매 및 첨가제를 포함한다. 이때 각 성분의 함량비는 폴리비닐리덴플로라이드 25~45 중량%, 빈용매 55~70 중량%, 첨가제 1~10 중량%로 이루어지는 것이 바람직하다.In the method for producing an asymmetric hollow fiber membrane according to an embodiment of the present invention, the polymer solution forming the support layer includes polyvinylidene fluoride, a poor solvent, and an additive. In this case, the content ratio of each component is preferably 25 to 45% by weight of polyvinylidene fluoride, 55 to 70% by weight of a poor solvent, and 1 to 10% by weight of an additive.
본 발명에서 중공사막을 형성하는 폴리비닐리덴플루오라이드 고분자는 중량평균 분자량 100,000 달톤 내지 700,000만 달톤으로, 단독 혹은 2종이상 혼합물로 구성될 수 있다. 본 발명의 제조방법에서 빈용매로는 감마-부티로락톤(γ-butyrolactone), 디메틸프탈산(Dimethyl phthalate), 디부틸프탈산(Dibutyl phthalate), 디옥틸프탈산(Dioctyl phthalate), 사이클로헥사논(Cyclohexanone) 등을 사용할 수 있으며, 바람직하게는 감마-부티로락톤을 사용하는 것이 좋다. In the present invention, the polyvinylidene fluoride polymer forming the hollow fiber membrane may have a weight average molecular weight of 100,000 to 700,000,000 daltons, or may be composed of a mixture of two or more species. Examples of the poor solvent in the production process of the present invention include gamma-butyrolactone, dimethyl phthalate, dibutyl phthalate, dioctyl phthalate, cyclohexanone, And the like, and it is preferable to use gamma-butyrolactone.
첨가제는 중공사막 내에 효과적인 기공 형성을 위한 것으로, 첨가제의 구체적인 예로는 중량평균분자량 15,000달톤 내지 90,000달톤의 폴리비닐피롤리돈, 중량평균분자량이 200 내지 20,000 달톤의 폴리에틸렌글리콜, 폴리비닐알콜, 및 무수말레인산, 계면활성제 등 물에 쉽게 용해되는 친수성 고분자 혹은 유기물로서 단독 혹은 2종이상 혼합물로서 폴리비닐리덴플루오라이드 고분자 용액에 첨가하여 사용할 수 있으며, 바람직하게는 폴리비닐피롤리돈을 사용하는 것이 좋다.Specific examples of the additive include polyvinyl pyrrolidone having a weight average molecular weight of 15,000 daltons to 90,000 daltons, polyethylene glycol having a weight average molecular weight of 200 to 20,000 daltons, polyvinyl alcohol, and anhydrous Maleic acid, and a surfactant. The hydrophilic polymer may be used alone or in admixture of two or more. The hydrophilic polymer may be added to the polyvinylidene fluoride polymer solution, preferably polyvinyl pyrrolidone.
본 발명에서 지지층 형성용 고분자용액은 120 내지 200 ℃에서 제조되는 것이 바람직하고, 또한 용액 중에 존재하는 기포를 제거하기 위하여 반드시 탈포공정으로 거쳐야 한다. 일반적으로 120 ℃ 이하의 온도에서 고화되어 중공사막을 형성하거나, 120 ℃ 이하인 비용매와의 접촉시 상분리에 의하여 중공사 분리막이 형성된다. 따라서, 폴리비닐리덴플루오라이드 중공사막의 제조를 위해 적어도 120 ℃ 이상, 바람직하게는 130 내지 180 ℃의 온도를 유지하는 방사 노즐을 통해 고분자용액을 응고액으로 토출시키는 것이 바람직하다. In the present invention, the polymer solution for forming the support layer is preferably prepared at 120 to 200 ° C and must be subjected to a defoaming process in order to remove bubbles present in the solution. Generally, a hollow fiber membrane is formed by solidification at a temperature of 120 ° C or less, or a phase separation at the time of contact with a non-solvent of 120 ° C or lower. Therefore, in order to produce the polyvinylidene fluoride hollow fiber membrane, it is preferable to discharge the polymer solution as a coagulating solution through a spinning nozzle maintaining a temperature of at least 120 ° C, preferably 130 to 180 ° C.
코팅층을 형성하는 고분자 용액의 제조공정 ; A process for preparing a polymer solution for forming a coating layer ;
본 발명의 일 구현예에 따른 비대칭성 중공사막의 제조방법에 있어서, 코팅층을 형성하는 고분자 용액은 폴리비닐리덴플로라이드, 양용매, 빈용매 및 첨가제를 포함한다. 이때 각 성분의 함량비는 폴리비닐리덴플로라이드 10~20 중량%, 양용매 40~70 중량%, 빈용매 10~40 중량%, 첨가제 0.1~10 중량%를 사용하는 것이 바람직하다.In the method of manufacturing an asymmetric hollow fiber membrane according to an embodiment of the present invention, the polymer solution forming the coating layer includes polyvinylidene fluoride, a good solvent, a poor solvent, and an additive. In this case, the content ratio of each component is preferably 10 to 20% by weight of polyvinylidene fluoride, 40 to 70% by weight of a good solvent, 10 to 40% by weight of a poor solvent, and 0.1 to 10% by weight of an additive.
본 발명의 제조방법에서 양용매로는 메틸피롤리돈(N,N-methyl-2-pyrrolidone), 디메틸술폭시드(Dimethylsulfoxide), 디메틸아세트아미드(Dimethylacetamide), 디메틸포름아미드(Dimethylformamide), 아세톤(Acetone) 등을 사용할 수 있으나, 바람직하게는 디메틸아세트아미드를 사용하는 것이 좋다. 빈용매에 대하여는 전술한 바와 같다.In the production method of the present invention, examples of suitable solvents include N, N-methyl-2-pyrrolidone, dimethylsulfoxide, dimethylacetamide, dimethylformamide, ), And the like can be used, but it is preferable to use dimethylacetamide. The poor solvent is as described above.
코팅층을 형성하는 고분자 용액은 첨가제로 폴리비닐피롤리돈 0.1~5 중량%, 아세틸레이티드메틸셀룰로오스 0.1~5 중량%를 포함하는 것이 바람직하다. 첨가제로 폴리비닐피롤리돈은 중공사막 내의 기공형성을 위해 사용되며, 특히 첨가제로 셀룰로오스 아세테이트 계통의 아세틸레이티드 메틸셀룰로오스를 첨가함으로써 소수성 중공사막인 폴리비닐리덴플로라이드(PVDF)계 중공사막의 친수성을 도입하는 것이 바람직하다.
The polymer solution forming the coating layer preferably contains 0.1 to 5% by weight of polyvinylpyrrolidone and 0.1 to 5% by weight of acetylated methylcellulose as an additive. As an additive, polyvinylpyrrolidone is used for forming pores in the hollow fiber membrane. Particularly, by adding acetylated methyl cellulose of the cellulose acetate system as an additive, the hydrophilic hollow fiber membrane of polyvinylidene fluoride (PVDF) Is preferably introduced.
중공형성제Hollow formers 제조공정; Manufacture process;
중공형성제는 비용매로서 물 또는 에틸렌글리콜을 주로 사용하고, 혼합시 혼합 양용매로서 디메틸 피롤리돈 혹은 디메틸아세테이트, 디메틸포름아미드, 디메틸설퍼옥사이드 등을 상온에서 비용매에 대한 양용매의 비를 2대 8 내지 8대 2로 상온에서 제조하여 탈포하고, 삼중방사노즐로 이송시 온도는 1 내지 80 ℃를 유지한다.
The hollow formers are prepared by dissolving dimethylpyrrolidone, dimethyl acetate, dimethylformamide, dimethylsulfoxide and the like as a non-solvent in water or ethylene glycol as a non-solvent, and using a ratio of good solvent to non-solvent at room temperature 2 to 8 to 8 to 2 at normal temperature and defoamed, and the temperature is maintained at 1 to 80 ° C when it is transferred to the triple spinning nozzle.
중공사막의 제조;Preparation of hollow fiber membranes;
본 발명에서는 상기에서 제조된 지지층을 형성하는 고분자 용액, 코팅층을 형성하는 고분자 용액 및 중공형성제를 삼중 구금을 이용하여 응고액으로 동시에 토출하여 구상 구조의 지지층 및 다수의 기공을 포함하는 코팅층을 갖는 중공사 막을 제조한다. 이때, 상중 구금의 내부 노즐로는 중공형성제를 토출시키고, 외부 노즐로는 코팅층을 형성하는 고분자 용액을 토출시키며, 내부와 외부 사이의 노즐로는 지지층을 형성하는 고분자 용액을 토출시키게 된다.In the present invention, the polymer solution forming the support layer, the polymer solution forming the coating layer, and the hollowing agent are simultaneously discharged into the coagulating solution by using the triple sheathing to have a support layer of a spherical structure and a coating layer containing a plurality of pores A hollow fiber membrane is prepared. At this time, the polymer solution for discharging the hollow polymer is discharged from the inner nozzle of the upper nozzle, the polymer solution for forming the coating layer is discharged from the outer nozzle, and the polymer solution for forming the supporting layer is discharged by the nozzle between the inside and the outside.
본 발명에서 사용하는 응고액은 비용매인 순수한 물 또는 일정량의 양용매를 함유한 비용매로 구성되며, 방사용액이 방사되면서 내부에서 접촉하는 중공형성제에 의해 내부에는 거대 기공을 갖는 내부 표면이 형성되기 시작한다.The coagulating solution used in the present invention is composed of a non-solvent containing a non-solvent such as pure water or a certain amount of a good solvent, and an inner surface having macropores is formed therein .
이와 같이 본 발명에 따른 비대칭성 중공사막의 제조방법은 지지층은 TIPS를 이용하고 코팅층은 NIPS를 이용하여 상분리를 시킴으로써, 고강도, 고투수성의 기공제어가 용이한 중공사막을 제막할 수 있다. 특히 삼중 구금을 통해 지지층과 코팅층 용액을 동시에 방사함으로써 중공사를 제막한 후에도 균일한 두께를 지니고 코팅층이 박리가 되지 않는 비대칭성 중공사막을 제조할 수 있게 된다.
As described above, the asymmetric hollow fiber membrane according to the present invention can form a hollow fiber membrane which is easy to control pores with high strength and high water permeability by using TIPS for the support layer and phase separation using NIPS. In particular, it is possible to produce an asymmetric hollow fiber membrane having a uniform thickness even after the hollow fiber membrane is formed by spinning the support layer and the coating layer solution simultaneously through the triple inserting process, and the coating layer is not peeled off.
세척과정;Washing process;
또한, 본 발명에서는 응고액으로부터 대기중으로 이송된 중공사막의 막내외에 잔존하는 용매를 포함한 유기물을 제거하기 위해 세척과정을 더욱 포함할 수 있다. 세척액으로 물의 사용이 바람직하며, 세척시간은 특별히 한정되지는 않으나, 적어도 1일 이상, 5일 이하가 바람직하다.
In addition, the present invention may further include a washing process to remove organic matter including solvent remaining in the membrane of the hollow fiber membrane transferred from the coagulating solution to the atmosphere. The use of water as a washing solution is preferred, and the washing time is not particularly limited, but is preferably at least 1 day and at most 5 days.
본 발명의 또 하나의 양상은, 상기와 같은 본 발명의 방법에 의해 제조되는 비대칭성 중공사막에 관한 것으로, 도 1은 본 발명의 방법에 의해 제조된 비대칭성 중공사막의 전자현미경 사진이다. Another aspect of the present invention relates to an asymmetric hollow fiber membrane produced by the method of the present invention as described above, wherein FIG. 1 is an electron micrograph of an asymmetric hollow fiber membrane produced by the method of the present invention.
본 발명의 일 구현예에 따른 상기 비대칭성 중공사막은 내부 지지층과 외부 코팅층의 중공사로 이루어지며, 상기 지지층은 평균직경 0.1 내지 5 ㎛ 범위의 구상형 고형분으로 이루어진 구상 구조의 층으로 이루어진다. 또한 상기 코팅층은 0.01 내지 0.1 ㎛ 범위의 크기를 갖는 다수의 기공으로 이루어지며, 그 두께가 30 내지 100 ㎛ 범위인 것이 바람직하다.The asymmetric hollow fiber membrane according to one embodiment of the present invention is composed of an inner support layer and a hollow fiber of an outer coating layer, and the support layer is formed of a spherical structure layer having a spherical solid component with an average diameter ranging from 0.1 to 5 μm. The coating layer is formed of a plurality of pores having a size ranging from 0.01 to 0.1 mu m, and preferably has a thickness ranging from 30 to 100 mu m.
본 발명에 따른 비대칭성 중공사막은 고투수성 및 고배제율을 가지면서 고강도를 유지하고 있어, 정수처리용 분리막 모듈, 중수처리용 분리막 모듈, 생물막 반응기용 침지형 분리막 모듈, 화학적 혼합물 분리용 모듈, 해수담수화용 전처리 분리막 모듈 등 다양하게 사용할 수 있으며, 높은 경제성과 처리 성능을 나타내면서 장기간 사용에도 변형이나 열화가 발생하지 않으므로, 차세대 고효율 분리공정에 적용하는 것이 가능하다.
The asymmetric hollow fiber membrane according to the present invention maintains high strength while having high water permeability and high rejection ratio, and it can be used as a separation membrane module for water treatment, a separation membrane module for heavy water treatment, an immersion membrane module for biofilm reactor, A pretreatment membrane module for desalination, and the like, and exhibits high economic efficiency and processing performance, and does not cause deformation or deterioration even in long-term use. Therefore, it can be applied to a next-generation high-efficiency separation process.
이하에서 실시예를 통하여 본 발명을 구체적으로 설명하기로 한다. 그러나 하기의 실시예는 오로지 본 발명을 구체적으로 설명하기 위한 것으로 이들 실시예에 의해 본 발명의 범위를 한정하는 것은 아니다.
Hereinafter, the present invention will be described in detail by way of examples. However, the following examples are for illustrative purposes only and are not intended to limit the scope of the present invention.
실시예Example
폴리불화비닐리덴 비대칭 중공사막을 제조하기 위하여, 열유도 상분리법을 이용하여 지지층을 제조하고, 비용매 상분리법을 이용하여 코팅층을 제조하는데 있어서,In order to produce a polyvinylidene asymmetric hollow fiber membrane, a support layer is prepared by a heat-induced phase separation method, and a coating layer is prepared using a non-solvent separation method,
상기 지지층은 빈용매인 감마-부티로락톤 55 중량%를 용해조에 장입하고 섭씨 50도로 가온한 후, 유기 첨가제인 무게 평균분자량이 19,000 달톤인 폴리비닐피롤리돈을 3 중량%를 첨가하여 섭씨 150도까지 가온한 후 42 중량%의 중량 평균 분자량 440,000 달톤인 폴리불화비닐리덴 고분자를 서서히 첨가한 후 섭씨 150도까지 승온하여 균일한 방사 용액을 제조하였다. The supporting layer was prepared by charging 55% by weight of gamma-butyrolactone, which is a poor solvent, into a dissolution tank, heating the mixture to 50 DEG C, adding 3% by weight of polyvinylpyrrolidone having a weight average molecular weight of 19,000 daltons as an organic additive, After the temperature was elevated, a polyvinylidene fluoride polymer having a weight average molecular weight of 440,000 daltons of 42 wt% was slowly added thereto, and the temperature was raised to 150 ° C. to prepare a uniform spinning solution.
상기 코팅층은 양용매인 디메틸아세트아마이드 35 중량%와 빈용매인 감마부티로락톤 40 중량%를 용해조에 장입하여 교반한 후, 첨가제로 폴리비닐피롤리돈 9 중량%와 및 아세틸레이티드메틸셀룰로오스 1 중량%를 첨가하여 60 ℃까지 가온한 후 15 중량%의 폴리불화비닐리덴 고분자를 서서히 첨가하여 방사용액을 제조하였다The coating layer was prepared by charging 35% by weight of dimethylacetamide and 40% by weight of gamma-butyrolactone, which are poor solvents, into a dissolution tank, stirring the mixture, adding 9% by weight of polyvinylpyrrolidone and 1% by weight of acetylated methylcellulose %, And the mixture was heated to 60 DEG C, and 15 wt% polyvinylidene fluoride polymer was gradually added to prepare a spinning solution
이어서 지지층 형성용 방사용액은 150 ℃의 삼중 구금의 중간노즐로 흘려보내고, 내부에는 디메틸아세테이트와 에틸렌클리콜이 6대 4로 혼합된 상온의 중공형성제를 흘려서 중공이 형성되도록 하였으며, 바깥으로는 코팅층 형성용 방사용액을 5 ℃로 흘려보냈다. 상기 세 용액은 모두 섭씨 5도의 물로 이루어진 응고조로 방사되어 최종적으로 고화되었다. Subsequently, the spinning solution for forming the support layer was flowed into a middle nozzle of a triple cage at 150 ° C, and a hollow forming agent mixed with dimethyl acetate and ethylene glycol in an amount of 6 to 4 was flowed to form a hollow. The spinning solution for forming the coating layer was flowed to 5 캜. All three solutions were spun into a coagulation bath consisting of water at 5 degrees Celsius and finally solidified.
제조된 중공사막은 내경 0.7 밀리미터이고 외부직경이 1.3 밀리미터였으며, 인장강도가 단위 중공사막당 1000 그램이었고, 신도는 60 퍼센트였다. 50 킬로 파스칼의 막투과 압력 및 25 ℃에서 투과수 플럭스는 단위시간 단위면적당 800 리터였다. 100 나노미터의 폴리스티렌 입자의 저지율은 99 퍼센트였다.
The hollow fiber membrane produced had an inner diameter of 0.7 millimeters and an outer diameter of 1.3 millimeters. The tensile strength was 1000 grams per unit hollow fiber membrane and the elongation was 60 percent. The membrane permeation pressure at 50 kPa and the permeability flux at 25 캜 were 800 liters per unit time unit area. The 100 percent inhibition of polystyrene particles was 99 percent.
이상에서 본 발명의 바람직한 구현예를 들어 본 발명을 상세하게 설명하였으나 본 발명은 상술한 구현예에 한정되지 않으며, 본 발명의 기술적 사상의 범위 내에서 본 발명이 속하는 기술분야의 당업자에 의해 많은 변형이 가능함은 자명할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. This will be obvious.
Claims (9)
상기 방법은 삼중 구금의 내부 노즐로 중공형성제를 토출시키고, 외부 노즐로 코팅층을 형성하는 고분자 용액을 토출시키며, 내부와 외부 사이의 노즐로 지지층을 형성하는 고분자 용액을 토출시키되,
지지층이 열유도 상분리법(TIPS)에 의해 상분리가 일어나며, 코팅층이 비용매유도 상분리법(NIPS)에 의해 상분리가 일어나는 것을 특징으로 하는 비대칭성 중공사막의 제조방법. 1. A method for producing an asymmetric hollow fiber membrane using a triple-
The method comprises discharging a hollow forming agent through an inner nozzle of a triple nozzle, discharging a polymer solution forming a coating layer with an outer nozzle, discharging a polymer solution forming a supporting layer with a nozzle between the inside and the outside,
Wherein the support layer is phase-separated by a heat-induced phase separation method (TIPS), and the coating layer is phase-separated by a non-solvent-derived phase separation method (NIPS).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20120111853A KR101494053B1 (en) | 2012-10-09 | 2012-10-09 | Method for manufacturing asymmetric hollow fiber membrane and asymmetric hollow fiber membrane manufactured using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20120111853A KR101494053B1 (en) | 2012-10-09 | 2012-10-09 | Method for manufacturing asymmetric hollow fiber membrane and asymmetric hollow fiber membrane manufactured using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20140046638A KR20140046638A (en) | 2014-04-21 |
KR101494053B1 true KR101494053B1 (en) | 2015-02-17 |
Family
ID=50653514
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR20120111853A KR101494053B1 (en) | 2012-10-09 | 2012-10-09 | Method for manufacturing asymmetric hollow fiber membrane and asymmetric hollow fiber membrane manufactured using the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101494053B1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160052182A (en) * | 2014-11-04 | 2016-05-12 | 롯데케미칼 주식회사 | Porous hollow fiber and manufacturing method same |
CN106606932A (en) * | 2015-10-21 | 2017-05-03 | 华东理工大学 | Preparation method of low-cost control polyvinyl chloride (PVC) ultrafiltration membrane pore structure |
KR102399330B1 (en) * | 2016-02-16 | 2022-05-19 | 효성화학 주식회사 | Acetylated alkyl cellulose separation membrane and method for preparing the same |
KR101894077B1 (en) * | 2016-08-05 | 2018-09-04 | 한국화학연구원 | Polysulfone-based polymeric holleow fiber membrane with good selectivity |
KR101982909B1 (en) * | 2016-09-30 | 2019-05-27 | 롯데케미칼 주식회사 | Hollow fiber membrane and method for preparing the same |
KR102306426B1 (en) * | 2017-01-03 | 2021-09-30 | 효성화학 주식회사 | Composite porous membrane of acetylated alkyl cellulose and polyolefinketone |
US11110402B2 (en) * | 2017-09-01 | 2021-09-07 | Asahi Kasei Kabushik Kasha | Porous hollow fiber membrane, method for producing porous hollow fiber membrane and filtration method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0832295B2 (en) * | 1990-06-08 | 1996-03-29 | 株式会社クラレ | Method for producing composite hollow fiber membrane |
KR20100114808A (en) * | 2009-04-16 | 2010-10-26 | 주식회사 파라 | Method for asymmetric microporous hollow fiber membrane |
KR101026690B1 (en) * | 2010-02-25 | 2011-04-07 | 주식회사 디어포스 | Highly porous membrane using that and preparing method thereof |
-
2012
- 2012-10-09 KR KR20120111853A patent/KR101494053B1/en active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0832295B2 (en) * | 1990-06-08 | 1996-03-29 | 株式会社クラレ | Method for producing composite hollow fiber membrane |
KR20100114808A (en) * | 2009-04-16 | 2010-10-26 | 주식회사 파라 | Method for asymmetric microporous hollow fiber membrane |
KR101026690B1 (en) * | 2010-02-25 | 2011-04-07 | 주식회사 디어포스 | Highly porous membrane using that and preparing method thereof |
Also Published As
Publication number | Publication date |
---|---|
KR20140046638A (en) | 2014-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101494053B1 (en) | Method for manufacturing asymmetric hollow fiber membrane and asymmetric hollow fiber membrane manufactured using the same | |
KR101597829B1 (en) | Porous Membrane and Method for Manufacturing The Same | |
KR101026690B1 (en) | Highly porous membrane using that and preparing method thereof | |
KR101462939B1 (en) | Hydrophilic Polyvinylidene Fluoride Based Hollow Fiber Membrane and Preparing Method Thereof | |
KR20070113375A (en) | Asymmetric poly(vinylidene fluoride) hollow fiber membranes and methods to make membranes | |
KR101392943B1 (en) | Hollow fiber membrane for forward osmotic use, and method for manufacturing the same | |
KR101742134B1 (en) | Hollw fiber Membrane and Method for Manufacturing The Same | |
KR20090013643A (en) | Polyvinylidene difluoride hollow fiber membrane for water treatment and manufacturing method thereof | |
KR20180048692A (en) | Patent application title: PROCESS FOR PREPARING COATING FILM FOR COST-INDUCED PHASES AND METHOD FOR PRODUCING POROUS HYBRIDS | |
KR101738976B1 (en) | polyvinylidene fluoride hollow fiber membrane and manufacturing method thereof | |
KR20080057637A (en) | Method for manufacturing polyvinylidene fluoride hollow fiber membrane and hollow fiber membrane | |
US20130248441A1 (en) | Preparation method of hollow fiber membrane for water treatment using cellulose-based resin | |
KR101381080B1 (en) | Double layer hydrophilic hollow fiber membrane and its manufacturing method combined supported layer by Thermally Induced Phase Separation and active layer by Non-solvent Induced Phase Separation | |
KR101036312B1 (en) | Asymmetric Hollow Fiber Membranes and Preparation Thereof | |
KR20070113374A (en) | Porous poly(vinylidene fluoride) hollow fiber membranes composed of spherical particles containing polymeric nanofibers | |
KR101025755B1 (en) | Ultrafiltration membranes with improved water permeability and mechanical strength and manufacturing method thereof | |
KR20120077011A (en) | Water treatment membrane of poly(ethylenechlorotrifluoroethylene) and manufacturing method thereof | |
KR101475568B1 (en) | Method for manufacturing asymmetric hollow fiber membrane and asymmetric hollow fiber membrane manufactured using the same | |
KR101434166B1 (en) | Manufacturing method of highly efficient hollow fiber membranes and poor solvent for manufacturing hollow fiber | |
KR20070103187A (en) | Porous poly(vinylidene fluoride) hollow fiber membranes composed of both fibril and nodular structures | |
KR20070102011A (en) | Porous poly(vinylidene fluoride) hollow fiber membranes for high water permeance and methods to make membranes | |
KR101885255B1 (en) | Porous Membrane and Method for Manufacturing The Same | |
KR101380550B1 (en) | Pvdf porous hollow fiber membrane and manufacturing method thereof | |
KR20100121790A (en) | Polymer compound and membrane manufacturing method for mbr processing | |
KR101355017B1 (en) | Highly efficient hollow fiber membranes and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E90F | Notification of reason for final refusal | ||
E701 | Decision to grant or registration of patent right | ||
FPAY | Annual fee payment |
Payment date: 20180112 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20190115 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20200113 Year of fee payment: 6 |