Nothing Special   »   [go: up one dir, main page]

KR101240487B1 - 성체 포유동물 심근세포의 심장 줄기 세포로의 역분화 - Google Patents

성체 포유동물 심근세포의 심장 줄기 세포로의 역분화 Download PDF

Info

Publication number
KR101240487B1
KR101240487B1 KR1020097011233A KR20097011233A KR101240487B1 KR 101240487 B1 KR101240487 B1 KR 101240487B1 KR 1020097011233 A KR1020097011233 A KR 1020097011233A KR 20097011233 A KR20097011233 A KR 20097011233A KR 101240487 B1 KR101240487 B1 KR 101240487B1
Authority
KR
South Korea
Prior art keywords
cells
delete delete
mdc
cell
culture
Prior art date
Application number
KR1020097011233A
Other languages
English (en)
Other versions
KR20090085093A (ko
Inventor
에두아르도 매르반
Original Assignee
더 존스 홉킨스 유니버시티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 더 존스 홉킨스 유니버시티 filed Critical 더 존스 홉킨스 유니버시티
Publication of KR20090085093A publication Critical patent/KR20090085093A/ko
Application granted granted Critical
Publication of KR101240487B1 publication Critical patent/KR101240487B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/34Muscles; Smooth muscle cells; Heart; Cardiac stem cells; Myoblasts; Myocytes; Cardiomyocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0657Cardiomyocytes; Heart cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/115Basic fibroblast growth factor (bFGF, FGF-2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/15Transforming growth factor beta (TGF-β)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/13Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells
    • C12N2506/1315Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells from cardiomyocytes

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Rheumatology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Cardiology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Vascular Medicine (AREA)
  • Immunology (AREA)
  • Virology (AREA)
  • Epidemiology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Materials For Medical Uses (AREA)

Abstract

역분화는 분화된 세포가 극단적으로는 줄기성(stemness)을 포함한, 그들의 선조의 특성을 재획득하는 메카니즘이다. 본 발명자들은 성체 포유동물 심장으로부터 분리된 고도로-정제된 심근세포가 분열촉진물질-풍부 배지에서 배양되는 경우, 빠르게 역분화된다는 것을 발견했다. 그와 같은 근육세포는 세포 주기로 재진입하고, 증식하여, c-kit와 같은 줄기세포 표면 마커 및 GATA 및 NKx2.5를 포함하는 조기 심장 전사 인자(early cardiac transcription factor)를 발현하였다. 이 근육세포-유래 세포(MDC)는 근육세포 및 내피세포로 재분화될 수 있었다. 유력한 도그마와 대조적으로, 심근세포 역분화는 줄기세포 마커를 발현하고 다계통 분화(multilineage differentiation)를 할 수 있는 증식성 세포를 생성했다. 심근세포 역분화는 성체 심장에서 내인성 줄기 세포의 잠재적인 원천이다.
역분화, 근육세포-유래 세포(MDC), 줄기세포

Description

성체 포유동물 심근세포의 심장 줄기 세포로의 역분화{Dedifferentiation of adult mammalian cardiomyocytes into cardiac stem cells}
본 발명은 미국 정부로부터의 기금을 이용하여 이루어졌으며, 따라서, 미국 정부는 본 발명에 대해 일정 권리를 갖는다. 미국 국립 보건원(NIH)의 그랜트, HL083109를 이용하였다.
본 발명은 줄기 세포 및 줄기-유사 세포(stem-like cell) 분야에 관한 것이다. 특히, 본 발명은 재생 용도를 갖는 심장 세포에 관한 것이다.
포유동물 심장은 오랫동안 손상 후에 스스로 회복할 수 없는 고도로 분화된 기관으로 간주되었다. 심장이 그 자체의 줄기 세포의 풀(pool)을 포함한다는 최근의 인식이 심장 생물학과 치료학의 새 시대를 도래시켰다. 심장 줄기 세포(cardiac stem cell, CSC)는 다양한 줄기 세포 항원(예를 들면, c-kit, sca-1, isl-1, SSEA-1, ABCG2) 및 심장-특이적 마커(예를 들면, NKx2.5, GATA4, α-MHC)를 발현하고(Lyngbaek et al., 2007; Barile et al., 2007); 이식시, 그들은 손상된 심근의 재생에 기여하고 심장 기능을 개선시킨다. 그럼에도 불구하고, 심장 줄기 세포의 원천(source)에 관해서는 거의 알려지지 않았다. 현재까지 초점은 순환하는 혈액 풀(Yeh et al., 2003; Shyu et al., 2006)로부터의 이식 대비 내생 심장 기원, 예 를 들면, 배아 잔류물(embryonic remnant)이었다(Torella et al., 2006).
본 발명에서, 본 발명자들은 역분화(dedifferentiation)를 CSC의 또 다른 잠재적 원천으로 고려한다. 역분화는 분화된 세포의 표현형 및 기능을 변화시켜, 그들을 강화된 형성성(plasticity)를 갖는 그들의 선조에 더 가까워지게 할 수 있다. 예를 들면, 신경 능선(neural crest) 유래 색소 세포가 역분화되어 초기 신경 마커 유전자 Sox 10, FoxD3, Pax 및 Slug를 발현하는 다능성, 자가-증식성(multipotent, self-renewing) 전구세포가 되도록 재프로그램되고, 아교세포 및 근육섬유모세포를 생성할 수 있다(Real et al., 2006). 역분화는 식물에서 통상적인 현상이고, 담배 잎으로부터 유래된 식물 원형질체가 세포 주기로의 신호-의존적 재진입에 선행하는, 다분화능(pluripotentiality)을 부여하는 이행기(transitory phase)를 거치는 것으로 보고되었다(Zhao et al., 2001).
성체 심근세포에서, 역분화가 표현형 수준에서 집중적으로 연구되었다. 정상적인 근육세포에 비해, 역분화된 세포들은 생리학적으로 보다 "신생아적(neonatal)"이고, 형태학적으로 그들은 배양에서 평평하게 되고 펼쳐지며(spread), 증가된 직경 및 표면적을 갖는다(Ausma et al., 2001 ; Fredj et al., 2005). 근육원세포(sarcomeric) 구조가 소실되고, 근원섬유가 교란되고(Bird et al., 2003; Horackova and Byczko, 1997) 심장의 α-액티닌, α-MHC, α-MLC, 등의 발현이 크게 변화되었다(Benardeau et al., 1997b; Bird et al., 2003). 인 비트로 역분화에 유사한 현상이 또한 인 비보에서, 섬유화 심방(Rucker-Martin et al., 2002), 만성-허혈성 심근 및 심근 경색의 경계 영역에서 보고되었다(Dispersyn et al., 2002; Driesen et al., 2007). 그와 같은 역분화된 근육세포는 자가사멸성이 아니며 아마도 비정상적인 심근 스트레스(myocardinal stress)에 대한 적응을 반영한다(Dispersyn et al., 2002).
본 발명이 속하는 기술 분야에서 심장 질환의 치료를 위한 재생성 세포의 새로운 원천에 대한 지속적인 요구가 존재한다.
발명의 요약
본 발명의 일 구체예에 따르면, 심방 또는 심실 심장 조직으로부터 줄기 세포-유사 근육세포-유래 세포(stem-cell-like myocyte-derived cell, MDC)를 수득하는 방법이 제공된다. 세포 현탁액을 형성하기 위해 심방 또는 심실 심장 조직으로부터 세포가 분리된다. 상기 세포 현탁액은 세포 현탁액 내에서 근육세포의 비율을 증가시키기 위해 선택적으로 정제될 수 있다. 분열촉진물질(mitogen)을 포함한 배지에서 상기 세포들이 배양된다. 그에 의해, MDC를 포함하는 조성물이 형성된다.
일부 구체예에 따르면, 다수의 MDC 시료를 형성하기 위해 MDC를 포함하는 배지로부터 다양한 시점에 세포들이 채취된다. 하나 이상의 MDC 시료의 증식 능력(proliferative capacity)이 평가된다. 그 후, 하나 이상의 MDC 시료가 클론으로(clonally) 증식된다. c-kit, sca-1, MCRl, CD34, CD33, 알파-MHC, NKx2.5, GATA4, 및 CDl05로 구성된 군으로부터 선택된 하나 이상의 줄기세포 마커의 발현을 확인하기 위해 하나 이상의 상기 MDC 시료가 테스트된다.
심장 줄기 세포-유사 세포의 분리된 제제(preparation)가 또한 본 발명에 의해 제공된다. 상기 세포들은 배양에서 증식되고 c-kit, NKx2.5, 및 GATA4로 구성된 군으로부터 선택된 마커를 발현한다. 상기 세포들은 성체 심장 심방 근육세포 또는 심실 근육세포로부터 유래될 수 있다.
본 명세서의 검토 후 본 발명이 속하는 기술 분야의 당업자에게 자명할, 전술된 구체예 및 기타 구체예는 질환이 심장 조직을 손상시킨 후 심장 근육을 재생시키는 방법 및 수단을 당해 기술 분야에 제공한다.
발명의 상세한 설명
본 발명자들은 성체 심방 및 심실 근육세포의 역분화를 연구하였다. 현저한 결과는 인 비트로 세포 배양 조건이 세포 주기 억제제 14-3-3η 및 p21의 하향-조절(down-regulation)과 연관된 역분화를 촉진할 수 있고, 역분화된 세포가 분열하여 c-kit, Nkx2.5 및 GATA4에 대해 양성인 심장 전구체 세포(cardiac precursor cell)를 생성할 수 있다는 것이다. 역분화된 성체 포유동물 심근세포는 심장 세포 재생 치료법에서 이용될 수 있는 세포의 풍부한 원천이다.
놀랍게도, 출원인들은 심방 또는 심실로부터 유래된, 성체 근육세포가 역분화되어 줄기-세포 유사 세포(MDC)가 될 수 있다는 것을 발견하였다. 줄기-세포 유사성(likeness)은 성체 근육세포는 발현하지 않는, c-Kit(RT-PCR에 의해 검출가능)의 발현에 반영된다. 이 MDC가 분화되는 경우, 그들은 c-Kit의 발현을 상실한다. 본 발명자들은 MDC에서 현재의 조건 하에 Sca-1의 발현을 검출하지 못했으나, Sca-1이 발현되는 조건이 발견될 수 있다. MDC의 하나의 구별되는 특징은 그들의 세포 크기이다. MDC(10-30 ㎛)는 정상적인 심장 줄기 세포(regular cardiac cell)(약 6-10 ㎛ 직경) 또는 골수 줄기 세포(6-8 ㎛)보다 크다.
근육 세포는 심장의 심방 또는 심실로부터 분리될 수 있다. 이들은 임의의 원천, 예를 들면, 생검(심내막심근생검 또는 수술 표본), 시체, 동물 공여체, 등으로부터 수득될 수 있다. 본 발명이 속하는 기술 분야에서 알려진 바와 같이, 조직은 근육세포를 생성하고 분리시키기 위해 기계적으로 침연(macerate)될 수 있다. 단백질분해효소(protease)와 같은 효소가 또한 조직으로부터 세포를 분리시키기 위해 이용될 수 있다. 성체 근육세포의 정제는 본 발명이 속하는 기술 분야에서 공지된 임의의 수단에 의해 이루어질 수 있다. 이들은 차등적 원심분리(differential centrifugation), 선택적 조건 하에서의 배양, 배양된 세포의 차등적 수집(differential harvesting), 및 구배 원심분리(gradient centrifugation)를 포함한다. 그러나, 정제는 선택적이다.
분리된 성체 심장 근육세포를 역분화시키기 위해, 분열촉진물질의 존재 하에 그들을 배양할 수 있다. 변화된 특성을 갖는 증식 세포(proliferating cell)가 초래된다. 임의의 분열촉진물질이 이용될 수 있다. 우혈청, 우태혈청, 인간 혈청, 돼지 혈청 및 양혈청을 포함한 혈청 내에 존재하는 분열촉진물질이 이용될 수 있다. 0.1 내지 20 % 혈청의 양, 예를 들면, 0.1 내지 1 %, 1 % 내지 5 %, 5 % 내지 10 %, 10 % 내지 15 %, 및 15 % 내지 20 %의 양이 이용될 수 있다. 그 양은 성장이 진행되면서 단계적으로 또는 구배로 증가될 수 있다. VEGF, HGV, IGF, FGF, EGF, GCSF, GMCSF, MCSF, CSF-1, 및 PDGF를 포함하나, 이에 한정되지 않는 정제된 성장 인자들이 분열촉진물질로 이용될 수 있다. 증식 마커, 증식 지수(proliferation index), 및 마커 발현의 변화가 3, 5, 7, 9, 11일 내에 관찰될 수 있다. 배양은 1 내지 60일 동안 수행될 수 있다. 높은 증식 지수를 유지하기 위해 배양물이 재접종될 수 있다. 초기 대비, 세포 주기 억제제 발현이 감소되고 증식 지수가 증가된다.
세포들이 배양되면서, 세포의 전기생리학도 변한다. 세포가 역분화되면서, 내향성 정류 포타슘 전류(inward rectifier potassium current)와 막 휴지 전위(membrane resting potential)가 감소되었다. 또한, 세포의 전기 용량(electrical capacitance)이 감소되었다.
심근세포는 임의의 포유동물로부터 분리될 수 있다. 이들은 설치류 및 영장류를 포함한다. 대표적인 동물 원천은 랫트, 마우스, 기니어 피그, 염소, 토끼, 돼지 및 인간을 포함한다. 심근세포는 연구용 동물, 시신, 또는 환자로부터 수득될 수 있다. 인간 심근세포가 이용되는 경우, 그들은 동일한 환자 또는 상이한 환자로 다시 전달될 수 있다. 그들은 역분화 전, 역분화 후, 및 재분화 후, 과정 중 임의의 단계에서 보관될 수 있다.
MDC는 분화하는 능력을 보인다. 예를 들면, 그들은 구(sphere)를 형성한다. 구들은 MDC보다 CD34 및 c-Kit를 덜 발현한다.
MDC는 재분화하는 능력을 갖기 때문에, 그들은 심장 질환을 갖는 환자 및 동물 또는 심장 질환 모델을 치료하기 위해 유용하다. 그와 같은 질환은 만성 심장 부전, 후벽 경색증(post myocardial infarction), 우심실 부전, 폐고혈압, 세포독성제(cytotoxic agent)에 의해 유도된 심실 부전, 및 항-신생물제(anti-neoplastic agent)에 의해 유도된 심실 부전을 포함한다. MDC는 카테터를 통한 관상동맥내 주입(intracoronary infusion), 카테터를 통한 심근세포내 주사(intramyocardial injection), 및 수술동안 심근세포내 주사를 포함하나, 이에 한정되지 않는, 본 발명이 속하는 기술 분야에서 공지된 수단에 의해 도입될 수 있다.
전술된 개시는 본 발명을 전반적으로 기재한다. 본 명세서에 개시된 모든 참조문헌들은 참조에 의해 명확하게 본 명세서에 포함된다. 본 명세서에서 예시 목적으로만 제공되고, 본 발명의 범위를 한정하도록 의도되지 않는 하기의 구체적인 실시예를 참조하여 보다 완전한 이해가 수득될 수 있다.
도 1A-1C. 심근세포의 역분화 및 증식. (도 1A)
정제된 심방 근육세포를 실험 절차(Experimental Procedures)에 기재된 바와 같이 배양하였다. 3.5일 후에, 부모 심방 근육세포(parent atrial myocyte)로부터 딸 세포가 발달하기 시작했다(bud); 화살표가 딸 세포를 표시한다. (도 1B). 정제된 심실 근육세포(삽입)는 약 3일 배양 후에 현저하게 역분화되고, 6일차에 분열하기 시작하여, 상당한 세포질 분열을 보여준다. 스케일 막대(Scale bar), 100 ㎛. (도 1C) 6일 동안의 심방 근육세포 배양의 증식의 예. 면역형광법(immunofluorescence)은 약한 cTnT를 발현하는 근육세포(적색; 적색 화살표)와 검출가능한 cTnT를 갖지 않는 새로 분열된 세포(큰 백색 화살표) 간의 분할 갭(cleavage gap)에서 오로라(Aurora) B(녹색)의 발현을 보여준다; 두 세포는 모두 항-BrdU 면역 염색에 대해 양성이다(백색). 핵은 DAPI(청색)로 염색된다. 스케일 막대, 20 ㎛.
도 2A-2C. 역분화된 근육세포의 세포 주기 진행 및 그 메카니즘. (도 2A, 도 2B) Ki67 (도 2A, 녹색) 및 히스톤 S3 포스포 SlO (H3P)(도 2A, His, 적색), 및 BrdU (도 2B, 적색)에 대한 항체에 의한 세포 주기 마커의 표현. 8일차(8d)에 심실 근육세포의 배양물의 대표적인 이미지가 도시된다. 도표화된 데이터(우측 패널)는 세포 비율로 Ki67, H3P, 및 BrdU 내포(incorporation)의 시간의 경과에 따른 표현을 보여준다. 심방 근육세포 대 심실 근육세포에 대한 * p<0.05; + p<0.001; 상이한 시점별 n=151~380개의 세포. (도 2C) 심실 근육세포(Vent)에서보다 훨씬 더 낮았던, 새롭게 분리된(Ctl) 심방 근육세포(Atr)에서 14-3-3(좌측), 및 p21과 p53(우측)의 발현에 대한 형광 강도의 평균 데이터; 5일 배양 후에 양자는 모두 유의성있게 감소되었다. Ctl 에 대해 * p<0.01; Ctl Atr에 대해 +p<0.01.
Fig 3A-3C. 근육세포-유래 세포(Myocyte-Derived Cell: MDC)는 심장 줄기세포 마커를 발현한다. (도 3A) 예시 이미지는 연속 배양에서 작은 상 밝은 세포(small phase bright cell)(MDC)의 집단이 기니어 피그 심방(Example images (MDC의 1차 회수 후 a, 1O일 배양물; b, 4일 배양물), 랫트 심방(c, 9일 배양물) 및 심실(d, 14일 배양물)로부터 분리된 근육세포로부터 유래된다는 것을 보여준다. (도 3B) 새로 채취된 MDC(a) 또는 18시간 동안 플레이팅(plating)된 MDC(b)에서 c-kit의 발현; (c) 이미지는 c-kit (녹색), CD34(백색) 및 cTnT(적색)을 발현하는 이질적인 MDC를 보여준다; (d) MDC의 채취 후에, 배양층 세포(culture layer cell)를 c-kit-PE (적색)와 인큐베이션시켰고, 수집되는 MDC 집단 주위에 인접하게 위치한 세포에서 강한 c-kit 염색을 보였다. (도3C) 줄기 세포 및 심장 마커의 RT-PCR 증폭. H, 심장 조직(heart tissue); BM, 골수 세포(bone marrow cells); A.P., 정제된 심방 근육세포; MDC, 근육세포-유래 세포; Sp, MDC로부터 형성된 구(sphere formed from MDC).
도 4A-D. MDC의 재-분화. (도 4A) MDC로부터 형성된 구는 배양 층(a)에 느슨하게 부착되거나 또는 분리되어 현탁액이 되고, 궁극적으로(2-5일) 저절로 박동된다(beat). MDC와 구 모두 수집되고 추가적인 테스트를 위해 배양될 수 있다, (b) 새로 수집된 MDC 구; (c) 배양 용기 상에 평평화된(flattened) MDC 구 및 플레이팅 3시간 후 구로부터 떨어져 나온(crawled off) 세포. (d) 근육세포 배양물로부터 수집 18시간 후 MDC. 랫트 근육세포 배양물이 도시된다. (도 4B) 구(좌측) 및 구로부터 탈리된 세포(cell off sphere)(우측)에서 c-kit 및 심장 α-MHC의 발현을 보여주는 면역조직화학적 테스트의 예시 이미지. (도 4C) 구에서 Cx43(좌측) 및 CD31(우측)의 발현. (도 4D) 3일차에 심장 α-MHC 프로모터에 의해 구동되는 eGFP를 코딩하는 복제-결함(replication-defective) 렌티바이러스에 의해 형질도입된 구에서 녹색 형광.
도 5A-5B(Sl). 근육세포 제제(myocyte preparation)의 순도와 근육세포 역분화. (도 5A) 정제된 심방(Atr) 또는 심실(Vent) 근육세포에서 심장 α-MHC, CD90, CD34, CD31 또는 CD90 (모두 컬러-코딩됨)에 대한 면역세포화학적 테스트가 도시되며, 이는 제제가 심근세포에 대해 매우 순도가 높다는 것을 보여준다; (도 5B) cTnT의 상당히 더 낮은 발현을 보여주는, 기니어 피그 근육세포 역분화의 시간-경 과 추적(time-lapse tracking).
도 6A-6D(S2). 역분화된 근육세포와 근육세포-유래 세포(MDC)의 전기생리학(MDC).(도 6A) 신선한 근육세포(Ctl) 및 4일차 또는 7일 배양 심장 근육세포 및 MDC에서 내향성 정류 포타슘 전류(inward rfectifier potassium current))(IK1)를 기록하는 실시예; (도 6B) 신선한 또는 배양된 근육세포 또는 MDC에서 IK1의 I-V 관계. 괄호 안의 숫자는 세포 갯수를 나타낸다. * p<0.05. (도 6C) 휴지 막 전위(Resting membrane potential: RMP); 모두 대비 Ctl에 대해 p<0.001. (도 6D) 전기용량(capacitance)이 세포 크기를 측정하는 수단이다.
도 7A(a-d)-7B(a-c).(S3) 심근세포의 유사세포분열 및 세포질분열.
(도 8A-8C)(S4). 근육세포 배양물의 1차 합류점(1st confluent) 도달 시간(도 8A), MDC 직경(도 8B), 및 SP 박동 시간(도 8C).
도 9 (S5). 기타 전사체(transcript)의 RT-PCR 검출. 랫트 세포의 다른 마커의 RT-PCR 증폭. M, DNA 래더; H, 심장; BM, 골수; VS, 대동맥; AP, 정제된 심방 근육세포; VP, 정제된 심실 근육세포; MDC, 근육세포-유래 세포; 구(sphere), MDC로부터 형성된 구.
실시예 1- 역분화된 심근세포는 세포 주기에 재진입하고 증식한다.
본 발명자들은 복수의 차등적 원심분리 및 퍼콜(Percoll) 구배 분리 단계를 이용하여 성체 랫트, 기니어 피그 또는 마우스의 심장으로부터 효소에 의해 분리 된(enzymatically-separated) 심근세포를 정제하였다. 형태(도 1), 면역 반응성(도 S1A) 및 RT-PCR(도 3, 도 S5)의 테스트가 분리된 심근세포의 순도를 확인했다. 심방 근육세포들은 배양을 위해 플레이팅되는 경우 다양한 형태를 가짐에도 불구하고, 시각적으로, 일차 세포들(primary cell)은 균일하게 크고 횡근을 갖는(striated) 것으로 보였다; 보다 중요하게는, 섬유모세포, 내피 세포 또는 줄기 세포에 특징적인 단백질 또는 전사체의 검출가능한 발현이 없다. 배양 내의 개별적인 세포들을 추적하기 위해, 심방 및 심실 근육세포를 그리드-배양 디쉬(grid-culture dish) 또는 커버슬립 상에서 저밀도로 배양시켰다. 플레이팅 직후에, 근육세포들은 역분화되고 횡문(striation)을 상실하고, 둥글어지며, 종종 자발적으로 박동했다. 면역세포화학적 연구는 배양 3일 후에, 근육세포들이 역분화되고 α-MHC 또는 cTnT의 발현이 유의성 있게 감소되었다(도 S1B)는 것을 보여주었다. 심근세포의 특징인 내향성 정류 포타슘 전류(IK1) 및 막 휴지기 전위가 역분화된 근육세포에서 크게 감소되었다. 세포 크기를 측정하는 수단인 전기 용량(electrical capacitance)(Zhang et al., 2003)도 배양이 연장되고 역분화 및 증식이 진행되면서 훨씬 더 작았다(도 S2).
이와 같은 오랫동안 인식되어온 형태적 및 생리학적 변화 외에, 본 발명자들은 플레이팅된 근육세포가 배양액 내에서 3 내지 7일 이내에 분열하기 시작해서 딸세포를 생성한다는 것을 발견했다. 세포 간의 분할 갭(cleavage gap)에서 오로라(aurora) B의 발현은 거의 검출되지 않는 cTnT를 갖는, 새로 분열된 BrdU-양성 세포들은 통상적으로 cTnT를 발현하는 심근세포로부터 유래한다(도 1)는 것을 나타낸다. 또한, 심방 근육세포는 심실 근육세포보다 더 큰 성형성(plasticity)를 보이고 보다 조기에 딸세포를 생성했으나, 그 현상은 각 챔버로부터의 근육세포에서 전반적으로 유사하다. 새로운 딸 세포를 발달시키는(bud) 역분화된 둥근 근육세포의 서브그룹은 지속적으로 자발적인 수축을 보였다. 다른 경우에, 평평화되고 퍼지기 전에 원형화된(rounded) 세포들은 자발적인 박동을 보이지 않았으나, 밝은 상의 딸세포(phase-bright daughter cell)를 생성했다.
역분화 메카니즘이 양서류 및 제브라피쉬(zebrafish)로부터 유래된 근육세포에서 집중적으로 연구되어 보다 많이 규명되었으나(Straube and Tanaka, 2006b; Lien et al., 2006; Ahuja et al., 2007), 포유동물의 심근세포에서는 거의 이해되지 못하고 있다(Engel et al., 2005; Driesen et al., 2006; Montessuit et al., 2004). 본 발명자들은 활성 세포 주기 마커인 Ki67, 히스톤 H3 및 BrdU 내포(incorpoation)를 면역세포화학법에 의해 연구하는 것에 의해 이 세포 배양 모델에서 세포 주기 진행을 분석하였다. Ki-67은 활성 세포 주기의 모든 단계에서 증식 세포에서 발현되는 세포 증식을 위한 필수 분자(vital molecule)이나, 휴지기(G0 기) 세포에는 존재하지 않는다. 배양 2일 후에, 각각 심방 근육세포 및 심실 근육세포의 11 ± 8 % 및 6 ± 2 %가 활성 세포 주기에 재-진입하고 Ki-67을 점진적으로 증가된 수준으로 발현하여, 각각 심방 근육세포 및 심실 근육세포에 대해 80 ± 11.9 % 및 46 ± 11%에 도달하였다(p<0.001)(도 2A). 본 발명자들은 세포를 다양한 기간 동안 BrdU와 인큐베이션시키는 것에 의해 S기에 진입하는 역분화된 근육세포 의 비율을 평가하였다. S10에서 포스포 히스톤 H3(H3P)에 대한 항체를 이용하여 M기의 세포들을 검출하였다. 본 발명자들은 BrdU- 및 H3P-양성 세포들의 수의 점진적인 증가를 발견했고, 그 수는 약 1주일차에 최대값에 도달했다. 흥미롭게도, BrdU- 및 H3P-양성 세포의 비율은 항상 심실 근육세포의 배양에서보다 심방 근육세포의 배양에서 더 높았다(도 2A, 2B). 세포질 분열 외에, 본 발명자들은 후기 및 말기의 세포를 발견했고(도 S3), 이는 역분화 근육세포의 진행을 보여주었다.
세포 주기 진행 및 심방 근육세포와 심실 근육세포 간의 차이를 유발하는 기초 메카니즘을 더 파악하기 위해, 본 발명자들은 세포 주기 진행에서 중요한 확인 조절자(checkpoint regulator)인 14-3-3(YWHAH), p21 및 p53과 같은 상관 인자(interrelated factor)의 발현을 5일 동안 배양된 세포의 면역세포화학적 검출에 의해 연구하였다(Ahuja et al., 2007). 음성 세포 주기 조절자 14-3-3η의 발현이 세포 주기 진행 및 혈청-유도 증식을 억제한다는 것이 확인되었다(Du et al., 2005; Yang et al., 2006). 예상되는 바와 같이, 심장에서 풍부한 이소형인 14-3-3의 발현(He et al., 2006)은 신선한(fresh) 심실 근육세포에서보다 새로 분리된 심방 근육세포에서 훨씬 더 낮았다. 또한, 두 종류의 세포 모두에서 세포 주기 진행의 보다 빠른 반응기인 5일 차에, 14-3-3η의 발현이 크게 감소되었다(도 2C). 세포 주기의 모든 단계에 관여되는 핵심 저해 인자(inhibitory factor) 및 14-3-3의 하류 표적(downstream target)인 p21 (WAFl/CIPl)(Li and Brooks, 1999)은 또한 배양된 역분화/증식 근육세포에서 상당히 감소되었다. 그의 내인성 수준(endogenous level)은 심방 근육세포에서보다 새로 분리된 심실 근육세포에서 61% 더 높았다. 또한, p53은 심실 근육세포에서보다 신선한 심방 근육세포에서 훨씬 더 낮은 수준으로 발현되고, 심방 근육세포에서 상당히 감소되었으나, 심실 근육세포에서는 그렇지 않았다. 종합하면, 데이터는 심방 근육세포에서 더 약한 저해성 신호는 그들의 더 빠르고 더 용이한 세포 주기 진행을 촉진하고 저해 인자의 감소는 세포가 세포 주기 진행 및 증식으로 이행되게 한다는 것을 시사한다.
실시예 2- 근육세포-유래 세포들은 심장 줄기 세포 마커를 보인다.
정상적인 밀도로 배양된 근육세포는 1 내지 2주 후에 합류상태에 도달했고(confluent)(도 S4A) 그 후, 느슨하게-부착하는 밝은 상의 원형 세포(loosely-adherent phase-bright round cell)의 클러스터가 역분화/증식 세포의 단일층 위에 나타났다(도 3). 크기가 불균일한 것으로 보이는 이 세포들(도 4B)은 트립신 처리(trypsinization) 없이 가볍게 피펫팅하는 것에 의해 채취될 수 있고 근육세포-유래 세포(myocyte-derived cell: MDC)로 지칭된다.
역분화, 예를 들면, 색소 세포에서 역분화는 줄기 세포 및 조직 재생에 기여하는 것으로 입증되었다(Real et al., 2006). 본 발명자들은 형태학 및 전기생리학 적으로 심근세포와 구별되는 MDC가 심장 줄기 세포의 특징을 갖는지 여부에 의문을 가졌다(Smith et al., 2007; Boyle et al., 2006). 직접 및 간접 형광 면역 염색에 의해, 본 발명자들은 랫트 MDC가 실제로 줄기세포 마커인 c-kit 및 CD34를 발현하나, sca-1 또는 CD90은 거의 발현하지 않거나 발현하더라도 약하게 발현한다는 것을 발견했다(데이터는 표시되지 않음); 새로 채취된 MDC의 61 ± 19.7%는 c-kit에 양성이었다. 또한, MDC 클러스터의 영역에, c-kit 면역염색에 대해 강한 양성인 층의 세포들이 있어서(도 3B), MDC의 원천임을 나타냈다.
MDC에서 줄기세포 마커의 발현을 더 확인하기 위해, 본 발명자들은 상이한 전사체(transcript)의 발현을 테스트하기 위해 RT-PCR을 수행하였다. c-kit는 심장 조직, 골수 세포 및 MDC에서 발현되었다. 또한, 다른 심장 줄기세포 전사체 sca-1은 MDC에서 검출가능하지 않았고; 내피 전구체 마커(endothelial precursor marker) 유전자 CD34가 MDC에 존재했다. 심장 전사체 α-MHC, Nkx2.5, 및 GATA4는 모두 MDC, 심장 조직 및 정제된 근육세포에서도 검출되었다(도 3C; 도 S5).
실시예 3- 근육세포-유래 세포들은 재-분화된다.
MDC는 클러스터 세포들이 더 합류된 후 3-5일 후에 구(sphere)로 자가-조직( self-organize)되었다. 세포의 상태에 따라, 6-웰 배양 플레이트의 각 웰에 0 내지 4개의 구가 있었다. MDC 구는 배양 층에 느슨하게 부착되거나 또는 배지에 현탁되었고, 구 단계의 2-5일 내에 느린 자발적 활성(spontaneus activity)을 보였다(도 S4C). 반-부착성(semi-adherent) 구들은 가벼운 피펫팅에 의해 채취될 수 있었다. 반-부착성 구 또는 현탁된 구들은 피브로넥틴-코팅된 플레이트에 접종되었을 때 바닥에 평평화되었고, 구로부터 탈리된 세포들을 생성했고, 단일층(monolayer) 세포가 되면서 결국 박동을 중단했다(도 4A). 또한, 근육세포 배양은 3-4회의 MDC 또는 구의 채취를 제공할 수 있었다. 새로운 딸세포는 항상 이전의 MDC가 생성되었던 영역 주위에 다시 나타났다.
구에서, 대부분의 세포들은 α-MHC, 코넥신(connexin) 43 (Cx43), 및 CD31 면역염색에 대해 양성이었고, 일부는 c-kit에 대해 양성이었다. 구로부터 탈리된 일부 세포들은 또한 cTnT를 발현하고, 다른 세포들은 c-kit를 발현했다(도 4B). 심장 α-MHC 프로모터에 의해 구동되는 증강된 녹색 형광 단백질(enhanced green fluorescent protein: eGFP)을 코딩하는 복제-결함(replication-defective) 렌티바이러스에 의해 형질도입되었을 때, MDC 구는 자발적인 수축과 함께 3-5일 이내에 국소 녹색 형광(focal green florescence)을 보였다(도 4D). RT-PCR은 구에, c-kit의 더 약한 줄기세포 전사체 신호가 있었으나, 심장 전사체 α-MHC, Nkx2.5, 및 GAT A4의 보다 강한 신호가 있어서, 구 단계(sphere phase)에 진입할 때 MDC의 심장형성(cardiogenesis) 및 재-분화를 시사했다. 또한, MDC에 존재하는, 내피 전구체 마커 유전자 CD34는 구에서 감소되는 경향이 있었고; 내피 마커 CD31(PECAM-1)은 MDC 및 구 모두에서 발현되었다(도 5).
실시예 4- 실험 절차
심근세포의 분리, 정제 및 일차 배양(primary culture)
전술된 바와 유사한 프로토콜에 따라 Langendorff 장치 상에서 전체 심장의 효소에 의한 분해(enzymatic digestion)에 의해 성체 수컷 Wistar-Kyoto 랫트(4-8주, 70-120 g), Hartley 기니어 피그(3-5주, 300-380 g) 또는 C57BL/6 마우스(4-6주, 17-21 g)로부터 심근세포를 분리하였다(Zhang et al., 2006; Kizana et al., 2007). 헤파린처리된(heparinized) 동물을 소디움 펜토바르비탈에 의해 마취시켰 다(Ovation Pharmaceuticals Inc, Deerfield, IL). 심장을 신속하게 절제하고 압력 모니터링 장치에 연결된 Langendorff 장치에 탑재하기 전에 혈액을 제거하기 위해 얼음-냉각된 Tyrode 용액에서 세척하고, 순차적으로 하기의 4개의 산화된(oxygenated) 용액에 역행으로(retrogradely) 관류시켰다: 1.0 mM Ca2+ 함유 변형 Tyrode 용액(2분), Ca2+-불포함 Tyrode 용액(2-3분), Liberase Blendzyme 4 (Roche Molecular Biochemicals, Indianapolis, IN)로부터 제조된 콜라게나아제 0.2 Wunsch unit/ml를 함유한 Ca2+-불포함 Tyrode 용액(종 및 소화(digest) 조건에 따라 10-20분). 분해된(digested) 심방 및 심실을 떼어내고 Kruftbruhe (KB) 용액에서 잘게 다지고, 분해되지 않은 조직의 큰 조각을 제거하기 위해 200 ㎛ 나일론 메쉬를 통해 여과시켰다. 조직파편 및 비-심근세포(non-cardiomyocyte)를 제거하기 위해 분리된 세포를 KB 용액으로 세정하고 3회 동안 중력에 의해 가라앉게 하였다. 근육세포를 조직 파편 및 다른 종류의 세포들로부터 분리하기 위해, 20%, 40%, 및 70%의 퍼콜(Percoll)에 의해 형성된 퍼콜 구배의 상층(top layer) 위에 KB 용액에 재현탁된 세포들을 적재하였다. KB 용액에서 3회 세척한 후, 추가적인 실험을 위해 근육세포들을 KB 용액 또는 배양 배지에 재현탁시켰다. 변형 Tyrode 용액(Modified Tyrode's solution)은 NaCl 105, KCl 5.4, KH2PO4 0.6, NaH2PO4 0.6, NaHCO3 6, KHCO3 5, CaC12 1, MgCl2 1, HEPES 10, 글루코오스 5, 타우린 20 (mM)(NaOH에 의해 pH 7.35로 조정됨)을 함유했고, KB 용액은 KCl 20, KH2PO4 10, K-글루타메이트 70, MgCl2 1, 글루코오스 25, β-히드록시부티르산 10, 타우린 20, EGTA 0.5, HEPES 10, 및 0.1% 알부민(mM)(KOH에 의해 pH 7.25로 조정됨)을 포함했다.
정제된 근육세포를 110 mg/L 소디움 피루베이트, 0.1mM β-머캅토에탄올, 100 U/ml 페니실린, 100 ㎍/ml 스트렙토마이신, 및 5% FBS (Invitrogen)가 보충된 배지 199 (Invitrogen, Carlsbad, CA)에 재현탁시키고 라미닌-코팅된 6-웰 배양 플레이트 또는 100 mm 디쉬에서 죽은 세포 및 비-부착성 세포를 제거하기 위한 세척 전에 1시간 동안 37 ℃에서 심실 근육세포 및 심방 근육세포를 각각 6000 및 9000 세포/cm2의 정상적인 밀도로 배양하고, 1시간 배양 후에 한번 반복하였다. 배지에서 혈청 농도를 점진적으로 10% 및 20%까지 증가시켰다. 플레이팅의 제2일차 및 제3일차에, 죽은 세포를 제거하기 위해 배지를 교체하고, 약 5일 간격으로 부분적으로 교환하면서, 연장된 배양을 위해 유지시켰다.
세포 이미징 및 추적
역분화된 근육세포의 증식을 확인하기 위해, 세포들을 MDC 생성을 위한 정상적인 밀도의 배양 대비 보다 낮은 밀도로 플레이팅하였다. 라미닌으로 코팅된 수치 눈금-표시된(numeric grid-marked) 커버슬립(Bellco Biotechnology, Vineland, NJ)을 이용하여, 지속적인 분석을 위해 저속 촬영 현미경(time-lapse microscopy)(Nikon TE-2000E inverted microscope) 하에, 또는 일반적인 도립 현미경(inverted microscope)(Nikon TE-2000U) 하에 위상차 대물 렌즈(phase contrast objective)로 배양 동안 세포적 변화를 파악하고, 이미지를 Image Pro Plus (Media Cybernetics, Bethesda, MD) 프로그램을 갖춘 모노크롬 CCD 카메라(Q-Imaging, Surrey, BC, C anada)로 캡쳐하였다. 추적(tracking)의 종료시, 필요한 경우, 세포들을 대상으로 세포 주기 진행 및 줄기 세포와 관련된 마커의 분석을 수행하였다. 개인용 컴퓨터에 연결된 3CCD Color 비디오 카메라(Sony)를 이용하여 박동하는 세포 및 구의 실시간 이미지 및 비디오를 캡쳐하였다.
근육세포 유래 세포의 배양
배양 후 약 10일 내지 2주 차에, 느슨하게 부착하는 근육세포-유래 세포(MDC)를 1회용 트랜스퍼 피펫(transfer pippet)으로 3회 동안 가벼운 피펫팅에 의해 채취하였다. 세포들을 신선한 분리된 세포에서 마커를 검출하는 실험을 위해, 혈청-풍부(serum-rich) 근육세포 배양 배지와 동일한 배지에서 배양하였다. 대안적으로, 0.1mM β-머캅토에탄올, bFGF 0.1 ng/ml, TGF-β 1 ng/ml, 100 U/ml 페니실린, 100 ㎍/ml 스트렙토마이신, 및 10% FBS가 보충된 DMEM/F12인 MDC 배양 배지를 이용하여 95% 습도, 5% CO2, 37℃에서 세포들을 유지시켰다.
BrdU에 의한 근육세포의 표지화
면역세포화학적 분석(immunocytochemical assay) 전에 다양한 기간 동안 세포들에 3-브로모-2-데옥시우리딘(BrdU; 5 ㎛)을 부하(load)시켰다(Engel et al., 2005).
형광 면역세포화학(Fluorescent Immunocytochemistry)
배양물에서 면역형광을 이용하여 세포 표현형을 이전에 개시(Smith et al., 2007; Zhang et al., 2006)된 바와 유사하게 분석하였다. 줄기세포 마커의 발현을 테스트하기 위해, c-kit (CDl17) (Santa Cruz Biotechnology, Santa Cruz, CA) 또는 Oct-4 (Abeam, Cambridge, MA)에 대한 래빗 다중클론 항체, Sca-1 (Invitrogen)에 대한 마우스 단일클론 항체(mAb), Thy-1 (CD90)에 대한 염소 pAb를 일차 항체로 이용하였다. 심장 마커의 발현은 Abcam의 심장 특이적 α-MHC, Sigma의 α-actin의 마우스 mAb, 및 Invitrogen의 래빗 pAb Cx43 및 GATA4, Santa Cruz Biotechnologie, Inc의 염소 pAb Nkx2.5를 포함한 항체를 이용하여 테스트하였다. 세포 주기-특이적 분자에 대한 일차 항체는 하기를 포함했다: Ki67, Histone H3 (phosphor SlO) 및 항-브로모데옥시우리딘(BrdU)은 Abcam으로부터 수득했다. 항체의 특이성은 블록킹 펩티드 또는 대조 세포에 의해 확인하였다. 형광 접합을 갖는 당나귀 항-마우스, 항-래빗, 또는 항-염소 항체를 이차 항체로 이용하였다.
c-kit (BD Biosciences), Sca-1 (Invitrogen)에 대한 PE-접합된 마우스 mAb, 또는 FITC-접합 CD90 (Abcam)를 이용하여 새로 채취된 MDC에서 줄기세포 마커의 발현을 테스트하기 위해 직접 면역염색도 수행하였다.
MDC 구에서, 온-조직(whole-mount) 면역형광 기법을 이용하여 줄기세포 및 심장 마커를 검출하고 표준 및 Z-스택(stack) 공초점 레이저 스캔 현미경(LSM 510; Zeiss)으로 조사하였다. 위 양성(false positive) 또는 위 음성 염색을 피하기 위해 획득 조건(acquisition setting)을 최적화하였다. 이미지를 LSM 510 소프트웨어(software suite)에 의해 가공하였다.
RT-PCR
줄기 세포와 심장 마커의 mRNA 발현을 테스트하기 위해 역전사 중합효소 연쇄 반응(Reverse-transcription Polymerase Chain Reaction: RT-PCR)을 수행하였다. 랫트 심장 조직, 대퇴골로부터 분출된(flush) 골수 세포, 정제된 근육세포, MDC, 및 MDC 구로부터 전체 RNA를 추출하고, 상업적으로 입수가능한 키트(Qiagen, Valencia, CA)에 의해 1 단계 RT-PCR을 수행하였다. c-kit, sca-1, Oct 4, α-MHC, GATA4, 및 NKx2.5, β-actin을 위한 프라이머가 표 S1에 열거된다.
표 Sl. RT-PCR 검출을 위해 이용된 프라이머
Figure 112009032818735-pct00001
Figure 112009032818735-pct00002
통계값
데이터를 평균 ± 표준오차(SEM)로 표현하고, 그룹 간의 차이의 유의성을 조사하기 위해 paired 또는 un-paired Student t-검정을 이용하고, p<0.01인 경우 유의성 있게 상이한 것으로 간주하였다.
참조문헌
각 문헌의 개시는 명확하게 본 명세서에 포함된다.
Ahuja,P., Sdek,P., and MacLellan,W.R. (2007). Cardiac myocyte cell cycle control in development, disease, and regeneration. Physiol Rev. 87, 521-544.
Ausma,J., Litjens,N., Lenders,M.H., Duimel,H., Mast,F., Wouters,L., Ramaekers,F., Allessie,M., and Borgers,M. (2001). Time course of atrial fibrillation-induced cellular structural remodeling in atria of the goat. J. MoI. Cell Cardiol. 33, 2083-2094.
Barile,L., Chimenti,I., Gaetani,R., Forte,E., Miraldi,F., Frati,G., Messina,E., and Giacomello,A. (2007). Cardiac stem cells: isolation, expansion and experimental use for myocardial regeneration. Nat. Clin. Pract. Cardiovasc. Med. 4 Suppl 1, 59-514.
Beltrami,A.P., Urbanek,K., Kajstura,J., Yan,S.M., Finato,N., Bussani,R., Nadal-Ginard,B., Silvestri,F., Leri,A., Beltrami,C.A., and Anversa,P. (2001). Evidence that h㎛an cardiac myocytes divide after myocardial infarction. N. Engl. J. Med. 344, 1750-1757.
Benardeau,A., Hatem,S.N., Rucker-Martin,C, Tessier,S., Dinanian,S., Samuel,J.L., Coraboeuf,E., and Mercadier,J.J. (1997a). Primary culture of h㎛an atrial myocytes is associated with the appearance of structural and functional characteristics of immature myocardi㎛. J. MoI. Cell Cardiol. 29, 1307-1320.
Benardeau,A., Hatem,S.N., Rucker-Martin,C, Tessier,S., Dinanian,S., SamuelJ.L., Coraboeuf,E., and Mercadier,J.J. (1997b). Primary culture of h㎛an atrial myocytes is associated with the appearance of structural and functional characteristics of immature myocardi㎛. J. MoI. Cell Cardiol. 29, 1307-1320.
Bird,S.D., Doevendans,P.A., van Rooijen,M.A., Brutel,d.l.R., Hassink,R.J., Passier,R., and M㎛mery,C.L. (2003). The h㎛an adult cardiomyocyte phenotype. Cardiovasc. Res. 58, 423-434.
Boyle,A.J., Schulman,S.P., Hare,J.M., and Oettgen,P. (2006). Is stem cell therapy ready for patients? Stem Cell Therapy for Cardiac Repair. Ready for the Next Step. Circulation 114, 339-352.
Burton,P.B., Yacoub,M.H., and Barton,P.J. (1999). Cyclin-dependent kinase inhibitor expression in h㎛an heart failure. A comparison with fetal development. Eur. Heart J. 20, 604-611.
Chabner BA (1982). Cytosine arabinoside. In Pharmacologic Principles of Cancer Treatment, Chabner BA, ed. (Philadelphia, WB: Saunders Co.), pp. 387-401.
Darling,D.L., Yingling,J., and Wynshaw-Boris,A. (2005). Role of 14-3-3 proteins in eukaryotic signaling and development. Curr. Top. Dev. Biol. 68, 281-315. de Ia Fuente,R., Abad,J.L., Garcia-Castro,J., Fernandez-Miguel,G., Petriz,J., Rubio,D., Vicario-Abejon,C, Guillen,P., Gonzalez,M.A., and Bernad,A. (2004). Dedifferentiated adult articular chondrocytes: a population of h㎛an multipotent primitive cells. Exp. Cell Res. 297, 313-328.
Dispersyn,G.D., Geuens,E., Ver,D.L., Ramaekers,F.C, and Borgers,M. (2001). Adult rabbit cardiomyocytes undergo hibernation-like dedifferentiation when co-cultured with cardiac fibroblasts. Cardiovasc. Res. 57, 230-240.
Dispersyn,G.D., Mesotten,L., Meuris,B., Maes,A., Mortelmans,L., Flameng,W., RamaekerSjF., and Borgers,M. (2002). Dissociation of cardiomyocyte apoptosis and dedifferentiation in infarct border zones. Eur. Heart J. 23, 849-857.
Driesen,R.B., Dispersyn,G.D., Verheyen,F.K., van den Eijnde,S.M., Hofstra,L., Thone,F., Dijkstra,P., Debie,W., Borgers,M., and Ramaekers,F.C. (2005). Partial cell fusion: a newly recognized type of communication between dedifferentiating cardiomyocytes and fibroblasts. Cardiovasc. Res. 68, 37-46.
Driesen,R.B., Verheyen,F.K., Dijkstra,P., Thone,F., Cleutjens,J.P., Lenders,M.H., Ramaekers,F.C, and Borgers,M. (2007). Structural remodelling of cardiomyocytes in the border zone of infarcted rabbit heart. Mol. Cell Biochem.
Driesen,R.B., Verheyen,F.K., Dispersyn,G.D., Thone,F., Lenders,M.H., Ramaekers,F.C, and Borgers,M. (2006). Structural adaptation in adult rabbit ventricular myocytes: influence of dynamic physical interaction with fibroblasts. Cell Biochem. Biophys. 44, 119-128.
Du,J., Liao,W., Wang,Y., Han,C, and Zhang,Y. (2005). Inhibitory effect of 14-3-3 proteins on ser㎛-induced proliferation of cardiac fibroblasts. Eur. J. Cell Biol. 84, 843-852.
Engel,F.B., Schebesta,M., Duong,M.T., Lu,G., Ren,S., MadwedJ.B., Jiang,H., Wang,Y., and Keating,M.T. (2005). p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes. Genes Dev. 19, 1175-1187.
Engel,F.B., Schebesta,M., and Keating,M.T. (2006). Anillin localization defect in cardiomyocyte binucleation. J. Mol. Cell Cardiol. 41, 601-612.
Fredj,S., Bescond,J., Louault,C, and Potreau,D. (2005). Interactions between cardiac cells enhance cardiomyocyte hypertrophy and increase fibroblast proliferation. J. Cell Physiol 202, 891-899.
Gartel,A.L., Serfas,M.S., and Tyner,A.L. (1996). p21- negative regulator of the cell cycle. Proc. Soc. Exp. Biol. Med. 213, 138-149.
Gruh,I., Beilner,J., Blomer,U., Schmiedl,A., Schmidt-Richter,L, Kruse,M.L., Haverich,A., and Martin,U. (2006). No evidence of transdifferentiation of human endothelial progenitor cells into cardiomyocytes after coculture with neonatal rat cardiomyocytes. Circulation 113, 1326-1334.
He,M., Zhang,J., Shao,L., Huang,Q., Chen,J., Chen,H., Chen,X., Liu,D., and Luo,Z. (2006). Upregulation of 14-3-3 iso forms in acute rat myocardial injuries induced by burn and lipopolysaccharide. Clin. Exp. Pharmacol. Physiol 33, 374-380. Hermeking,H. and Benzinger,A. (2006). 14-3-3 proteins in cell cycle regulation. Semin. Cancer Biol, id, 183-192.
Horackova,M. and Byczko,Z. (1997). Differences in the structural characteristics of adult guinea pig and rat cardiomyocytes during their adaptation and maintenance in long-term cultures: confocal microscopy study. Exp. Cell Res. 237, 158-175.
Kajstura,J., Leri,A., Finato,N., Di Loreto,C, Beltrami,C.A., and Anversa,P. (1998). Myocyte proliferation in end-stage cardiac failure in h㎛ans. Proc. Natl. Acad. Sci. U. S. A 95, 8801- 8805.
Kang,S.K., Park,J.B., and Cha,S.H. (2006). Multipotent, dedifferentiated cancer stem-like cells from brain gliomas. Stem Cells Dev. 15, 423-435.
Kizana,E., Chang,C.Y., Cingolani,E., Ramirez-Correa,G.A., Sekar,R.B., Abraham,M.R., Ginn,S.L., Tung,L., Alexander,I.E., and Marban,E. (2007). Gene Transfer of Connexin43 Mutants Attenuates Coupling in Cardiomyocytes. Novel Basis for Modulation of Cardiac Conduction by Gene Therapy. Circ. Res.
Laframboise,W.A., Scalise,D., Stoodley,P., Graner,S.R., Guthrie,R.D., Magovern,J.A., and Becich,M.J. (2007). Cardiac fibroblasts influence cardiomyocyte phenotype in vitro. Am. J. Physiol Cell Physiol 292, C1799-C1808.
Laronga,C, Yang,H.Y., Neal,C, and Lee,M.H. (2000). Association of the cyclin-dependent kinases and 14-3-3 sigma negatively regulates cell cycle progression. J. Biol. Chem. 275, 23106-23112.
Lepilina,A., Coon,A.N., Kikuchi,K., Holdway,J.E., Roberts,R.W., Burns,C.G., and Poss,K.D. (2006). A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell 127, 607-619.
Li,J.M. and Brooks,G. (1999). Cell cycle regulatory molecules (cyclins, cyclin-dependent kinases and cyclin-dependent kinase inhibitors) and the cardiovascular system; potential targets for therapy? Eur. Heart J. 20, 406-420.
Lien,C.L., Schebesta,M., Makino,S., Weber,G.J., and Keating,M.T. (2006). Gene expression analysis of zebrafish heart regeneration. PLoS. Biol. 4, e260.
Lyngbaek,S., Schneider,M., Hansen,J.L., and Sheikh,S.P. (2007). Cardiac regeneration by resident stem and progenitor cells in the adult heart. Basic Res. Cardiol. 102, 101-114.
Macleod,K.F., Sherry,N., Hannon,G., Beach,D., Tokino,T., Kinzler,K., Vogelstein,B-, and Jacks,T. (1995). p53-dependent and independent expression of p21 during cell growth, differentiation, and DNA damage. Genes Dev. 9, 935-944.
Michalopoulos,G.K. and DeFrances,M.C. (1997). Liver regeneration. Science 276, 60-66.
Montessuit,C, Rosenblatt-Velin,N., Papageorgiou,L, Campos,L., Pellieux,C, Palma,T., and Lerch,R. (2004). Regulation of glucose transporter expression in cardiac myocytes: p38 MAPK is a strong inducer of GLUT4. Cardiovasc. Res. 64, 94-104.
Oh,H., Chi,X., Bradfute,S.B., Mishina,Y., Pocius,J., Michael,L.H., Behringer,R.R., Schwartz,RJ., Entman,M.L., and Schneider,M.D. (2004). Cardiac muscle plasticity in adult and embryo by heart-derived progenitor cells. Ann. N. Y. Acad. Sci. 1015, 182-189.
Poss,K.D. (2007). Getting to the heart of regeneration in zebrafish. Semin. Cell Dev. Biol. 18, 36-45.
Real,C, Glavieux-Pardanaud,C, Le Douarin,N.M., and Dupin,E. (2006). Clonally cultured differentiated pigment cells can dedifferentiate and generate multipotent progenitors with self-renewing potential. Dev. Biol.
Roninson,I.B. (2002). Oncogenic functions of tumour suppressor p21(Wafl/Cipl/Sdil): association with cell senescence and tumour-promoting activities of stromal fibroblasts. Cancer Lett. 179, 1-14.
Rucker-Martin,C, Pecker,F., Godreau,D., and Hatem,S.N. (2002). Dedifferentiation of atrial myocytes during atrial fibrillation: role of fibroblast proliferation in vitro. Cardiovasc. Res. 55, 38-52.
Shyu,W.C, Lee,Y.J., Liu,D.D., Lin,S.Z., and Li5H. (2006). Homing genes, cell therapy and stroke. Front Biosci. 11, 899-907.
Smith,R.R., Barile,L., Cho,H.C, Leppo,M.K., Hare,J.M., Messina,E., Giacomello,A., Abraham,M.R., and Marban,E. (2007). Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 115, 896-908.
Straube,W.L. and Tanaka,E.M. (2006a). Reversibility of the differentiated state: regeneration in amphibians. Artif. Organs 30, 743-755.
Straube,W.L. and Tanaka,E.M. (2006b). Reversibility of the differentiated state: regeneration in amphibians. Artif. Organs 30, 743-755.
Thijssen,V.L., Ausma,J., and Borgers,M. (2001). Structural remodelling during chronic atrial fibrillation: act of programmed cell survival. Cardiovasc. Res. 52, 14-24.
Torella,D., Ellison,G.M., Mendez-Ferrer,S., Ibanez,B., and Nadal-Ginard,B. (2006). Resident h㎛an cardiac stem cells: role in cardiac cellular homeostasis and potential for myocardial regeneration. Nat. Clin. Pract. Cardiovasc. Med. 3 Suppl 1, 58-13.
Tseng,A.S., Engel,F.B., and Keating,M.T. (2006). The GSK-3 inhibitor BIO promotes proliferation in mammalian cardiomyocytes. Chem. Biol. 13, 957-963.
Von Harsdorf,R. (2001). Can cardiomyocytes divide? Heart 86, 481-482.
Walder,S., Zhang,F., and Ferretti,P. (2003). Up-regulation of neural stem cell markers suggests the occurrence of dedifferentiation in regenerating spinal cord. Dev. Genes Evol. 213, 625-630.
Welikson,R.E., Kaestner,S., Reinecke,H., and Hauschka,S.D. (2006). H㎛an umbilical vein endothelial cells fuse with cardiomyocytes but do not activate cardiac gene expression. J. Mol. Cell Cardiol. 40, 520-528.
Yang,H., Zhang,Y., Zhao,R., Wen,Y.Y., Fournier,K., Wu,H.B., Yang,H.Y., Diaz,J., Laronga,C, and Lee,M.H. (2006). Negative cell cycle regulator 14-3-3sigma stabilizes p27 Kipl by inhibiting the activity of PKB/Akt. Oncogene 25, 4585-4594.
Yeh,E.T., Zhang,S., Wu,H.D., Korbling,M., Willerson,J.T., and Estrov,Z. (2003). Transdifferentiation of h㎛an peripheral blood CD34±enriched cell population into cardiomyocytes, endothelial cells, and smooth muscle cells in vivo. Circulation 108, 2070- 2073.
Yoshizumi,M., Lee,W.S., Hsieh,C.M., Tsai,J.C, Li5J., Perrella,M.A., Patterson,C, Endege,W.O., Schlegel,R., and Lee,M.E. (1995). Disappearance of cyclin A correlates with permanent withdrawal of cardiomyocytes from the cell cycle in h㎛an and rat hearts. J. Clin. Invest 95, 2275-2280.
Zhang,Y., Han,H., Wang,J., Wang,H., Yang,B., and Wang,Z. (2003). Impairment of HERG (h㎛an ether-a-go-go related gene) K+ channel function by hypoglycemia and hyperglycemia: Similar phenotypes but different mechanisms. J. Biol. Chem. 278, 10417-10426.
Zhang,Y., Xiao,J., Wang,H., Luo,X., Wang,J., Villeneuve,L.R., Zhang,H., Bai,Y., Yang,B., and Wang,Z. (2006). Restoring depressed HERG K+ channel function as a mechanism for insulin treatment of abnormal QT prolongation and associated arrhythmias in diabetic rabbits. Am. J. Physiol Heart Circ. Physiol 291, H1446-H1455.
Zhao,J., Morozova,N., Williams,L., Libs,L., Avivi,Y., and Grafi,G. (2001). Two phases of chromatin decondensation during dedifferentiation of plant cells: distinction between competence for cell fate switch and a commitment for S phase. J. Biol. Chem. 276, 22772- 22778.
SEQUENCE LISTING <110> MARBAN, Eduardo <120> DEDIFFERENTIATION OF ADULT MAMMALIAN CARDIOMYOCYTES INTO CARDIAC STEM CELLS <130> 201107.00009 <150> 60/858006 <151> 2006-11-09 <160> 18 <170> FastSEQ for Windows Version 4.0 <210> 1 <211> 23 <212> DNA <213> Homo sapiens <400> 1 agccgtctcc accatccatc cag 23 <210> 2 <211> 21 <212> DNA <213> Homo sapiens <400> 2 catctttctc ctggccctac t 21 <210> 3 <211> 23 <212> DNA <213> Homo sapiens <400> 3 cctgcctggt gaaccagaac ctt 23 <210> 4 <211> 20 <212> DNA <213> Homo sapiens <400> 4 agaaggaaga gacggtgttg 20 <210> 5 <211> 20 <212> DNA <213> Homo sapiens <400> 5 tcagagacca cggtcaactt 20 <210> 6 <211> 22 <212> DNA <213> Homo sapiens <400> 6 tctaagacac cagcaggtcc tc 22 <210> 7 <211> 21 <212> DNA <213> Homo sapiens <400> 7 ttatccgcga gcctacggtg a 21 <210> 8 <211> 20 <212> DNA <213> Homo sapiens <400> 8 agtcagagaa ggagcgccta 20 <210> 9 <211> 20 <212> DNA <213> Homo sapiens <400> 9 atatcgctgc gctcgtcgtc 20 <210> 10 <211> 23 <212> DNA <213> Homo sapiens <400> 10 gcggaccagt gcgtcgttgt ctt 23 <210> 11 <211> 21 <212> DNA <213> Homo sapiens <400> 11 gaggactgag cccaggatga a 21 <210> 12 <211> 23 <212> DNA <213> Homo sapiens <400> 12 gcaggcttat gccaccacac ttg 23 <210> 13 <211> 20 <212> DNA <213> Homo sapiens <400> 13 ttaggaggcg gtaagtgatg 20 <210> 14 <211> 20 <212> DNA <213> Homo sapiens <400> 14 actcctcgga ttcctgaaca 20 <210> 15 <211> 18 <212> DNA <213> Homo sapiens <400> 15 ttggagctgg cctgtgat 18 <210> 16 <211> 21 <212> DNA <213> Homo sapiens <400> 16 ctgccgctgt cgcttacact t 21 <210> 17 <211> 20 <212> DNA <213> Homo sapiens <400> 17 tagatcatcc aggccgcata 20 <210> 18 <211> 20 <212> DNA <213> Homo sapiens <400> 18 cgtcccagtt ggtgacaatg 20

Claims (41)

  1. 성체 포유동물로부터 체외로 분리된 비-배아성 심방 심장 조직 또는 심실 심장 조직을 효소에 의해 분해하고, 비중 분리(gravity separation) 및 원심 분리 중 하나 이상에 의해 근육 세포가 아닌 세포들 및 미분해(undigested) 심방 또는 심실 조직으로부터 근육 세포를 분리하는 것에 의해 근육 세포를 단리하고 정제하는 단계로서, 상기 단리되고 정제된 근육 세포는 CD34 내피 세포 단백질 또는 전사체의 검출가능한 발현을 보이지 않는 것인 단계,
    상기 단리되고 정제된 근육 세포를 증가되는 농도의 분열촉진물질(mitogen)을 포함하는 배양 배지에서 단계적으로 배양하고, 그에 의해 근육 세포-유래 세포(myocyte-derived cell, MDC)의 역분화 집단을 생성하는 단계로서,
    상기 분열촉진물질은 포유동물 혈청이고,
    상기 분열촉진물질은 상기 배양 배지의 총 부피의 0.1% 내지 20%의 범위로 존재하며, 배양 첫날에, 배양이 진행되면서, 상기 분열촉진물질의 농도는 5%에서 10%로 증가시키고, 그 후, 10%에서 20%까지 증가시키며,
    상기 단계적 배양 후에, MDC는 검출 가능한 수준의 CD34 내피 세포 단백질 또는 전사체를 발현하고, 상기 MDC는 후속 재-분화(subsequent re-differentiation)를 수행할 수 있는 것인 단계, 및
    상기 MDC를 채취하는 단계를 포함하는, 비-배아성(non-embryonic) 심방 심장 조직 또는 심실 심장 조직으로부터 역분화된 세포 집단을 생성하는 방법.
  2. 제1항에 있어서, 상기 단리되고 정제된 근육 세포는 상기 MDC를 형성하기 위해 3일 이상 상기 분열촉진물질과 함께 배양되고, 상기 MDC는 느슨하게 부착하는 밝은 상의 원형 세포(loosely adherent phase-bright round cell)인 것인 방법.
  3. 삭제
  4. 삭제
  5. 제1항에 있어서, 상기 방법은 생성된 MDC의 유지를 위해, 상기 MDC를 상기 분열촉진물질을 배양 배지의 총 부피의 10%의 양으로 포함하는 배양 배지에서 배양하는 단계를 더 포함하는 것인 방법.
  6. 삭제
  7. 제1항 또는 제2항에 있어서, 상기 혈청은 우혈청, 우태 혈청, 인간 혈청, 돼지 혈청 및 양 혈청 중 하나 이상으로 구성된 군으로부터 선택되는 것인 방법.
  8. 제1항 또는 제2항에 있어서, 상기 분열촉진물질은 하나 이상의 성장 인자를 더 포함하는 것인 방법.
  9. 제8항에 있어서, 상기 성장 인자는 VEGF, HGF, IGF, FGF, EGF, GCSF, GMCSF, MCSF, CSF-1, 및 PDGF 중 하나 이상으로 구성된 군으로부터 선택되는 것인 방법.
  10. 제1항 또는 제2항에 있어서, 상기 채취된 MDC를 클론으로(clonally) 증식시키는 단계를 더 포함하는 것인 방법.
  11. 삭제
  12. 제1항 또는 제2항에 있어서, 상기 원심 분리는 상기 단리된 근육 세포의 구배 원심분리(gradient centrifugation)를 포함하는 것인 방법.
  13. 삭제
  14. 제1항 또는 제2항에 있어서, 상기 방법은 재분화 및 구(sphere) 형성을 유도하기 위해 상기 MDC를 3 내지 5일 동안 배양하는 단계를 더 포함하고, 상기 단계에서 상기 MDC가 재분화되는 것인 방법.
  15. 제1항 또는 제2항에 있어서, 상기 심방 심장 조직 또는 심실 심장 조직의 효소에 의한 분해는 콜라게나아제에 의한 분해를 포함하는 것인 방법.
  16. 삭제
  17. 삭제
  18. 삭제
  19. 삭제
  20. 삭제
  21. 삭제
  22. 삭제
  23. 삭제
  24. 삭제
  25. 삭제
  26. 삭제
  27. 삭제
  28. 삭제
  29. 삭제
  30. 삭제
  31. 삭제
  32. 삭제
  33. 삭제
  34. 삭제
  35. 삭제
  36. 삭제
  37. 삭제
  38. 삭제
  39. 삭제
  40. 삭제
  41. 삭제
KR1020097011233A 2006-11-09 2007-11-09 성체 포유동물 심근세포의 심장 줄기 세포로의 역분화 KR101240487B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US85800606P 2006-11-09 2006-11-09
US60/858,006 2006-11-09
PCT/US2007/084294 WO2008058273A2 (en) 2006-11-09 2007-11-09 Dedifferentiation of adult mammalian cardiomyocytes into cardiac stem cells

Publications (2)

Publication Number Publication Date
KR20090085093A KR20090085093A (ko) 2009-08-06
KR101240487B1 true KR101240487B1 (ko) 2013-03-08

Family

ID=39365395

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020097011233A KR101240487B1 (ko) 2006-11-09 2007-11-09 성체 포유동물 심근세포의 심장 줄기 세포로의 역분화

Country Status (5)

Country Link
US (3) US20100093089A1 (ko)
EP (2) EP2087098A4 (ko)
KR (1) KR101240487B1 (ko)
IL (1) IL198590A0 (ko)
WO (1) WO2008058273A2 (ko)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITRM20030376A1 (it) 2003-07-31 2005-02-01 Univ Roma Procedimento per l'isolamento e l'espansione di cellule staminali cardiache da biopsia.
US11660317B2 (en) 2004-11-08 2023-05-30 The Johns Hopkins University Compositions comprising cardiosphere-derived cells for use in cell therapy
US9249392B2 (en) 2010-04-30 2016-02-02 Cedars-Sinai Medical Center Methods and compositions for maintaining genomic stability in cultured stem cells
US9845457B2 (en) 2010-04-30 2017-12-19 Cedars-Sinai Medical Center Maintenance of genomic stability in cultured stem cells
US9273286B2 (en) * 2010-06-13 2016-03-01 Institute Of Biophysics, Chinese Academy Of Sciences Methods and compositions for preparing cardiomyocytes from stem cells and uses thereof
WO2013184527A1 (en) 2012-06-05 2013-12-12 Capricor, Inc. Optimized methods for generation of cardiac stem cells from cardiac tissue and their use in cardiac therapy
EP2882445B1 (en) 2012-08-13 2019-04-24 Cedars-Sinai Medical Center Exosomes and micro-ribonucleic acids for tissue regeneration
ES2689804T3 (es) 2013-11-20 2018-11-15 Miltenyi Biotec Gmbh Composiciones de subpoblaciones de cardiomiocitos
US10596200B2 (en) 2014-08-22 2020-03-24 Procella Therapeutics Ab Use of LIFR or FGFR3 as a cell surface marker for isolating human cardiac ventricular progenitor cells
DK3183337T3 (en) 2014-08-22 2019-04-01 Procella Therapeutics Ab Use of Jagged 1 / Frizzled 4 as cell surface marker for isolation of human cardiac ventricular progenitor cells
JP6878274B2 (ja) 2014-10-03 2021-05-26 シーダーズ−サイナイ・メディカル・センターCedars−Sinai Medical Center 筋ジストロフィーの処置における心筋球由来細胞およびこのような細胞によって分泌されたエキソソーム
EA201891192A1 (ru) * 2015-11-16 2019-01-31 Рисёрч Инститьют Эт Нейшнвайд Чилдрен'С Хоспитал Средства и способы лечения миопатий, связанных с титином, и других титинопатий
US11253551B2 (en) 2016-01-11 2022-02-22 Cedars-Sinai Medical Center Cardiosphere-derived cells and exosomes secreted by such cells in the treatment of heart failure with preserved ejection fraction
EP3417073B1 (en) 2016-02-19 2023-09-20 Procella Therapeutics AB Genetic markers for engraftment of human cardiac ventricular progenitor cells
WO2017210652A1 (en) 2016-06-03 2017-12-07 Cedars-Sinai Medical Center Cdc-derived exosomes for treatment of ventricular tachyarrythmias
EP3515459A4 (en) 2016-09-20 2020-08-05 Cedars-Sinai Medical Center CELLS DERIVED FROM CARDIOSPHERES AND THEIR EXTRACELLULAR VESICLES TO DELAY OR REVERSE AGING AND AGE-RELATED DISORDERS
US10508263B2 (en) 2016-11-29 2019-12-17 Procella Therapeutics Ab Methods for isolating human cardiac ventricular progenitor cells
US20190343888A1 (en) * 2017-02-01 2019-11-14 Aal Scientifics, Inc. C-kit-positive bone marrow cells and uses thereof
JP7336769B2 (ja) 2017-04-19 2023-09-01 シーダーズ―シナイ メディカル センター 骨格筋ジストロフィーを治療する方法及び組成物
CA3072579A1 (en) 2017-08-23 2019-02-28 Procella Therapeutics Ab Use of neuropilin-1 (nrp1) as a cell surface marker for isolating human cardiac ventricular progenitor cells
US11660355B2 (en) 2017-12-20 2023-05-30 Cedars-Sinai Medical Center Engineered extracellular vesicles for enhanced tissue delivery

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3470876A (en) * 1966-09-28 1969-10-07 John Barchilon Dirigible catheter
US3964468A (en) * 1975-05-30 1976-06-22 The Board Of Trustees Of Leland Stanford Junior University Bioptome
US4960134A (en) * 1988-11-18 1990-10-02 Webster Wilton W Jr Steerable catheter
US5175004A (en) * 1988-12-27 1992-12-29 Matsumura Kenneth N Propagatable, new combinant cells for cellular replacement therapy
US4921482A (en) * 1989-01-09 1990-05-01 Hammerslag Julius G Steerable angioplasty device
US5052402A (en) * 1989-01-31 1991-10-01 C.R. Bard, Inc. Disposable biopsy forceps
US5401629A (en) * 1990-08-07 1995-03-28 The Salk Institute Biotechnology/Industrial Associates, Inc. Assay methods and compositions useful for measuring the transduction of an intracellular signal
ATE123957T1 (de) * 1990-12-07 1995-07-15 Ruesch Willy Ag Medizinisches instrument mit lenkbarer spitze.
US5981165A (en) * 1991-07-08 1999-11-09 Neurospheres Holdings Ltd. In vitro induction of dopaminergic cells
US5287857A (en) * 1992-06-22 1994-02-22 David Mann Apparatus and method for obtaining an arterial biopsy
US5383852A (en) * 1992-12-04 1995-01-24 C. R. Bard, Inc. Catheter with independent proximal and distal control
US5492825A (en) * 1993-08-06 1996-02-20 The Regents Of The University Of California Mammalian inward rectifier potassium channel cDNA, IRK1, corresponding vectors, and transformed cells
US5840502A (en) * 1994-08-31 1998-11-24 Activated Cell Therapy, Inc. Methods for enriching specific cell-types by density gradient centrifugation
US5715832A (en) * 1995-02-28 1998-02-10 Boston Scientific Corporation Deflectable biopsy catheter
US5702433A (en) * 1995-06-27 1997-12-30 Arrow International Investment Corp. Kink-resistant steerable catheter assembly for microwave ablation
US5856155A (en) * 1996-02-23 1999-01-05 The Johns Hopkins University School Of Medicine Compounds and related methods for modulating potassium ion channels and assays for such compounds
US5782748A (en) * 1996-07-10 1998-07-21 Symbiosis Corporation Endoscopic surgical instruments having detachable proximal and distal portions
US5955275A (en) * 1997-02-14 1999-09-21 Arcaris, Inc. Methods for identifying nucleic acid sequences encoding agents that affect cellular phenotypes
US6099832A (en) * 1997-05-28 2000-08-08 Genzyme Corporation Transplants for myocardial scars
US7514074B2 (en) * 1997-07-14 2009-04-07 Osiris Therapeutics, Inc. Cardiac muscle regeneration using mesenchymal stem cells
DK1007631T4 (da) * 1997-07-14 2009-04-27 Osiris Therapeutics Inc Hjertemuskelregeneration ved anvendelse af mesenkymale stamceller
US7037648B1 (en) * 1997-11-07 2006-05-02 John Hopkins University Somatic transfer of modified genes to predict drug effects
DE19833476B4 (de) * 1998-07-24 2005-08-25 Huss, Ralf, Dr. Genetisch modifizierte CD34-Negative, adhärent wachsende hämatopoetische Stammzellen und deren Verwendung in der Gentherapie
US6572611B1 (en) * 1998-11-23 2003-06-03 C. R. Bard, Inc. Intracardiac grasp catheter
US6783510B1 (en) * 1999-07-08 2004-08-31 C.R. Bard, Inc. Steerable catheter
EP1218489B1 (en) * 1999-09-24 2009-03-18 Cybios LLC Pluripotent embryonic-like stem cells, compositions, methods and uses thereof
US20030161817A1 (en) * 2001-03-28 2003-08-28 Young Henry E. Pluripotent embryonic-like stem cells, compositions, methods and uses thereof
US6224587B1 (en) * 1999-11-22 2001-05-01 C.R. Bard, Inc. Steerable catheter
JP2003523323A (ja) * 1999-12-06 2003-08-05 ザ ジェネラル ホスピタル コーポレーション 膵臓幹細胞および移植におけるその使用
WO2001051006A2 (en) * 2000-01-14 2001-07-19 Beth Israel Deaconess Medical Center Cardiac-cell specific enhancer elements and uses thereof
US20040087016A1 (en) * 2000-05-12 2004-05-06 University Of Utah Research Foundation Compositions and methods for cell dedifferentiation and tissue regeneration
US7862810B2 (en) * 2000-07-31 2011-01-04 New York Medical College Methods and compositions for the repair and/or regeneration of damaged myocardium
AU2001284695A1 (en) * 2000-07-31 2002-02-13 New York Medical College Methods and compositions for the repair and/or regeneration of damaged myocardium
US7547674B2 (en) * 2001-06-06 2009-06-16 New York Medical College Methods and compositions for the repair and/or regeneration of damaged myocardium
FR2814752A1 (fr) * 2000-10-02 2002-04-05 Chru Lille Procede d'obtention in vitro de cellules insulino- secretrices de mammifere et leurs utilisations
WO2003016507A2 (en) * 2001-03-23 2003-02-27 Regents Of The University Of California Generation of multipotent central nervous system stem cells
WO2003018780A1 (en) * 2001-08-27 2003-03-06 Advanced Cell Technology, Inc. De-differentiation and re-differentiation of somatic cells and production of cells for cell therapies
US6805860B1 (en) * 2001-09-30 2004-10-19 Eckhard Alt Method of transluminal application of myogenic cells for repair or replacement of heart tissue
US7452532B2 (en) * 2001-09-30 2008-11-18 Scicotec Gmbh Transluminal application of adult stem cells for body organ tissue repair
US20030082153A1 (en) * 2001-10-22 2003-05-01 The Government Of The United States Of America Stem cells that transform to beating cardiomyocytes
US20040014209A1 (en) * 2002-01-23 2004-01-22 Lassar Andrew B. Compositions and methods for modulating cell differentiation
TWI288779B (en) * 2002-03-28 2007-10-21 Blasticon Biotech Forschung Dedifferentiated, programmable stem cells of monocytic origin, and their production and use
JP2005534345A (ja) * 2002-07-29 2005-11-17 エス セル インターナショナル ピーティーイー リミテッド インスリン陽性、グルコース応答性細胞の分化のための多段階方法
US7794702B2 (en) * 2003-01-15 2010-09-14 The Trustees Of Columbia University In The City Of New York Mesenchymal stem cells as a vehicle for ion channel transfer in syncytial structures
ES2265199B1 (es) * 2003-06-12 2008-02-01 Cellerix, S.L. Celulas madre adultas multipotentes procedentes de condrocitos desdiferenciados y sus aplicaciones.
ITRM20030376A1 (it) * 2003-07-31 2005-02-01 Univ Roma Procedimento per l'isolamento e l'espansione di cellule staminali cardiache da biopsia.
US20080274998A1 (en) * 2004-02-17 2008-11-06 Yeda Research And Development Co. Ltd. Disaccharide Molecules and Derivatives Thereof and Methods of Using Same
WO2005113754A1 (en) * 2004-05-20 2005-12-01 New York Medical College Pluripotent adult stem cells
ES2313805B1 (es) * 2004-10-04 2009-12-23 Cellerix, S.L. Identificacion y aislamiento de celulas multipotentes de tejido mesenquimal no osteocondral.
US8431397B2 (en) * 2004-09-14 2013-04-30 The Trustees Of Columbia University In The City Of New York Differentiation of human mesenchymal stem cells to cardiac progenitor cells that promote cardiac repair
US20060234375A1 (en) * 2004-09-30 2006-10-19 Doronin Sergey V Use of human stem cells and/or factors they produce to promote adult mammalian cardiac repair through cardiomyocyte cell division
CN101437938B (zh) * 2004-11-08 2015-05-13 约翰霍普金斯大学 心脏干细胞
ES2654428T3 (es) * 2005-04-12 2018-02-13 Mesoblast, Inc. Aislamiento de células multipotenciales adultas por fosfatasa alcalina no específica de tejido
WO2006118914A2 (en) * 2005-04-29 2006-11-09 Children's Medical Center Corporation Methods of increasing proliferation of adult mammalian cardiomyocytes through p38 map kinase inhibition
WO2008040027A2 (en) * 2006-09-28 2008-04-03 The Regents Of The University Of California Directed differentiation and maturation of stem cell-derived cardiomyocytes
CA2668826A1 (en) * 2006-11-07 2008-05-15 Keck Graduate Institute Enriched stem cell and progenitor cell populations, and methods of producing and using such populations
US20090081170A1 (en) * 2007-09-13 2009-03-26 Paul Riley Cardiac progenitor cells

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Cardiovascular Research, 제64권, 제94-104면 (2004.7.15. 온라인 공개) *

Also Published As

Publication number Publication date
EP2087098A2 (en) 2009-08-12
EP2518140A1 (en) 2012-10-31
US20100093089A1 (en) 2010-04-15
KR20090085093A (ko) 2009-08-06
US20100111909A1 (en) 2010-05-06
EP2087098A4 (en) 2010-03-31
US20100112694A1 (en) 2010-05-06
WO2008058273A2 (en) 2008-05-15
WO2008058273A3 (en) 2008-11-27
IL198590A0 (en) 2011-08-01

Similar Documents

Publication Publication Date Title
KR101240487B1 (ko) 성체 포유동물 심근세포의 심장 줄기 세포로의 역분화
Armiñán et al. Cardiac differentiation is driven by NKX2. 5 and GATA4 nuclear translocation in tissue-specific mesenchymal stem cells
US9867854B2 (en) Therapeutic method using cardiac tissue-derived pluripotent stem cells
US20210079351A1 (en) Tissue-specific differentiation matrices and uses thereof
US20070054397A1 (en) Adult cardiac uncommitted progenitor cells
JP2009524421A (ja) 脂肪組織由来細胞を培養する方法及びその使用
US8815593B2 (en) Induction of human embryonic stem cell derived cardiac pacemaker or chamber-type cardiomyocytes by manipulation of neuregulin signaling
WO2009017460A1 (en) Method for identifying and selecting cardiomyocytes
CN113249310B (zh) 一种拓展性多能干细胞诱导分化为心肌细胞的方法及应用
WO2013063305A2 (en) Directed cardiomyocyte differentiation of stem cells
US9969978B2 (en) Method for producing cardiomyocytes from human or mouse embryonic stem cells in a medium consisting of a serum-free medium and N2 supplement
Liu et al. Efficient isolation of cardiac stem cells from brown adipose
CN111575227B (zh) 一种人源性糖尿病心肌病疾病模型的建立方法
US20080241111A1 (en) Pluripotent Stem Cell Derived from Cardiac Tissue
US20200190475A1 (en) Methods for identifying and isolating cardiac stem cells and methods for making and using them
Zhang et al. Cardiac stem cells differentiate into sinus node-like cells
Ohtsu et al. Stimulation of P19CL6 with multiple reagents induces pulsating particles in vivo
CN116814551B (zh) 胰腺癌类器官培养液、培养试剂组合及培养方法
US20240368552A1 (en) Pre-epicardial cells and uses thereof
CN118853576A (zh) 一种HIF-1α缺失的血管细胞模型及其制备方法和应用
WO2007075056A1 (en) Method of preparing cell for heart tissue regeneration
Khan Biochemical induction of physiological hypertrophy in human induced pluripotent stem cell cerived cardiomyocytes
Hong et al. Development of efficient cardiac differentiation method of mouse embryonic stem cells
Nsair et al. Characterization and Therapeutic Potential of Induced Pluripotent Stem

Legal Events

Date Code Title Description
A201 Request for examination
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
B701 Decision to grant
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee