Nothing Special   »   [go: up one dir, main page]

JPWO2012150702A1 - Copper alloy sheet and manufacturing method thereof - Google Patents

Copper alloy sheet and manufacturing method thereof Download PDF

Info

Publication number
JPWO2012150702A1
JPWO2012150702A1 JP2012543359A JP2012543359A JPWO2012150702A1 JP WO2012150702 A1 JPWO2012150702 A1 JP WO2012150702A1 JP 2012543359 A JP2012543359 A JP 2012543359A JP 2012543359 A JP2012543359 A JP 2012543359A JP WO2012150702 A1 JPWO2012150702 A1 JP WO2012150702A1
Authority
JP
Japan
Prior art keywords
less
orientation
mass
rolling
copper alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012543359A
Other languages
Japanese (ja)
Other versions
JP5261619B2 (en
Inventor
岳己 磯松
岳己 磯松
洋 金子
洋 金子
佐藤 浩二
浩二 佐藤
立彦 江口
立彦 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2012543359A priority Critical patent/JP5261619B2/en
Application granted granted Critical
Publication of JP5261619B2 publication Critical patent/JP5261619B2/en
Publication of JPWO2012150702A1 publication Critical patent/JPWO2012150702A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/10Alloys based on copper with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/02Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/02Single bars, rods, wires, or strips

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Conductive Materials (AREA)

Abstract

Niを1.0質量%以上5.0質量%以下、Siを0.1質量%以上2.0質量%以下含有し、残部が銅および不可避不純物からなる組成を有し、電子後方散乱回折法による結晶方位解析において、cube方位{001}<100>からのずれが15°以内である方位を有する結晶粒の面積率が5%以上50%以下であり、cube方位{001}<100>からのずれ15°以内である方位を有する結晶粒が60μm四方内に40個以上100個以下で分散している銅合金板材、及びその製造方法によって、曲げ加工性に優れ、優れた強度を有し、各特性の圧延平行方向と圧延垂直方向との異方性の少ない、電気・電子機器用のリードフレーム、コネクタ、端子材等、自動車車載用などのコネクタや端子材、リレー、スイッチなどに適した銅合金板材を提供する。An electron backscattering diffraction method having a composition containing Ni of 1.0% by mass or more and 5.0% by mass or less, Si of 0.1% by mass or more and 2.0% by mass or less, and the balance of copper and inevitable impurities. In the crystal orientation analysis by, the area ratio of crystal grains having an orientation whose deviation from the cube orientation {001} <100> is within 15 ° is 5% or more and 50% or less, and from the cube orientation {001} <100>. With a copper alloy sheet material in which crystal grains having an orientation that is within 15 ° are dispersed in a range of 40 to 100 in a 60 μm square, and its manufacturing method, it has excellent bending workability and excellent strength. Suitable for lead frames, connectors, terminal materials, etc. for automobiles and automotive connectors, terminal materials, relays, switches, etc. The To provide alloy sheet.

Description

本発明は、電気・電子機器用のリードフレーム、コネクタ、端子材、リレー、スイッチ、ソケットなどに適用される銅合金板材およびその製造方法に関する。   The present invention relates to a copper alloy plate material applied to a lead frame, a connector, a terminal material, a relay, a switch, a socket, and the like for an electric / electronic device and a manufacturing method thereof.

電気・電子機器用途に使用される銅合金材料に要求される特性項目は、導電率、耐力(降伏応力)、引張強度、曲げ加工性、耐応力緩和特性等がある。近年、電気・電子機器の小型化、軽量化、高機能化、高密度実装化や、使用環境の高温化に伴って、これらの特性について要求水準が高まっている。   Characteristic items required for copper alloy materials used for electric / electronic equipment applications include conductivity, yield strength (yield stress), tensile strength, bending workability, stress relaxation resistance, and the like. In recent years, with the miniaturization, lightening, high functionality, high density mounting, and high temperature of the usage environment of electric / electronic devices, the required level of these characteristics is increasing.

従来、一般的に電気・電子機器用材料としては、鉄系材料の他、リン青銅、丹銅、黄銅等の銅系材料も広く用いられている。これらの合金はSnやZnの固溶強化と、圧延や線引きなどの冷間加工による加工硬化の組み合わせにより強度を向上させている。この方法では、導電率が不十分であり、また、高い圧延率の冷間加工を加えることによって高強度を得ているために、曲げ加工性や耐応力緩和特性が不十分である。   Conventionally, as materials for electric and electronic devices, copper-based materials such as phosphor bronze, red brass, brass and the like are widely used in addition to iron-based materials. These alloys have improved strength by a combination of solid solution strengthening of Sn and Zn and work hardening by cold working such as rolling and wire drawing. In this method, the electrical conductivity is insufficient, and a high strength is obtained by applying cold working at a high rolling rate, so that bending workability and stress relaxation resistance are insufficient.

これに代わる強化法として材料中に微細な第二相を析出させる析出強化法がある。この強化方法は、強度が高くなることに加えて、導電率を同時に向上させる利点があるため、多くの合金系で行われている。しかし、昨今の電子機器や自動車に使用される部品の小型化に伴って、銅合金は、より高強度な材料により小さい半径の曲げ加工を施す様になっており、曲げ加工性に優れた銅合金板材が強く要求されている。さらに、高強度、高ばね性と良好な曲げ加工性を有する板材でも、圧延平行方向と圧延垂直方向とで特性差があることは好ましくなく、いずれの方向でも良好な特性を示すことが重要である。特に、超小型端子として用いられる際、狭幅でピン型に微細な加工が施され、ここでもいずれの方向でも良好な特性を示すことが重要である。従来のCu−Ni−Si系銅合金において、高い強度を得るには、圧延率を高めて大きな加工硬化を得ていたが、この方法は先述した様に曲げ加工性を劣化させてしまい、高強度と良好な曲げ加工性を両立することが困難であった。   As an alternative strengthening method, there is a precipitation strengthening method in which a fine second phase is precipitated in the material. This strengthening method has the advantage of improving the conductivity at the same time in addition to increasing the strength, and is therefore performed in many alloy systems. However, with the recent miniaturization of parts used in electronic equipment and automobiles, copper alloys have been subjected to bending with a smaller radius on higher-strength materials. There is a strong demand for alloy sheets. Furthermore, it is not preferable that there is a difference in properties between the rolling parallel direction and the rolling vertical direction even in a plate material having high strength, high spring property and good bending workability, and it is important to show good properties in any direction. is there. In particular, when used as an ultra-compact terminal, it is important that fine processing is applied to the pin type with a narrow width, and here also shows good characteristics in any direction. In the conventional Cu-Ni-Si-based copper alloy, in order to obtain high strength, the rolling rate was increased and a large work hardening was obtained. However, this method deteriorates the bending workability as described above, and high It was difficult to achieve both strength and good bending workability.

この曲げ加工性向上の要求に対して、結晶方位の制御によって解決する提案がいくつかなされている。例えば、Cu−Ni−Si系銅合金において以下のような提案がなされている。特許文献1には、Cu−Ni−Si系銅合金において、結晶粒径と、{311}、{220}、{200}面からのX線回折強度Iがある条件を満たす様な結晶方位の場合に、曲げ加工性が優れることが開示されている。また、特許文献2には、Cu−Ni−Si系銅合金において、{200}面および{220}面からのX線回折強度がある条件を満足する結晶方位の場合に、曲げ加工性が優れることが開示されている。また、特許文献3には、Cu−Ni−Si系銅合金において、cube方位{001}<100>の割合を50%以下に制御することによって曲げ加工性が優れることが開示されている。特許文献4には、Cu−Ni−Si系銅合金において、強い冷間加工で歪んだ状態にある結晶組織を再結晶させて、異方性の小さい結晶組織に変えるとともに、伸びを向上させることによって曲げ加工性が良好となることが開示されている。特許文献5には、Cu−Ni−Si系銅合金において、結晶粒径と、cube方位{001}<100>の割合を20〜60%に制御することによって強度異方性が小さく曲げ加工性が優れることが開示されている。特許文献6には、Cu−Ni−Si系銅合金において、結晶粒径と、cube方位{001}<100>の割合を5〜50%に制御することによって機械強度、導電率や曲げ加工性を損なうことなく疲労特性を向上させることが開示されている。   Several proposals have been made to solve this demand for improvement in bending workability by controlling the crystal orientation. For example, the following proposals have been made for Cu—Ni—Si based copper alloys. Patent Document 1 discloses that in a Cu—Ni—Si based copper alloy, the crystal grain size and the crystal orientation such that the X-ray diffraction intensity I from the {311}, {220}, and {200} planes satisfies a certain condition are satisfied. In some cases, it is disclosed that bending workability is excellent. Patent Document 2 discloses that in a Cu—Ni—Si-based copper alloy, bending workability is excellent when the crystal orientation satisfies the condition that the X-ray diffraction intensity from the {200} plane and the {220} plane is satisfied. It is disclosed. Patent Document 3 discloses that in a Cu—Ni—Si-based copper alloy, bending workability is excellent by controlling the ratio of the cube orientation {001} <100> to 50% or less. In Patent Document 4, in a Cu—Ni—Si based copper alloy, a crystal structure in a distorted state by strong cold working is recrystallized to change to a crystal structure having a small anisotropy and to improve elongation. It is disclosed that bending workability is improved. In Patent Document 5, in a Cu—Ni—Si based copper alloy, the strength of anisotropy is small by controlling the crystal grain size and the ratio of cube orientation {001} <100> to 20 to 60%. Is disclosed to be superior. In Patent Document 6, in a Cu—Ni—Si based copper alloy, the mechanical strength, electrical conductivity and bending workability are controlled by controlling the crystal grain size and the ratio of the cube orientation {001} <100> to 5 to 50%. It is disclosed to improve fatigue characteristics without impairing the resistance.

特許文献1および特許文献2に記載された発明においては、特定面からのX線回折による結晶方位の解析は、ある広がりを持った結晶方位の分布の中のごく一部の特定の面に関するものである。また、特許文献3に記載された発明においては、結晶方位の制御は溶体化熱処理後の圧延加工率の低減によって行っている。また、cube方位結晶粒の面積、分散性は記載されておらず、曲げ加工性、強度の異方性については開示されていない。特許文献4に記載された発明においては、強い冷間圧延で歪んだ状態にある結晶組織を再結晶させて、異方性の小さい結晶組織を実現し、伸びの向上により良好な曲げ加工性を実現しているが、結晶方位制御による特性改善は行っていない。特許文献5に記載された発明においては、溶体化処理前の冷間圧延における圧下率、溶体化処理での昇温速度などの工程を調整することで、cube方位を集積させ、強度と曲げ加工性における異方性を低減させている。しかしながら、特許文献5では、溶体化処理での昇温速度が遅い為にその昇温時間が長く、その結果、cube方位結晶粒が粗大であり、かつcube方位結晶粒の等分散性が劣っており、強度の異方性も大きい。また、特許文献6に記載された発明においては、溶体化処理前の冷間圧延を85〜99.8%と高い圧下率で行い、その後の溶体化処理での加熱温度と保持時間を調整することで、cube方位を集積させ、疲労特性を向上させている。しかしながら、特許文献6では、溶体化処理の結果得られるcube方位結晶粒が粗大であり、かつcube方位結晶粒の等分散性が劣っており、強度の異方性も大きい。   In the inventions described in Patent Document 1 and Patent Document 2, the analysis of crystal orientation by X-ray diffraction from a specific surface relates to a very small number of specific surfaces in the distribution of crystal orientation having a certain spread. It is. In the invention described in Patent Document 3, the crystal orientation is controlled by reducing the rolling rate after solution heat treatment. Further, the area and dispersibility of the cube-oriented crystal grains are not described, and the bending workability and the strength anisotropy are not disclosed. In the invention described in Patent Document 4, the crystal structure in a distorted state by strong cold rolling is recrystallized to realize a crystal structure with small anisotropy, and good bending workability is achieved by improving the elongation. Although realized, the characteristics are not improved by controlling the crystal orientation. In the invention described in Patent Document 5, the cube orientation is accumulated by adjusting processes such as the rolling reduction in cold rolling before the solution treatment, the heating rate in the solution treatment, and the strength and bending work. The anisotropy in sex is reduced. However, in Patent Document 5, since the temperature rising rate in the solution treatment is slow, the temperature rising time is long. As a result, the cube oriented crystal grains are coarse and the uniform dispersibility of the cube oriented crystal grains is inferior. The anisotropy of strength is also great. Moreover, in the invention described in Patent Document 6, cold rolling before the solution treatment is performed at a high reduction ratio of 85 to 99.8%, and the heating temperature and the holding time in the subsequent solution treatment are adjusted. As a result, the cube orientation is accumulated and the fatigue characteristics are improved. However, in Patent Document 6, the cube-oriented crystal grains obtained as a result of the solution treatment are coarse, the uniform dispersibility of the cube-oriented crystal grains is inferior, and the strength anisotropy is large.

また、電気・電子機器用途に使用される銅合金材料に要求される特性項目の一つとして、ヤング率(縦弾性係数)が低いことが求められている。近年コネクタなどの電子部品の小型化の進行に伴い、端子の寸法精度やプレス加工の公差が厳しくなっている。材料のヤング率を低減することで、コンタクト接圧に及ぼす寸法変動の影響を低減できるため、設計が容易となる。ヤング率の測定には、引張試験による応力−ひずみ線図の弾性領域の傾きから算出する方法、梁(片持ち梁)をたわませた際の応力−ひずみ線図の弾性領域の傾きから算出する方法の2つの方法がある。   In addition, as one of the characteristic items required for copper alloy materials used for electric / electronic equipment applications, a low Young's modulus (longitudinal elastic modulus) is required. In recent years, with the progress of miniaturization of electronic parts such as connectors, the dimensional accuracy of terminals and the tolerance of press working have become severe. By reducing the Young's modulus of the material, the influence of dimensional variation on the contact contact pressure can be reduced, so that the design becomes easy. The Young's modulus is measured from a method of calculating from the slope of the elastic region of the stress-strain diagram obtained by a tensile test, and from the slope of the elastic region of the stress-strain diagram when the beam (cantilever) is bent. There are two ways to do this.

特開2006−009137号公報JP 2006-009137 A 特開2008−013836号公報JP 2008-013836 A 特開2006−283059号公報JP 2006-283059 A 特開2005−350695号公報JP 2005-350695 A 特開2011−162848号公報JP 2011-162848 A 特開2011−012321号公報JP 2011-012321 A

上記のような従来技術の問題点に鑑み、本発明は、曲げ加工性に優れ、優れた強度を有し、各特性の圧延平行方向と圧延垂直方向との異方性の少ない、電気・電子機器用のリードフレーム、コネクタ、端子材等、自動車車載用などのコネクタや端子材、リレー、スイッチなどに適した銅合金板材を提供することを課題とする。また、前記銅合金板材を得るのに好適な製造方法を提供することを別の課題とする。   In view of the problems of the prior art as described above, the present invention is excellent in bending workability, has excellent strength, and has little anisotropy between the rolling parallel direction and the rolling vertical direction of each characteristic. It is an object of the present invention to provide a copper alloy plate material suitable for equipment such as lead frames, connectors, terminal materials for automobiles, connectors and terminal materials for automobiles, relays, switches, and the like. Another object is to provide a production method suitable for obtaining the copper alloy sheet.

本発明者らは、電気・電子部品用途に適した銅合金について鋭意研究を行い、Cu−Ni−Si系の銅合金板材において、曲げ加工性、強度、導電性を大きく向上させるために、cube方位の集積割合と曲げ加工性について相関があることを見出した。また、その結晶方位および特性を有する銅合金板材において、さらに強度を向上させる働きのある合金組成を見出し、それに加えて、本合金系において導電率や曲げ加工性を損なうことなく、強度を向上させる働きのある元素を添加した銅合金板材を見出した。また、上記の様な結晶方位を実現するため、cube方位の集積割合と曲げ加工性について相関があることに基づいて、特定の工程を有してなる製造方法を見出した。本発明は、これらの知見に基づいた検討の結果、なされるに至ったものである。   The present inventors have conducted intensive research on copper alloys suitable for electric / electronic component applications, and in order to greatly improve bending workability, strength, and conductivity in Cu—Ni—Si based copper alloy sheet materials, It was found that there was a correlation between the orientation accumulation ratio and bending workability. Moreover, in the copper alloy sheet having the crystal orientation and characteristics, an alloy composition that works to further improve the strength is found, and in addition, the strength is improved without impairing the conductivity and bending workability in this alloy system. The copper alloy sheet material which added the element which has a function was discovered. In addition, in order to realize the crystal orientation as described above, a manufacturing method having a specific process has been found based on the fact that there is a correlation between the accumulation ratio of the cube orientation and the bending workability. The present invention has been made as a result of studies based on these findings.

すなわち、本発明によれば、以下の手段が提供される。
(1)Niを1.0質量%以上5.0質量%以下、Siを0.1質量%以上2.0質量%以下含有し、残部が銅および不可避不純物からなる組成を有し、
電子後方散乱回折法による結晶方位解析において、cube方位{001}<100>からのずれが15°以内である方位を有する結晶粒の面積率が5%以上50%以下であり、cube方位{001}<100>からのずれが15°以内である方位を有する結晶粒が60μm四方内に40個以上100個以下で分散していることを特徴とする銅合金板材。
(2)Niを1.0質量%以上5.0質量%以下、Siを0.1質量%以上2.0質量%以下、Sn、Zn、Ag、Mn、B、P、Mg、Cr、Zr、FeおよびHfからなる群から選ばれる少なくとも1つを合計で0.005質量%以上1.0質量%以下含有し、残部が銅および不可避不純物からなる組成を有し、
電子後方散乱回折法による結晶方位解析において、cube方位{001}<100>からのずれが15°以内である方位を有する結晶粒の面積率が5%以上50%以下であり、cube方位{001}<100>からのずれが15°以内である方位を有する結晶粒が60μm四方内に40個以上100個以下で分散していることを特徴とする銅合金板材。
(3)cube方位{001}<100>からのずれが15°以内である方位を有する結晶粒の平均結晶粒面積が1.8μm以上45.0μm以下である(1)または(2)項に記載の銅合金板材。
(4)母材の結晶粒の平均結晶粒面積が50μm以下であることを特徴とする(1)から(3)のいずれか1項に記載の銅合金板材。
(5)圧延平行方向のたわみ係数と圧延垂直方向のたわみ係数の差が絶対値で10GPa以下、圧延平行方向の耐力と圧延垂直方向の耐力の差が絶対値で10MPa以下である、(1)から(4)のいずれか1項に記載の銅合金板材。
(6)銅合金素材を鋳造して得た鋳塊に均質化熱処理と熱間圧延とを施し、さらに冷間圧延によって薄板に成形した後、前記薄板中の溶質原子を再固溶させる中間溶体化熱処理を施す銅合金板材の製造方法であって、
前記銅合金素材は、前記(1)または(2)項に記載の銅合金板材の合金組成を有してなり、
前記均質化熱処理を800℃以上1020℃以下で3分間から10時間で行い、
前記冷間圧延を圧延率80%以上99.8%以下で行った後に
再結晶温度未満である400℃以上700℃以下の温度で5秒間から20時間の中間焼鈍を行い、
さらに100℃以上400℃以下に加熱した後にその温度下で圧延率が5%以上50%以下の中間温間圧延を行った後、
前記中間溶体化熱処理を600℃以上1000℃以下で5秒間から1時間で行い、
400℃以上700℃以下で5分間から10時間の時効析出熱処理を行う
各工程をこの順に含んでなる銅合金板材の製造方法。
That is, according to the present invention, the following means are provided.
(1) Ni is contained in an amount of 1.0% by mass or more and 5.0% by mass or less, Si is contained in an amount of 0.1% by mass or more and 2.0% by mass or less, and the balance is composed of copper and inevitable impurities.
In the crystal orientation analysis by the electron backscatter diffraction method, the area ratio of crystal grains having an orientation whose deviation from the cube orientation {001} <100> is within 15 ° is 5% or more and 50% or less, and the cube orientation {001 } A copper alloy plate material, wherein crystal grains having an orientation with a deviation from <100> within 15 ° are dispersed in a range of 40 to 100 in a 60 μm square.
(2) Ni is 1.0 mass% or more and 5.0 mass% or less, Si is 0.1 mass% or more and 2.0 mass% or less, Sn, Zn, Ag, Mn, B, P, Mg, Cr, Zr , Containing at least one selected from the group consisting of Fe and Hf in a total of 0.005 mass% to 1.0 mass%, with the balance being composed of copper and inevitable impurities,
In the crystal orientation analysis by the electron backscatter diffraction method, the area ratio of crystal grains having an orientation whose deviation from the cube orientation {001} <100> is within 15 ° is 5% or more and 50% or less, and the cube orientation {001 } A copper alloy plate material, wherein crystal grains having an orientation with a deviation from <100> within 15 ° are dispersed in a range of 40 to 100 in a 60 μm square.
(3) cube orientation {001} the average grain area of crystal grains deviation has a direction is within 15 ° from the <100> is 1.8 .mu.m 2 or more 45.0Myuemu 2 or less (1) or (2) The copper alloy sheet material according to item.
(4) The copper alloy sheet according to any one of (1) to (3), wherein an average crystal grain area of crystal grains of the base material is 50 μm 2 or less.
(5) The difference between the deflection coefficient in the rolling parallel direction and the deflection coefficient in the rolling vertical direction is 10 GPa or less in absolute value, and the difference between the proof stress in the rolling parallel direction and the proof stress in the rolling vertical direction is 10 MPa or less in absolute value. The copper alloy sheet material of any one of (4).
(6) An intermediate solution in which the ingot obtained by casting a copper alloy material is subjected to homogenization heat treatment and hot rolling, further formed into a thin plate by cold rolling, and then re-dissolved solute atoms in the thin plate A method for producing a copper alloy sheet material that is subjected to hydrothermal treatment,
The copper alloy material has an alloy composition of the copper alloy sheet according to the item (1) or (2),
The homogenization heat treatment is performed at 800 ° C. or more and 1020 ° C. or less for 3 minutes to 10 hours,
After performing the cold rolling at a rolling rate of 80% or more and 99.8% or less, intermediate annealing is performed for 5 seconds to 20 hours at a temperature of 400 ° C. or more and 700 ° C. or less which is less than the recrystallization temperature,
Further, after heating to 100 ° C. or more and 400 ° C. or less and performing an intermediate warm rolling at a rolling rate of 5% or more and 50% or less at that temperature,
The intermediate solution heat treatment is performed at 600 to 1000 ° C. for 5 seconds to 1 hour,
A method for producing a copper alloy sheet comprising the steps of performing an aging precipitation heat treatment at 400 ° C. to 700 ° C. for 5 minutes to 10 hours in this order.

本発明の銅合金板材によれば、曲げ加工性に優れ、優れた強度を示し、各特性の圧延平行方向と圧延垂直方向の異方性の少ない銅合金板材を提供することができる。よって、電気・電子機器用のリードフレーム、コネクタ、端子材等、自動車車載用などのコネクタや端子材、リレー、スイッチなどに特に適した性質を有する銅合金板材を提供することができる。
また、本発明の製造方法によれば、上記銅合金板材を好適に製造することができる。
According to the copper alloy sheet material of the present invention, it is possible to provide a copper alloy sheet material that is excellent in bending workability, exhibits excellent strength, and has little anisotropy in the rolling parallel direction and the rolling vertical direction. Accordingly, it is possible to provide a copper alloy plate material having properties particularly suitable for connectors, terminal materials, relays, switches, and the like for automobiles and the like, such as lead frames, connectors, and terminal materials for electric and electronic devices.
Moreover, according to the manufacturing method of this invention, the said copper alloy board | plate material can be manufactured suitably.

本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。   The above and other features and advantages of the present invention will become more apparent from the following description, with reference where appropriate to the accompanying drawings.

図1は、隣り合う4ブロックを1群として少なくとも4群以上の場合の等分散性を説明した図面である。FIG. 1 is a diagram for explaining equal dispersibility in a case where four adjacent blocks are one group and there are at least four groups.

本発明の銅合金板材の好ましい一実施形態について説明する。なお、本発明における「板材」には、「条材」も含むものとする。   A preferred embodiment of the copper alloy sheet material of the present invention will be described. The “plate material” in the present invention includes “strip material”.

本発明の銅合金板材は、Niを1.0質量%以上5.0質量%以下、Siを0.1質量%以上2.0質量%以下含有し、残部が銅および不可避不純物からなる組成を有する。好ましくはNiを3.0質量%以上5.0質量%以下、Siを0.5質量%以上2.0質量%以下とする。特に好ましくはNiを4.0質量%以上、Siを1.0質量%以上とする。
また、電子後方散乱回折法による結晶方位解析において、cube方位{001}<100>の面積率(以下、cube方位面積率ということもある。)は、5%以上50%以下であり、好ましくは10%以上45%以下であり、より好ましくは15%以上40%以下であり、特に好ましくは20%以上35%以下である。
または銅合金板材は、Niを1.0質量%以上5.0質量%以下、Siを0.1質量%以上2.0質量%以下含有し、Sn、Zn、Ag、Mn、B、P、Mg、Cr、Zr、FeおよびHfからなる群から選ばれる少なくとも1つを合計で0.005質量%以上1.0質量%以下含有するものとしてもよい。Sn、Zn、Ag、Mn、B、P、Mg、Cr、Zr、FeおよびHfからなる群から選ばれる少なくとも1つの合計は、好ましくは0.01質量%以上0.9質量%以下であり、より好ましくは0.03質量%以上0.8質量%以下であり、特に好ましくは0.05質量%以上0.5質量%以下である。この場合も、Ni及びSiの好ましい含有量、特に好ましい含有量と、cube方位面積率の好ましい範囲、特に好ましい範囲は上述した範囲と同じである。
The copper alloy sheet of the present invention has a composition containing Ni in an amount of 1.0% by mass or more and 5.0% by mass or less, Si in an amount of 0.1% by mass or more and 2.0% by mass or less, with the balance being copper and inevitable impurities. Have. Preferably, Ni is 3.0% by mass or more and 5.0% by mass or less, and Si is 0.5% by mass or more and 2.0% by mass or less. Particularly preferably, Ni is 4.0% by mass or more and Si is 1.0% by mass or more.
In the crystal orientation analysis by the electron backscattering diffraction method, the area ratio of the cube orientation {001} <100> (hereinafter sometimes referred to as the cube orientation area ratio) is 5% or more and 50% or less, preferably It is 10% or more and 45% or less, more preferably 15% or more and 40% or less, and particularly preferably 20% or more and 35% or less.
Or a copper alloy board | plate material contains 1.0 mass% or more and 5.0 mass% or less of Ni, 0.1 mass% or more and 2.0 mass% or less of Si, Sn, Zn, Ag, Mn, B, P, A total of at least one selected from the group consisting of Mg, Cr, Zr, Fe and Hf may be 0.005 mass% or more and 1.0 mass% or less. The total of at least one selected from the group consisting of Sn, Zn, Ag, Mn, B, P, Mg, Cr, Zr, Fe and Hf is preferably 0.01% by mass or more and 0.9% by mass or less, More preferably, it is 0.03 mass% or more and 0.8 mass% or less, Most preferably, it is 0.05 mass% or more and 0.5 mass% or less. Also in this case, the preferable content of Ni and Si, the particularly preferable content, and the preferable range and particularly preferable range of the cube orientation area ratio are the same as those described above.

また上記各銅合金板材において、cube方位{001}<100>からのずれが15°以内である方位を有する結晶粒の平均結晶粒面積は、好ましくは1.8μm以上45.0μm以下であり、より好ましくは3.8μm以上36.0μm以下である。さらに好ましくは6.0μm以上28.8μm以下、特に好ましくは10.0μm以上25.0μm以下である。
本書において、cube方位{001}<100>からのずれが15°以内である方位を有する結晶粒の平均結晶粒面積を省略して、cube方位面積率またはcube方位{001}<100>の面積率などということもある。また、cube方位{001}<100>からのずれが15°以内である方位を有する結晶粒を省略して、cube方位結晶粒またはcube方位{001}<100>の結晶粒などということもある。
In each copper alloy sheet, the average grain area of crystal grains having an orientation deviation is within 15 ° from the cube orientation {001} <100> is preferably 1.8 .mu.m 2 or more 45.0Myuemu 2 below There, more preferably 3.8 .mu.m 2 or more 36.0Myuemu 2 or less. More preferably 6.0 .mu.m 2 or more 28.8Myuemu 2 or less, particularly preferably 10.0 [mu] m 2 or more 25.0 2 below.
In this document, the average grain area of the crystal grains having an orientation whose deviation from the cube orientation {001} <100> is within 15 ° is omitted, and the cube orientation area ratio or the cube orientation {001} <100> area It may be rate. Further, a crystal grain having an orientation whose deviation from the cube orientation {001} <100> is within 15 ° may be omitted, and a cube orientation crystal grain or a crystal grain having a cube orientation {001} <100> may be referred to. .

cube方位の結晶粒を含んだ母材の平均結晶粒面積は好ましくは40μm2以下、さらに好ましくは5〜30μm2である。板材平面の300×300μmの範囲でのEBSD測定結果から結晶粒面積の平均値を算出し、平均結晶粒面積とした。
さらに、電子後方散乱回折法による結晶方位解析において、60μm四方内にcube方位{001}<100>の結晶粒が40個以上100個以下分布し等分散性を有している。該cube方位{001}<100>の結晶粒は、60μm四方内に、好ましくは45個以上95個以下分布して等分散性を有し、特に好ましくは50個以上90個以下分布して等分散性を有している。
The average crystal grain area of the base material containing the crystal grains of the cube orientation is preferably 40 μm 2 or less, more preferably 5 to 30 μm 2 . The average value of the crystal grain area was calculated from the EBSD measurement result in the range of 300 × 300 μm on the plate material plane, and was defined as the average crystal grain area.
Furthermore, in crystal orientation analysis by electron backscatter diffraction, 40 to 100 crystal grains having a cube orientation {001} <100> are distributed within 60 μm square and have equal dispersibility. The crystal grains of the cube orientation {001} <100> have an equal dispersibility in a 60 μm square, preferably 45 to 95 particles, particularly preferably 50 to 90 particles and the like. It has dispersibility.

またさらに、圧延平行方向と圧延垂直方向の曲げ加工性として、1mm幅以下の狭幅の曲げ加工での180°U密着曲げにて、曲げ加工表面にクラックが生じないことが好ましい。
さらにまた、圧延平行方向(//)のたわみ係数と圧延垂直方向(⊥)のたわみ係数の差は、絶対値で、好ましくは10GPa以下であり、より好ましくは8GPa以下であり、特に好ましくは5GPa以下である。圧延平行方向の耐力と圧延垂直方向の耐力の差は、絶対値で、好ましくは10MPa以下であり、より好ましくは8MPa以下であり、特に好ましくは5MPa以下である。これらの差は、いずれも小さければ小さい程、等方性がより高いを意味するので好ましい。理想的には、これらの差はいずれも0(ゼロ)であって、つまり、圧延平行方向と圧延垂直方向の値が同一であることが最も好ましい。
Furthermore, as a bending workability in the rolling parallel direction and the rolling vertical direction, it is preferable that cracks do not occur on the bending surface in 180 ° U contact bending in a narrow bending process of 1 mm width or less.
Furthermore, the difference between the deflection coefficient in the rolling parallel direction (//) and the deflection coefficient in the rolling vertical direction (⊥) is an absolute value, preferably 10 GPa or less, more preferably 8 GPa or less, and particularly preferably 5 GPa. It is as follows. The difference between the proof stress in the rolling parallel direction and the proof stress in the vertical direction of rolling is an absolute value, preferably 10 MPa or less, more preferably 8 MPa or less, and particularly preferably 5 MPa or less. These differences are preferably smaller, meaning that the isotropic property is higher. Ideally, these differences are all 0 (zero), that is, it is most preferable that the values in the rolling parallel direction and the rolling vertical direction are the same.

本発明の銅合金板材は、cube方位{001}<100>の面積率およびその平均結晶粒面積と、さらに好ましくは母材の平均結晶粒面積とが、いずれも上記範囲内にあるときに、180°U密着曲げで曲げ部の頂点にクラックを発生せず良好な曲げ特性が得られ、たわみ異方性および耐力異方性が小さくなる。一方、上記面積率が小さすぎる場合または平均結晶粒面積が大きすぎる場合、あるいは母材の平均結晶粒面積が大きすぎる場合には、曲げ部の頂点にクラックを発生しやすくなって良好な曲げ特性が得られず、たわみ異方性および耐力異方性が大きくなる。   The copper alloy sheet material of the present invention has an area ratio of the cube orientation {001} <100> and its average crystal grain area, and more preferably the average crystal grain area of the base material is within the above range. The 180 ° U contact bending does not generate a crack at the apex of the bent portion, and good bending characteristics are obtained, and the deflection anisotropy and the proof stress anisotropy are reduced. On the other hand, if the area ratio is too small or the average crystal grain area is too large, or if the average crystal grain area of the base material is too large, cracks are likely to occur at the apex of the bent portion, and good bending characteristics are obtained. Cannot be obtained, and the deflection anisotropy and the proof stress anisotropy are increased.

本発明の銅合金板材は、Niを1.0質量%〜5.0質量%、Siを0.1質量%〜2.0質量%含有する。これによって、Ni−Si系化合物(NiSi相)がCuマトリックス中に析出して強度および導電性が向上する。一方、Niの含有量が少なすぎると強度が得られず、多すぎると鋳造時や熱間加工時に強度向上に寄与しない析出が生じ、添加量に見合う強度が得られず、さらに熱間加工性および曲げ加工性が低下する。またSiはNiとNiSi相を形成するため、Ni量が決まるとSi添加量が決まるが、Si量が少なすぎると強度が得られず、Si量が多すぎるとNi量が多い場合と同様な問題が生じる。したがって、NiおよびSiの添加量は上記範囲とすることが好ましい。The copper alloy sheet of the present invention contains 1.0 mass% to 5.0 mass% Ni and 0.1 mass% to 2.0 mass% Si. As a result, a Ni—Si based compound (Ni 2 Si phase) is precipitated in the Cu matrix and the strength and conductivity are improved. On the other hand, if the Ni content is too low, strength cannot be obtained, and if it is too high, precipitation that does not contribute to strength improvement during casting or hot working occurs, and the strength corresponding to the added amount cannot be obtained. And bending workability is lowered. Since Si forms a Ni and Ni 2 Si phase, the amount of Si added is determined when the amount of Ni is determined. However, if the amount of Si is too small, the strength cannot be obtained, and if the amount of Si is too large, the amount of Ni is large. Similar problems arise. Therefore, the addition amount of Ni and Si is preferably within the above range.

次に、cube方位{001}<100>の面積率について説明する。
銅合金板材の曲げ加工性を改善するために、本発明者らは曲げ加工部に発生するクラックの発生原因について調査した。その結果、塑性変形が局所的に発達して剪断変形帯を形成し、局所的な加工硬化によってマイクロボイドの生成と連結が起こり、成形限界に達することが原因であることを確認した。その対策として、曲げ変形において加工硬化が起きにくい結晶方位の割合を高めることが有効であることを見出した。すなわち、上述のように、cube方位{001}<100>の面積率が5%以上50%以下の場合に、良好な曲げ加工性を示すことを見出した。
cube方位{001}<100>の面積率が上記範囲内の場合は、上述した作用効果が十分に発揮される。また、上記範囲内であることにより、再結晶処理後の冷間圧延加工を低い圧延率で行わなくても、強度が著しく低下することがないために好ましい。すなわち、再結晶処理後の冷間圧延加工を、強度を著しく低下させることなく高い圧延率で行うことができる。一方、cube方位{001}<100>の面積率が低すぎる場合、曲げ加工性が劣化し、逆にcube方位{001}<100>の面積率が高すぎる場合には強度が低下する。よって上記の観点から、cube方位{001}<100>の面積率は5%以上50%以下とするが、この好ましい範囲は10%以上45%以下であり、より好ましい範囲は15%以上40%以下であり、特に好ましい範囲は20%以上35%以下である。
Next, the area ratio of the cube orientation {001} <100> will be described.
In order to improve the bending workability of the copper alloy sheet, the present inventors investigated the cause of the occurrence of cracks in the bent portion. As a result, it was confirmed that the plastic deformation was locally developed to form a shear deformation band, and the generation and connection of microvoids occurred due to local work hardening, reaching the forming limit. As a countermeasure, the present inventors have found that it is effective to increase the proportion of crystal orientation in which work hardening hardly occurs in bending deformation. That is, as described above, it was found that excellent bending workability is exhibited when the area ratio of the cube orientation {001} <100> is 5% or more and 50% or less.
When the area ratio of the cube orientation {001} <100> is within the above range, the above-described effects are sufficiently exhibited. Moreover, it exists in the said range, since intensity | strength does not fall remarkably even if it does not perform the cold rolling process after a recrystallization process by a low rolling rate, it is preferable. That is, the cold rolling process after the recrystallization process can be performed at a high rolling rate without significantly reducing the strength. On the other hand, when the area ratio of the cube orientation {001} <100> is too low, the bending workability deteriorates. Conversely, when the area ratio of the cube orientation {001} <100> is too high, the strength decreases. Therefore, from the above viewpoint, the area ratio of the cube orientation {001} <100> is 5% or more and 50% or less, but this preferable range is 10% or more and 45% or less, and a more preferable range is 15% or more and 40%. The particularly preferable range is 20% or more and 35% or less.

次に、上記範囲のcube方位の他の方位について説明する。本発明の銅合金板材においては、S方位{3 2 1}<4 3 6>、copper方位{1 2 1}<1 −1 1>、D方位{4 11 4}<11 −8 11>、brass方位{1 1 0}<1 −1 2>、Goss方位{1 1 0}<0 0 1>、RDW方位{1 0 2}<0 1 0>などが発生する。これらの方位成分は、観測される全方位の面積に対してcube方位面積率が上記の範囲にあれば、許容される。   Next, another orientation of the cube orientation in the above range will be described. In the copper alloy sheet of the present invention, the S orientation {3 2 1} <4 3 6>, the copper orientation {1 2 1} <1 -1 1>, the D orientation {4 11 4} <11 -8 11>, A brass orientation {1 1 0} <1 −1 2>, a Goss orientation {1 1 0} <0 0 1>, an RDW orientation {1 0 2} <0 1 0>, and the like are generated. These azimuth | direction components are accept | permitted if the cube azimuth | direction area ratio is in said range with respect to the area of all the directions observed.

上述のように、本発明における上記結晶方位の解析には、電子後方散乱回折(以下EBSDと記す。)法が用いられる。EBSD法とは、Electron BackScatter Diffractionの略であり、走査電子顕微鏡(SEM)内で試料表面の1点に電子線を照射したときに生じる反射電子回折模様(EBSP:electron back−scattering pattern)を用いて局所領域の結晶方位や結晶構造を解析する結晶方位解析技術のことである。
結晶粒を200個以上含む1mm四方の試料面積に対し、0.1μmステップでスキャンして結晶方位を解析した。試料の結晶粒の大きさから測定面積は300μm×300μmとした。各方位の面積率は、cube方位{001}<100>の理想方位からのずれが15°以内の方位を有する結晶粒の面積の全測定面積に対する割合である。EBSD法による方位解析において得られる情報は、電子線が試料に侵入する数10nmの深さまでの方位情報を含んでいるが、測定している広さに対して十分に小さいため、本明細書中では面積率として記載した。また、方位分布は板厚方向に変化しているため、EBSD法による方位解析は板厚方向に何点かを任意にとって平均を取ることが好ましい。本願では特に断りのない限り、ある結晶方位を有する結晶面の面積率はこのようにして測定したものを呼ぶことにする。
As described above, the electron backscatter diffraction (hereinafter referred to as EBSD) method is used for the analysis of the crystal orientation in the present invention. The EBSD method is an abbreviation of Electron BackScatter Diffraction, and uses a backscattered electron diffraction pattern (EBSP) generated when an electron beam is irradiated to one point on the sample surface in a scanning electron microscope (SEM). This is a crystal orientation analysis technique for analyzing the crystal orientation and crystal structure in the local region.
The crystal orientation was analyzed by scanning the sample area of 1 mm square containing 200 or more crystal grains in 0.1 μm steps. From the size of the crystal grains of the sample, the measurement area was set to 300 μm × 300 μm. The area ratio of each orientation is the ratio of the area of crystal grains having orientations within 15 ° of the cube orientation {001} <100> from the ideal orientation to the total measured area. The information obtained in the azimuth analysis by the EBSD method includes azimuth information up to a depth of several tens of nanometers at which the electron beam penetrates into the sample, but is sufficiently small with respect to the measured width. Then, it described as an area ratio. Further, since the azimuth distribution changes in the plate thickness direction, it is preferable that the azimuth analysis by the EBSD method takes an average for any number of points in the plate thickness direction. In the present application, unless otherwise specified, the area ratio of a crystal plane having a certain crystal orientation is referred to as measured in this way.

次に、cube方位{001}<100>の結晶粒の等分散性について説明する。
cube方位結晶粒の分散性を調査するため、EBSD法による結晶方位解析にて300μm×300μmの範囲を0.1μmステップでスキャンし、このうち60μm四方を1ブロックとし、計25ブロックの解析を行った。1ブロックあたりのcube方位結晶粒の面積率、個数、平均結晶粒面積、さらにcube方位粒を含んだ母材の平均結晶粒面積を確認し、分散性を調査した。1ブロックあたり、上述のようにcube方位面積率が5%以上50%以下、cube方位結晶粒の個数が40個以上100個以下、およびcube方位結晶粒1個あたりの平均結晶粒面積が1.8μm以上45.0μm以下、さらにはcube方位粒を含んだ母材の平均結晶粒面積50μm2以下である場合を、本発明における1視野(300μm×300μm)あたりのcube方位結晶粒の等分散性として定量化した。等分散性は、1ブロックの面積(60μm×60μm=3600μm)に当該ブロックのcube方位面積率を乗じて1ブロックあたりのcube方位結晶粒の総面積を求め、その総面積の値を1ブロック内のcube方位結晶粒の個数で除して、1ブロックにおけるcube方位結晶粒1個当たりの平均面積を求めることで計算される。その求めた値が、平均結晶粒面積である。ここでいう「等分散性」とは、1ブロックあたりのcube方位結晶粒の平均結晶粒面積と個数を規定し、ここでcube方位結晶粒の分布状態が仮に偏っていても、25ブロックが集積した300×300μmの全体で見た際に等分散性を確認できる。例えば、超小型コネクタの狭幅ピン(0.25mm=250μm)の曲げ加工部が250×250μmとすると、cube方位群は少なくとも4つ以上のブロックで含まれることとなり、等分散性があると言える。仮に、図1に示すように、隣り合う4ブロックの隅にcube方位が集積していても、分散性は等しく、圧延平行、垂直方向の異方性が小さい。ここでの等分散性(隣り合う4ブロックを1群として少なくとも4群以上の場合)は、さらに好ましくは、1ブロックの面積をより小さく設定することでも規定することができる。例えば、1ブロックの面積を30μm四方とし、この1ブロック内に10〜25個のcube方位{001}<100>の結晶粒が存在して、cube方位{001}<100>の結晶粒面積率が5〜50%であり、cube方位{001}<100>の結晶粒の平均結晶粒面積が1.8〜45.0μmであることが好ましい。この場合、母材の結晶粒の平均結晶粒面積は好ましくは40μm以下である。
Next, the equal dispersibility of the crystal grains having the cube orientation {001} <100> will be described.
In order to investigate the dispersibility of cube-oriented crystal grains, a 300 μm × 300 μm range was scanned in 0.1 μm steps by crystal orientation analysis by the EBSD method, of which 60 μm square was one block, and a total of 25 blocks were analyzed. It was. The area ratio, number of cube-oriented crystal grains per block, average crystal grain area, and average crystal grain area of the base material containing cube-oriented grains were confirmed, and the dispersibility was investigated. As described above, the cube orientation area ratio is 5% or more and 50% or less, the number of cube orientation crystal grains is 40 or more and 100 or less, and the average grain area per cube orientation crystal grain is 1. 8 [mu] m 2 or more 45.0Myuemu 2 or less, more cube where oriented grains is equal to or less than the average crystal grain area 50 [mu] m 2 of base material that contains, the cube oriented crystal grains per 1 field of view in the present invention (300μm × 300μm) equal Quantified as dispersibility. The equal dispersibility is obtained by multiplying the area of one block (60 μm × 60 μm = 3600 μm 2 ) by the cube orientation area ratio of the block to obtain the total area of cube orientation crystal grains per block, and the value of the total area is 1 block. The average area per cube oriented crystal grain in one block is calculated by dividing by the number of cube oriented crystal grains. The obtained value is the average crystal grain area. Here, “equal dispersibility” defines the average grain area and number of cube-oriented grains per block, and even if the distribution of cube-oriented grains is biased, 25 blocks are accumulated. The same dispersibility can be confirmed when viewed as a whole of 300 × 300 μm. For example, when the bending portion of the narrow pin (0.25 mm = 250 μm) of the microminiature connector is 250 × 250 μm, the cube orientation group is included in at least four blocks, and it can be said that there is equal dispersibility. . As shown in FIG. 1, even if the cube orientation is accumulated at the corners of four adjacent blocks, the dispersibility is equal and the anisotropy in the rolling parallel and vertical directions is small. Here, the equal dispersibility (in the case of at least four groups including four adjacent blocks as one group) can be further defined by setting the area of one block smaller. For example, the area of one block is 30 μm square, and 10 to 25 cube orientation {001} <100> crystal grains exist in one block, and the crystal grain area ratio of cube orientation {001} <100> Is 5 to 50%, and the average crystal grain area of the crystal grains of the cube orientation {001} <100> is preferably 1.8 to 45.0 μm 2 . In this case, the average crystal grain area of the crystal grains of the base material is preferably 40 μm 2 or less.

cube方位結晶粒の平均結晶粒面積が小さすぎる場合には、溶体化熱処理が不十分で、未再結晶組織が残存しており、強度と曲げ加工性が低下する可能性がある。一方、cube方位結晶粒の平均結晶面積が大きすぎる場合には、曲げ加工の際にcube方位結晶粒以外の方位を持った結晶粒の部分で割れ(クラック)が発生する可能性が高い。また、曲げの方向によって異方性が生じる場合がある。したがって、cube方位結晶粒の平均結晶面積は上述のような範囲に設定されることが好ましい。
また、cube方位結晶粒は、60μm四方内に40個以上100個以下分布し等分散性を有していることから、曲げ部の頂点にクラックを発生せず良好な曲げ特性が得られ、たわみ異方性および耐力異方性が小さくなる。一方、60μm四方内に分布するcube方位結晶粒の個数が少なすぎると、曲げ部の頂点にクラックを発生して良好な曲げ特性が得られず、たわみ異方性および耐力異方性が大きくなる。一方、上記結晶粒の個数が多すぎる場合、曲げ加工性、たわみ異方性、耐力異方性に優れるが、強度が低下する。
When the average crystal grain area of the cube orientation crystal grains is too small, the solution heat treatment is insufficient, an unrecrystallized structure remains, and the strength and bending workability may be reduced. On the other hand, when the average crystal area of the cube-oriented crystal grains is too large, there is a high possibility that cracks will occur at the portion of the crystal grains having an orientation other than the cube-oriented crystal grains during bending. Also, anisotropy may occur depending on the bending direction. Therefore, the average crystal area of the cube-oriented crystal grains is preferably set in the above range.
In addition, since the cube-oriented crystal grains are distributed in the range of 40 to 100 in a square of 60 μm and have equal dispersibility, good bending characteristics can be obtained without causing cracks at the apex of the bent portion. Anisotropy and yield anisotropy are reduced. On the other hand, if the number of cube-oriented crystal grains distributed in a 60 μm square is too small, cracks are generated at the apex of the bent portion, and good bending characteristics cannot be obtained, and the flexural anisotropy and yield anisotropy increase. . On the other hand, when the number of the crystal grains is too large, the bending workability, the flexural anisotropy and the proof stress anisotropy are excellent, but the strength is lowered.

特に上記銅合金板材からなる超小型コネクタ用の狭幅ピン(例えば0.25mm幅)の場合、曲げ加工性改善に有効なcube方位{001}<100>結晶粒の面積率の範囲でその面積率を高めても、cube方位結晶粒の平均結晶粒面積が大きく、またcube方位結晶粒の分布が不均一な場合には、曲げ加工の際にcube方位結晶粒以外の方位を持った結晶粒の部分で割れ(クラック)が発生する可能性が高い。また、曲げの方向によって異方性が生じる場合がある。したがって、EBSD法による結晶方位解析において、60μm四方内にcube方位結晶粒が40個以上100個以下分布し、等分散性を有していることが好ましい。
そこで、本発明の銅合金板材では、cube方位結晶粒の平均結晶粒面積、分散性を制御する。具体的には、再結晶溶体化熱処理前の中間温間圧延にて、再結晶しない温度まで加熱し、その温度下で圧延率5%以上の圧延を施すことによって、圧延材全体でひずみの導入と開放を適度な状態に制御することが可能である。これにより、cube方位の等分散性を実現できる。また、同時に各結晶方位の平均結晶粒面積も制御可能である。この分散性を制御することにより、狭幅ピンの曲げ加工性を高め、たわみ異方性および耐力異方性等の強度の異方性を低減している。
In particular, in the case of a narrow pin (for example, 0.25 mm width) for a microminiature connector made of the above-described copper alloy plate material, the area is within the range of the cube orientation {001} <100> crystal grain area ratio effective for improving the bending workability. Even if the rate is increased, if the average grain area of the cube-oriented crystal grains is large and the distribution of the cube-oriented crystal grains is non-uniform, the grains having an orientation other than the cube-oriented crystal grains during bending There is a high possibility that cracks will occur at the part. Also, anisotropy may occur depending on the bending direction. Therefore, in the crystal orientation analysis by the EBSD method, it is preferable that 40 or more and 100 or less cube-oriented crystal grains are distributed within 60 μm square and have equal dispersibility.
Therefore, in the copper alloy sheet of the present invention, the average crystal grain area and dispersibility of the cube-oriented crystal grains are controlled. Specifically, in the intermediate warm rolling before recrystallization solution heat treatment, heating to a temperature at which recrystallization does not occur, and rolling at a rolling rate of 5% or more at that temperature introduces strain throughout the rolled material. It is possible to control the opening to an appropriate state. Thereby, equal dispersibility of the cube orientation can be realized. At the same time, the average grain area of each crystal orientation can be controlled. By controlling the dispersibility, the bending workability of the narrow pin is enhanced, and the strength anisotropy such as the deflection anisotropy and the proof stress anisotropy is reduced.

次に本発明の銅合金板材に添加される副添加元素について説明する。
上述したように、本発明の銅合金板材は、好ましい1つの形態においては、Ni及びSiの主添加元素に加えて、副添加元素としてSn、Zn、Ag、Mn、B、P、Mg、Cr、Zr、FeおよびHfからなる群から選ばれる少なくとも1つの元素を含んでもよく、その含有量は副添加元素の合計で、0.005質量%以上1.0質量%以下であり、好ましくは0.01質量%以上0.9質量%以下であり、より好ましくは0.03質量%以上0.8質量%以下であり、特に好ましくは0.05質量%以上0.5質量%以下である。これらの副添加元素は総量で1.0質量%以下であると導電率を低下させる弊害が生じにくくなる。また上記範囲であれば、下記の添加効果を十分に活用し、かつ導電率が著しく低下しない。特に好ましい範囲内であれば、高い添加効果と高い導電率を得ることができる。一方、副添加元素の含有量が少なすぎる場合には、添加効果が十分に発現しなくなる。他方、副添加元素の含有量が多すぎる場合には、導電率が低くなり好ましくない。以下に、各副添加元素の添加効果を説明する。
Next, the auxiliary additive element added to the copper alloy sheet of the present invention will be described.
As described above, in a preferred embodiment, the copper alloy sheet material of the present invention includes Sn, Zn, Ag, Mn, B, P, Mg, Cr as secondary additive elements in addition to the main additive elements of Ni and Si. , Zr, Fe and Hf may be included, and the content thereof is 0.005% by mass or more and 1.0% by mass or less, and preferably 0% by total of the sub-addition elements. It is 0.01 mass% or more and 0.9 mass% or less, More preferably, it is 0.03 mass% or more and 0.8 mass% or less, Especially preferably, it is 0.05 mass% or more and 0.5 mass% or less. When the total amount of these sub-added elements is 1.0% by mass or less, it is difficult to cause an adverse effect of lowering the conductivity. Moreover, if it is the said range, the following addition effect will fully be utilized and electrical conductivity will not fall remarkably. If it is in the especially preferable range, a high addition effect and high electrical conductivity can be obtained. On the other hand, when the content of the secondary additive element is too small, the effect of addition is not sufficiently exhibited. On the other hand, when there is too much content of a secondary additive element, electrical conductivity becomes low and is not preferable. Below, the addition effect of each sub-addition element is demonstrated.

上記副添加元素の内で、Mg、Sn、Znは、銅合金板材の耐応力緩和特性を向上させる。それぞれを単独で添加した場合よりも併せて添加した場合に相乗効果によってさらに耐応力緩和特性が向上する。また、半田脆化が著しく改善される効果がある。耐応力緩和特性は、日本電子材料工業会標準規格 EMAS‐3003に準じて、150℃、1000時間の条件で測定する。片持ち梁法により耐力の80%の初期応力を負荷して、150℃、1000時間の試験後の変位量を耐応力緩和特性とする。   Among the auxiliary additive elements, Mg, Sn, and Zn improve the stress relaxation resistance of the copper alloy sheet. The stress relaxation resistance is further improved by a synergistic effect when each of them is added together than when they are added alone. In addition, the solder embrittlement is remarkably improved. The stress relaxation resistance is measured under the conditions of 150 ° C. and 1000 hours in accordance with the Japan Electronic Materials Industries Association standard EMAS-3003. An initial stress of 80% of the proof stress is applied by the cantilever method, and the displacement after the test at 150 ° C. for 1000 hours is defined as the stress relaxation property.

上記副添加元素の内で、Mn、Ag、B、Pは、銅合金板材の熱間加工性を向上させるとともに、強度を向上させる。   Among the auxiliary additive elements, Mn, Ag, B, and P improve the hot workability of the copper alloy sheet and improve the strength.

上記副添加元素の内で、Cr、Zr、Fe、Hfは、化合物や単体で母材に微細に析出する。単体としては、好ましくは75nm以上450nm以下に析出し、より好ましくは90nm以上400nm以下に析出し、特に好ましくは100nm以上350nm以下に析出して、析出硬化に寄与する。また、化合物として50nmから500nmの大きさで析出する。いずれの場合にも、結晶粒の成長を抑制することによって結晶粒を微細にする効果があり、cube方位{001}<100>の結晶粒の分散状態を良化することによって、曲げ加工性を良好に向上させる。   Among the auxiliary additive elements, Cr, Zr, Fe, and Hf are finely precipitated on the base material as a compound or as a simple substance. As a simple substance, it preferably deposits at 75 nm to 450 nm, more preferably 90 nm to 400 nm, and particularly preferably 100 nm to 350 nm, which contributes to precipitation hardening. Moreover, it precipitates with the magnitude | size of 50 nm to 500 nm as a compound. In any case, there is an effect of making the crystal grain fine by suppressing the growth of the crystal grain, and bending workability is improved by improving the dispersion state of the crystal grain of the cube orientation {001} <100>. Improve well.

次に、本発明の銅合金板材の曲げ加工性について説明する。
曲げ加工性は、90°W曲げ加工した試験片を、圧縮試験機にて180°密着曲げ加工を行い、その曲げ部頂点に割れ(クラック)の発生がないことが好ましい。
これを換言すると、本発明の銅合金板材は、圧延平行方向と圧延垂直方向の曲げ加工性として、1mm幅以下の狭幅の曲げ加工での180°U密着曲げにて、曲げ加工表面にクラックが生じないことが好ましい。
Next, the bending workability of the copper alloy sheet material of the present invention will be described.
Regarding the bending workability, it is preferable that a test piece subjected to 90 ° W bending is subjected to 180 ° contact bending using a compression tester, and no crack is generated at the apex of the bent portion.
In other words, the copper alloy sheet material of the present invention is cracked on the surface of the bending process by 180 ° U contact bending in a bending process of a narrow width of 1 mm or less as a bending processability in the rolling parallel direction and the rolling vertical direction. It is preferable that no occurs.

次に、たわみ係数の異方性および耐力の異方性について説明する。
圧延平行方向(//)のたわみ係数と圧延垂直方向(⊥)のたわみ係数の差が絶対値で10GPa以下であることが好ましく、この場合、たわみ係数の異方性が小さい。また、圧延平行方向の耐力と圧延垂直方向の耐力の差が絶対値で10MPa以下であることが好ましく、この場合、耐力の異方性が小さい。
Next, the anisotropy of the deflection coefficient and the anisotropy of the proof stress will be described.
The difference between the deflection coefficient in the rolling parallel direction (//) and the deflection coefficient in the rolling vertical direction (⊥) is preferably 10 GPa or less in absolute value. In this case, the anisotropy of the deflection coefficient is small. The difference between the proof stress in the rolling parallel direction and the proof stress in the vertical direction of rolling is preferably 10 MPa or less in absolute value. In this case, the anisotropy of the proof stress is small.

次に、本発明の銅合金板材の製造方法の好ましい実施形態について説明する。
本発明の銅合金板材を製造するには、銅合金素材を鋳造して得た鋳塊に熱処理(均質化処理)と熱間圧延とを施し、さらに冷間圧延によって薄板に成形した後、前記薄板の再結晶温度未満での中間焼鈍と、100℃以上400℃以下に加熱した後にその温度下で圧延率が5%以上の温間圧延(以下、中間温間圧延という。)を行い、その後薄板中の溶質原子を再固溶させる中間溶体化熱処理を行うという製造方法である。
上記銅合金素材は、Niを1.0質量%以上5.0質量%以下、Siを0.1質量%以上1.0質量%以下と、必要により、Sn、Zn、Ag、Mn、B、P、Mg、Cr、Zr、FeおよびHfからなる群から選ばれる少なくとも1つを合計で0.005質量%以上1.0質量%以下含有し、残部が銅および不可避不純物からなる組成を有するものである。
Next, a preferred embodiment of the method for producing a copper alloy sheet according to the present invention will be described.
In order to produce the copper alloy plate material of the present invention, the ingot obtained by casting the copper alloy material is subjected to heat treatment (homogenization treatment) and hot rolling, and further formed into a thin plate by cold rolling, Intermediate annealing below the recrystallization temperature of the thin plate, and heating to 100 ° C. or more and 400 ° C. or less, followed by warm rolling (hereinafter referred to as intermediate warm rolling) with a rolling rate of 5% or more at that temperature, and thereafter. This is a production method in which an intermediate solution heat treatment for re-dissolving solute atoms in a thin plate is performed.
The copper alloy material is made of 1.0 to 5.0% by mass of Ni, 0.1 to 1.0% by mass of Si, and Sn, Zn, Ag, Mn, B, Containing at least one selected from the group consisting of P, Mg, Cr, Zr, Fe and Hf in a total of 0.005 mass% to 1.0 mass%, with the balance being composed of copper and inevitable impurities It is.

ここでいう、圧延率とは、圧延前の断面積から圧延後の断面積を引いた値を圧延前の断面積で除して100を乗じ、パーセントで表した値である。すなわち、下記式で表される。
[圧延率]={([圧延前の断面積]−[圧延後の断面積])/[圧延前の断面積]}×100(%)
Here, the rolling rate is a value expressed as a percentage by dividing the value obtained by subtracting the cross-sectional area after rolling from the cross-sectional area before rolling by the cross-sectional area before rolling and multiplying by 100. That is, it is represented by the following formula.
[Rolling ratio] = {([Cross sectional area before rolling] − [Cross sectional area after rolling]) / [Cross sectional area before rolling]} × 100 (%)

具体的には、次のような製造方法を好ましい一例として挙げることができる。
上記銅合金素材を鋳造[工程1]して鋳塊を得る。この鋳塊を均質化熱処理[工程2]し、熱間圧延[工程3]した後、直ちに冷却(例えば、水冷、水焼き入れ)[工程4]する。次に表面の酸化被膜を除去するために面削[工程5]を行う。その後、冷間圧延[工程6]を行い、圧延率80%以上に圧延して薄板を得る。
そして薄板が一部再結晶する程度の温度である400℃以上700℃以下の温度で5秒間から20時間の中間焼鈍[工程7]を行ってから、100℃以上400℃以下に加熱した後にその温度下で中間温間圧延[工程8]として5%以上50%以下の圧延率の中間温間圧延を薄板に施す。
その後、溶質原子を再固溶させる中間溶体化熱処理[工程9]を行う。この中間溶体化熱処理における薄板の再結晶集合組織においてcube方位面積率が増加する。
この中間溶体化熱処理[工程9]後には、時効析出熱処理[工程10]、仕上げ冷間圧延[工程11]および、調質焼鈍[工程12]をこの順で施す。
Specifically, the following production method can be given as a preferred example.
The copper alloy material is cast [Step 1] to obtain an ingot. The ingot is subjected to homogenization heat treatment [Step 2], hot-rolled [Step 3], and then immediately cooled (for example, water-cooled and water-quenched) [Step 4]. Next, chamfering [Step 5] is performed to remove the oxide film on the surface. Thereafter, cold rolling [Step 6] is performed to obtain a thin plate by rolling to a rolling rate of 80% or more.
And after performing intermediate annealing [step 7] for 5 seconds to 20 hours at a temperature of 400 ° C. or more and 700 ° C. or less, which is a temperature at which the thin plate is partially recrystallized, after heating to 100 ° C. or more and 400 ° C. or less Intermediate warm rolling at a rolling rate of 5% or more and 50% or less is performed on the thin plate as intermediate warm rolling [step 8] under temperature.
Thereafter, an intermediate solution heat treatment [Step 9] for re-dissolving the solute atoms is performed. In the recrystallization texture of the thin plate in this intermediate solution heat treatment, the cube orientation area ratio increases.
After this intermediate solution heat treatment [Step 9], an aging precipitation heat treatment [Step 10], finish cold rolling [Step 11], and temper annealing [Step 12] are performed in this order.

一方、従来の析出型銅合金の製造方法は、銅合金素材を鋳造[工程1]して鋳塊を得て、これを均質化熱処理[工程2]し、熱間圧延[工程3]、冷却(水冷)[工程4]、面削[工程5]、冷間圧延[工程6]をこの順に行い薄板化する。そして700℃以上1000℃以下の温度範囲で中間溶体化熱処理[工程9]を行って溶質原子を再固溶させた後に、時効析出熱処理[工程10]と仕上げ冷間圧延[工程11]および必要により調質焼鈍[工程12]によって必要な強度を満足させるという方法である。この一連の工程の中で、材料の集合組織は、中間溶体化熱処理中に起きる再結晶によっておおよそが決定され、仕上げ圧延中に起きる方位の回転により、最終的に決定される。
本発明の製造方法と比較して、前記中間焼鈍[工程7]と中間温間圧延[工程8]の2つの工程は、従来行われていなかった。
On the other hand, in the conventional method for producing a precipitation-type copper alloy, a copper alloy material is cast [Step 1] to obtain an ingot, which is subjected to homogenization heat treatment [Step 2], hot rolling [Step 3], and cooling. (Water cooling) [Step 4], chamfering [Step 5], cold rolling [Step 6] are performed in this order to reduce the thickness. Then, after performing an intermediate solution heat treatment [Step 9] in a temperature range of 700 ° C. to 1000 ° C. to re-dissolve the solute atoms, an aging precipitation heat treatment [Step 10] and finish cold rolling [Step 11] and necessary Thus, the required strength is satisfied by temper annealing [Step 12]. In this series of steps, the texture of the material is roughly determined by recrystallization that occurs during the intermediate solution heat treatment, and finally determined by the orientation rotation that occurs during finish rolling.
Compared with the production method of the present invention, the two steps of the intermediate annealing [Step 7] and the intermediate warm rolling [Step 8] have not been performed conventionally.

次に、本発明の製造方法における各工程の条件をより詳細に設定した実施態様について説明する。
鋳造[工程1]では、少なくともNiを1.0質量%以上5.0質量%以下含有し、Siを0.1質量%以上1.0質量%以下含有し、他の副添加元素については必要により適宜含有するように元素を配合し、残部がCuと不可避不純物から成る合金素材を高周波溶解炉により溶解し、これを0.1℃/秒以上100℃/秒以下の冷却速度で冷却して鋳塊を得る。そして、この鋳塊に対して800℃以上1020℃以下で3分間から10時間の均質化熱処理[工程2]を施う。その後、熱間圧延[工程3]を行い、さらに水焼入れ(冷却[工程4]に相当)を行う。そして、面削[工程5]で、酸化被膜を除去する。その後、圧延率80%〜99.8%の冷間圧延[工程6]を施して薄板を得る。
Next, an embodiment in which the conditions of each step in the production method of the present invention are set in more detail will be described.
In casting [step 1], at least Ni is contained in an amount of 1.0% by mass or more and 5.0% by mass or less, Si is contained in an amount of 0.1% by mass or more and 1.0% by mass or less, and other auxiliary additive elements are necessary. The element is mixed so that it is contained appropriately, and the alloy material consisting of Cu and inevitable impurities is melted in a high-frequency melting furnace, and this is cooled at a cooling rate of 0.1 ° C./second to 100 ° C./second. Get an ingot. The ingot is subjected to a homogenization heat treatment [Step 2] at 800 ° C. or higher and 1020 ° C. or lower for 3 minutes to 10 hours. Thereafter, hot rolling [Step 3] is performed, and further water quenching (corresponding to cooling [Step 4]) is performed. Then, the oxide film is removed by chamfering [Step 5]. Thereafter, cold rolling [Step 6] at a rolling rate of 80% to 99.8% is performed to obtain a thin plate.

次に400℃以上700℃以下で5秒間から20時間の中間焼鈍[工程7]を行い、さらに、100℃以上400℃以下の条件にて加熱後にその温度下で圧延率5%以上50%以下の中間温間圧延[工程8]を行う。ここで、温間圧延とは、前記100℃以上400℃以下の温度で圧延することをいう。   Next, intermediate annealing is performed at 400 ° C. to 700 ° C. for 5 seconds to 20 hours [Step 7]. Further, after heating under the conditions of 100 ° C. to 400 ° C., the rolling rate is 5% to 50%. Intermediate warm rolling [Step 8] is performed. Here, warm rolling means rolling at a temperature of 100 ° C. or more and 400 ° C. or less.

その後、600℃以上1000℃以下で5秒間から1時間の中間溶体化熱処理[工程9]を行う。その後、好ましくは窒素やアルゴン等の不活性ガス雰囲気中での400℃以上700℃以下で5分間から10時間の時効析出熱処理[工程10]、圧延率が3%以上25%以下の仕上げの冷間圧延[工程11]、200℃以上600℃以下で5秒間以上10時間以下の調質焼鈍[工程12]を、この順に行って本発明の銅合金板材を得る。
本発明の製造方法においては、得られる板材の性状に特に必要ない場合には、前記面削[工程5]、仕上げ冷間圧延[工程11]、調質焼鈍[工程12]の各工程の1つ以上を省略して行わなくてもよい。
Thereafter, an intermediate solution heat treatment [Step 9] is performed at 600 ° C. to 1000 ° C. for 5 seconds to 1 hour. Thereafter, preferably an aging precipitation heat treatment [step 10] for 5 minutes to 10 hours at 400 ° C. or higher and 700 ° C. or lower in an inert gas atmosphere such as nitrogen or argon, and finish cooling with a rolling rate of 3% or higher and 25% or lower Cold rolling [Step 11] and temper annealing [Step 12] at 200 ° C. to 600 ° C. for 5 seconds to 10 hours are performed in this order to obtain the copper alloy sheet material of the present invention.
In the production method of the present invention, when there is no particular need for the properties of the obtained plate material, 1 of each step of the face milling [Step 5], finish cold rolling [Step 11], and temper annealing [Step 12]. It is not necessary to omit one or more.

本実施態様において、熱間圧延[工程3]では、700℃以上再熱温度(1020℃)以下の温度域で、鋳造組織や偏析を破壊し均一な組織にするための加工と、動的再結晶による結晶粒の微細化のための加工を行う。   In this embodiment, in the hot rolling [Step 3], in the temperature range of 700 ° C. or higher and the reheat temperature (1020 ° C.) or lower, processing for breaking the cast structure and segregation into a uniform structure, Processing for crystal grain refinement is performed.

中間焼鈍[工程7]では合金中の組織を全面は再結晶させない程度に熱処理を行う。その後、再結晶しない温度帯である好ましくは100℃以上400℃以下、より好ましくは120℃以上380℃以下、特に好ましくは140℃以上360℃以下まで加熱し、その温度下で、好ましくは5%以上50%以下、より好ましくは7%以上45%以下、特に好ましくは10%以上40%以下の圧延率にて中間温間圧延[工程8]を施し、加工ひずみの導入と開放を制御する。
この中間温間圧延[工程8]における圧延率が低すぎると、加工歪が小さく、次工程の中間溶体化熱処理[工程9]にて結晶粒が粗大化し、曲げしわが大きくなり特性が劣る。一方、中間温間圧延[工程8]における圧延率が高すぎると、再結晶溶体化熱処理[工程9]にて成長するcube方位が他の方位へ回転し、cube方位面積率が低下する。また、中間温間圧延[工程8]における加熱温度が100℃より低い場合には加工歪の開放が少なくなり、逆に400℃より高い場合には加工歪の開放が進行するとともに再結晶が進行してしまい、次工程の中間溶体化熱処理[工程9]において、ひずみ誘起粒界移動でのcube方位結晶粒の等分散性が不十分となる。この結果、中間温間圧延[工程8]における加熱温度が高すぎるかあるいは低すぎるいずれの場合にも、曲げの異方性としてのたわみ異方性や強度の異方性としての耐力異方性が生じる。
In the intermediate annealing [Step 7], heat treatment is performed to such an extent that the entire structure in the alloy is not recrystallized. Thereafter, it is heated to a temperature zone that does not recrystallize, preferably 100 ° C. or more and 400 ° C. or less, more preferably 120 ° C. or more and 380 ° C. or less, particularly preferably 140 ° C. or more and 360 ° C. or less, and at that temperature, preferably 5% Intermediate warm rolling [Step 8] is performed at a rolling rate of 50% or less, more preferably 7% or more and 45% or less, and particularly preferably 10% or more and 40% or less, to control the introduction and release of processing strain.
If the rolling rate in the intermediate warm rolling [Step 8] is too low, the working strain is small, the crystal grains become coarse in the intermediate solution heat treatment [Step 9] in the next step, the bending wrinkles become large, and the characteristics are inferior. On the other hand, if the rolling rate in the intermediate warm rolling [Step 8] is too high, the cube orientation grown in the recrystallization solution heat treatment [Step 9] rotates to another orientation, and the cube orientation area ratio decreases. Further, when the heating temperature in the intermediate warm rolling [Step 8] is lower than 100 ° C., the release of processing strain is reduced, and conversely, when the heating temperature is higher than 400 ° C., the release of processing strain proceeds and recrystallization proceeds. Therefore, in the intermediate solution heat treatment [Step 9] in the next step, the uniform dispersibility of the cube-oriented crystal grains due to strain-induced grain boundary movement becomes insufficient. As a result, in both cases where the heating temperature in intermediate warm rolling [Step 8] is too high or too low, bending anisotropy as bending anisotropy and proof anisotropy as strength anisotropy Occurs.

中間溶体化熱処理[工程9]では、再結晶集合組織においてcube方位面積率が増加する。ここで、中間溶体化熱処理[工程9]前の中間焼鈍[工程7]の熱処理温度を上記範囲の温度より高くすると、酸化被膜が形成され好ましくない。このため、この中間焼鈍[工程7]での熱処理温度は好ましくは400℃以上700℃以下とした。特に、一義的には断定しがたいが、中間焼鈍[工程7]にて熱処理温度を上記温度範囲とすることにより、中間溶体化熱処理[工程9]でcube方位面積率が増加する傾向がある。   In the intermediate solution heat treatment [Step 9], the cube orientation area ratio increases in the recrystallized texture. Here, when the heat treatment temperature of the intermediate annealing [Step 7] before the intermediate solution heat treatment [Step 9] is higher than the temperature in the above range, an oxide film is formed, which is not preferable. For this reason, the heat treatment temperature in this intermediate annealing [Step 7] is preferably 400 ° C. or more and 700 ° C. or less. In particular, it is difficult to uniquely determine, but by setting the heat treatment temperature to the above temperature range in the intermediate annealing [Step 7], the cube orientation area ratio tends to increase in the intermediate solution heat treatment [Step 9]. .

中間溶体化熱処理[工程9]後には、時効析出熱処理[工程10]、仕上げ冷間圧延[工程11]、調質焼鈍[工程12]を施す。中間溶体化熱処理[工程9]で形成される再結晶集合組織においてひずみ誘起粒界移動によるcube方位面積率を増加させるためには、中間温間圧延[工程8]において所定の加工を行うことが有効である。かつ、中間温間圧延[工程8]において結晶方位を一定方向に制御しておくことで、cube方位結晶粒の発達に寄与する。さらに、時効析出熱処理[工程10]を行うによって、添加元素を固溶体から析出させることで析出強化によって機械強度を上げることができる。また、仕上げ冷間圧延[工程11]を行うによって、板厚を最終的に調整してもよい。さらには、調質焼鈍[工程12]を行うによって、板材の調質を最終的に調整してもよい。   After the intermediate solution heat treatment [Step 9], an aging precipitation heat treatment [Step 10], finish cold rolling [Step 11], and temper annealing [Step 12] are performed. In order to increase the cube orientation area ratio due to strain-induced grain boundary migration in the recrystallized texture formed in the intermediate solution heat treatment [Step 9], a predetermined process may be performed in the intermediate warm rolling [Step 8]. It is valid. In addition, by controlling the crystal orientation in a certain direction in the intermediate warm rolling [Step 8], it contributes to the development of cube-oriented crystal grains. Furthermore, the mechanical strength can be increased by precipitation strengthening by precipitating the additive element from the solid solution by performing the aging precipitation heat treatment [Step 10]. Moreover, you may finally adjust plate | board thickness by performing finish cold rolling [process 11]. Furthermore, you may finally adjust the tempering of a board | plate material by performing temper annealing [process 12].

また、冷間圧延[工程6]によりさらなる加工歪を入れ、中間焼鈍[工程7]にて400℃以上700℃以下で5秒間から20時間の熱処理を加え、さらに中間温間圧延[工程8]を行うことで、中間溶体化処理[工程9]での再結晶集合組織においてcube方位面積率が著しく増加する。   Further, further processing strain is added by cold rolling [step 6], heat treatment is performed at 400 ° C. to 700 ° C. for 5 seconds to 20 hours in intermediate annealing [step 7], and further intermediate warm rolling [step 8]. As a result, the cube orientation area ratio is remarkably increased in the recrystallized texture in the intermediate solution treatment [Step 9].

上記中間焼鈍[工程7]は、完全には再結晶しておらず、部分的に再結晶している亜焼鈍組織を得ることが目的である。上記中間温間圧延[工程8]では、加熱温度が100℃以上400℃以下、圧延率が5%以上の圧延によって、微視的に不均一な歪の導入と開放を進めることが目的である。   The intermediate annealing [Step 7] is intended to obtain a sub-annealed structure that is not completely recrystallized but partially recrystallized. In the intermediate warm rolling [Step 8], the purpose is to promote the introduction and release of microscopically non-uniform strain by rolling at a heating temperature of 100 ° C. to 400 ° C. and a rolling rate of 5% or more. .

中間焼鈍[工程7]と中間温間圧延[工程8]の作用効果によって、中間溶体化処理[工程9]におけるcube方位結晶粒の成長とcube方位結晶粒の微細化と等分散を可能にする。中間温間圧延[工程8]では、圧延による歪の導入と、加熱による歪の開放を行っているが、これらを両方とも適正に制御することで、中間溶体化熱処理[工程9]のひずみ誘起粒界移動でのcube方位結晶粒の発達と、cube方位結晶粒の微細化および等分散性を高めることができる。すなわち、歪を導入することでcube方位結晶粒を発達させることができ、歪を開放することでcube方位結晶粒の微細化および等分散性が高められる。従来の通常の方法では、中間溶体化処理[工程9]のような熱処理は次工程での荷重を低減するために材料を再結晶させて強度を落とすことが主目的であるが、本発明ではその目的とは全く異なる。   The effect of the intermediate annealing [Step 7] and the intermediate warm rolling [Step 8] enables the growth of the cube orientation crystal grains, the refinement of the cube orientation crystal grains, and the equal dispersion in the intermediate solution treatment [Step 9]. . In intermediate warm rolling [Step 8], strain is introduced by rolling and strain is released by heating. By appropriately controlling both of these, strain induction of intermediate solution heat treatment [Step 9] is induced. Development of cube-oriented crystal grains due to grain boundary movement, refinement of cube-oriented crystal grains, and equal dispersibility can be improved. In other words, by introducing strain, the cube-oriented crystal grains can be developed, and by releasing the strain, the cube-oriented crystal grains can be refined and equidispersed. In the conventional normal method, the main purpose of the heat treatment such as the intermediate solution treatment [Step 9] is to recrystallize the material and reduce the strength in order to reduce the load in the next step. Its purpose is completely different.

本発明の銅合金板材の板厚には特に制限はないが、通常、0.03〜0.50mmであり、好ましくは、0.05〜0.35mmである。   Although there is no restriction | limiting in particular in the board thickness of the copper alloy board | plate material of this invention, Usually, it is 0.03-0.50 mm, Preferably, it is 0.05-0.35 mm.

本発明の銅合金板材は、上述の各要件を満たすことで、例えばコネクタ用銅合金板材に要求される下記特性を満足して有することが好ましい。
特性の一つの曲げ加工性は、180°密着U曲げ試験において曲げ加工表面部にクラックがないことが好ましい。この詳細な条件は実施例に記載の通りとする。
特性の一つのたわみ係数は、130GPa以下であることが好ましい。この詳細な条件は、実施例に記載の通りとする。本発明の銅合金板材の示すたわみ係数の下限値には特に制限はないが、通常、90GPa以上である。
特性の一つの耐力は、700MPa以上であることが好ましい。さらに好ましくは750MPa以上である。この詳細な測定条件は実施例に記載の通りとする。本発明の銅合金板材の示す耐力の上限値には特に制限はないが、通常、900MPa以下である。
特性の一つの導電率は、5%IACS(International Annealed Copper Standard)以上であることが好ましい。さらに好ましくは10%IACS以上、特に好ましくは20%IACS以上である。この詳細な測定条件は実施例に記載の通りとする。本発明の銅合金板材の示す導電率の上限値には特に制限はないが、通常、50%IACS以下である。
The copper alloy sheet material of the present invention preferably satisfies the following requirements and satisfies, for example, the following characteristics required for a copper alloy sheet material for connectors.
One of the characteristics of the bending workability is that the bending surface portion is preferably free from cracks in the 180 ° contact U-bending test. The detailed conditions are as described in the examples.
One deflection coefficient of the characteristics is preferably 130 GPa or less. The detailed conditions are as described in the examples. Although there is no restriction | limiting in particular in the lower limit of the bending coefficient which the copper alloy board | plate material of this invention shows, Usually, it is 90 GPa or more.
One proof stress of the characteristic is preferably 700 MPa or more. More preferably, it is 750 MPa or more. The detailed measurement conditions are as described in the examples. Although there is no restriction | limiting in particular in the upper limit of the yield strength which the copper alloy board | plate material of this invention shows, Usually, it is 900 Mpa or less.
One of the characteristics of the conductivity is preferably 5% IACS (International Annealed Copper Standard) or more. More preferably, it is 10% IACS or more, and particularly preferably 20% IACS or more. The detailed measurement conditions are as described in the examples. Although there is no restriction | limiting in particular in the upper limit of the electrical conductivity which the copper alloy board | plate material of this invention shows, Usually, it is 50% IACS or less.

以下に、本発明を実施例に基づきさらに詳細に説明するが、本発明はそれらに限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.

(実施例1〜14および比較例1〜4)
表1に示したそれぞれの量のNi、Si、副添加元素を含有し、残部がCuと不可避不純物から成る合金を高周波溶解炉にて溶解し、これを0.1℃/秒から100℃/秒の冷却速度で冷却して鋳造[工程1]し、鋳塊を得た。
この鋳塊を800℃以上1020℃以下で3分から10時間の均質化熱処理[工程2]した後、700℃以上でかつ再熱温度(1020℃)以下で熱間加工としての熱間圧延[工程3]を行い、さらに水焼入れ(冷却[工程4]に相当)を行って熱間圧延板を得た。次に、この熱間圧延板の表面の面削[工程5]を行って酸化被膜を除去した。その後、圧延率80%から99.8%の冷間圧延[工程6]を行って薄板を得た。
次に400℃以上700℃以下で5秒間から20時間の熱処理により薄板の中間焼鈍[工程7]を行い、さらに、100℃以上400℃以下に加熱後にその温度下で5%以上50%以下の圧延率で圧延する中間温間圧延[工程8]を行った。
その後、600℃以上1000℃以下で5秒間から1時間の中間溶体化処理[工程9]を実施した。次に、不活性ガス雰囲気中、400℃以上700℃以下で5分間から1時間の時効析出熱処理[工程10]を行い、3%から25%の圧延率で仕上げの冷間圧延[工程11]、200℃以上600℃以下で5秒間以上10時間以下の調質焼鈍[工程12]を行って銅合金板材の供試材(実施例1から14および比較例1から4)を作製した。各供試材の最終板厚は0.08mmとした。
(Examples 1-14 and Comparative Examples 1-4)
Each of the alloys shown in Table 1 containing Ni, Si, and secondary additive elements, with the balance consisting of Cu and inevitable impurities, was melted in a high-frequency melting furnace, and this was dissolved at 0.1 ° C./sec to 100 ° C. / After cooling at a cooling rate of 2 seconds, casting [Step 1] was performed to obtain an ingot.
This ingot is subjected to a homogenization heat treatment [Step 2] at 800 ° C. or higher and 1020 ° C. or lower for 3 minutes to 10 hours, and then hot-rolled as hot working at 700 ° C. or higher and at a reheat temperature (1020 ° C.) or lower [Step] 3] and water quenching (equivalent to cooling [step 4]) to obtain a hot rolled sheet. Next, the surface of the hot-rolled sheet was chamfered [Step 5] to remove the oxide film. Thereafter, cold rolling [Step 6] at a rolling rate of 80% to 99.8% was performed to obtain a thin plate.
Next, intermediate annealing of the thin plate is performed by heat treatment at 400 ° C. to 700 ° C. for 5 seconds to 20 hours [Step 7], and after heating to 100 ° C. to 400 ° C., the temperature is 5% to 50%. Intermediate warm rolling [Step 8] was performed at a rolling rate.
Thereafter, an intermediate solution treatment [Step 9] was performed at 600 ° C. to 1000 ° C. for 5 seconds to 1 hour. Next, an aging precipitation heat treatment [Step 10] is performed for 5 minutes to 1 hour at 400 ° C. or higher and 700 ° C. or lower in an inert gas atmosphere, and cold rolling is finished at a rolling rate of 3% to 25% [Step 11]. The temper annealing [Step 12] was performed at 200 ° C. to 600 ° C. for 5 seconds to 10 hours to prepare copper alloy sheet materials (Examples 1 to 14 and Comparative Examples 1 to 4). The final plate thickness of each test material was 0.08 mm.

これらの実施例1から14および比較例1から4のそれぞれの組成および特性については、表1および表2に示す通りである。
なお、各熱処理や圧延の後に、材料表面の酸化や粗度の状態に応じて酸洗浄や表面研磨を、形状に応じてテンションレベラーによる矯正を行った。また、熱間加工[工程3]での加工温度は、圧延機の入り側と出側に設置した放射温度計により測定した。
The compositions and characteristics of Examples 1 to 14 and Comparative Examples 1 to 4 are as shown in Table 1 and Table 2.
After each heat treatment and rolling, acid cleaning and surface polishing were performed according to the state of oxidation and roughness of the material surface, and correction with a tension leveler was performed according to the shape. Moreover, the processing temperature in the hot processing [Step 3] was measured by a radiation thermometer installed on the entry side and the exit side of the rolling mill.

各供試材について下記の特性調査を行った。
(a)cube方位面積率
EBSD法により、0.09mm(300μm×300μm)の測定面積を、スキャンステップが0.1μmの条件で測定を行った。また、この測定面積においては、60μm×60μmを1ブロックとし、1視野で計25ブロック(5ブロック×5ブロック)の測定ができるようにした。この場合のスキャンステップは、微細な結晶粒を測定するために上記のように0.1μmステップとした。解析では、300μm×300μmの測定面積におけるEBSD測定結果を、上述の25ブロックに分割し、各ブロックのcube方位面積率、平均結晶粒面積、結晶粒の個数、cube方位粒を含んだ母材の平均結晶粒面積を確認した。電子線は走査型電子顕微鏡のタングステンフィラメントからの熱電子を発生源とした。
The following characteristics were investigated for each sample material.
(A) Cube orientation area ratio A measurement area of 0.09 mm 2 (300 μm × 300 μm) was measured by the EBSD method under the condition that the scan step was 0.1 μm. In this measurement area, 60 μm × 60 μm is one block, and a total of 25 blocks (5 blocks × 5 blocks) can be measured in one field of view. The scan step in this case was set to a 0.1 μm step as described above in order to measure fine crystal grains. In the analysis, the EBSD measurement result in the measurement area of 300 μm × 300 μm is divided into the 25 blocks described above, and the cube orientation area ratio of each block, the average crystal grain area, the number of crystal grains, and the base material including the cube orientation grains The average grain area was confirmed. The electron beam was generated from thermionic electrons from a tungsten filament of a scanning electron microscope.

(b)180°密着U曲げ試験
圧延方向に垂直に幅0.25mm、長さは1.5mmとなるようにプレスによる打ち抜きで加工した。これに曲げの軸が圧延方向に直角になるようにW曲げしたものをGW(Good Way)、圧延方向に平行になるようにW曲げしたものをBW(Bad Way)とし、日本伸銅協会技術標準JCBA―T307(2007)に準拠して90°W曲げ加工後、圧縮試験機にて内側半径を付けずに180°密着曲げ加工を行った。曲げ加工表面を100倍の走査型電子顕微鏡で観察し、クラックの有無を調査した。クラックの無いものを「○(良)」で表し、クラックのあるものを「×(劣)」で表した。ここでのクラックのサイズは、最大幅が30μm〜100μm、最大深さが10μm以上である。
(B) 180 degree adhesion U bending test It processed by the punching with a press so that a width | variety may be set to 0.25 mm perpendicularly to a rolling direction, and length may be 1.5 mm. The JIS (Good Way) is W-bent so that the axis of bending is perpendicular to the rolling direction, and BW (Bad Way) is W-bent so that it is parallel to the rolling direction. After 90 ° W bending in accordance with standard JCBA-T307 (2007), 180 ° contact bending was performed without an inner radius using a compression tester. The bent surface was observed with a 100 × scanning electron microscope to investigate the presence of cracks. Those having no cracks were represented by “◯ (good)”, and those having cracks were represented by “× (poor)”. As for the size of the crack, the maximum width is 30 μm to 100 μm, and the maximum depth is 10 μm or more.

(c)たわみ係数
試験片は、圧延方向に垂直に幅が0.25mm、圧延方向に平行に長さが1.5mmとなるようにプレスによる打ち抜きで加工した。片持ち梁にて試験片の表裏を10回ずつ測定し、その平均値を示した。
たわみ係数E(GPa)は下記式(1)で表される。
E=4a/b×(L/t) (1)
ここで、aは変位fと応力wの傾き、bは供試材の幅、Lは固定端と荷重点の距離、tは供試材の板厚である。
この試験では、たわみの圧延平行方向と圧延垂直方向の異方性を確認した。
(C) Deflection coefficient The test piece was processed by punching with a press so that the width was 0.25 mm perpendicular to the rolling direction and the length was 1.5 mm parallel to the rolling direction. The front and back of the test piece were measured 10 times each with a cantilever beam, and the average value was shown.
The deflection coefficient E (GPa) is expressed by the following formula (1).
E = 4a / b × (L / t) 3 (1)
Here, a is the gradient of the displacement f and stress w, b is the width of the specimen, L is the distance between the fixed end and the load point, and t is the thickness of the specimen.
In this test, the anisotropy of deflection in the rolling parallel direction and the rolling vertical direction was confirmed.

(d)耐力[Y]
たわみ係数の測定において、各試験片の弾性限界までの押し込み量(変位)から耐力Y(MPa)を下記式(2)から算出した。
Y={(3E/2)×t×(f/L)×1000}/L (2)
Eはたわみ係数、tは板厚、Lは固定端と荷重点の距離、fは変位(押込み深さ)である。
この試験では、耐力の圧延平行方向と圧延垂直方向の異方性を確認した。
(D) Yield strength [Y]
In the measurement of the deflection coefficient, the yield strength Y (MPa) was calculated from the following formula (2) from the indentation amount (displacement) up to the elastic limit of each test piece.
Y = {(3E / 2) × t × (f / L) × 1000} / L (2)
E is the deflection coefficient, t is the plate thickness, L is the distance between the fixed end and the load point, and f is the displacement (indentation depth).
In this test, the anisotropy of the proof stress in the rolling parallel direction and the rolling vertical direction was confirmed.

(e)導電率[EC]
20℃(±0.5℃)に保たれた恒温槽中で四端子法により比抵抗を計測して導電率を算出した。なお、端子間距離は100mmとした。
(E) Conductivity [EC]
The specific resistance was measured by a four-terminal method in a thermostat kept at 20 ° C. (± 0.5 ° C.) to calculate the conductivity. In addition, the distance between terminals was 100 mm.

本発明の実施例1から実施例14、比較例1から比較例4について、表1に示す組成となるように、主原料CuとNi、Si、副添加元素を配合し、溶解、鋳造した。
表2に示すように、実施例1から実施例14の製造条件で、中間温間圧延[工程8]は、100℃以上400℃以下に加熱後、圧延率を5%以上とした。組織は、実施例1から実施例14のcube方位面積率が5%以上50%以下、cube方位結晶粒の平均結晶粒面積が1.8μm以上45.0μm以下、1ブロック(60μm×60μm)あたりのcube方位結晶粒の個数が40個以上100個以下、cube方位粒を含んだ母材の平均結晶粒面積が50μm以下であった。実施例1から実施例14の特性では、180°U密着曲げ、たわみ異方性、耐力異方性がいずれも優れた結果を示した。
比較例1から比較例4では、本発明の製造方法における規定を満たさなかったために、cube方位面積率、1ブロックあたりのcube方位粒の個数を満たさなかった場合を示した。
For Examples 1 to 14 and Comparative Examples 1 to 4 of the present invention, the main raw material Cu, Ni, Si, and auxiliary additive elements were blended, dissolved, and cast so as to have the compositions shown in Table 1.
As shown in Table 2, under the production conditions of Examples 1 to 14, the intermediate warm rolling [Step 8] was performed at a rolling rate of 5% or more after heating to 100 ° C. or more and 400 ° C. or less. Tissue, 50% cube orientation area ratio of 5% or more of Example 14 from Example 1 below, the average grain area of cube orientation grains 1.8 .mu.m 2 or more 45.0Myuemu 2 or less, 1 block (60 [mu] m × 60 [mu] m The number of cube-oriented crystal grains per unit area) was 40 to 100, and the average crystal grain area of the base material including the cube-oriented grains was 50 μm 2 or less. With respect to the characteristics of Examples 1 to 14, all showed excellent results of 180 ° U-contact bending, deflection anisotropy, and proof stress anisotropy.
In Comparative Example 1 to Comparative Example 4, the case of not satisfying the stipulation in the production method of the present invention did not satisfy the cube orientation area ratio and the number of cube orientation grains per block.

Figure 2012150702
Figure 2012150702

Figure 2012150702
Figure 2012150702

表1、2に示す様に、本発明の範囲、すなわち、Niを1.0質量%以上5.0質量%以下、Siを0.1質量%以上2.0質量%以下、必要によりSn、Zn、Ag、Mn、B、P、Mg、Cr、Zr、FeおよびHfからなる群から選ばれる少なくとも1つを合計で0.005質量%以上1.0質量%以下含有し、残部が銅および不可避不純物からなる組成を有し、電子後方散乱回折法による結晶方位解析において、cube方位{001}<100>の面積率が5%以上50%以下であり、これらに加えて好ましくはcube方位を有する結晶粒の平均結晶粒面積が1.8μm以上45.0μm以下であり、さらには母材の結晶粒の平均結晶粒面積が50μm以下であることを満たす場合には、曲げの特性、たわみ係数の特性、耐力の特性のいずれも良好であった。曲げの特性では、曲げの頂部に割れが発生しなかった。またたわみ係数の特性では、たわみ係数異方性が10GPa以内であり、耐力の特性では耐力異方性が10MPa以内であり、ともに異方性が小さかった。
したがって、本発明の銅合金板材は、電気・電子機器用のリードフレーム、コネクタ、端子材等、自動車車載用などのコネクタや端子材、リレー、スイッチなどに適した銅合金板材として提供することができる。
As shown in Tables 1 and 2, the scope of the present invention, that is, Ni is 1.0 mass% or more and 5.0 mass% or less, Si is 0.1 mass% or more and 2.0 mass% or less, Sn if necessary. Contains at least one selected from the group consisting of Zn, Ag, Mn, B, P, Mg, Cr, Zr, Fe and Hf in a total of 0.005% by mass to 1.0% by mass, with the balance being copper and In the crystal orientation analysis by the electron backscattering diffraction method, the area ratio of the cube orientation {001} <100> is 5% or more and 50% or less in addition to these, preferably in addition to the cube orientation. characteristics of the average grain area of crystal grains is at 1.8 .mu.m 2 or more 45.0Myuemu 2 or less, if the further satisfy the average crystal grain area of crystal grains of the base material is 50 [mu] m 2 or less, the bending having , Characteristics of deflection coefficient, Any of the properties of the force was good. In the bending characteristics, no crack occurred at the top of the bend. Further, in the characteristics of the deflection coefficient, the anisotropy of the deflection coefficient was within 10 GPa, and in the characteristics of the proof stress, the proof stress anisotropy was within 10 MPa, both of which were small.
Therefore, the copper alloy plate material of the present invention can be provided as a copper alloy plate material suitable for a lead frame, a connector, a terminal material, etc. for an electric / electronic device, a connector, a terminal material, a relay, a switch, etc. for automobile use. it can.

また表2に示すように、比較例の試料では、いずれかの特性が劣る結果となった。
すなわち、比較例1、2、4は、cube方位結晶粒の平均結晶粒面積が大きすぎたために、BWの曲げの特性およびたわみ係数異方性、耐力異方性が劣った。比較例3は、cube方位面積率が小さすぎたために、曲げの特性(GW、BW)およびたわみ異方性、耐力異方性が劣った。
なお、導電率はいずれも30〜45%IACSを示した。
Further, as shown in Table 2, any of the characteristics was inferior in the sample of the comparative example.
That is, Comparative Examples 1, 2, and 4 were inferior in the BW bending characteristics, the deflection coefficient anisotropy, and the proof stress anisotropy because the average crystal grain area of the cube-oriented crystal grains was too large. Comparative Example 3 was inferior in bending characteristics (GW, BW), flexural anisotropy and proof stress anisotropy because the cube orientation area ratio was too small.
The conductivity was 30 to 45% IACS in all cases.

(従来例)
下記表3に記載の合金組成(残部は銅(Cu))に対して、中間焼鈍[工程7]と中間温間圧延[工程8]での加熱を行わない以外は、前記実施例1と同様にして、銅合金板材を作製した。その結果得られた銅合金板材の供試材について、前記実施例1と同様の方法で評価を行った。その結果を表4に示す。
(Conventional example)
The alloy composition shown in the following Table 3 (the balance is copper (Cu)) is the same as in Example 1 except that heating is not performed in intermediate annealing [Step 7] and intermediate warm rolling [Step 8]. Thus, a copper alloy sheet was produced. The test material of the copper alloy sheet obtained as a result was evaluated in the same manner as in Example 1. The results are shown in Table 4.

Figure 2012150702
Figure 2012150702

Figure 2012150702
Figure 2012150702

表3、4から明らかなように、本発明で規定する合金組成を満たさずに、中間焼鈍[工程7]を行わずに、その後の中間温間圧延[工程8]での加熱を介さずに作製した従来例1、2の銅合金板材は、これら2つの工程以外の製造条件(各工程と条件)を採用していたとしても、いずれもcube方位の平均結晶粒面積が大きく、1ブロックあたりのcube粒の個数が少なく、たわみ係数と耐力の異方性が大きくなっている。
また、本発明で規定する合金組成を満たすが、中間焼鈍[工程7]を行わずに、その後の中間温間圧延[工程8]での加熱を介さずに作製した従来例3の銅合金板材は、これら2つの工程以外の製造条件(各工程と条件)を採用していたとしても、いずれもcube方位の平均結晶粒面積が大きく、1ブロックあたりのcube粒の個数が少なく、曲げの特性(BW)に劣り、たわみ係数と耐力の異方性が大きくなっている。
As is apparent from Tables 3 and 4, the alloy composition defined in the present invention is not satisfied, intermediate annealing [Step 7] is not performed, and heating in the subsequent intermediate warm rolling [Step 8] is not performed. Even if the produced copper alloy sheet materials of the conventional examples 1 and 2 adopt manufacturing conditions (each process and conditions) other than these two processes, the average crystal grain area of the cube orientation is large in each block. The number of cube grains is small, and the anisotropy of the deflection coefficient and the proof stress is large.
Further, the copper alloy sheet material of Conventional Example 3 that satisfies the alloy composition defined in the present invention, but is produced without performing intermediate annealing [Step 7] and without subsequent heating in intermediate warm rolling [Step 8]. Even if the manufacturing conditions other than these two steps (each step and conditions) are adopted, the average crystal grain area in the cube orientation is large, the number of cube grains per block is small, and the bending characteristics It is inferior to (BW), and the anisotropy of the deflection coefficient and the proof stress is large.

これらとは別に、従来の製造条件により製造した銅合金板材について、本発明に係る銅合金板材との相違を明確化するために、その従来の製造条件で銅合金板材を作製し、上記と同様の特性項目の評価を行った。なお、各板材の厚さは特に断らない限り上記実施例と同じ厚さになるように加工率を調整した。   Separately from these, in order to clarify the difference from the copper alloy sheet material according to the present invention for the copper alloy sheet material produced under the conventional production conditions, a copper alloy sheet material was produced under the conventional production conditions, and the same as described above. The characteristic items were evaluated. In addition, the processing rate was adjusted so that the thickness of each board | plate material might become the same thickness as the said Example unless there is particular notice.

(比較例101)・・・特開2011−162848公報本発明例1の条件
3.2質量%のNi、0.7質量%のSi、1.0質量%のZn、0.2質量%のSnからなる組成の銅合金を溶製し、鋳造した。得られた鋳塊の面削を行い、均質化熱処理後に終了温度が550〜850℃となるように熱間圧延を行い、水冷による急冷の後、表層の酸化層を機械研磨により除去(面削)した。次いで、冷間圧延にて所定の板厚まで圧延後、さらに90%以上の加工率で冷間圧延を行い、800〜900℃の温度まで0.1℃/s以下の昇温速度で加熱して溶体化処理を行った。
次いで、500℃で時効処理を行った。時効処理時間は、銅合金の組成に応じて、460℃の温度での時効で硬さがピークになる時間に調整した。なお、この時効処理時間については、本発明例1の合金の組成に応じて最適な時効処理時間を予備実験により求めた。
次いで、上記時効処理後の板材に対して、更に40%の圧延率で仕上げ冷間圧延を施した。さらに、480℃で30秒間の低温焼鈍を実施した。なお、必要に応じて途中で研磨、面削を行い、板厚は0.10mmに揃えた。
これを試料c01とした。
(Comparative Example 101) ... JP 2011-162848 A Condition of Invention Example 1 3.2 mass% Ni, 0.7 mass% Si, 1.0 mass% Zn, 0.2 mass% A copper alloy composed of Sn was melted and cast. The obtained ingot is subjected to face grinding, hot rolling is performed so that the end temperature becomes 550 to 850 ° C. after homogenization heat treatment, and after rapid cooling by water cooling, the surface oxide layer is removed by mechanical polishing (face grinding). )did. Next, after cold rolling to a predetermined plate thickness, cold rolling is further performed at a processing rate of 90% or more, and heating is performed at a heating rate of 0.1 ° C./s or less to a temperature of 800 to 900 ° C. The solution treatment was performed.
Next, an aging treatment was performed at 500 ° C. The aging treatment time was adjusted to a time when the hardness reached a peak due to aging at a temperature of 460 ° C. according to the composition of the copper alloy. As for the aging treatment time, an optimum aging treatment time was determined by a preliminary experiment according to the composition of the alloy of Example 1 of the present invention.
Next, the plate material after the aging treatment was further subjected to finish cold rolling at a rolling rate of 40%. Further, low-temperature annealing was performed at 480 ° C. for 30 seconds. In addition, grinding | polishing and chamfering were performed in the middle as needed, and plate | board thickness was arranged to 0.10 mm.
This was designated as sample c01.

得られた試験体c01は、上記本発明に係る実施例とは製造条件で比較して、中間焼鈍[工程7]を行っておらず、溶体化熱処理[工程9]前の加熱温度下での中間温間圧延[工程8]も施されていない。また、溶体化熱処理の昇温速度が遅いため、到達温度付近では粒成長が顕著になり、結晶粒が粗大化した。得られた組織は、cube方位結晶粒の面積が150μm以上と大きくなっていた。また、たわみ係数と強度の異方性も、それぞれ10GPaよりも大、15MPaよりも大、と大きく、本発明における要求特性を満たさない結果となった。The obtained specimen c01 was not subjected to intermediate annealing [Step 7] as compared with the above-described example according to the present invention, and was not heated at the heating temperature before solution heat treatment [Step 9]. Intermediate warm rolling [Step 8] is also not performed. Further, since the temperature increase rate of the solution heat treatment was slow, the grain growth became remarkable near the ultimate temperature, and the crystal grains became coarse. In the obtained structure, the area of the cube-oriented crystal grains was as large as 150 μm 2 or more. Moreover, the anisotropy of the deflection coefficient and the strength was also greater than 10 GPa and greater than 15 MPa, respectively, and the results did not satisfy the required characteristics in the present invention.

(比較例102)・・・特開2011−12321公報実施例1及び実施例4の条件
2.8質量%のNi、0.9質量%のSiからなる組成の銅合金(当該公報の実施例1)、及び2.8質量%のNi、0.9質量%のSi、0.1質量%のZn、0.1質量%のMg、0.1質量%のSnからなる組成の銅合金(当該公報の実施例4)の各合金をコアレス炉(高周波誘導溶解炉)にて木炭被覆下で大気溶解し、4辺が銅モールドに囲まれた鋳型に鋳造し、厚さ250mm、幅620mm、長さ2500mmの鋳塊を作製した。
次に鋳型の幅155mm位置と厚み125mm位置の交点位置に、φ3mmの径のSUS棒を鋳型上端部の湯面より鉛直方向に挿入し、未凝固部の深さを測定した。得られた未凝固部の深さから鋳型長さ(銅モールド長さ)を減じた値を、鋳型下端深さから凝固終了深さまでの距離として定義した。具体的には、300mm(当該公報の実施例1)及び260mm(当該公報の実施例4)であった。この距離が250mm以上となるように、鋳造速度を50〜200mm/分の範囲で調整して、鋳造を行い、鋳塊を得た。
得られた鋳塊より定常部の250×620×300mmブロックを切断し取り出し、幅620mmの中央部より鋳造方向と平行断面のスライス(250×15×300mm)を採取した。これを硝酸に0.5〜1時間浸し、エッチングされて得られたマクロ組織より柱状晶の[100]軸の向きを得た。鋳造方向と直交する面と柱状晶の[100]軸の向きが交わる角度を測定した。具体的には、13°(当該公報の実施例1)及び11°(当該公報の実施例4)であった。
さらに鋳塊を均質化処理後、500〜1000℃に温度調整し、トータル加工率で60〜96%の圧延を行い、その後得られた圧延材を直接水冷して厚さ約10mmのコイルとした。この圧延材の表面をミーリングし酸化スケールを除去した。この時点での圧延材のcube方位の割合は5〜95%とした。その後、加工率85〜99.8%の冷間圧延、700〜1020℃で5秒〜1時間の溶体化熱処理、加工率1〜60%の仕上げ冷間圧延、200〜600℃で5秒〜10時間の調質焼鈍を記載の順に実施し、厚さ0.15mmの供試材を得た。
これらをそれぞれ試料d01(当該公報の実施例1)及びd02(当該公報の実施例4)とした。
(Comparative Example 102) ... Conditions of Examples 1 and 4 of JP2011-12321A Copper alloy having a composition composed of 2.8 mass% Ni and 0.9 mass% Si (Example of the publication) 1), and a copper alloy having a composition of 2.8% by mass of Ni, 0.9% by mass of Si, 0.1% by mass of Zn, 0.1% by mass of Mg, and 0.1% by mass of Sn ( Each alloy of Example 4) of the publication is melted in the atmosphere under a charcoal coating in a coreless furnace (high frequency induction melting furnace), cast into a mold surrounded by a copper mold on four sides, a thickness of 250 mm, a width of 620 mm, An ingot having a length of 2500 mm was produced.
Next, a SUS rod having a diameter of 3 mm was inserted in the vertical direction from the molten metal surface at the upper end of the mold at the intersection of the position of the width 155 mm and the thickness 125 mm of the mold, and the depth of the unsolidified portion was measured. A value obtained by subtracting the mold length (copper mold length) from the depth of the obtained unsolidified portion was defined as the distance from the mold lower end depth to the solidification end depth. Specifically, they were 300 mm (Example 1 of the publication) and 260 mm (Example 4 of the publication). The casting speed was adjusted in the range of 50 to 200 mm / min so that this distance was 250 mm or more, and casting was performed to obtain an ingot.
A 250 × 620 × 300 mm block of a stationary part was cut out from the obtained ingot, and a slice (250 × 15 × 300 mm) having a cross section parallel to the casting direction was collected from a central part of 620 mm width. This was immersed in nitric acid for 0.5 to 1 hour, and the direction of the [100] axis of the columnar crystal was obtained from the macrostructure obtained by etching. The angle at which the plane perpendicular to the casting direction and the direction of the [100] axis of the columnar crystal intersect was measured. Specifically, they were 13 ° (Example 1 of the publication) and 11 ° (Example 4 of the publication).
Further, after the ingot is homogenized, the temperature is adjusted to 500 to 1000 ° C., rolling is performed at a total processing rate of 60 to 96%, and then the obtained rolled material is directly cooled with water to form a coil having a thickness of about 10 mm. . The surface of the rolled material was milled to remove oxide scale. At this time, the ratio of the cube orientation of the rolled material was set to 5 to 95%. Then, cold rolling at a working rate of 85 to 99.8%, solution heat treatment at 700 to 1020 ° C. for 5 seconds to 1 hour, finish cold rolling at a working rate of 1 to 60%, and 200 to 600 ° C. for 5 seconds to The temper annealing for 10 hours was performed in the order of description, and a specimen having a thickness of 0.15 mm was obtained.
These were designated as sample d01 (Example 1 of the publication) and d02 (Example 4 of the publication), respectively.

得られた試験体d01及びd02は、上記本発明に係る実施例とは製造条件で比較して、中間焼鈍[工程7]を行っておらず、溶体化熱処理[工程9]前の加熱温度下での中間温間圧延[工程8]も施されていない。得られた組織は、cube方位結晶粒の面積率はそれぞれ試料d01(当該公報の実施例1)で35%及び試料d02(当該公報の実施例4)で7%であったが、粒成長が顕著になり、cube方位の結晶粒を含んだ母材の平均結晶粒面積はそれぞれ試料d01(当該公報の実施例1)で254μm及び試料d02(当該公報の実施例4)では201μmと粗大なものであった。また、たわみ係数と強度の異方性も、それぞれ10GPaよりも大、15MPaよりも大、と大きく、本発明における要求特性を満たさない結果となった。The obtained specimens d01 and d02 were not subjected to the intermediate annealing [Step 7] as compared with the above-described examples according to the present invention, and were subjected to the heating temperature before the solution heat treatment [Step 9]. Also, the intermediate warm rolling in [Step 8] is not performed. In the obtained structure, the area ratio of the cube-oriented crystal grains was 35% in the sample d01 (Example 1 of the publication) and 7% in the sample d02 (Example 4 of the publication), respectively. becomes remarkable, 254 micrometers 2 and the sample d02 (example 4 of the publication) the average grain area of each sample d01 grain laden base material of cube orientation (example 1 of the publication) in 201Myuemu 2 coarse It was something. Moreover, the anisotropy of the deflection coefficient and the strength was also greater than 10 GPa and greater than 15 MPa, respectively, and the results did not satisfy the required characteristics in the present invention.

本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。   While this invention has been described in conjunction with its embodiments, we do not intend to limit our invention in any detail of the description unless otherwise specified and are contrary to the spirit and scope of the invention as set forth in the appended claims. I think it should be interpreted widely.

本願は、2011年5月2日に日本国で特許出願された特願2011−102996に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。   This application claims priority based on Japanese Patent Application No. 2011-102996, filed in Japan on May 2, 2011, which is incorporated herein by reference. Capture as part.

Claims (6)

Niを1.0質量%以上5.0質量%以下、Siを0.1質量%以上2.0質量%以下含有し、残部が銅および不可避不純物からなる組成を有し、
電子後方散乱回折法による結晶方位解析において、cube方位{001}<100>からのずれが15°以内である方位を有する結晶粒の面積率が5%以上50%以下であり、cube方位{001}<100>からのずれが15°以内である方位を有する結晶粒が60μm四方内に40個以上100個以下で分散していることを特徴とする銅合金板材。
Ni is contained in an amount of 1.0% by mass or more and 5.0% by mass or less, Si is contained in an amount of 0.1% by mass or more and 2.0% by mass or less, and the balance is composed of copper and inevitable impurities.
In the crystal orientation analysis by the electron backscatter diffraction method, the area ratio of crystal grains having an orientation whose deviation from the cube orientation {001} <100> is within 15 ° is 5% or more and 50% or less, and the cube orientation {001 } A copper alloy plate material, wherein crystal grains having an orientation with a deviation from <100> within 15 ° are dispersed in a range of 40 to 100 in a 60 μm square.
Niを1.0質量%以上5.0質量%以下、Siを0.1質量%以上2.0質量%以下、Sn、Zn、Ag、Mn、B、P、Mg、Cr、Zr、FeおよびHfからなる群から選ばれる少なくとも1つを合計で0.005質量%以上1.0質量%以下含有し、残部が銅および不可避不純物からなる組成を有し、
電子後方散乱回折法による結晶方位解析において、cube方位{001}<100>からのずれが15°以内である方位を有する結晶粒の面積率が5%以上50%以下であり、cube方位{001}<100>からのずれが15°以内である方位を有する結晶粒が60μm四方内に40個以上100個以下で分散していることを特徴とする銅合金板材。
Ni is 1.0 mass% or more and 5.0 mass% or less, Si is 0.1 mass% or more and 2.0 mass% or less, Sn, Zn, Ag, Mn, B, P, Mg, Cr, Zr, Fe and Containing at least one selected from the group consisting of Hf in a total of 0.005% by mass or more and 1.0% by mass or less, with the balance being composed of copper and inevitable impurities,
In the crystal orientation analysis by the electron backscatter diffraction method, the area ratio of crystal grains having an orientation whose deviation from the cube orientation {001} <100> is within 15 ° is 5% or more and 50% or less, and the cube orientation {001 } A copper alloy plate material, wherein crystal grains having an orientation with a deviation from <100> within 15 ° are dispersed in a range of 40 to 100 in a 60 μm square.
cube方位{001}<100>からのずれが15°以内である方位を有する結晶粒の平均結晶粒面積が1.8μm以上45.0μm以下である請求項1または2に記載の銅合金板材。cube orientation {001} copper alloy according to claim 1 or 2, the average grain area of crystal grains is 1.8 .mu.m 2 or more 45.0Myuemu 2 or less with orientation deviation is within 15 ° from the <100> Board material. 母材の結晶粒の平均結晶粒面積が50μm以下であることを特徴とする請求項1から3のいずれか1項に記載の銅合金板材。The copper alloy sheet according to any one of claims 1 to 3, wherein an average crystal grain area of crystal grains of the base material is 50 µm 2 or less. 圧延平行方向のたわみ係数と圧延垂直方向のたわみ係数の差が絶対値で10GPa以下、圧延平行方向の耐力と圧延垂直方向の耐力の差が絶対値で10MPa以下である、請求項1から4のいずれか1項に記載の銅合金板材。   The difference between the deflection coefficient in the rolling parallel direction and the deflection coefficient in the rolling vertical direction is 10 GPa or less in absolute value, and the difference between the proof stress in the rolling parallel direction and the proof stress in the rolling vertical direction is 10 MPa or less in absolute value. The copper alloy sheet material according to any one of the above items. 銅合金素材を鋳造して得た鋳塊に均質化熱処理と熱間圧延とを施し、さらに冷間圧延によって薄板に成形した後、前記薄板中の溶質原子を再固溶させる中間溶体化熱処理を施す銅合金板材の製造方法であって、
前記銅合金素材は、前記請求項1または2記載の銅合金板材の合金組成を有してなり、
前記均質化熱処理を800℃以上1020℃以下で3分間から10時間で行い、
前記冷間圧延を圧延率80%以上99.8%以下で行った後に
再結晶温度未満である400℃以上700℃以下の温度で5秒間から20時間の中間焼鈍を行い、
さらに100℃以上400℃以下に加熱した後にその温度下で圧延率が5%以上50%以下の中間温間圧延を行った後、
前記中間溶体化熱処理を600℃以上1000℃以下で5秒間から1時間で行い、
400℃以上700℃以下で5分間から10時間の時効析出熱処理を行う
各工程をこの順に含んでなる銅合金板材の製造方法。
An ingot obtained by casting a copper alloy material is subjected to homogenization heat treatment and hot rolling, further formed into a thin plate by cold rolling, and then subjected to intermediate solution heat treatment to re-dissolve the solute atoms in the thin plate. A method for producing a copper alloy sheet,
The copper alloy material has an alloy composition of the copper alloy sheet according to claim 1 or 2,
The homogenization heat treatment is performed at 800 ° C. or more and 1020 ° C. or less for 3 minutes to 10 hours,
After performing the cold rolling at a rolling rate of 80% or more and 99.8% or less, intermediate annealing is performed for 5 seconds to 20 hours at a temperature of 400 ° C. or more and 700 ° C. or less which is less than the recrystallization temperature,
Further, after heating to 100 ° C. or more and 400 ° C. or less and performing an intermediate warm rolling at a rolling rate of 5% or more and 50% or less at that temperature,
The intermediate solution heat treatment is performed at 600 to 1000 ° C. for 5 seconds to 1 hour,
A method for producing a copper alloy sheet comprising the steps of performing an aging precipitation heat treatment at 400 ° C. to 700 ° C. for 5 minutes to 10 hours in this order.
JP2012543359A 2011-05-02 2012-04-27 Copper alloy sheet and manufacturing method thereof Active JP5261619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012543359A JP5261619B2 (en) 2011-05-02 2012-04-27 Copper alloy sheet and manufacturing method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011102996 2011-05-02
JP2011102996 2011-05-02
PCT/JP2012/061479 WO2012150702A1 (en) 2011-05-02 2012-04-27 Copper alloy sheet material and process for producing same
JP2012543359A JP5261619B2 (en) 2011-05-02 2012-04-27 Copper alloy sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP5261619B2 JP5261619B2 (en) 2013-08-14
JPWO2012150702A1 true JPWO2012150702A1 (en) 2014-07-28

Family

ID=47107888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012543359A Active JP5261619B2 (en) 2011-05-02 2012-04-27 Copper alloy sheet and manufacturing method thereof

Country Status (6)

Country Link
EP (1) EP2706125A4 (en)
JP (1) JP5261619B2 (en)
KR (1) KR101603393B1 (en)
CN (1) CN103443309B (en)
TW (1) TWI582249B (en)
WO (1) WO2012150702A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6085536B2 (en) * 2013-08-05 2017-02-22 株式会社Shカッパープロダクツ Copper strip, plated copper strip, lead frame and LED module
JP6696769B2 (en) * 2013-12-27 2020-05-20 古河電気工業株式会社 Copper alloy plate and connector
WO2015099098A1 (en) * 2013-12-27 2015-07-02 古河電気工業株式会社 Copper alloy sheet material, connector, and production method for copper alloy sheet material
WO2015146981A1 (en) * 2014-03-25 2015-10-01 古河電気工業株式会社 Copper alloy sheet material, connector, and method for manufacturing copper alloy sheet material
CN106460099B (en) * 2014-05-30 2020-03-17 古河电气工业株式会社 Copper alloy sheet material, connector made of copper alloy sheet material, and method for manufacturing copper alloy sheet material
CN105088008A (en) * 2015-07-26 2015-11-25 邢桂生 Microalloyed copper alloy frame strip and manufacturing method thereof
CN105088009A (en) * 2015-07-26 2015-11-25 邢桂生 Copper alloy frame strip and making method thereof
CN113215439A (en) * 2021-04-16 2021-08-06 安徽绿能技术研究院有限公司 High-strength copper alloy plate and production process thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4809602B2 (en) 2004-05-27 2011-11-09 古河電気工業株式会社 Copper alloy
JP3856018B2 (en) * 2004-06-03 2006-12-13 日立電線株式会社 Manufacturing method of high strength and high conductivity copper alloy
JP3888366B2 (en) 2004-06-08 2007-02-28 日立電線株式会社 Method for producing copper alloy
JP4660735B2 (en) * 2004-07-01 2011-03-30 Dowaメタルテック株式会社 Method for producing copper-based alloy sheet
JP4584692B2 (en) * 2004-11-30 2010-11-24 株式会社神戸製鋼所 High-strength copper alloy sheet excellent in bending workability and manufacturing method thereof
JP4566048B2 (en) 2005-03-31 2010-10-20 株式会社神戸製鋼所 High-strength copper alloy sheet excellent in bending workability and manufacturing method thereof
JP5028657B2 (en) 2006-07-10 2012-09-19 Dowaメタルテック株式会社 High-strength copper alloy sheet with little anisotropy and method for producing the same
JP4875768B2 (en) * 2008-06-03 2012-02-15 古河電気工業株式会社 Copper alloy sheet and manufacturing method thereof
JP2010222618A (en) * 2009-03-23 2010-10-07 Nippon Mining & Metals Co Ltd Cu-Ni-Si BASED COPPER ALLOY ROLLED SHEET AND ELECTRIC PART USING THE SAME
JP5520533B2 (en) * 2009-07-03 2014-06-11 古河電気工業株式会社 Copper alloy material and method for producing the same
JP5525247B2 (en) * 2009-08-04 2014-06-18 株式会社神戸製鋼所 Copper alloy with high strength and excellent bending workability
JP5476149B2 (en) 2010-02-10 2014-04-23 株式会社神戸製鋼所 Copper alloy with low strength anisotropy and excellent bending workability

Also Published As

Publication number Publication date
WO2012150702A1 (en) 2012-11-08
EP2706125A1 (en) 2014-03-12
EP2706125A4 (en) 2014-11-19
CN103443309A (en) 2013-12-11
TWI582249B (en) 2017-05-11
CN103443309B (en) 2017-01-18
TW201303048A (en) 2013-01-16
KR101603393B1 (en) 2016-03-14
KR20140004748A (en) 2014-01-13
JP5261619B2 (en) 2013-08-14

Similar Documents

Publication Publication Date Title
KR101419147B1 (en) Copper alloy sheet and process for producing same
JP5158909B2 (en) Copper alloy sheet and manufacturing method thereof
JP5261619B2 (en) Copper alloy sheet and manufacturing method thereof
TWI447239B (en) Copper alloy sheet and method of manufacturing the same
JP4934759B2 (en) Copper alloy sheet, connector using the same, and method for producing copper alloy sheet
JP4948678B2 (en) Copper alloy sheet, connector using the same, and copper alloy sheet manufacturing method for manufacturing the same
JP5972484B2 (en) Copper alloy sheet, connector made of copper alloy sheet, and method for producing copper alloy sheet
WO2012121109A1 (en) Cu-Ni-Si BASED ALLOY AND PROCESS FOR MANUFACTURING SAME
JP5503791B2 (en) Copper alloy sheet and manufacturing method thereof
WO2011068134A1 (en) Copper alloy sheet material having low young&#39;s modulus and method for producing same
JP5916418B2 (en) Copper alloy sheet and manufacturing method thereof
KR101715532B1 (en) Copper alloy and production method thereof
JP5117602B1 (en) Copper alloy sheet with low deflection coefficient and excellent bending workability
JP6581755B2 (en) Copper alloy sheet and manufacturing method thereof
JP6339361B2 (en) Copper alloy sheet and manufacturing method thereof
WO2024225164A1 (en) Copper alloy sheet material, copper alloy sheet material for drawing, and drawn product

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5261619

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350