Nothing Special   »   [go: up one dir, main page]

JPS6378805A - Pneumatic radial type - Google Patents

Pneumatic radial type

Info

Publication number
JPS6378805A
JPS6378805A JP61225482A JP22548286A JPS6378805A JP S6378805 A JPS6378805 A JP S6378805A JP 61225482 A JP61225482 A JP 61225482A JP 22548286 A JP22548286 A JP 22548286A JP S6378805 A JPS6378805 A JP S6378805A
Authority
JP
Japan
Prior art keywords
groove
circumferential
tread
design
tire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61225482A
Other languages
Japanese (ja)
Inventor
Toru Tsuda
徹 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP61225482A priority Critical patent/JPS6378805A/en
Publication of JPS6378805A publication Critical patent/JPS6378805A/en
Pending legal-status Critical Current

Links

Landscapes

  • Tires In General (AREA)

Abstract

PURPOSE:To reduce the generation of pattern noise, by a method wherein, in an automobile tyre for high speed running, a design rib at a central section is divided into auxiliary design ribs by means of an auxiliary groove, and a transverse groove is circumferentially displaced in a position of intersection between main and auxiliary grooves. CONSTITUTION:A tyre tread 12 is partitioned into a central section 17, end sections 18 on both sides by means of a main groove 13, design ribs 20a-20c are formed at the central section 17, and design ribs 21d and 21e are formed at the end sections 18 on both sides. Further, each of the design ribs 20a-20c, 21d, and 21e is divided into two parts by means of an auxiliary groove 23 extending in parallel to the main groove 13 to form auxiliary design ribs 20a1, a2-c1, c2, 21d1, d2, e1, and e2. An S-shaped transverse groove 15 is circumferentially displaced by distances Pa-Pe being 0.5-5 times as long as transverse widths W15a-W15c in positions 23a-23e intersecting the design ribs 20a-20c, 21d, and 21e, respectively. This constitution enables reduction of the generation of pattern noise.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は空気入りラジアルタイヤ、例えば、高速走行す
る自動車用のタイヤのトレッドの模様(パターン)より
発生するいわゆるパターンノイズの改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to improvement of so-called pattern noise generated by the tread pattern of pneumatic radial tires, such as tires for high-speed automobiles.

(従来の技術) 一般に、高速走行する自動車用タイヤにおいて、操縦安
定性能、振動乗心地性能等は非常に重要な機能である。
(Prior Art) In general, steering stability performance, vibration riding comfort performance, etc. are very important functions in tires for automobiles that run at high speeds.

特に、湿潤路面における走行性能(ウェット性能)を重
視する場合、トレッドはトレッドの表部に複数の周方向
主溝と、この周方向主導間の陵部(リブ)を連続的に横
断する横断溝とを備え、この両溝で区画したいわゆるブ
ロックパターンを形成したものが用いられる。
In particular, when driving performance on wet road surfaces (wet performance) is important, the tread has multiple circumferential main grooves on the surface of the tread, and transverse grooves that continuously cross the circumferential main grooves (ribs) between the circumferential main grooves. A so-called block pattern is used, which is divided by both grooves.

従来のこの種のタイヤとしては、例えば、第2図に示す
ものがある。第2図は、従来の空気入りラジアルタイヤ
1のトレッド2の平面展開図である。トレッド2は、広
幅の複数の周方向主溝3と、周方向主溝3をほぼタイヤ
断面方向にトレッド2の一方端2aから他方端2bまで
横断する横断主溝5と、これらの周方向主溝3および横
断主溝5により形成されるブロック状の陵部6と、を有
している。これらのブロック状の陵部6を有するいわゆ
るブロックパターンのトレッド2は、湿潤路面を走行す
る時に陵部6の端縁6aで路面上の水膜を切りウェット
性能は良好であるが、ブロック状の多数の陵部6が路面
をたたく騒音、いわゆるパターンノイズが発生するとい
う問題点がある。
An example of a conventional tire of this type is shown in FIG. 2. FIG. 2 is a developed plan view of the tread 2 of the conventional pneumatic radial tire 1. FIG. The tread 2 includes a plurality of wide circumferential main grooves 3, a transverse main groove 5 that crosses the circumferential main groove 3 in the tire cross-sectional direction from one end 2a to the other end 2b of the tread 2, and these circumferential main grooves 3. It has a block-shaped ridge 6 formed by the groove 3 and the transverse main groove 5. The so-called block pattern tread 2 having these block-shaped ridges 6 has good wet performance by cutting off a water film on the road surface with the edge 6a of the ridges 6 when running on a wet road surface. There is a problem in that noise caused by the many ridges 6 hitting the road surface, so-called pattern noise, is generated.

また、負荷転動して走行する場合、陵部6のタイヤ断面
方向の端縁6b、6cが踏み込み側でほぼ同時に路面に
当たり、タイヤの回転に滑らかさを欠き振動乗心地が悪
いという問題点もある。
In addition, when traveling under load, the edges 6b and 6c of the ridge 6 in the cross-sectional direction of the tire hit the road surface at the same time on the stepping side, which causes the problem that the tire rotation lacks smoothness and vibration ride quality is poor. be.

そこで、本発明は、走行時の湿潤路面におけるウェット
性能を低下させることなく、タイヤのパターンノイズ(
騒音)を大幅に低下した空気入りラジアルタイヤを提供
することを目的とする。
Therefore, the present invention has been developed to reduce tire pattern noise (
The purpose of the present invention is to provide a pneumatic radial tire with significantly reduced noise.

(問題点を解決するための手段) 本発明者らは、トレッドの溝および陵部の配置と、これ
らの路面上における排水作用、各陵部の機能、パターン
ノイズの発生機構について種々検討した。
(Means for Solving the Problems) The present inventors have conducted various studies on the arrangement of tread grooves and ridges, the drainage effect of these on the road surface, the function of each ridge, and the generation mechanism of pattern noise.

この結果、湿潤路面に接するトレッドにおいて、排水作
用は、主にタイヤ周方向に直線上に延在する広幅の周方
向主溝によってなされる。また、路面上の水膜の切断作
用は横断溝の端縁によって主になされ、この水膜の切断
作用は、横断溝がタイヤ周方向にずれて設けられても、
陵部のタイヤ断面方向の端縁の長さがほぼ等しければ、
周方向にずれのない場合とほぼ同じ水膜の切断作用を有
することを見出した。
As a result, in the tread that is in contact with the wet road surface, water drainage is mainly performed by the wide circumferential main grooves that extend linearly in the tire circumferential direction. In addition, the cutting action of the water film on the road surface is mainly performed by the edge of the transverse groove, and even if the transverse groove is disposed offset in the circumferential direction of the tire, the cutting action of the water film is
If the lengths of the edges of the ridges in the cross-sectional direction of the tire are approximately equal,
It has been found that the water film cutting action is almost the same as in the case where there is no deviation in the circumferential direction.

また、このようなブロックパターンのトレッドによる騒
音は、トレッドの接地圧が高くて空気の包み込みが大き
く、かつ、陵部による路面の打撃力が大きいトレッドの
中央区域において、横断溝の軸線方向をタイヤ周方向に
近づけるように設けることによって、負荷転動時にトレ
ッドのタイヤ赤道Eの両側における接地形状が同様な形
状にならないようにすることにより、大幅に低減できる
ことを見出した。
In addition, the noise caused by such a block pattern tread is caused by the axial direction of the transverse grooves in the central area of the tread, where the ground pressure of the tread is high and air envelopment is large, and the impact force of the ridges on the road surface is large. It has been found that by providing the tread closer to each other in the circumferential direction so that the contact shapes on both sides of the tire equator E of the tread do not become similar during load rolling, it is possible to significantly reduce the amount.

本発明者らは、これらの結果を基に、さらに種々検討の
結果、本発明に到達した。
Based on these results, the present inventors further conducted various studies and arrived at the present invention.

すなわち、本発明に係る空気入りラジアルタイヤは、ト
レッドの表部にタイヤ周方向にほぼ平行にのびる少なく
とも3本の周方向主溝と、周方向主溝を横断しトレッド
の一方端からトレッドの他方端までS字状に延在しタイ
ヤ周方向にほぼ等間隔に配置された複数の横断溝と、周
方向主溝により区画される少なくとも2つのデザインリ
ブを有する中央区域と、中央区域の外側に位置する両側
端区域と、を備え、前記中央区域のデザインリブが周方
向主溝にほぼ平行に配置され、負荷転動時に互いに接触
する溝壁面を有する周方向副溝により副デザインリブに
分割され、前記横断溝が周方向溝および周方向副溝との
交差位置で周方向に横断溝の周方向幅の0.5〜5倍の
ずれを有することを特徴としている。
That is, the pneumatic radial tire according to the present invention has at least three circumferential main grooves extending substantially parallel to the circumferential direction of the tire on the surface of the tread, and a circumferential main groove extending substantially parallel to the tire circumferential direction on the surface of the tread, and a circumferential main groove extending from one end of the tread to the other end of the tread across the circumferential main groove. A central region having a plurality of transverse grooves extending in an S-shape to the end and arranged at approximately equal intervals in the circumferential direction of the tire, and at least two design ribs partitioned by the circumferential main groove; and a design rib in the central area is arranged substantially parallel to the circumferential main groove and is divided into sub design ribs by a circumferential sub groove having groove wall surfaces that come into contact with each other during load rolling. , the transverse groove has a circumferential deviation of 0.5 to 5 times the circumferential width of the transverse groove at the intersection position with the circumferential groove and the circumferential sub-groove.

ここに、デザインリブとは周方向主溝間に設けられ横断
溝、細溝、サイプ(切込み)等を含めた周方向の陵部の
ことをいう。
Here, the design ribs refer to circumferential ridges including transverse grooves, narrow grooves, sipes (cuts), etc., provided between the circumferential main grooves.

また、横断溝が周方向副溝との交差位置で周方向に起こ
すずれは、横断溝の周方向幅の0.5〜5倍が望ましく
、好ましくは1〜3倍である。ここに、0.5〜5倍と
したのは、0.5倍未満では従来のトレッドパターンと
ほぼ同じになり、騒音の低減効果がない。また、5倍を
超えると、トレッドのデザインリブ内に横断溝が点在す
ることになり好ましくない。
Further, the deviation caused in the circumferential direction at the intersection of the transverse groove with the circumferential sub-groove is desirably 0.5 to 5 times, and preferably 1 to 3 times, the circumferential width of the transverse groove. Here, the reason why the tread pattern is set to 0.5 to 5 times is because if it is less than 0.5 times, the tread pattern becomes almost the same as a conventional tread pattern, and there is no noise reduction effect. Moreover, if it exceeds 5 times, transverse grooves will be scattered within the design rib of the tread, which is not preferable.

また、デザインリブのタイヤ断面方向の幅は、トレッド
の幅の5〜20%が望ましい、好ましくは10〜15%
である。
The width of the design rib in the cross-sectional direction of the tire is preferably 5 to 20% of the tread width, preferably 10 to 15%.
It is.

また、周方向副溝の幅は0.5〜3flが望ましく、好
ましくは1〜21璽である。ここに、0.5〜311と
したのは、0.5 va未満では負荷転動時に溝壁面が
全面で密着して、空気の流通を阻止し空気の流通可能な
溝の役目をしなくなる。3削以上では従来のパターンと
同じとなり、デザインリブがタイヤ断面方向に分割され
てしまい本発明の効果がない。
Further, the width of the circumferential minor groove is desirably 0.5 to 3 fl, preferably 1 to 21 fl. Here, the reason why the value is 0.5 to 311 is because if it is less than 0.5 va, the entire groove wall surface will come into close contact with the entire surface during load rolling, blocking air circulation and not functioning as a groove through which air can flow. If three or more cuts are made, the pattern will be the same as the conventional pattern, and the design rib will be divided in the cross-sectional direction of the tire, making the present invention ineffective.

また、トレッドの横断溝は周方向主溝を横断し、トレッ
ドの一方端から他方端までS字状に延在し、横断溝の軸
線の接線とタイヤ断面方向とのなす鋭角の溝角度θは、
両側端区域から中央区域に向かうに従って次第に増加す
るように設けである。溝角度θは、両側端区域で45〜
80度であり、中央区域で50〜60度である。ここに
、このように横断溝の形状をS字形にしたのは、トレッ
ドの接地部においては両側端区域から中央区域に向かっ
て接地圧が高く、トレッドの陵部は路面から大きい打撃
入力を受は易い。このため、横断溝の溝角度θを増加さ
せることにより、陵部の形状がタイヤ周方向に長い形状
となり、接地時の時間が長くなり路面からの打撃入力を
緩和できるからである。
In addition, the transverse groove of the tread crosses the circumferential main groove and extends in an S-shape from one end of the tread to the other end, and the acute groove angle θ between the tangent to the axis of the transverse groove and the cross-sectional direction of the tire is ,
It is provided so that it gradually increases from both side end areas toward the center area. The groove angle θ is 45 to 45 at both end areas.
80 degrees and 50-60 degrees in the central area. The reason why the transverse groove is S-shaped is that the ground contact pressure is high in the contact area of the tread from both end areas toward the center area, and the ridges of the tread receive a large impact input from the road surface. It's easy. Therefore, by increasing the groove angle θ of the transverse groove, the shape of the ridge portion becomes elongated in the circumferential direction of the tire, which lengthens the time during ground contact and reduces the impact input from the road surface.

(作用) 本発明のトレッドは、中央区域のデザインリブが周方向
副溝により2つの副デザインリブに分割され、副デザイ
ンの1つの陵部のタイヤ断面方向の長さは、従来のトレ
ッドのパターンの約半分の長さであるので、負荷転動時
の接地時に陵部が路面からの打撃入力による振動する振
動数は約2倍になり、極めて高い高周波域となり、人の
耳に聞こえ難くなる。
(Function) In the tread of the present invention, the design rib in the central area is divided into two sub-design ribs by the circumferential sub-groove, and the length of one ridge in the sub-design in the tire cross-sectional direction is the same as that of the conventional tread pattern. Since the length is approximately half that of the ridge, the frequency at which the crest vibrates due to the impact input from the road surface when it touches the ground during load rolling is approximately doubled, resulting in an extremely high frequency range that is difficult for human ears to hear. .

また、横断溝が周方向副溝との交差位置でタイヤ周方向
に横断溝の周方向幅の0.5〜5倍のずれを有している
ので、トレッドの接地部において、横断溝内を流れる空
気は一気に流れず、流速は大幅に抑制される。このため
、この空気の流れによる発生する騒音は大幅に抑制、低
減される。また、横断溝内で流れを抑制された空気は、
周方向主溝および周方向副溝内を通り、トレッドの接地
部内に包み込まれることなく排出される。
In addition, since the transverse groove has a deviation of 0.5 to 5 times the circumferential width of the transverse groove in the tire circumferential direction at the intersection position with the circumferential sub-groove, the inside of the transverse groove is The flowing air does not flow all at once, and the flow velocity is significantly suppressed. Therefore, the noise generated by this air flow is significantly suppressed and reduced. In addition, the air whose flow is suppressed within the transverse groove is
It passes through the circumferential main groove and the circumferential sub-groove and is discharged without being wrapped up in the ground contact part of the tread.

(実施例) 次に、本発明の第1実施例を図面に基づき説明する。(Example) Next, a first embodiment of the present invention will be described based on the drawings.

第1図は本発明に係る空気入りラジアルタイヤの第1実
施例を示す図である。
FIG. 1 is a diagram showing a first embodiment of a pneumatic radial tire according to the present invention.

まず、構成について説明する。第1図において、12は
空気入りラジアルタイヤ11(タイヤサイズ205 /
60R15)のトレッドであり、トレッド12以外は通
常の空気入りラジアルタイヤの構成と同じである。トレ
ッド12は空気入りラジアルタイヤ11が負荷転動時に
路面に接する接地区域14 (接地幅W、4)とその両
側にパットレス区域14a (バットレス幅W+4−)
とを有している。トレッド12の表部にはタイヤ周方向
に直線状にほぼ平行にかっ、タイヤ赤道Eに対しほぼ対
照に延びる広幅の4本の周方向主溝13を有している。
First, the configuration will be explained. In Fig. 1, 12 is a pneumatic radial tire 11 (tire size 205/
60R15) tread, and the structure other than tread 12 is the same as that of a normal pneumatic radial tire. The tread 12 has a contact area 14 (contact width W, 4) where the pneumatic radial tire 11 contacts the road surface when rolling under load, and a padless area 14a (buttress width W + 4-) on both sides thereof.
It has The surface of the tread 12 has four wide circumferential main grooves 13 extending linearly and substantially parallel to the tire circumferential direction and extending substantially symmetrically with respect to the tire equator E.

15は横断溝であり、横断溝15は周方向主溝13を横
断して周方向主溝13に開口し、トレッド12の一方端
12aからトレッド12の他方端12bまでS字状に延
在して、ブロック状の陵部(図には斜線で示す)16を
形成し、タイヤ周方向に略等間隔に配置されている。ト
レッド12は周方向主溝13により区画される中央区域
17と、中央区域17の外側に位置する両側端区域18
とを備えている。中央区域17は周方向溝13間に横断
溝15の一部および後述の副溝を含む3つのデザインリ
ブ20a (リブ幅Wzo−21m) 、20b  (
リブ幅W2゜b 15mm) 、20c  (リブ幅W
 z o c21 m )を有している。側端区域18
はデザインリブ20 a −cと同様な2つのデザイン
リブ21d、21e(リブ幅W!IdsWzI−25m
以上で側端区域18の幅とほぼ等しい)を有している。
15 is a transverse groove, and the transverse groove 15 crosses the circumferential main groove 13, opens into the circumferential main groove 13, and extends in an S-shape from one end 12a of the tread 12 to the other end 12b of the tread 12. As a result, block-shaped ridges (indicated by diagonal lines in the figure) 16 are formed and are arranged at approximately equal intervals in the tire circumferential direction. The tread 12 has a central region 17 defined by a circumferential main groove 13 and both end regions 18 located outside the central region 17.
It is equipped with The central area 17 has three design ribs 20a (rib width Wzo-21m), 20b (rib width Wzo-21m), which include a part of the transverse groove 15 and a sub-groove to be described later between the circumferential grooves 13.
Rib width W2゜b 15mm), 20c (rib width W
zo c21 m). Side edge area 18
are two design ribs 21d and 21e similar to the design ribs 20a-c (rib width W!IdsWzI-25m
(approximately equal to the width of the side end area 18).

23は周方向副溝であり、周方向副溝23は各デザイン
リブ20a”−c、21d、eのほぼ中央に周方向主溝
13にほぼ平行に配置され、各デザインリブ20a〜2
0c、21d、eをさらに2つの副デザインリブ20a
+、az 〜cI+02 %21dl。
23 is a circumferential minor groove, and the circumferential minor groove 23 is arranged approximately parallel to the circumferential major groove 13 at approximately the center of each of the design ribs 20a''-c, 21d, and e.
0c, 21d, and e are further added to two sub-design ribs 20a.
+, az~cI+02%21dl.

dZ 、el+”Zに分割する。これにより、陵部16
は周方向副溝23によりさらに2つのほぼ半分の等しい
面積を有する2つの副陵部(図には斜線にて示す)16
A、16Bに分割される。周方向副溝23の副溝幅は1
fiで、負荷転動時に互いに接触する溝壁面23aを有
している。
dZ, el+”Z. As a result, the rib part 16
The circumferential minor groove 23 further provides two minor ridges 16 (shown with diagonal lines in the figure) having two approximately half equal areas.
It is divided into A and 16B. The circumferential direction minor groove 23 has a minor groove width of 1
fi and groove wall surfaces 23a that come into contact with each other during load rolling.

各デザインリブ20a”c、21d、eにおいて、横断
溝15の周方向の溝幅W153〜8は各副デザインリブ
20a+、b+、C+ 、21d+、erの断面方向中
央で5鶴である。横断溝15が各デザインリブ20a。
In each design rib 20a''c, 21d, e, the groove width W153-8 in the circumferential direction of the transverse groove 15 is 5 squares at the center in the cross-sectional direction of each sub-design rib 20a+, b+, C+, 21d+, er. 15 is each design rib 20a.

b 、c s 21 d 、  eのほぼ中央において
、周方向副溝23との交差位置23a−eで、トレッド
12の外方から見て周方向副溝23の右側の横断溝が左
側の横°断溝よりタイヤ周方向上側にそれぞれずれたず
れ長さP a −eを有している。ずれ長さPd、Pe
は溝幅W I Sd+ I seの0.5倍、ずれの長
さP a −cは溝幅WISm ””lscの1.0倍
である。
At approximately the center of b, cs 21 d, e, at the intersection position 23a-e with the circumferential minor groove 23, the right transverse groove of the circumferential minor groove 23 crosses the left side lateral angle when viewed from the outside of the tread 12. They each have deviation lengths P a - e that are deviated upward in the tire circumferential direction from the grooves. Displacement length Pd, Pe
is 0.5 times the groove width WISd+Ise, and the deviation length P a -c is 1.0 times the groove width WISm""lsc.

各副デザインリブ20al−62において、副デザイン
リブを横断する横断溝15a1〜e2が周方向主溝13
および周方向副溝23と交差する交差位置における横断
溝15a+””exの接線I、a、xezとタイヤ断面
方向とのなす角度θa、〜θe2はθdl、θe2が2
0度、θd2、θe、が30度、θal+θc2が35
度、θa2、θC1が45度、θb1.θb2が55度
であり、トレッドの一方端12aおよび他方端12bか
ら、タイヤ中央(赤道)に向かうに従って次第に大きい
In each sub-design rib 20al-62, the transverse grooves 15a1-e2 that cross the sub-design rib are connected to the circumferential main groove 15a1-e2.
The angles θa, ~θe2 between the tangents I, a, xez of the transverse groove 15a+""ex and the tire cross-sectional direction at the intersection position where they intersect with the circumferential minor groove 23 are θdl, and θe2 is 2.
0 degrees, θd2, θe are 30 degrees, θal+θc2 is 35
degree, θa2, θC1 is 45 degrees, θb1. θb2 is 55 degrees, and gradually increases from one end 12a and the other end 12b of the tread toward the center of the tire (equator).

次に、作用について説明する。Next, the effect will be explained.

本発明のトレッド12は中央区域17のデザインリブ2
0a−cが副デザインリブ20al〜21C2に分割さ
れ、副陵部16A、16Bのタイヤ断面方向の長さくW
Z。、xi/2)が従来のトレッドパターンすなわち、
周方向主溝13のみの陵部16の幅(デザインリブの幅
Wzo−)の約半分の長さであるので、負荷転動時に副
デザインリブ20a、〜21e2の1つの副陵部16A
は従来の質量より約半分となる。
The tread 12 of the present invention has a design rib 2 in the central region 17.
0a-c is divided into sub-design ribs 20al to 21C2, and the sub-design ribs 16A and 16B have a length W in the cross-sectional direction of the tire.
Z. , xi/2) is the conventional tread pattern, that is,
Since the length is approximately half of the width of the ridge 16 of only the circumferential main groove 13 (width Wzo- of the design rib), one of the auxiliary ridges 16A of the auxiliary design ribs 20a to 21e2 during load rolling.
The weight is approximately half that of the conventional one.

このため、路面からの打撃入力による振動数は約2倍に
なり、極めて高い高周波域になり、人の耳に聞こえ難く
なる。
For this reason, the frequency of vibrations due to the impact input from the road surface is approximately doubled, reaching an extremely high frequency range, making it difficult for human ears to hear.

また、横断溝15が周方向副溝23との交差位置23a
−wQでタイヤ周方向にずれたずれ長さp a−e(0
,5倍および1.0倍)を有しているので、トレッド1
2の接地部において、横断溝15内を流れる空気は接地
部内に包み込まれたり、流れを抑制されることなく、周
方向主溝13および空気が流通可能な周方向副溝23内
を通って徐々に外気を流出する。
Further, the crossing position 23a where the transverse groove 15 intersects with the circumferential sub-groove 23
-wQ, the deviation length pa-e(0
, 5 times and 1.0 times), the tread 1
In the grounding portion of No. 2, the air flowing in the transverse groove 15 is not enveloped in the grounding portion or its flow is suppressed, and gradually passes through the circumferential main groove 13 and the circumferential minor groove 23 through which air can flow. outside air flows out.

このため、騒音は大幅に低減される。Therefore, noise is significantly reduced.

また、横断溝15のトレッド12の一端から他端までの
長さが従来より大きくなるようなれされているので陵部
16の端縁による水膜の切断作用は同じである。
Further, since the length of the transverse groove 15 from one end of the tread 12 to the other end is longer than that of the conventional one, the action of cutting the water film by the edge of the ridge 16 is the same.

また、横断:$15が周方向主溝13および周方向側:
a23と交差する交差位置において、溝角度θがトレッ
ド12の一方端12aおよび他方端12bからタイヤ中
央赤溝に向かうに従って20度から45度と大きくなり
、トレッド12の接地圧が高い中央区域17における副
陵部16Aおよび16Bがタイヤ周方向に先端16aか
ら表面積を図の下方に向かうに従って大きくなるよう長
い形状を有しているので、負荷転動時に副陵部16.の
端縁16aおよび16bの接地開始時間がずれ、このた
め、副陵部16mの打撃入力が緩和されるとともに副陵
部16Aおよび16Bの接地時間は、従来の横断溝がほ
ぼタイヤ断面方向に横断する場合よりも長くなる。この
ため、路面からの打撃入力はさらに緩和され、騒音の発
生は大幅に低減される。
Also, cross section: $15 is the circumferential main groove 13 and the circumferential side:
a23, the groove angle θ increases from 20 degrees to 45 degrees as it goes from one end 12a and the other end 12b of the tread 12 toward the tire central red groove, and the groove angle θ increases from 20 degrees to 45 degrees in the central region 17 where the ground contact pressure of the tread 12 is high. Since the secondary ridges 16A and 16B have a long shape in the tire circumferential direction from the tip 16a, the surface area increases as it goes downward in the figure. The contact start times of the edge edges 16a and 16b are shifted, and as a result, the impact input to the secondary ridges 16m is alleviated, and the contact time of the secondary ridges 16A and 16B is different from that of the conventional transverse grooves that cross approximately in the cross-sectional direction of the tire. It will be longer than if you do it. Therefore, the impact input from the road surface is further alleviated, and the generation of noise is significantly reduced.

これらの結果より空気入りラジアルタイヤ11はウェッ
ト性能を低下させるたとなく、騒音の発生を大幅に低減
する。
These results show that the pneumatic radial tire 11 does not degrade wet performance and significantly reduces noise generation.

次に、試験タイヤ(タイヤサイズ205 /60R15
)を3種(第1実施例、第2実施例、比較例)準備して
本発明の効果を確認したので説明する。
Next, test tires (tire size 205/60R15
) were prepared (first example, second example, and comparative example) and the effects of the present invention were confirmed, which will be explained below.

第1実施例(本発明のタイヤ)は第1図に示す前述のも
のと同じである。第2実施例は、第1実施例において、
中央区域における周方向副溝23を設けていないもので
ある。比較例は、第2図に示すものと同じじあり、トレ
ッド溝の形状以外はすべて同じ構成である。
The first embodiment (tire of the invention) is the same as the one shown in FIG. 1 and described above. In the second embodiment, in the first embodiment,
The circumferential minor groove 23 in the central area is not provided. The comparative example is the same as that shown in FIG. 2, and has the same configuration except for the shape of the tread grooves.

試験はウェット性能、特に排水性能および水膜の切断性
能について試験した。排水性能は水深5寵の路面上を走
行してハイドロプレーニング現象が発生したときの速度
を測定し、指数表示した。
The test focused on wet performance, especially drainage performance and water film cutting performance. Drainage performance was measured by driving on a road surface with a water depth of 5 cm and measuring the speed at which the hydroplaning phenomenon occurred, and expressed as an index.

水膜の切断性能は水深1〜2nで小さい曲率半径を有す
るカーブが連続した試験道路を走行し、テストドライバ
ーの感覚試験により行い、指数表示した。騒音性能はJ
ISに示される台上試験の標準条件で測定した時のオー
バオール値dB(A)を測定し、指数表示した。
The cutting performance of the water film was evaluated by driving on a test road with continuous curves having a small radius of curvature at a water depth of 1 to 2 nm, and by a test driver's sensory test, and the results were expressed as an index. Noise performance is J
The overall value dB(A) when measured under the standard bench test conditions indicated in IS was measured and expressed as an index.

試験結果は次表に比較例を100として指数にて示す。The test results are shown in the following table as an index with the comparative example set as 100.

数値は大きい方が良いことを示す。The larger the number, the better.

(本頁、以下余白) 前表に示すように、第1実施例、第2実施例ともに比較
例に比較し、ウェット性能は維持したまま、タイヤの騒
音性能が大幅に向上している。
(This page, hereafter in the margin) As shown in the previous table, both the first example and the second example are compared to the comparative example, and the noise performance of the tire is significantly improved while maintaining the wet performance.

(効果) 以上説明したように、本発明によれば、湿潤路面を走行
時のウェット性能を低下させることなく、タイヤのパタ
ーンノイズ(騒音)を大幅に低減し騒音性能を大幅に向
上できる。
(Effects) As described above, according to the present invention, tire pattern noise (noise) can be significantly reduced and noise performance can be significantly improved without reducing wet performance when driving on a wet road surface.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る空気入りラジアルタイヤの第1実
施例を示すそのトレッドの平面展開図である。第2図は
従来の空気入りラジアルタイヤのそのトレッドの平面展
開図である。 11・・・・・・空気入りラジアルタイヤ、12・・・
・・・トレッド、 13・・・・・・周方向主溝、 14・・・・・・接地区域、 15・・・・・・横断溝、 16・・・・・・陵部、 16A、16B・・・・・・副陵部、 17・・・・・・中央区域、 18・・・・・・側端区域、 20a、20b、20c、21d、21e−・−・・−
デザインリブ、 23・・・・・・周方向副溝。
FIG. 1 is a developed plan view of a tread showing a first embodiment of a pneumatic radial tire according to the present invention. FIG. 2 is a developed plan view of the tread of a conventional pneumatic radial tire. 11...Pneumatic radial tire, 12...
... Tread, 13 ... Circumferential main groove, 14 ... Ground contact area, 15 ... Crossing groove, 16 ... Ridge section, 16A, 16B・・・・・・Sub-clinic part, 17・・・Central area, 18・・・Side edge area, 20a, 20b, 20c, 21d, 21e-・-・・-
Design rib, 23... Circumferential minor groove.

Claims (1)

【特許請求の範囲】[Claims] トレッドの表部にタイヤ周方向にほぼ平行にのびる少な
くとも3本の周方向主溝と、周方向主溝を横断しトレッ
ドの一方端からトレッドの他方端までS字状に延在しタ
イヤ周方向にほぼ等間隔に配置された複数の横断溝と、
周方向主溝により区画される少なくとも2つのデザイン
リブを有する中央区域と、中央区域の外側に位置する両
側端区域と、を備え、前記中央区域のデザインリブが周
方向主溝にほぼ平行に配置され、負荷転動時に互いに接
触する溝壁面を有する周方向副溝により副デザインリブ
に分割され、前記横断溝が周方向主溝および周方向副溝
との交差位置で周方向に横断溝の周方向幅の0.5〜5
倍のずれを有することを特徴とする空気入りラジアルタ
イヤ。
At least three circumferential main grooves extending substantially parallel to the tire circumferential direction on the surface of the tread, and an S-shaped groove extending across the circumferential main grooves from one end of the tread to the other end of the tread in the tire circumferential direction. a plurality of transverse grooves arranged at approximately equal intervals;
A central region having at least two design ribs defined by a circumferential main groove, and both end regions located outside the central region, the design ribs of the central region being arranged substantially parallel to the circumferential main groove. It is divided into sub-design ribs by a circumferential sub-groove having groove wall surfaces that come into contact with each other during load rolling, and the transverse groove extends in the circumferential direction at the intersection position of the circumferential main groove and the circumferential sub-groove. 0.5 to 5 of direction width
A pneumatic radial tire characterized by having a double deviation.
JP61225482A 1986-09-24 1986-09-24 Pneumatic radial type Pending JPS6378805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61225482A JPS6378805A (en) 1986-09-24 1986-09-24 Pneumatic radial type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61225482A JPS6378805A (en) 1986-09-24 1986-09-24 Pneumatic radial type

Publications (1)

Publication Number Publication Date
JPS6378805A true JPS6378805A (en) 1988-04-08

Family

ID=16830016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61225482A Pending JPS6378805A (en) 1986-09-24 1986-09-24 Pneumatic radial type

Country Status (1)

Country Link
JP (1) JPS6378805A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5238038A (en) * 1990-09-04 1993-08-24 The Goodyear Tire & Rubber Company Pneumatic tire
US20110041972A1 (en) * 2009-08-24 2011-02-24 Naoki Kageyama Pneumatic tire
CN104175810A (en) * 2013-05-21 2014-12-03 住友橡胶工业株式会社 Pneumatic tyre
US8991449B2 (en) * 2008-05-08 2015-03-31 Sumitomo Rubber Industries, Ltd. Pneumatic tire with tread having central land portion, middle land portions and shoulder land portions
JP2015083466A (en) * 2014-12-24 2015-04-30 株式会社ブリヂストン Tire

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5238038A (en) * 1990-09-04 1993-08-24 The Goodyear Tire & Rubber Company Pneumatic tire
US8991449B2 (en) * 2008-05-08 2015-03-31 Sumitomo Rubber Industries, Ltd. Pneumatic tire with tread having central land portion, middle land portions and shoulder land portions
US20110041972A1 (en) * 2009-08-24 2011-02-24 Naoki Kageyama Pneumatic tire
CN101992658A (en) * 2009-08-24 2011-03-30 住友橡胶工业株式会社 Pneumatic tire
US8640750B2 (en) * 2009-08-24 2014-02-04 Sumitomo Rubber Industries, Ltd. Pneumatic tire with tread having shoulder blocks and crown blocks
CN104175810A (en) * 2013-05-21 2014-12-03 住友橡胶工业株式会社 Pneumatic tyre
JP2014227007A (en) * 2013-05-21 2014-12-08 住友ゴム工業株式会社 Pneumatic tire
CN104175810B (en) * 2013-05-21 2018-09-14 住友橡胶工业株式会社 Pneumatic tire
JP2015083466A (en) * 2014-12-24 2015-04-30 株式会社ブリヂストン Tire

Similar Documents

Publication Publication Date Title
JP4825288B2 (en) Pneumatic tire
JP2650040B2 (en) Pneumatic tires for passenger cars
US4884606A (en) Pneumatic tires having improved wet performances
CA2200519C (en) Pneumatic radial tire
EP1075971A1 (en) Pneumatic tire
JPH10230712A (en) Pneumatic radial tire for all-season passenger car
JP3336512B2 (en) Pneumatic tire
JPH09109613A (en) Pneumatic radial tire
JPH0310910A (en) Heavy duty pneumatic tire
JPS61160303A (en) Pneumatic tire
JP2001030720A (en) Pneumatic tire
US5967210A (en) Pneumatic tires having an asymmetric directional pattern
JP4441009B2 (en) Pneumatic tire
JPH03279005A (en) Pneumatic radial tire
CA1324070C (en) Pneumatic tire
US4240484A (en) Pneumatic tire for large size and high speed motor cycles two-wheeled vehicles
JPS6378805A (en) Pneumatic radial type
JP2001219715A (en) Pneumatic tire with high maneuver stability
JP2000043509A (en) Pneumatic tire for motorcycle
JPH02175304A (en) Pneumatic tire
JPH04215504A (en) Pneumatic radial tire
JPH0310911A (en) Pneumatic tire
JPS63275406A (en) Pneumatic tire
JPH04108006A (en) Pneumatic tire
JPH04271905A (en) Pneumatic tire