Nothing Special   »   [go: up one dir, main page]

JPS6346713A - Transformer for two phase/three phase conversion - Google Patents

Transformer for two phase/three phase conversion

Info

Publication number
JPS6346713A
JPS6346713A JP61187738A JP18773886A JPS6346713A JP S6346713 A JPS6346713 A JP S6346713A JP 61187738 A JP61187738 A JP 61187738A JP 18773886 A JP18773886 A JP 18773886A JP S6346713 A JPS6346713 A JP S6346713A
Authority
JP
Japan
Prior art keywords
phase
winding
seat
windings
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61187738A
Other languages
Japanese (ja)
Other versions
JPH0426765B2 (en
Inventor
Yoshifumi Mochinaga
持永 芳文
Shoji Takeda
竹多 昭治
Masaru Ono
小野 勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Railway Technical Research Institute
Original Assignee
Toshiba Corp
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Railway Technical Research Institute filed Critical Toshiba Corp
Priority to JP61187738A priority Critical patent/JPS6346713A/en
Publication of JPS6346713A publication Critical patent/JPS6346713A/en
Publication of JPH0426765B2 publication Critical patent/JPH0426765B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ac-Ac Conversion (AREA)

Abstract

PURPOSE:To miniaturize the title transformer, and to reduce manufacturing cost by generating voltage having the same magnitude and phase difference at 90 deg. at every two pair between respective terminal in a seat A and a seat B on the secondary side when three-phase voltage is applied to the primary side. CONSTITUTION:When a three-phase power supply is applied to primary windings 16U, 16V, 16W, voltage having the same magnitude and phase difference 90 deg. is generated ay every two pair among respective terminal TA-NA1, NA2-NA1, TB-NB1, NB2-FB in a seat A and and a seat B on the secondary side. When the same load is connected to four secondary terminals, balancing three-phase currents are caused to flow through the three-phase power supply. Both the seat A and the seat B are given windings generating voltage E2/2 at every two pair, and two pairs of the windings 17u1 and 17w1, 172 and 17w2 in the seat A and two pairs of the windings 17u3 and 17w3, 17u4 and 17w4 in the seat B are connected respectively in series, and grounded through a discharge device 8 at nodes. Accordingly, the same voltage E2 as conventional devices is acquired among both each terminal of the seat A and the seat B, but an insulating level on the secondary side may by kept at a value corresponding to E2/2, and an auto-transformer can be unnecessitated.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は中性点直接接地の三相送電系統において使用さ
れ、特に二相側を改良した三相二相変換用変圧器に関す
る。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention is used in a three-phase power transmission system with a direct grounding of the neutral point, and is particularly directed to a three-phase to two-phase conversion transformer with improved two-phase side. Concerning vessels.

(従来の技術) 高速電気車に電力を供給するための、き電用変圧器には
第12図に示すような変形ウッドブリッジ結線と呼ばれ
る三相二相変換用変圧器1と昇圧用変圧器2とで構成さ
れたものが使用されている。
(Prior art) A feeding transformer for supplying power to high-speed electric cars includes a three-phase to two-phase conversion transformer 1 called a modified Woodbridge connection and a step-up transformer as shown in Fig. 12. 2 is used.

この三相二相変換用変圧器1は1次巻線が星形結線であ
り、三相電圧E1で受電し、 2次巻線はV相を並列接
続した二重三角結線である。
The three-phase to two-phase conversion transformer 1 has a primary winding with a star connection and receives power at a three-phase voltage E1, and a secondary winding with a double triangular connection in which V-phases are connected in parallel.

この2次巻線の1組の出力端子ac間の電圧をE2とす
れば、 もう1組の出力端子bd間の電圧はE、/JN
となり、端子ac間と端子b’d間の電圧の位相差は9
0度となっている。
If the voltage between one set of output terminals ac of this secondary winding is E2, the voltage between the other set of output terminals bd is E, /JN
Therefore, the phase difference between the voltages between terminals ac and terminals b'd is 9
It is 0 degrees.

昇圧用変圧器2は入力端子b’d’間の電圧E2//3
を昇圧し、 出力端子bd間に電圧E2を発生させる単
巻変圧器である。
Step-up transformer 2 has voltage E2//3 between input terminals b'd'
This is an autotransformer that boosts the voltage and generates voltage E2 between output terminals bd.

この変形ウッドブリッジ結線変圧器方式では。In this modified Woodbridge connection transformer system.

1次中性点0が直接接地できるので超高圧送電系統から
も直接受電ができ、1次巻線の絶縁が大幅に低減できる
利点がある。しかし、三相二相変換用変圧器1のほかに
昇圧用変圧器2が必要となるため、大形化し、製造価格
が高くなり、かつ、広い接地場所と多額の工事費が必要
となる欠点がある。
Since the primary neutral point 0 can be directly grounded, power can be directly received from the ultra-high voltage power transmission system, and there is an advantage that the insulation of the primary winding can be significantly reduced. However, since a step-up transformer 2 is required in addition to the three-phase to two-phase conversion transformer 1, it is larger, the manufacturing price is higher, and the disadvantage is that it requires a large grounding area and a large amount of construction cost. There is.

次に2次側の絶縁階級の低減について説明する。Next, the reduction of the insulation class on the secondary side will be explained.

第13図は変形ウッドブリッジ結線変圧器方式の片座と
等価である単相2次巻線形のき重用変圧器3の1次側に
電源4を接続し、2次側にしゃ断器5を介して単巻変圧
器6A、6B、6Cを接続し、単巻変圧器6A、6B、
6Cの中性点はレール7と接続すると共に放電器8を介
して接地され、電気車9に給電する従来の単巻変圧器き
電力式(AT方式)を示している。この方式ではき重用
変圧器3の2次側は非接地方式となっているため単巻変
圧器6A、6B、6Cが接続されていない状態、すなわ
ちしゃ断器5が開の時に2次側で地絡が発生することを
考慮して、電気車電圧ETの2倍である2次電圧E2に
相当する絶縁階級としている。
Figure 13 shows a power supply 4 connected to the primary side of a single-phase secondary winding heavy duty transformer 3, which is equivalent to a single seated transformer of the modified Woodbridge connection transformer system, and a breaker 5 connected to the secondary side. connect the autotransformers 6A, 6B, and 6C, and connect the autotransformers 6A, 6B, and
The neutral point of 6C is connected to the rail 7 and grounded via the discharger 8, indicating a conventional autotransformer power system (AT system) for supplying power to the electric car 9. In this system, the secondary side of the heavy duty transformer 3 is non-grounded, so when the autotransformers 6A, 6B, and 6C are not connected, that is, when the breaker 5 is open, the secondary side is grounded. In consideration of the occurrence of short circuits, the insulation class is set to correspond to the secondary voltage E2, which is twice the electric vehicle voltage ET.

第14図は最近開発された新AT方式を示したものであ
り、 そのき重用変圧器10は電気車電圧E7に等しい
電圧E2/2である2組の2次巻線を有する単相3巻線
形の変圧器であり、変電所内にあった第1ATである単
巻変圧器6Aが省略されている。すなわち、1次巻線】
1には電圧E1の電源4が接続され、2次巻線12T、
12Fの中性点側端子N1.N2に直列コンデンサ13
を直列に接続し、その直列コンデンサ13には保護ギャ
ップ14を並列に接続し、その接続点Nはレール7と接
続すると共に放電器8を介して接地され、線路側端子T
、 Fにはしゃ断器5を介して単巻変圧器6B、6Gを
接続し、電気車9に給電する回路構成図である。
Fig. 14 shows a recently developed new AT system, in which the heavy duty transformer 10 is a single-phase three-winding type having two sets of secondary windings with a voltage E2/2 equal to the electric vehicle voltage E7. The autotransformer 6A, which is a linear transformer and is the first AT in the substation, is omitted. That is, the primary winding]
1 is connected to a power source 4 with a voltage E1, and a secondary winding 12T,
12F neutral point side terminal N1. Series capacitor 13 to N2
are connected in series, a protective gap 14 is connected in parallel to the series capacitor 13, and the connection point N is connected to the rail 7 and grounded via the discharger 8, and the line side terminal T
, F are connected to autotransformers 6B and 6G via a breaker 5 to supply power to an electric vehicle 9. FIG.

直列コンデンサ13と保護ギャップ14は必ずしも必要
とする装置ではないが、直列コンデンサ13を取付けけ
る目的は変圧器巻線の漏れリアクタンスを補償し、2次
側の電圧変動を小さくし、電気車9の運転特性を良好に
するためであり、保護ギャップ14は短絡電流などの過
電流が2次巻線12T。
Although the series capacitor 13 and the protective gap 14 are not necessarily necessary devices, the purpose of installing the series capacitor 13 is to compensate for the leakage reactance of the transformer winding, reduce the voltage fluctuation on the secondary side, and reduce the voltage fluctuation of the electric vehicle 9. This is to improve the operating characteristics, and the protective gap 14 prevents overcurrent such as short circuit current from occurring in the secondary winding 12T.

12Fに流れ始めると直列コンデンサ13にも同じ電流
が流れ、その両端子の電圧e0が上昇し、ある値以上に
なるとギャップが放電し、直列コンデンサ13は短絡さ
れる。直列コンデンサ13が保護ギャップ14によって
短絡されると短絡電流などの過電流の大きさは電源と変
圧器のインピーダンスによって定まる値に制限でき、変
圧器巻線などの短絡強度には問題にならないようになっ
ている。
When the current starts to flow to 12F, the same current also flows to the series capacitor 13, and the voltage e0 at both terminals rises. When it exceeds a certain value, the gap is discharged and the series capacitor 13 is short-circuited. When the series capacitor 13 is short-circuited by the protective gap 14, the magnitude of overcurrent such as short-circuit current can be limited to a value determined by the impedance of the power supply and the transformer, so that the strength of short-circuits in the transformer winding etc. is not a problem. It has become.

実際の使用では、これらの回路を両座分用意し、それら
の出力電圧の位相差を90度になるように構成し、両座
の負荷が同一であれば1次側の三相電源からの電流は三
相平衡が得られるようにしたものである。この新AT方
式では、たとえ、しゃ断器5が開の時にも、接続点Nは
レール7と接続すると共に放電器8を介して接地されて
いるので、2次側の絶縁階級は電気車電圧ETすなわち
2次巻線の一方の電圧E2/2に相当する値でよく、従
来方式の半分にすることができる。しかも、2次巻線は
接続点Nで接続されている単巻結線であるので第1AT
の単巻変圧器6Aの作用も有するので第14図に示すよ
うに単巻変圧器6Aは不要とすることができる。
In actual use, these circuits are prepared for both sides, configured so that the phase difference between their output voltages is 90 degrees, and if the loads on both sides are the same, the power from the three-phase power supply on the primary side is The current is such that three-phase balance is obtained. In this new AT system, even when the breaker 5 is open, the connection point N is connected to the rail 7 and grounded via the discharger 8, so the insulation class on the secondary side is equal to the electric car voltage ET. That is, a value corresponding to the voltage E2/2 of one side of the secondary winding may be sufficient, which can be half of that of the conventional system. Moreover, since the secondary winding is a single-turn connection connected at the connection point N, the first AT
Since it also has the function of the autotransformer 6A, the autotransformer 6A can be made unnecessary as shown in FIG.

(発明が解決しようとする問題点) 第12図に示すような変形ウッドブリッジ結線三相二相
変換用変圧器では、2次側の中間部で口出しを引き出し
、接地をとることができない構造のため、新AT方式に
適用できず、2次側の絶縁階級は2次電圧E2で決まる
値としなければならない。また、単巻変圧器6Aが必要
となり、大型化し、製造価格が高くなる。
(Problems to be Solved by the Invention) In a modified Woodbridge connection three-phase to two-phase conversion transformer as shown in FIG. Therefore, it cannot be applied to the new AT system, and the insulation class on the secondary side must be determined by the secondary voltage E2. Furthermore, an autotransformer 6A is required, which increases the size and manufacturing cost.

本発明の目的は、以上説明した新AT方式に採用される
き重用変圧器で、小形で製造価格を低減できる三相二相
変換用変圧器を提供することである。
An object of the present invention is to provide a three-phase to two-phase conversion transformer that is compact and can be manufactured at a reduced manufacturing cost as a heavy-duty transformer employed in the new AT system described above.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明による三相二相変換用変圧器はその1次巻線を星
形結線とし、2次巻線は、巻回数N/6とする第1相と
第3相の巻線を位相差が60度となるように「くの字形
」に接続し、さらに巻回数N/3の第2相の巻線を位相
差が120度となるように接続したものを2組を用意し
、その両端をB座の2次端子とし、これとは別に巻回数
N / (2JT)とする第1相、第3相の巻線を位相
差120度となるようにへの字形に接続したもの2組を
用意し。
(Means for Solving the Problems) The three-phase to two-phase conversion transformer according to the present invention has a primary winding connected in a star shape, and a secondary winding connected to the first phase with the number of turns N/6. The third phase winding was connected in a dogleg shape so that the phase difference was 60 degrees, and the second phase winding with the number of turns N/3 was connected so that the phase difference was 120 degrees. Prepare two sets of wires, use both ends as the secondary terminals of the B seat, and separate the first and third phase windings with the number of turns N / (2JT) so that the phase difference is 120 degrees. Prepare two sets connected in the shape of a diagonal.

その両端をA座の2端子とし、3次巻線を三角結線とし
たものである。
Both ends have two terminals at the A position, and the tertiary winding is triangularly connected.

1次巻線に三相電源を印加すると2次側のA座とB座の
各端子間に同じ大きさで位相差が90度である電圧を各
々2組ずつ発生させ、4つの2次端子に同一負荷を接続
すると三相電源には、平衡した三相電流が流れるように
したものである。
When a three-phase power supply is applied to the primary winding, two sets of voltages with the same magnitude and a phase difference of 90 degrees are generated between each terminal of the A and B terminals on the secondary side. When the same load is connected to the three-phase power supply, balanced three-phase current flows through the three-phase power supply.

(作用) A座、B座共に2組ずつの電圧Ez/2を発生する巻線
が与えられ、A座の2組の巻線、B座の2組の巻線を各
々直列に接続し、接続点において放電器を介して接地す
ることにより、A座、B座の各両端子間には、従来と同
じ電圧E2が得られるが、2次側の絶縁階級はE2/2
に相当する値で良い。また、2次巻線は共に単巻結線と
なっており、第1ATの単巻変圧器の作用も有するため
単巻変圧器を不要とできる。
(Function) Two sets of windings that generate a voltage Ez/2 are provided for both the A seat and the B seat, and the two sets of windings on the A seat and the two sets of windings on the B seat are connected in series, respectively. By grounding through the discharger at the connection point, the same voltage E2 as before can be obtained between the terminals of A and B, but the insulation class on the secondary side is E2/2.
A value equivalent to is fine. Further, since both of the secondary windings have a single-turn connection and also have the function of the first AT's auto-transformer, the need for an auto-transformer can be eliminated.

(実施例) 以下、本発明を第1図に示す実施例について説明する。(Example) The present invention will be described below with reference to an embodiment shown in FIG.

本実施例の三相二相変換用変圧器15は、U、V、W相
の1次巻線16U、16V、16Wt!:普通の星形結
線とし、その中性点Oを接地できるようにした1次巻線
と、後述する特別な結線を有する2次巻線とからなり、
これらの巻線が1個あるいは2個以上の鉄心(図示しな
い)上に巻装されたものである。
The three-phase to two-phase conversion transformer 15 of this embodiment has U, V, and W phase primary windings 16U, 16V, and 16Wt! : Consists of a primary winding with a normal star-shaped connection, whose neutral point O can be grounded, and a secondary winding with a special connection described later.
These windings are wound on one or more iron cores (not shown).

2次巻線は、第1相(U相)および第3相(W相)を巻
回数N/(24IT)とする巻線各2個17u1.17
u2゜17w、 、 17w、と、第2相(V相)を巻
回数N/3とする巻線2個17v3.17シ。と第1相
(U相)および第3相(W相)を巻回数N/6とする巻
線各2個17u、 。
The secondary windings are two windings each with the number of turns of the first phase (U phase) and third phase (W phase) being N/(24IT) 17u1.17
u2゜17w, , 17w, and two 17v3.17 windings with the second phase (V phase) having the number of turns N/3. and two windings 17u each with the first phase (U phase) and third phase (W phase) having a number of turns of N/6.

17u4.17w、 、 17w、とからなり、第1図
に示すように17u1と17w1.17u、と17シ2
を各々への字形に接続しA座の2次端子TA−NA□、
NA□−FAとし、くの字形に接続した17u、と17
w1.17u4と17w4にさらに各々17v、と17
v4を接続しB座の2次端子TR−NB1.NB2−F
、とする。
17u4.17w, , 17w, and 17u1, 17w1.17u, and 17shi2 as shown in Figure 1.
Connect them to each other in the shape of a letter A, and connect them to the secondary terminals TA-NA□,
NA□-FA, 17u and 17 connected in a dogleg shape
w1.17u4 and 17w4 and 17v each, and 17
v4 is connected to the secondary terminal TR-NB1. NB2-F
, and so on.

前記のへの字形結線は、1つの巻線17u、と17v工
あるいは、17u2と17す2の位相差が120度であ
るから、A座の2次端子T^−NA工、NA□−FA間
に発生する電圧は巻回数N/2に相当する値となる。
In the above-mentioned square-shaped connection, since the phase difference between one winding 17u and 17v or 17u2 and 17su2 is 120 degrees, the secondary terminals T^-NA and NA□-FA of A position are connected. The voltage generated between them has a value corresponding to the number of turns N/2.

一方、前記のくの字形結線は、2つの巻線17u3と1
7v、あるいは17u4と17v4の位相差が60度と
なるように接続されるため、 B座2次端子TB−N、
□。
On the other hand, the dogleg-shaped connection described above has two windings 17u3 and 1
7v or 17u4 and 17v4 are connected so that the phase difference is 60 degrees, so the B-located secondary terminal TB-N,
□.

N B Z  F 3間の発生する電圧は、第2相の巻
線17v3.17v4の発生電圧を加えてN/6 + 
N/3 =N/2の巻回数に相当する値となり、 A座
の2次端子間の発生電圧と大きさは等しく、位相が90
度ずれている(直交している)ことになる。
The voltage generated between N B Z F 3 is N/6 + by adding the voltage generated by the second phase winding 17v3.17v4.
N/3 = the value corresponding to the number of turns of N/2, the magnitude is the same as the voltage generated between the secondary terminals of the A position, and the phase is 90
This means that they are off by a degree (orthogonal).

次に本実施例の如き構成にすると2次側のA。Next, if the configuration is as in this embodiment, A on the secondary side.

B両座に同一の単相負荷が平衡している場合に、1次側
3相電源に対しては三相平衡負荷となることを説明する
It will be explained that when the same single-phase load is balanced on both B seats, the primary side three-phase power supply becomes a three-phase balanced load.

まず、各部に流れる電流について、その解析を簡単にす
るために、各巻線の巻回数を第2図に示すような比、即
ち巻線16U、16V、16Wを1./4317v4を
百にすれば、1次側の線間は1に相当し、2次側はA座
、B座共各々直列接続された端子T^−FA+ TB 
FB間が各々1に相当する。
First, in order to simplify the analysis of the current flowing through each part, the number of turns of each winding is set as shown in FIG. /4317v4 is set to 100, the line spacing on the primary side corresponds to 1, and the secondary side has terminals T^-FA+ TB connected in series on both A and B.
Each FB corresponds to 1.

第3図から第5図は1次側に三相電源19を接続し、A
座のみに負荷20をとった場合の電流分布であり、負荷
20に流れる電流を1としている。第3図では、 2次
端子TA−NA1間に負荷があり、2次巻線17u1.
17w、に2次側負荷電流の1が流れるものとし、1次
巻線の160,16Wの各相に上の1次組流が流れるこ
とを示しているが、この関係は第1相と第3相において
各相のアンペアターンが一致する条件から求められる。
In Figures 3 to 5, a three-phase power supply 19 is connected to the primary side, and A
This is the current distribution when the load 20 is placed only at the seat, and the current flowing through the load 20 is assumed to be 1. In FIG. 3, there is a load between the secondary terminals TA and NA1, and the secondary windings 17u1.
It is assumed that 1 of the secondary side load current flows through 17W, and the above primary current flows through each phase of 160W and 16W of the primary winding, but this relationship is It is determined from the condition that the ampere turns of each phase match in three phases.

第4図では、 2次端子NA、−FA間に負荷20があ
る場合で第3図と同様な関係であるが、ここで大切なこ
とは第3図と第4図における条件でこの変圧器の漏れイ
ンピーダンスがほぼ同一になるように設計されなければ
ならないことである。
In Fig. 4, when there is a load 20 between the secondary terminals NA and -FA, the relationship is the same as in Fig. 3, but what is important here is that this transformer under the conditions shown in Figs. They must be designed so that their leakage impedances are almost the same.

第5図は第3図と第4図の両条件が重畳した場合であり
、1次巻線16U、16Wの各電流は同相なので、その
算出和として求められ、1次巻1160の電流IUAと
1次巻線16Wの電流11+lAは同一で1である。1
次巻線16Vには電流は流れず、2次巻線17u1.1
7w1および17112 + 17w、に流れる電流は
1となる。
Figure 5 shows a case where both the conditions in Figures 3 and 4 are superimposed, and since the currents of the primary windings 16U and 16W are in phase, it is calculated as the sum of the currents, and the current IUA of the primary winding 1160 is The current 11+1A of the primary winding 16W is the same and is 1. 1
No current flows through the secondary winding 16V, and the secondary winding 17u1.1
The current flowing through 7w1 and 17112 + 17w is 1.

第6図から第8図はB座のみに負荷20をとった場合の
電流分布であるが、B座の発生電圧はA座の発生電圧に
対して位相が90度遅れているため流れる電流も90度
の位相差があり、−jをつけて示すこととする。また、
各符号、記号の添字もAに代えてBをつけて表示する。
Figures 6 to 8 show the current distribution when the load 20 is applied only to the B position, but since the voltage generated at the B position is delayed by 90 degrees in phase with respect to the voltage generated at the A position, the current flowing also There is a phase difference of 90 degrees, which is indicated by adding -j. Also,
The subscript of each code and symbol is also displayed with B added instead of A.

第6図では、 2次端子’r、  N81間に負荷2o
があり、負荷20に−j1の負荷電流が流れる場合を示
す。この負荷電流は直列接続されている巻線17u、。
In Figure 6, a load of 2o is placed between the secondary terminal 'r and N81.
, and a load current of −j1 flows through the load 20. This load current is connected in series with the winding 17u.

17V、 、 17w3に流れる。1次巻線には、2次
巻線の負荷電流によるアンペアターンを打ち消すような
第7図では、 2次端子NB2−FB間に負荷20があ
る場合で、第6図と同様な関係であるが、ここで大切な
ことはA座の場合と同様に、第6図と第7図における条
件でこの変圧器の漏れインピーダンスをほぼ同一にする
ことである。
17V, , flows to 17w3. The primary winding cancels the ampere turn due to the load current of the secondary winding. In Figure 7, there is a load 20 between the secondary terminals NB2 and FB, and the relationship is similar to that in Figure 6. However, the important thing here is to make the leakage impedance of this transformer almost the same under the conditions shown in FIGS. 6 and 7, as in the case of the A seat.

第8図は第6図と第7図の両条件が重畳した場合であり
、1次巻線16U、1.6V、16W(7)各電流は同
相なので、その算出和で求められ、1次巻線16Uの電
流IU8と1次巻線16Wの電流IWBの値は流1□B
は−j1となる。
Figure 8 shows a case where both the conditions in Figures 6 and 7 are superimposed, and the primary winding 16U, 1.6V, 16W (7) each current is in phase, so it is found by the calculated sum, and the primary The values of the current IU8 of the winding 16U and the current IWB of the primary winding 16W are current 1□B
becomes -j1.

第9図は、A座とB座に同時に同一負荷2oが接続され
、第14図に示す新AT方式に適用した場合の各部分の
電流分布を示したものであり各電流の正方向を矢印で表
示しである。
Figure 9 shows the current distribution in each part when the same load 2o is connected to the A and B locations at the same time and is applied to the new AT method shown in Figure 14.The positive direction of each current is indicated by an arrow. It is displayed as .

この第9図は、第5図と第8図の両条件が重畳した場合
であるので1次巻線の電流には90度の位相差があり、
ベクトル和で求められそのベクトル図は第1O図のよう
になる。
This figure 9 shows the case where both the conditions of figure 5 and figure 8 are superimposed, so there is a 90 degree phase difference in the current in the primary winding.
It is determined by vector sum, and the vector diagram is shown in Figure 1O.

すなわち、1次巻線16Uの第1相電流iuはIUA 
 IUBで、 1大巻IjA16vの第2相電流I v
はIVA+IVBで1次巻線16Wの第3相電流iwは
−1すA  IWBで各々求められる。
That is, the first phase current iu of the primary winding 16U is IUA
At IUB, the second phase current Iv of one large turn IjA16v
is IVA+IVB, and the third phase current iw of the primary winding 16W is calculated as -1sA IWB, respectively.

従って第9図と第10図かられかるように、2次側のA
座とB座に同一負荷を同時にとった場合、で位相が各1
20度ずっズしており、三相が平衡していることがわか
る。
Therefore, as can be seen from Figures 9 and 10, A on the secondary side
When the same load is applied to the seat and B seat at the same time, the phase is 1 for each
It can be seen that the three phases are balanced by 20 degrees.

また。1次側の中性点を接地して使用する際には、第5
図のA座のみに負荷をとる場合、第8図のB座のみに負
荷をとる場合、第9図のA、B両座に負荷をとる場合共
に、各部に流れる電流は各相の1次巻線と2′次巻線の
間のアンペアターンの一致によってのみ決まるため、特
に各巻線間のインピーダンスの制約なしに、中性点Oに
流れる零相電流を零にすることができる。この結果、従
来の場合と同様に、1次中性点Oを直接接地して使用で
き、超高圧送電系統からも直接受電ができ、1次巻線の
絶縁を大幅に低減できる。
Also. When using the primary side with the neutral point grounded, the 5th
When a load is applied only to the A position in the figure, when a load is applied only to the B position in Figure 8, or when a load is applied to both A and B positions in Figure 9, the current flowing through each part is the primary of each phase. Since it is determined only by the coincidence of ampere turns between the winding and the secondary winding, the zero-sequence current flowing to the neutral point O can be made zero without any particular restriction on impedance between each winding. As a result, as in the conventional case, the primary neutral point O can be directly grounded and used, power can be directly received from the ultra-high voltage power transmission system, and the insulation of the primary winding can be significantly reduced.

本発明の結線には、その1次・2次巻線中に閉回路の結
線を持つものがないため、励磁電流中に含まれる3倍調
波成分を還流させるための、三角結線された安定巻線1
8が必要となる。安定巻線18には、零相インピーダン
スを低くするなどの働きもあり、通常の三相変圧器の安
定巻線の作用となんら変わりはない。また、必要によっ
ては、安定巻線18を3次巻線として利用し、力率改善
用のコンデンサを接続したり、所内用の負荷をとること
も可能である。
Since the wiring of the present invention does not have a closed circuit connection in the primary and secondary windings, a stable triangular wiring is used to circulate the third harmonic component contained in the exciting current. Winding 1
8 is required. The stabilizing winding 18 also has the function of lowering the zero-sequence impedance, which is no different from the function of the stabilizing winding of a normal three-phase transformer. Further, if necessary, it is also possible to use the stabilizing winding 18 as a tertiary winding, connect a capacitor for power factor improvement, or take on an internal load.

次に巻線の利用率について考える。第2図、第9図より
1次巻線16U、16V、16W(7)容量は3和する
。APJ、の2次巻線17u、 + 17u2.17t
i0.17w2のB座の2次巻線17u3v 17u4
t 17w3.17w4の2相分巻線容量は0.667
 (=丁XlX4)、B座の2次巻線17V、 、 1
7v4の2相分巻線容量は0.667 (=。
Next, consider the utilization rate of the winding. From FIG. 2 and FIG. 9, the primary winding 16U, 16V, 16W (7) capacity is the sum of three. APJ, secondary winding 17u, + 17u2.17t
i0.17w2 B position secondary winding 17u3v 17u4
The two-phase winding capacity of t 17w3.17w4 is 0.667
(=ChoXlX4), secondary winding of B seat 17V, , 1
The two-phase winding capacity of 7v4 is 0.667 (=.

XlX2)で2次巻線の合計容量は2.488となる。XlX2), the total capacity of the secondary winding is 2.488.

よって、 2次負荷の合計を100%とすれば、巻線容
量は1次巻線が100%、2次巻線が124.4%とな
りその等価容量は112.2%となる。 3次巻線18
を安定巻線として使用する場合には、変圧器の実質的な
等価容量としては、この分も考慮に入れるべきであるが
、安定巻線の容量は他の要素から決まり、また負荷をと
るわけでもないため、一般に変圧器1次側容量と比べて
十分小さいため、ここでは無視する。また、3次巻線1
8が所内電源用等の目的で負荷をとる際には、その目的
に必要なだけの容量を3次巻線が持つ必要があるが、こ
の場合には従来方式の時にもそれ以上の容量が必要とな
るため、ここでは1次、2次巻線の等価容量だけを比較
の対象とする。
Therefore, if the total secondary load is 100%, the winding capacity is 100% for the primary winding and 124.4% for the secondary winding, and the equivalent capacity is 112.2%. Tertiary winding 18
When using as a stabilizing winding, this should be taken into account as the transformer's effective equivalent capacity, but the capacity of the stabilizing winding is determined by other factors, and it does not take a load. Since it is generally sufficiently small compared to the primary side capacity of the transformer, it is ignored here. Also, the tertiary winding 1
When 8 takes on a load for the purpose of in-house power supply, etc., the tertiary winding needs to have the capacity required for that purpose, but in this case, even with the conventional method, a larger capacity is required. Since this is necessary, only the equivalent capacitance of the primary and secondary windings will be compared here.

従来方式である第12図の変形ウッドブリッジ結線変圧
器では、三相二相変換用変圧器1は、1次巻線、2次巻
線ともその容量は100%であり、昇圧用変圧器2の等
価容量は 21.1%(=ぶユニ」−む5Lと3」−)であるので
、両変圧器の合計等価容量は121.2%である。従っ
て、本実施例の変圧器15の方が92.7%の等価容量
ですむことになる。また、昇圧用変圧器2も別に設ける
必要がないため、エタンク方式となり小形軽量化ができ
、その据付面積も小さくてすむ。
In the conventional modified Woodbridge connection transformer shown in FIG. Since the equivalent capacity of the transformers is 21.1% (=buuni"-mu5L and 3"-), the total equivalent capacity of both transformers is 121.2%. Therefore, the transformer 15 of this embodiment requires an equivalent capacity of 92.7%. Further, since there is no need to separately provide the step-up transformer 2, the ethane system can be made smaller and lighter, and its installation area can be reduced.

2次巻線の絶縁階級については、使用時にその中性点側
端子NA□、 NA2. NB、、 N82が必ず直列
コンデンサー3を通してレール7に接続されると共に放
電器8を介して接地されるので、従来の半分の2次電圧
に相当する絶縁階級で良いことは明確で、2次回路に使
用されるしゃ断器、断路器、避雷器等の絶縁階級を低減
することができる。
Regarding the insulation class of the secondary winding, check its neutral point side terminal NA□, NA2. Since NB, N82 is always connected to the rail 7 through the series capacitor 3 and grounded through the discharger 8, it is clear that the insulation class corresponding to half the conventional secondary voltage is sufficient, and the secondary circuit It is possible to reduce the insulation class of circuit breakers, disconnectors, lightning arresters, etc. used in

第11図には、2次巻線の変形例を示す。A−1〜A−
4には、A座の2次巻線の例、B−1〜B−12にはB
座の2次巻線の例を示し、A座の巻線1組とB座の巻線
1組の任意の組合せにより、上記で説明してきた本発明
の実施例と同じ電気特性および効果を得ることができる
。この場合、1次巻線および3次巻線は前記説明と同じ
ものである。
FIG. 11 shows a modification of the secondary winding. A-1~A-
4 shows an example of the secondary winding at A position, and B-1 to B-12 show B
An example of the secondary winding of the seat is shown, and the same electrical characteristics and effects as the embodiments of the present invention described above can be obtained by any combination of one set of winding of the A seat and one set of the winding of the B seat. be able to. In this case, the primary and tertiary windings are the same as described above.

〔発明の効果〕 以上説明したように、本発明によれば 1次側巻線は星
形結線であり、その中性点を直接接地できるので、超高
圧送電系統からも直接受電が可能であり、1次巻線は段
絶縁と低減絶縁にでき、また、2次巻線はその一端を接
地できるため、新AT方式の回路に適用でき、2次側の
絶縁階級を半減でき、また特別な昇圧用変圧器も必要と
しないような、三相二相変換用変圧器を提供できる。
[Effects of the Invention] As explained above, according to the present invention, the primary winding is star-shaped and its neutral point can be directly grounded, making it possible to receive power directly from the ultra-high voltage power transmission system. , the primary winding can be stage-insulated or reduced-insulated, and one end of the secondary winding can be grounded, so it can be applied to new AT system circuits, the insulation class on the secondary side can be halved, and special It is possible to provide a three-phase to two-phase conversion transformer that does not require a step-up transformer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による三相二相変換用変圧器の一実施例
を示す結線図、第2図は第1図に示した変圧器における
各巻線の巻数比を示す説明図、第3図から第5図は第1
図に示した変圧器におてA座のみに負荷をとった場合の
電流分布を示す説明図、第6図から第8図は第1図に示
した変圧器において、B座のみに負荷をとった場合の電
流分布を示す説明図、第9図は第1図に示した変圧器に
おいて、A、B両座に同一負荷をとった場合の電流分布
を示す説明図、第10図は第9図における電流のベクト
ル図、第11図は本発明の2次巻線の変形例を示す結線
図、第12図は従来の変形ウッドブリッジ結線のき電用
変圧器の結線図、第13図は従来の変形ウッドブリッジ
結線におけるAT方式の回路構成図、第14図は新しい
三相二相変換用変圧器による新AT方式の回路構成図で
ある。 1.2・・・変形ウッドブリッジ結線の三相二相変換用
変圧器、昇圧用変圧器 3.10・・・き電用変圧器  4・・・単相電源5・
・・しゃ断器 6A、6B、6C・・・単巻変圧器7・
・・レール     8・・・放電器9・・・電気車 
11,16U、16V、16W・・・1次巻線12T・
・・トロリ線側に接続される2次巻線12F・・・フィ
ーダ側に接続される2次巻線13・・・直列コンデンサ
 14・・・保護ギャップ15・・・本発明による三相
二相変換用変圧器17u、 、17uz 、17u、 
、17LI4.17v1,17V2.17V3.17V
4 。 第1図 第3図 第7図 第9図 第10図 第 11  図 第12図 手続補正口(自発) 昭和   年   月   日 6L12.−2
Fig. 1 is a wiring diagram showing one embodiment of a three-phase to two-phase conversion transformer according to the present invention, Fig. 2 is an explanatory diagram showing the turn ratio of each winding in the transformer shown in Fig. 1, and Fig. 3 Figure 5 is from Figure 1.
Figures 6 to 8 are explanatory diagrams showing the current distribution when a load is applied only to the A seat in the transformer shown in Figure 1. Figure 9 is an explanatory diagram showing the current distribution when the same load is applied to both A and B in the transformer shown in Figure 1. 9 is a current vector diagram, FIG. 11 is a connection diagram showing a modified example of the secondary winding of the present invention, FIG. 12 is a connection diagram of a conventional modified Woodbridge connection feeding transformer, and FIG. 13 14 is a circuit diagram of an AT system using a conventional modified Woodbridge connection, and FIG. 14 is a circuit diagram of a new AT system using a new three-phase to two-phase conversion transformer. 1.2... Modified Woodbridge connection three-phase two-phase conversion transformer, step-up transformer 3.10... Feeding transformer 4... Single-phase power supply 5.
... Breaker 6A, 6B, 6C ... Autotransformer 7.
...Rail 8...Discharger 9...Electric car
11, 16U, 16V, 16W...Primary winding 12T.
...Secondary winding 12F connected to the contact wire side...Secondary winding 13 connected to the feeder side...Series capacitor 14...Protection gap 15...Three-phase two-phase according to the present invention Conversion transformer 17u, , 17uz, 17u,
, 17LI4.17v1, 17V2.17V3.17V
4. Figure 1 Figure 3 Figure 7 Figure 9 Figure 10 Figure 11 Figure 12 Procedure correction mouth (voluntary) Showa year month day 6L12. -2

Claims (1)

【特許請求の範囲】[Claims]  1次巻線は三相とも同一巻回数である星形結線とし、
2次巻線は第2相で巻回数N/3の巻線2個と、第1相
と第3相で巻回数N/6の巻線各2個を用意し第1相の
巻線と第3相の巻線の位相差が60度でかつ、第2相と
第1相・第3相の巻線の位相差が120度になるように
、第1相・第2相・第3相の巻線各1個を直列に接続し
た2組と、第1相と第3相で巻回数N/(2√3)とす
る巻線各2個をさらに用意しそれらの第1相の巻線1個
と第3相の巻線1個を位相差が120度になるように各
々で直列に接続した2組とからなり、3次巻線は三相と
も同一巻回数である三角結線とした巻線群を有する三相
二相変換用変圧器において、前記2次巻線の第1相と第
3相の巻線を直列に接続したものの両端をA座の2次端
子とし、前記第1相、第2相、第3相の巻線を直列に接
続したものの両端をB座の2次端子とし、1次側に三相
電圧を印加した場合に2次側のA座とB座の各端子間に
同じ大きさで位相座が90度である電圧を各々2組ずつ
発生することを特徴とする三相二相変換用変圧器。
The primary winding is star-shaped with the same number of turns for all three phases.
For the secondary winding, prepare two windings with the number of turns of N/3 for the second phase and two windings each of the number of turns of N/6 for the first and third phases. The windings of the first phase, second phase, and third phase are Prepare two sets of windings of each phase connected in series, and two sets of windings each with the number of turns N/(2√3) for the first and third phases. It consists of two sets in which one winding and one 3rd phase winding are connected in series so that the phase difference is 120 degrees, and the tertiary winding is a triangular connection in which the number of turns is the same for all three phases. In a transformer for three-phase to two-phase conversion having a group of windings, both ends of the first and third phase windings of the secondary winding connected in series are used as the secondary terminals of the A position, and the When the windings of the 1st, 2nd, and 3rd phases are connected in series, both ends are the secondary terminals of the B position, and when a three-phase voltage is applied to the primary side, the secondary side A and B A transformer for three-phase to two-phase conversion, characterized in that two sets of voltages having the same magnitude and a phase position of 90 degrees are generated between each terminal of the position.
JP61187738A 1986-08-12 1986-08-12 Transformer for two phase/three phase conversion Granted JPS6346713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61187738A JPS6346713A (en) 1986-08-12 1986-08-12 Transformer for two phase/three phase conversion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61187738A JPS6346713A (en) 1986-08-12 1986-08-12 Transformer for two phase/three phase conversion

Publications (2)

Publication Number Publication Date
JPS6346713A true JPS6346713A (en) 1988-02-27
JPH0426765B2 JPH0426765B2 (en) 1992-05-08

Family

ID=16211327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61187738A Granted JPS6346713A (en) 1986-08-12 1986-08-12 Transformer for two phase/three phase conversion

Country Status (1)

Country Link
JP (1) JPS6346713A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102568795A (en) * 2011-12-30 2012-07-11 天威云南变压器股份有限公司 Three-phase to two-phase balance transformer
JP2013030301A (en) * 2011-07-27 2013-02-07 Toshiba Corp Excitation inrush current suppression device
JP2013037767A (en) * 2011-08-03 2013-02-21 Toshiba Corp Magnetization rush current suppression device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5441419A (en) * 1977-09-07 1979-04-02 Hitachi Ltd Three-phase.two-phase power conversion transformer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5441419A (en) * 1977-09-07 1979-04-02 Hitachi Ltd Three-phase.two-phase power conversion transformer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013030301A (en) * 2011-07-27 2013-02-07 Toshiba Corp Excitation inrush current suppression device
US9583934B2 (en) 2011-07-27 2017-02-28 Kabushiki Kaisha Toshiba Excitation inrush current suppression device
JP2013037767A (en) * 2011-08-03 2013-02-21 Toshiba Corp Magnetization rush current suppression device
CN102568795A (en) * 2011-12-30 2012-07-11 天威云南变压器股份有限公司 Three-phase to two-phase balance transformer
CN102568795B (en) * 2011-12-30 2014-09-17 天威云南变压器股份有限公司 Three-phase to two-phase balance transformer

Also Published As

Publication number Publication date
JPH0426765B2 (en) 1992-05-08

Similar Documents

Publication Publication Date Title
Duffey et al. Update of harmonic standard IEEE-519: IEEE recommended practices and requirements for harmonic control in electric power systems
US5434455A (en) Harmonic cancellation system
GB2397445A (en) Power transmission circuits
US5576942A (en) Method and apparatus for reducing the harmonic currents in alternating-current distribution networks
US5343080A (en) Harmonic cancellation system
US3509507A (en) Grounded y - y three-phase transformer
Morimoto et al. New type of feeding transformer for AC railway traction system
JPS6346713A (en) Transformer for two phase/three phase conversion
US3290510A (en) Electrical apparatus
US3440516A (en) Transformer and capacitor apparatus for three-phase electrical systems
Blume Influence of transformer connections on operation
US2667617A (en) Polyphase transformer system with grounded neutral
Peter et al. A review about Zig Zag and Double Zig Zag connections in Transformer
US2357098A (en) Transformer
Kersting Center tapped transformer and 120/240 volt secondary models
Hamer Application of the duplex reactor-an unusual and forgotten technique to reduce short circuit duty
JPH0423407B2 (en)
Solak et al. EMTP testing of selected PST protection schemes
JPS62291907A (en) 3-phase/2-phase conversion transformer
JP2773096B2 (en) Power distribution equipment
JPS62205611A (en) Transformer for three-phase, two-phase conversion
Amirkhan et al. Improvement of Power Quality in Four-Wire‎ Distribution Systems
JPS62291906A (en) 3-phase/2-phase conversion transformer
JPH0556643B2 (en)
US1974980A (en) Electric valve converting system