JPS62291906A - 3-phase/2-phase conversion transformer - Google Patents
3-phase/2-phase conversion transformerInfo
- Publication number
- JPS62291906A JPS62291906A JP61134765A JP13476586A JPS62291906A JP S62291906 A JPS62291906 A JP S62291906A JP 61134765 A JP61134765 A JP 61134765A JP 13476586 A JP13476586 A JP 13476586A JP S62291906 A JPS62291906 A JP S62291906A
- Authority
- JP
- Japan
- Prior art keywords
- phase
- transformer
- winding
- voltage
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 16
- 238000004804 winding Methods 0.000 claims abstract description 96
- 239000002023 wood Substances 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 16
- 239000003990 capacitor Substances 0.000 description 8
- 238000009413 insulation Methods 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- 238000009826 distribution Methods 0.000 description 6
- 230000007935 neutral effect Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000009434 installation Methods 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- MMOXZBCLCQITDF-UHFFFAOYSA-N N,N-diethyl-m-toluamide Chemical compound CCN(CC)C(=O)C1=CC=CC(C)=C1 MMOXZBCLCQITDF-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 235000021419 vinegar Nutrition 0.000 description 1
- 239000000052 vinegar Substances 0.000 description 1
Landscapes
- Ac-Ac Conversion (AREA)
Abstract
Description
【発明の詳細な説明】
3、発明の詳細な説明
〔発明の目的”〕
(産業上の利用分野)
本発明は、き重用変圧器として使用され、特に二相側を
改良した三相二相変換用変圧器に関するものである。Detailed Description of the Invention 3. Detailed Description of the Invention [Object of the Invention] (Industrial Field of Application) The present invention is a three-phase two-phase transformer that is used as a heavy duty transformer, and in particular has an improved two-phase side. This relates to a conversion transformer.
(従来の技術)
高速電気車に電力を供給するためのき重用変圧器には第
16図に示すような変形ウッドブリッジ結線と呼ばれる
三相二相変換用変圧器1と昇圧用変圧器2とで構成され
たものが使用されている。この三相二相変換用変圧器1
は1次巻線が星形結線であり、三相電圧E□で受電し2
次巻線はV相を並列接続した二重三角結線である。(Prior art) A heavy duty transformer for supplying power to high-speed electric cars includes a three-phase to two-phase conversion transformer 1 and a step-up transformer 2, which are called a modified Woodbridge connection, as shown in Fig. 16. The one composed of is used. This three-phase two-phase conversion transformer 1
The primary winding is star-shaped, and it receives power at three-phase voltage E□.
The next winding is a double triangular connection in which V-phases are connected in parallel.
この2次巻線の1組の出力端子ac間の電圧をE2とす
れば、もう1組の出力端子b’ d’間の電圧はE8/
−/丁となり、端子ac間と端子b’ d’間の電圧の
位相差は90度になっている。If the voltage between one set of output terminals ac of this secondary winding is E2, the voltage between the other set of output terminals b'd' is E8/
-/d, and the phase difference between the voltages between the terminals ac and between the terminals b' and d' is 90 degrees.
昇圧用変圧器2は入力端子b’ d’間の電圧Ex /
J”lを昇圧し、出力端子bd間に電圧E2を発生す
る単巻変圧器である。The step-up transformer 2 has a voltage Ex/
This is an autotransformer that boosts J"l and generates voltage E2 between output terminals bd.
この変形ウッドブリッジ結線変圧器方式では1次中性点
Oが直接接地できるので、超高圧線路から直接受電でき
、1次巻線の絶縁が大幅に低減できる利点がある。In this modified Woodbridge connected transformer system, the primary neutral point O can be directly grounded, so power can be received directly from the ultra-high voltage line, and the insulation of the primary winding can be significantly reduced.
しかしながら、受電するのは超高圧線路からだけでなく
受電電圧E工が154KV以下になる場合もあり、この
場合は必ずしも1次側の中性点を引出し接地する必要は
ない。However, power is not only received from an ultra-high voltage line, but also when the received voltage is 154 KV or less, and in this case, it is not necessarily necessary to draw out the neutral point on the primary side and ground it.
そして三相二相変換用変圧器1のほかに昇圧用変圧器2
が必要となるため、大形化し、製造価格が高くなり、か
つ広い設置場所と多額の工事費が必要となる欠点がある
。In addition to the three-phase to two-phase conversion transformer 1, there is also a step-up transformer 2.
This requires a large size, high manufacturing cost, a large installation space, and a large amount of construction cost.
次に2次側の絶縁階級の低減について説明する。Next, the reduction of the insulation class on the secondary side will be explained.
第17図は変形フッドブリッジ結線変圧器の弁座と等価
である単相2巻線形のき重用変圧器3の1次側に電源4
を接続し、2次側にしゃ断器5を介して単巻変圧器6A
、 6B 、 6Cを接続し、単巻変圧器6A。Figure 17 shows a power source 4 connected to the primary side of a single-phase two-winding heavy duty transformer 3, which is equivalent to the valve seat of a modified hood-bridge connected transformer.
is connected to the autotransformer 6A via the breaker 5 on the secondary side.
, 6B, and 6C, and an autotransformer 6A.
68 、6Gの中性点はレール7と接続すると共に放電
器8を介して接地され電気車9に給電する従来の単巻変
圧器き電力式(AT方式)を示している。The neutral point of 68 and 6G is connected to the rail 7 and grounded via the discharger 8 to supply power to the electric car 9, indicating a conventional autotransformer power system (AT system).
この方式ではき重用変圧器3の2次側は非接地方式とな
っているため単巻変圧器6A 、 6B 、 6Cが接
続されていない状態、すなわち、しゃ断!5が開の時に
2次側で地絡が発生することを考慮して電気車電圧ET
の2倍である2次電圧E2に相当する絶縁階級としてい
る。In this system, the secondary side of the heavy duty transformer 3 is non-grounded, so the autotransformers 6A, 6B, and 6C are not connected, that is, they are cut off! Considering that a ground fault occurs on the secondary side when 5 is open, the electric car voltage ET
The insulation class corresponds to the secondary voltage E2, which is twice the voltage E2.
(発″明が解決しようとする問題点)
第18図は最近開発された新AT方式を示したものであ
り、そのき重用変圧器10は電気車電圧ETに等しい電
圧E2/2である2組の2次巻線を有する単相3巻線形
の変圧器であり、変電所AT (第1ATという)であ
る単巻変圧器6Aが省略されている。(Problems to be Solved by the Invention) Fig. 18 shows a recently developed new AT system in which the heavy duty transformer 10 has a voltage E2/2 equal to the electric vehicle voltage ET. The autotransformer 6A, which is a single-phase three-winding transformer having a set of secondary windings and is a substation AT (referred to as the first AT), is omitted.
すなわち、1次巻線11には電圧Eユの電源4が接続さ
れ、2次巻1&!12T、12Fの中性点側端子N工l
N2に直列コンデンサ13を直列に接続し、その直列コ
ンデンサ13には保護ギャップ14を並列に接続し、そ
の接続点Nはレール7と接続すると共に放電器8を介し
て接地され線路側端子T、Fにはしゃ断器5を介して単
巻変圧器6B、6Cを接続し、電気車9に給電する回路
構成図である。直列コンデンサ13と保護ギャップ14
は必ずしも必要とする装置ではないが、直列コンデンサ
13を取付ける目的は変圧器巻線の漏れリアクタンスを
補償し、2次側の電圧変動を小さくし、電気車9の運転
特性を良好にするためであり、保護ギャップ14は短絡
電流などの過電流が2次巻線127.12Fに流れ始め
ると、直列コンデンサ13にも同じ電流が流れ、その両
端子の電圧e(が上昇し、ある値以上になるとギャップ
が放電し、直列コンデンサ13を短絡する。直列コンデ
ンサ13が保護ギャップ14によって短絡されると過電
流の大きさは電源と変圧器のインピーダンスによって定
まる値に制限では、変圧器巻線などの短絡強度には問題
がないようにしである。実際の使用では、これらの回路
を両座分用意し、それらの出力電圧の位相差を90度と
なるように構成し1両座の負荷が同一であれば1次側の
三相電源からの電流は三相平衡が得られるようにしたも
のである。That is, the power source 4 of voltage E is connected to the primary winding 11, and the secondary winding 1&! 12T, 12F neutral point side terminal N
A series capacitor 13 is connected in series to N2, a protective gap 14 is connected in parallel to the series capacitor 13, and the connection point N is connected to the rail 7 and grounded via the discharger 8, and the line side terminal T, It is a circuit configuration diagram in which autotransformers 6B and 6C are connected to F via a breaker 5 to supply power to an electric vehicle 9. Series capacitor 13 and protective gap 14
Although not necessarily a necessary device, the purpose of installing the series capacitor 13 is to compensate for the leakage reactance of the transformer winding, reduce voltage fluctuations on the secondary side, and improve the operating characteristics of the electric vehicle 9. When an overcurrent such as a short-circuit current starts to flow to the secondary winding 127.12F, the same current flows to the series capacitor 13, and the voltage e at both terminals rises and exceeds a certain value. Then, the gap discharges and shorts the series capacitor 13. When the series capacitor 13 is shorted by the protective gap 14, the magnitude of the overcurrent is limited to a value determined by the impedance of the power supply and the transformer. This is to ensure that there is no problem with short-circuit strength.In actual use, these circuits are prepared for both circuits, and the phase difference between their output voltages is 90 degrees, so that the load on each circuit is the same. In this case, the current from the three-phase power source on the primary side is designed to achieve three-phase balance.
この新AT方式では、たとえ、しゃ断器5が開の時にも
、接続点Nはレール7と接続すると共に放電器8を介し
て接地されているので、2次側の絶縁階級は電気車電圧
E丁すなわち2次巻線の一方の電圧E2/2に相当する
値でよく、従来方式の半分にすることができる。In this new AT system, even when the breaker 5 is open, the connection point N is connected to the rail 7 and grounded via the discharger 8, so the insulation class on the secondary side is the electric car voltage E. In other words, a value corresponding to one voltage E2/2 of the secondary winding is sufficient, and can be half of that of the conventional system.
しかも、2次巻線は接続点Nで接続されている単巻結線
であるので第1ATの単巻変圧器6Aの作用も有するの
で、第18図に示すように単巻変圧器6Aは不要とする
ことができる。Moreover, since the secondary winding is connected at the connection point N and has the function of the autotransformer 6A of the first AT, the autotransformer 6A is unnecessary as shown in Fig. 18. can do.
本発明の目的は以上説明したような点に鑑みて、受電電
圧が154KV以下の場合に適用すれば、小形で製造価
格が低減できる三相二相変換用変圧器を提供することに
ある。SUMMARY OF THE INVENTION In view of the above-mentioned points, an object of the present invention is to provide a three-phase to two-phase conversion transformer that is compact and can be manufactured at a reduced manufacturing cost when applied to a case where the receiving voltage is 154 KV or less.
〔発明の構成〕
(問題点を解決するための手段)
本発明によるき重用変圧器は、その1次巻線を普通の三
角結線とし、その2次巻線は第2相が巻回数Nとするコ
イル2組と、第1と第3の相が巻回数N/、/”Jとす
るコイル各2個を位相差が120度となるようにへの字
形に接続したコイル2組とがらなり、後者のへの字形結
線の両端をA座の2次端子とし、前者の第2相コイルの
両端をB座の2次端子としたものである6
(作用)
への字形結線のA座の2次端子に単相負荷を接続すると
第1相と第3相の1次巻線と2次巻線に電流が流れ、第
2相コイルのB座の2次端子に単相負荷を接続すると、
A座とは位相差が90度である電流が第2相の1次巻線
と2次巻線に流れる。[Structure of the Invention] (Means for Solving the Problems) The heavy-duty transformer according to the present invention has a primary winding having a normal triangular connection, and a secondary winding in which the second phase has a number of turns N. It consists of two sets of coils, and two sets of coils in which the first and third phases each have a number of turns N/, /"J, and are connected in a square shape so that the phase difference is 120 degrees, Both ends of the latter's A-shaped connection are the secondary terminals of the A-seat, and both ends of the former second-phase coil are the B-seat's secondary terminals.6 (Function) When a single-phase load is connected to the next terminal, current flows through the primary and secondary windings of the 1st and 3rd phases, and when a single-phase load is connected to the secondary terminal of the B position of the 2nd phase coil,
A current having a phase difference of 90 degrees from the A point flows through the second phase primary winding and secondary winding.
A座とB座の各2次巻線に同一インピーダンス値の負荷
を接続すると、1次側の電源からはその大きさが等しく
、その位相差が120度である平衡三相電流が流出する
ことになる。When a load with the same impedance value is connected to the A and B secondary windings, a balanced three-phase current with the same magnitude and 120 degree phase difference will flow from the primary power supply. become.
(実施例)
以下本発明を第1図に示す実施例について説明する1本
実施例の三相二相変換用変圧器15はU。(Embodiment) The present invention will be described below with reference to an embodiment shown in FIG. 1. The three-phase to two-phase conversion transformer 15 of this embodiment is U.
V、W相の1次巻線160,16V、16Mを普通ノ三
角結線とし、後述する特別な結線である2次巻線群とし
、これらの巻線群を1個あるいは2個以上の鉄心(図示
していない)上に巻装されたものである。The primary windings 160, 16V, and 16M of the V and W phases are normally triangularly connected, and a secondary winding group is a special connection described later, and these winding groups are connected to one or more iron cores ( (not shown).
2次巻線は第1相(U相)および第3相(W相)を巻回
数N/J’Xとする巻線各2個(17u、 、 17u
、 、 17w、 。The secondary windings are two windings each (17u, , 17u
, , 17w, .
1711、 )と、第2相(V相)を巻回数Nとする巻
線2個(17v、、17v、)とから成り、第1図に示
すように、巻回数N/、/’;のコイル17u□と17
w1,17u、と17w2を各々への字形に接続し、A
座の2次端子TA−NA□。(1711, Coil 17u□ and 17
Connect w1, 17u, and 17w2 in the shape of A
Secondary terminal TA-NA□ of seat.
NA2−FAとし、巻回数Nの巻線17v、 、 17
v2 をB座の2次端子TB−Net +NBz−FB
とする。Assuming NA2-FA, the winding with the number of turns N is 17v, , 17
v2 to the secondary terminal of B position TB-Net +NBz-FB
shall be.
A座のへの字形結線は2つの巻線17u1と17i+□
および17u2と17w2の位相差が120度であるか
ら、2大端子T^−NA工間−NA2−FA間に発生す
る電圧は巻回数Nに相当する値となり、B座の2次端子
TB−NBt間、N8z−FB間に発生する各電圧と等
しくなる。The shape of the A-shaped connection is the two windings 17u1 and 17i+□
Since the phase difference between 17u2 and 17w2 is 120 degrees, the voltage generated between the two major terminals T^-NA terminal-NA2-FA has a value corresponding to the number of turns N, It is equal to each voltage generated between NBt and between N8z and FB.
従って2次側に発生する電圧は、同じ大きさで、その位
相差がA座とB座とで直交することになる。Therefore, the voltages generated on the secondary side have the same magnitude, and the phase difference between them is orthogonal at the A and B locations.
この変圧器15の巻線配列構成の一例を第2図に示す。An example of the winding arrangement configuration of this transformer 15 is shown in FIG.
すなわち鉄心脚18上に、2次巻線の1群17u1,1
7v1,17w1を、そしてその外側に1次巻線160
.16V、1611を、そして最外側に2次巻線の2群
17u、、17v、、17す2を各々巻装したサンドイ
ンチ配置と呼ばれるものであり、第1相と第3相はその
構成が全く同一になるが、第2相は、その構成を他相と
相異している。That is, on the iron core leg 18, the first group of secondary windings 17u1,1
7v1, 17w1, and the primary winding 160 on the outside.
.. 16V, 1611, and two groups of secondary windings 17u, 17v, 17su2 are wound on the outermost side, which is called a sand inch arrangement, and the structure of the first and third phases is as follows. Although they are exactly the same, the second phase has a different configuration from the other phases.
次に本実施例の如き構成にすると、2次側のA。Next, if the configuration is as in this embodiment, A on the secondary side.
B両座に単相負荷が平衡している場合に、1次側三相電
源に対しては三相平衡負荷となることを説明する。It will be explained that when a single-phase load is balanced on both B seats, a three-phase balanced load is applied to the primary side three-phase power supply.
まず、各部に流れる電流を解析を簡単にするために、各
巻線の巻回数を、第3図に示すような比すなわち巻線1
60,16V、16Mを1に、巻線17u1,17u2
゜2次側はA座、B座とも各々直列接続された端子TA
−FA間、TB−FB間が各々1に相当する。First, in order to simplify the analysis of the current flowing through each part, the number of turns of each winding is determined by the ratio shown in Figure 3, that is, the winding 1
60, 16V, 16M to 1, windings 17u1, 17u2
゜On the secondary side, terminals TA are connected in series to both A and B.
-FA and TB-FB each correspond to 1.
第4図から第6図は1次側に三相電源19を接続し、A
座のみに、負荷20をとった場合の電流分布であり、負
荷20に流れる電流を1としている。In Figures 4 to 6, a three-phase power supply 19 is connected to the primary side, and A
This is the current distribution when the load 20 is taken only at the base, and the current flowing through the load 20 is assumed to be 1.
第4図では2次端子TA−NAi間に負荷20があり。In FIG. 4, there is a load 20 between secondary terminals TA and NAi.
2次巻線’ ”1t 17 w t に2次側負荷電流
の1が流れ係は第1相と第3相において各相のアンペア
ターンが一致する条件から求められる。第5図では2次
端子NA2−FA間に負荷20がある場合で第4図と同
様な関係であるが、ここで大切なことは、第4図と第5
図における条件で、この変圧器の漏れインピーダンスが
、はぼ等しくなるように設計されなければならない事で
ある。The flow rate of the secondary load current of 1 in the secondary winding 1t 17 w t is determined from the condition that the ampere turns of each phase are the same in the first and third phases. In Fig. 5, the secondary terminal When there is a load of 20 between NA2 and FA, the relationship is similar to that shown in Figure 4, but what is important here is that Figures 4 and 5
Under the conditions shown in the figure, the transformer must be designed so that its leakage impedance is approximately equal.
第6図は第4図と第5図の両条件が重畳した場合であり
、1次巻線160,161の各電流は同相なので、その
算出和で求められ、1次巻線16Uの電流線17u□、
17w□および17u、、17v、に流れる2次電流I
zAは当然1である。Figure 6 shows a case where both the conditions in Figures 4 and 5 are superimposed, and since the currents in the primary windings 160 and 161 are in phase, the current line in the primary winding 16U is calculated by the sum of the currents. 17u□,
Secondary current I flowing through 17w□ and 17u, , 17v
zA is naturally 1.
第7図から第9図はB座のみに負荷20をとった場合の
電流分布であるが、B座の発生電圧はA座の発生電圧に
対して位相が90度遅れているため、流れる電流も90
度の位相差があり、−jをつけてあり、各符号・記号の
添字はAにかえてBをつけて表示している。第7図では
2次端子TB−NBt間に負荷20があり、2次巻線1
7V、と負荷20に2次側負荷電流を−j1 が流れる
ものとし、1次巻線16Vには−jlの1次電流が流れ
ることを示しているが、この関係は第2相のアンペアタ
ーンが一致する条件で求められる。Figures 7 to 9 show the current distribution when a load 20 is applied only to the B position, but since the voltage generated at the B position is delayed by 90 degrees in phase with respect to the voltage generated at the A position, the current flowing Also 90
There is a phase difference of degrees, -j is added, and the subscript of each code/symbol is shown with B added instead of A. In Fig. 7, there is a load 20 between the secondary terminals TB and NBt, and the secondary winding 1
7V, and the secondary side load current -j1 flows through the load 20, and the primary current of -jl flows through the primary winding 16V, but this relationship is It is found under the condition that .
第8図では2次端子NB2−FB間に負荷20がある場
合で第7図と同様な関係であるが、ここで大切なことは
第7図と第8図における条件で、この変圧器の漏れイン
ピーダンスをほぼ等しくすることである。In Fig. 8, there is a load 20 between the secondary terminals NB2 and FB, and the relationship is the same as in Fig. 7, but what is important here is the conditions in Figs. 7 and 8. The goal is to make the leakage impedance almost equal.
第9図は第7図と第8図の両条件が重畳した場合であり
、1次巻線と電源の各電流は同相なので、その算出和で
求められ、1次巻線16Vの電流IVBと電源V相、W
相の電流IV11+IIBは−j1となる。2次側負荷
電流12Bは当然の−j1である。Figure 9 shows a case where both the conditions in Figures 7 and 8 are superimposed, and since each current of the primary winding and the power supply are in phase, it can be found by the calculated sum, and the current IVB of the primary winding 16V Power supply V phase, W
The phase current IV11+IIB becomes -j1. The secondary side load current 12B is naturally -j1.
第10図はA座とB座に同時に同一負荷20が接続され
、新AT方式に適用した場合と同等である回路の各部分
の電流分布を示したものであり、各電流の正方向を矢印
で表示しである。この第10図は第6図と第9図の両条
件が重畳した場合であるので、電源電流↑。+IVw↑
Vは第6図と第9図とで各電流には90度の位相差があ
り、ベクトル和で求められ、そのベクトル図は第11図
のようになる。Figure 10 shows the current distribution in each part of the circuit, which is equivalent to when the same load 20 is connected to the A and B locations simultaneously and is applied to the new AT method, and the positive direction of each current is indicated by the arrow. It is displayed as . This figure 10 shows the case where both the conditions of figure 6 and figure 9 are superimposed, so the power supply current is ↑. +IVw↑
V has a phase difference of 90 degrees between each current in FIG. 6 and FIG. 9, and is determined by vector sum, and the vector diagram is as shown in FIG. 11.
すなわち電源のU相電流iuはItlA+ItlBで、
V相電流ivは−IVA+IVBで、W相電流)y=−
IvA−Ivaで各々求められる。In other words, the U-phase current iu of the power supply is ItlA+ItlB,
V phase current iv is -IVA+IVB, W phase current) y=-
Each is determined by IvA-Iva.
従って、第10図と第11図かられかるように、2次側
のA座とB座に同一負荷がかかった場合、電位相差が1
20度づつになっているので三相側電流は平衡している
ことがわかる。Therefore, as shown in Figures 10 and 11, if the same load is applied to the A and B locations on the secondary side, the electrical phase difference will be 1.
Since the angles are 20 degrees each, it can be seen that the three-phase currents are balanced.
2次側が特殊な結線であっても、1次側が三角結線であ
るので励磁電流に含まれる第3次高調波電流は還流し、
通常の三相変圧器と同様に作用し。Even if the secondary side has a special connection, since the primary side has a triangular connection, the third harmonic current included in the excitation current will circulate,
It works like a normal three phase transformer.
不都合な点はない。There are no inconveniences.
次に巻線の利用率について説明するが、第3図より電圧
要素を、第1O図より電流要素を知ることができるので
巻線の容量はそれらの乗で求められる。1次巻線につい
ては、第1相(16U)と第3相(16V) ノ:Iイ
/Lz’t’1.0(= l X 1 ) となるの
で、32次巻線については、第1相コイル17u1,1
7u。Next, the utilization factor of the winding will be explained. Since the voltage element can be known from FIG. 3 and the current element from FIG. 1O, the capacity of the winding can be determined by multiplying them. For the primary winding, the 1st phase (16U) and the 3rd phase (16V) are: I/Lz't'1.0 (= l 1 phase coil 17u1,1
7u.
と第3相コイル17w□、17w2の2相分容量が1.
155(=±X2X4)で第2相コイル17V、、17
V22J’J
の容量が1.0(= I X 1 )になるので、2次
巻線の合計容量は2.155となり、1次巻線の3相分
容量と一致するが、アンペアターン同一の理屈からも当
然である。The two-phase capacity of the third phase coils 17w□ and 17w2 is 1.
155 (= ±X2X4), 2nd phase coil 17V, 17
Since the capacity of V22J'J is 1.0 (= I It makes sense from a logical standpoint.
第2相コイルの容量は、第1相あるいは第3相の各コイ
ルの容量のv3倍なっており、1次と2次の巻線につい
て同じ比率である。The capacity of the second phase coil is v3 times the capacity of each coil of the first or third phase, and the ratio is the same for the primary and secondary windings.
2次側の両座の合計出力は2 (=−!−1x 4 x
)であるが、1次側から入力する容量も2(=ν丁×
11)であり一致している。The total output of both seats on the secondary side is 2 (=-!-1x 4 x
), but the capacity input from the primary side is also 2 (=ν ton ×
11) and are consistent.
故に、巻線容量は2次負荷の合計2を100% とすれ
ば、1次巻線と2次巻線とも107.7%になり、その
等価容量は107.7% となる。Therefore, if the winding capacity is 100% for the total secondary load 2, then both the primary winding and the secondary winding will be 107.7%, and their equivalent capacity will be 107.7%.
一方、第16図の変形ウッドブリッジ結線変圧器では三
相二相変換用変圧器1は1次巻線と2次巻線とも、その
容量は100%であり、昇圧用変圧器2の等価容量は2
1.1%(=立見:」ムリ−) X 1 )であるので
、両変圧器の合計等価容量は121.1%である。On the other hand, in the modified Woodbridge connection transformer shown in FIG. is 2
1.1% (= standing: "muri-) X 1 )," so the total equivalent capacity of both transformers is 121.1%.
従って本実施例の変圧器15の方が88.9%の等価容
量ですむことになる。さらに、e昇圧変圧器2を別に設
ける必要がないためエタンタ方式となり、小形・軽量化
ができ、その据付面積も小さくて済む。Therefore, the transformer 15 of this embodiment requires 88.9% of the equivalent capacity. Furthermore, since there is no need to separately provide the e-step-up transformer 2, the etanta type is used, which allows the device to be smaller and lighter, and requires less space for installation.
次に、三相を二相に変換させる変圧器には、従来スコツ
ト結線によるものがあり、その−例を第13図に示すが
、それと本実施例のものとを比較し説明する。Next, as a transformer for converting three-phase to two-phase, there is a conventional one using Scotto connection, an example of which is shown in FIG. 13, and will be explained by comparing it with the one of this embodiment.
第13図において1次巻線は主座用コイル21Mおよび
T座用コイル21Tで、2次巻線は主座用コイル22M
およびT座州コイル22Tで構成されている。In Fig. 13, the primary windings are the main seat coil 21M and the T seat coil 21T, and the secondary winding is the main seat coil 22M.
and a T-zashu coil 22T.
主座用の2次巻線22Mは2分割され、T座用の1次側
電流が主座者fi21Mを通って流れる場合の循環回路
を構成するため交差接続となっている。The secondary winding 22M for the main seat is divided into two parts and cross-connected to form a circulation circuit when the primary current for the T seat flows through the main seat fi21M.
2次巻線22M、22Tの端子間(u−Ou、V−Ov
の各間)の電圧を1に、流れる電流を1に、1次巻、1
121M、21Tの端子間(U、V、W間)の電圧を1
に、それぞれした場合に、1次巻線21Mの端子U−M
間、端子M−W間の電圧は1/2に、流れる電流は2/
√3になり、1次巻線21Tの端子V−M間の電圧はν
丁/2に、流れる電流は2/、1丁になり、主座の1次
巻922Mの電圧は1に、流れる電流は1/4′Jにな
る。Between terminals of secondary winding 22M and 22T (u-Ou, V-Ov
), the voltage between them is 1, the flowing current is 1, the primary winding is 1,
The voltage between the terminals of 121M and 21T (between U, V, and W) is 1
In each case, the terminals U-M of the primary winding 21M
During this period, the voltage between terminals M and W becomes 1/2, and the flowing current becomes 2/2.
√3, and the voltage between terminals V and M of the primary winding 21T is ν
At 1/2, the current flowing becomes 2/1, the voltage of the primary winding 922M of the main seat becomes 1, and the flowing current becomes 1/4'J.
従って、第13図に示すようなスコツト結線変圧が1.
0(= I X 1 )に、各々なるので合計で4.3
1となる。2次側の主座、T座の両座の合計出力は2.
0(=IXIX2) であるので、これを100% と
すれば、このコスト結線変圧器の等価容量は107.7
%(=4.31/(2X2))となり、本実施例の変圧
器15と同じ等価容量である。Therefore, the Scotto connection transformer as shown in FIG. 13 is 1.
0 (= I X 1), so the total is 4.3
It becomes 1. The total output from the main seat on the secondary side and both seats on the T seat is 2.
0 (=IXIX2), so if this is taken as 100%, the equivalent capacity of this cost connection transformer is 107.7
% (=4.31/(2X2)), which is the same equivalent capacity as the transformer 15 of this embodiment.
第13図のスコツト結線変圧器の鉄心と巻線の組合せに
は、次の2通りが採用されている。その1つは主座用巻
線21M、22Mと、T座州巻線21T、22Tを別々
の単相鉄心に巻装する方法であるが、この方法では寸法
の異なる2個の鉄心が必要となり、鉄心が独立している
ため輸送時の各鉄心の振れ止めを行うことは困難であり
、各鉄心間の作業空間や巻線間の絶縁距離を取る空間が
必要となり、タンクが大形化し、油量の増加あるいは重
量・寸法が制限値以上となり、貨車輸送が困難になった
りする等の開運がある。もう1つの方法は第14図に示
すように、1個の鉄心23上に巻線21M、21T、2
2M。The following two combinations of the core and windings of the Scotto connection transformer shown in FIG. 13 are employed. One method is to wind the main seat windings 21M and 22M and the T seat windings 21T and 22T on separate single-phase cores, but this method requires two cores with different dimensions. Since the cores are independent, it is difficult to stabilize each core during transportation, and a work space between each core and a space to provide insulation distance between the windings are required, which increases the size of the tank. There are some unlucky situations where the amount of oil increases or the weight/dimensions exceed the limit values, making it difficult to transport freight cars. Another method is to install windings 21M, 21T, 2
2M.
22Tを巻装する場合であるが、主座巻線21M、22
Mによる発生磁束とT座巻線21T、22Tによる発生
磁束が90度の位相差があるため、鉄心23のヨーク部
と側脚部の断面積は主脚部の1/v7倍にする必要があ
る。又主座巻線21M、22Mの巻線容量はT座巻線2
1τ、22丁の巻線容量の1.155倍であること、お
よび主座とT座の漏れインピーダンスをほぼ同一になる
ように設計するため、主座用巻線21M、22Mの方が
T座州巻線21T、22Tに比べ、その外径が大きくな
る。そのため鉄心23の側脚がわの窓の幅寸法tt1.
V、に差をつけることになり、一般の三装内鉄形鉄心の
ものより、鉄心を構成する短ざく形鉄心の幅寸法による
種類が多くなる欠点がある。In the case of winding 22T, main winding 21M, 22
Since there is a 90 degree phase difference between the magnetic flux generated by M and the magnetic flux generated by the T coils 21T and 22T, the cross-sectional area of the yoke part and side leg part of the iron core 23 needs to be 1/v7 times that of the main leg part. be. Also, the winding capacity of main windings 21M and 22M is T winding 2.
The winding capacity of main seat windings 21M and 22M is 1.155 times the winding capacity of 1τ and 22 windings, and is designed so that the leakage impedance of the main seat and T seat is almost the same. Its outer diameter is larger than that of the state windings 21T and 22T. Therefore, the width dimension of the window on the side leg of the iron core 23 is tt1.
V, and there is a disadvantage that there are more types depending on the width dimension of the short rectangular core that constitutes the core than the general triple-walled core.
その点1本実施例の変圧器15においては、第15図に
示すように、鉄心24上に各巻線を巻装するが、第1相
コイル17u1,16u、17u、と第3相コイル17
す、。Point 1: In the transformer 15 of this embodiment, each winding is wound on the iron core 24, as shown in FIG.
vinegar,.
16w、17す2が全く同一構成であるので、中心線に
対して左右が対称となり鉄心窓の幅寸法V、が同一でよ
いことになる。又ヨーク部の断面積が脚部の断面積と同
一でよいから、ヨーク部の脚部の接合部分の構成が容易
である。Since 16w and 17su2 have exactly the same configuration, they are symmetrical left and right with respect to the center line, and the width dimension V of the iron core window may be the same. Further, since the cross-sectional area of the yoke portion may be the same as the cross-sectional area of the leg portion, the structure of the connecting portion of the leg portion of the yoke portion is easy.
このように本実施例による鉄心は通常の三相的鉄形鉄心
でよいので製品価格を安価にすることができる。As described above, since the core according to this embodiment can be a normal three-phase iron core, the product price can be reduced.
2次巻線の絶縁階級については、使用時に、その中性点
Nがレール7と接続すると共に放電器8を介して接地さ
れているので、従来の半分でよいことは明確である。そ
して2次回路に使用されるしゃ断器、断路器および避雷
器などについても同様に低い絶縁階級の機器でよいこと
になる。It is clear that the insulation class of the secondary winding can be half that of the conventional one since its neutral point N is connected to the rail 7 and grounded via the discharger 8 during use. Similarly, circuit breakers, disconnectors, lightning arresters, and the like used in the secondary circuit may also be devices with low insulation class.
第12図は、2次巻線の変形例を示したものであり、A
座分の第1相コイル17u、 l 17u、と第3相コ
イル17w工、17w2 を同じへの字形にしたもので
あるが、その電気的特性は本案と同様であり、その効果
も同じである。FIG. 12 shows a modification of the secondary winding, and A
The first phase coils 17u, l 17u and the third phase coils 17w, 17w2 of the counter are in the same shape, but their electrical characteristics are the same as in the present case, and their effects are also the same. .
なお、巻線配置の例として第2図にサンドインチ配置を
示したが、2次巻線の1群17u、 、 17v1゜1
7v1を1次巻線160,16V、16Mの外側に、2
群17u2゜171/、、1711+、を1次巻線16
0,16V、1611の内側に配置してもよい、そして
2次巻線の1群17u1.17v1.17w。As an example of the winding arrangement, a sand inch arrangement is shown in Fig. 2, but one group of secondary windings 17u, , 17v1°1
7v1 to the outside of the primary winding 160, 16V, 16M, 2
The group 17u2゜171/, , 1711+, is the primary winding 16
0,16V, may be placed inside the 1611 and one group of secondary windings 17u1.17v1.17w.
と2群17u、 、 17v、 、 17v2を分離し
、別鉄心脚に巻装する方式あるいは両群を上・下に配置
し巻装するスプリット配置方式であってもかまわない。The two groups 17u, 17v, 17v2 may be separated and wound around separate core legs, or a split arrangement may be used in which both groups are arranged above and below and wound.
いずれを採用するかは製造上の価格およびインピーダン
ス電圧値の関係などにより決定され1本発明ではその巻
線配置については特に限定しない。Which one to adopt is determined based on the manufacturing cost and the relationship between impedance voltage values, and the present invention does not particularly limit the winding arrangement.
以上説明したように、本発明によれば、2次側巻線は、
その一端を接地できるので新AT方式の回路に適用でき
、2次側の絶縁階級が半減できる。As explained above, according to the present invention, the secondary winding is
Since one end can be grounded, it can be applied to new AT system circuits, and the insulation class on the secondary side can be halved.
そして特別な昇圧用変圧器を必要としないこと、一般用
三装鉄心が採用できることなどにより、その構造が簡単
で、小形・軽量化が可能で、製造価格が低減でき、その
据付面積も少なくて済む三相二相変換用変圧器を提供で
きる。In addition, because it does not require a special step-up transformer and can use a general-purpose triple core, it has a simple structure, can be made smaller and lighter, reduces manufacturing costs, and requires less space for installation. It is possible to provide a transformer for three-phase to two-phase conversion that is easy to use.
第1図は本発明による三相二相変換用変圧器の一実施例
を示す結線図、第2図は第1図に示した変圧器の巻線配
列の一例を示す概略構成図、第3図は第1図に示した変
圧器における各巻線の巻数比を示す説明図、第4図から
第6図は第1図に示した変圧器においてA座のみに負荷
をとった場合の電流分布を示す説明図、第7図から第9
図はB座のみに負荷をとった場合の電流分布を示す説明
図、第10図はA座、B座同時に同一負荷をとった場合
の電流分布および各電流の正方向を示す説明図、第11
図は第10図における電流のベクトル図。
第12図は本発明の他の実施例の2辺巻線を示す結線図
、第13図は従来のスコツト結線の変圧器の結線と各巻
線の巻数比と通電電流を示す説明図、第14図は第13
図に示した変圧器の一例を示す概略構成図、第15図は
本発明による三相二相変換用変圧器の一実施例を示す概
略構成図、第16図は従来の変形ウッドブリッジ結線の
き重用変圧器の結線図。
第17図は従来の変形ウッドブリッジ結線におけるAT
方式の回路構成図、第18図は新しい三相二相変換用変
圧器による新AT方式の回路構成図である。
1・・・変形ウッドブリッジ結線の三相二相変換用変圧
器2・・・ の昇圧用変圧器3.
10・・・き重用変圧器
4.19・・・電源
5・・・しゃ断器
6A、6B、5C・・・単巻変圧器
7・・・レール
8・・・放電器
9・・・電気車
13・・・直列コンデンサ
14・・・保護ギャップ
15・・・三相二相変換用変圧器
160.16V、16V−1次巻線
17u1,17uit17v1,17v2,17w1,
17w2−2次巻線18・・・鉄心脚
20・・・負荷
21M、21T・・・スコツト結線変圧器の1次巻線2
2M、22T・・・ 〃 〃 の2次巻線23
・・・ I 〃 用の特殊鉄心24・・
・一般三相用三霞鉄心
代理人 弁理士 則 近 憲 佑
同 三俣弘文
第7図
第8図
第9図
第10図 77吟
第11図
な
B
第12図
第13図
第15図
第16図FIG. 1 is a wiring diagram showing one embodiment of a three-phase to two-phase conversion transformer according to the present invention, FIG. 2 is a schematic configuration diagram showing an example of the winding arrangement of the transformer shown in FIG. 1, and FIG. The figure is an explanatory diagram showing the turn ratio of each winding in the transformer shown in Fig. 1, and Figs. 4 to 6 are current distributions when the load is applied only to the A position in the transformer shown in Fig. 1. Explanatory diagrams showing, Figures 7 to 9
The figure is an explanatory diagram showing the current distribution when the load is applied only to the B position. Figure 10 is an explanatory diagram showing the current distribution and the positive direction of each current when the same load is applied to the A and B positions at the same time. 11
The figure is a vector diagram of the current in FIG. FIG. 12 is a wiring diagram showing a two-side winding according to another embodiment of the present invention, FIG. 13 is an explanatory diagram showing the wiring of a conventional Scott-connected transformer, the turns ratio and current flowing in each winding, and FIG. The figure is number 13
15 is a schematic diagram showing an example of the transformer shown in the figure, FIG. 15 is a schematic diagram showing an embodiment of the three-phase to two-phase conversion transformer according to the present invention, and FIG. 16 is a diagram of the conventional modified Woodbridge connection. Wiring diagram of a heavy duty transformer. Figure 17 shows AT in the conventional modified Woodbridge connection.
Figure 18 is a circuit diagram of the new AT system using a new three-phase to two-phase converter. 1... Three-phase to two-phase conversion transformer with modified Woodbridge connection 2... Step-up transformer 3.
10... Heavy duty transformer 4.19... Power supply 5... Breaker 6A, 6B, 5C... Auto transformer 7... Rail 8... Discharger 9... Electric car 13...Series capacitor 14...Protection gap 15...Three-phase two-phase conversion transformer 160.16V, 16V-primary winding 17u1, 17uit17v1, 17v2, 17w1,
17w2-Secondary winding 18... Core leg 20... Load 21M, 21T... Primary winding 2 of Scotto connection transformer
2M, 22T... 〃 〃 secondary winding 23
...Special core 24 for I...
・Mika Tetsushin agent for general three-phase Patent attorney Nori Ken Chika Yudo Hirofumi Mitsumata Fig. 7 Fig. 8 Fig. 9 Fig. 10 77 Gin Fig. 11 Fig. Nana B Fig. 12 Fig. 13 Fig. 15 Fig. 16
Claims (1)
2次巻線は、第2相が巻回数Nとするコイル2組と、第
1相および第3相が巻回数N/√3とするコイル各2個
とからなり第1相と第3相のコイル各1個づつを位相差
が120度になるように各々で直列に接続した2組とか
らなるコイル群を有する三相二相変換用変圧器において
、前記の第1相と第3相のコイルを直列に接続したもの
の両端をA座の2次端子とし、前記第2相のコイルの両
端をB座の2次端子としたことを特徴とする三相二相変
換用変圧器。The primary winding is a triangular connection with the same number of turns for all three phases.
The secondary winding consists of two sets of coils in which the second phase has a number of turns of N, and two sets of coils each in which the first and third phases have a number of turns of N/√3. In a three-phase to two-phase conversion transformer having a coil group consisting of two sets of coils each connected in series so that the phase difference is 120 degrees, the first phase and the third phase are A transformer for three-phase to two-phase conversion, characterized in that both ends of the coils connected in series are used as secondary terminals at the A position, and both ends of the second phase coil are used as the secondary terminals at the B position.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61134765A JPS62291906A (en) | 1986-06-12 | 1986-06-12 | 3-phase/2-phase conversion transformer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61134765A JPS62291906A (en) | 1986-06-12 | 1986-06-12 | 3-phase/2-phase conversion transformer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62291906A true JPS62291906A (en) | 1987-12-18 |
Family
ID=15136037
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61134765A Pending JPS62291906A (en) | 1986-06-12 | 1986-06-12 | 3-phase/2-phase conversion transformer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62291906A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113852070A (en) * | 2021-09-09 | 2021-12-28 | 中铁二院工程集团有限责任公司 | Traction and electric power hybrid power supply system for alternating current electrified rail transit engineering |
-
1986
- 1986-06-12 JP JP61134765A patent/JPS62291906A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113852070A (en) * | 2021-09-09 | 2021-12-28 | 中铁二院工程集团有限责任公司 | Traction and electric power hybrid power supply system for alternating current electrified rail transit engineering |
CN113852070B (en) * | 2021-09-09 | 2023-09-22 | 中铁二院工程集团有限责任公司 | Traction and power hybrid power supply system for alternating current electric rail transit engineering |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6101113A (en) | Transformers for multipulse AC/DC converters | |
US3504318A (en) | Three-phase transformer with four legged magnetic core | |
US3509507A (en) | Grounded y - y three-phase transformer | |
CN109637791A (en) | A kind of inverse Scott Transformer | |
JPH09289125A (en) | Inside-core single-phase autotransformer | |
JPS62291906A (en) | 3-phase/2-phase conversion transformer | |
US2667617A (en) | Polyphase transformer system with grounded neutral | |
JPS6346713A (en) | Transformer for two phase/three phase conversion | |
JPS62205611A (en) | Transformer for three-phase, two-phase conversion | |
US4638177A (en) | Rotating flux transformer | |
JPH0556643B2 (en) | ||
JPH06310350A (en) | Heterocapacitance load three-phase scott connection transformer | |
JP3031296B2 (en) | Grid connection equipment | |
JPH08335520A (en) | Scott connected transformer | |
JPH0212007B2 (en) | ||
Peter et al. | A Review About Zig Zag Connections in Transformers | |
KR100456298B1 (en) | 3 phases 3 lines transformer | |
JPS62229816A (en) | Three-two phase conversion transformer | |
US1974980A (en) | Electric valve converting system | |
Gajic et al. | Application of unit protection schemes for auto-transformers | |
JPS5877214A (en) | Single-phase autotransformer | |
JPS61204918A (en) | Scott connection transformer | |
JPH0341455Y2 (en) | ||
JPS62137815A (en) | Stabilized winding type transformer for three-phase to two-phase conversion | |
JPS62291907A (en) | 3-phase/2-phase conversion transformer |