Nothing Special   »   [go: up one dir, main page]

JPS633919B2 - - Google Patents

Info

Publication number
JPS633919B2
JPS633919B2 JP8870779A JP8870779A JPS633919B2 JP S633919 B2 JPS633919 B2 JP S633919B2 JP 8870779 A JP8870779 A JP 8870779A JP 8870779 A JP8870779 A JP 8870779A JP S633919 B2 JPS633919 B2 JP S633919B2
Authority
JP
Japan
Prior art keywords
castor oil
acid
rolling
group
phosphoric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8870779A
Other languages
Japanese (ja)
Other versions
JPS5614591A (en
Inventor
Yukio Hashiguchi
Takeo Yahiro
Koji Onoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Myoshi Oil and Fat Co Ltd
Original Assignee
Myoshi Oil and Fat Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Myoshi Oil and Fat Co Ltd filed Critical Myoshi Oil and Fat Co Ltd
Priority to JP8870779A priority Critical patent/JPS5614591A/en
Publication of JPS5614591A publication Critical patent/JPS5614591A/en
Publication of JPS633919B2 publication Critical patent/JPS633919B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Lubricants (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、圧延油に関するものである。 従来圧延油として、鋼板用にはパーム油が古く
から使われ、それに代つて牛脂、豚脂、長須鯨硬
化油などの動植物油脂や鉱物油または、それらの
混合油をベースとして、それに添加剤、油性向上
剤、酸化防止剤、界面活性剤などを配合したもの
が広く使われている。 また一部に圧延における潤滑性を向上する方法
として、リン酸エステル系の極圧添加剤をプレコ
ートしたり(特開昭53−135860)、添加して可溶
化型にした圧延油(特開昭50−60671)も提案さ
れているが、これらのアルキルエトキシレートリ
ン酸エステルや、脂肪酸エトキシレートリン酸エ
ステルを用いた場合、いずれも耐圧性が高く、極
圧性に優れているが、油性が低く、従つて摩擦係
数が高いと云う欠点がある。 一方、圧延機械設備の進歩は著しく進み、ミル
の大型化に伴い、パス回数の削減、圧延速度の高
速化、圧延製品の規格精度の上昇等の圧延工程の
合理化並びに精密化が要求され、それに伴い圧延
油にかかる条件も苛酷なものとなつて来ており、
パーム油や牛脂系圧延油では、最早この条件を満
足し得ないものとなりつつあるが未だこれに代る
圧延油が見出されていないのが現状である。 本発明は、従来のパーム油や牛脂系の圧延油よ
りすぐれた潤滑性能を有し、現在の要求されてい
る苛酷な圧延工程に対して、満足し得る圧延油を
提供せんとするものである。 本発明の圧延油は次の様なものより構成され
る。 (A)群としてヒマシ油、または水素添加したヒマ
シ油(以下「水添ヒマシ油」と記す) (B)群としてアルキレンオキサイドを付加したヒ
マシ油、またはアルキレンオキサイドを付加した
水添ヒマシ油 (C)群として(A)または(B)のヒドロキシル基の一部
を、炭素数12以上の脂肪酸にてエステル化して得
られるヒマシ油誘導体 (D)群として炭素数11以上のアルキルまたはアル
ケニル基をもつたヒドロキシ化合物とジカルボン
酸とから得られるジカルボン酸モノエステルのカ
ルボキシル基と、(A)または(B)のヒドロキシル基の
一部とのエステル化反応によつて得られるヒマシ
油誘導体 上記(A)、(B)、(C)、(D)の4群より選ばれたる少く
とも1種とリン酸または無水リン酸との反応によ
つて得られるリン酸エステルまたはその塩を主要
成分とし、そのまま、または必要に応じ、それに
動植物油脂、鉱物油、界面活性剤、極圧添加剤等
を混合して用いることを特徴とする金属圧延油に
関するものである。 本発明における水添ヒマシ油は常法によりヒマ
シ油の水素添加により得られる。またアルキレン
オキサイドを付加したヒマシ油またはアルキレン
オキサイドを付加した水添ヒマシ油は常法により
ヒマシ油または水添ヒマシ油にアルキレンオキサ
イドを付加して得られる。アルキレンオキサイド
としては炭素数2〜3のものを2〜100モル付加
して用いられる。 さらに(A)または(B)と、炭素数12以上の脂肪酸と
反応して得られるヒマシ油誘導体(以下ヒマシ油
誘導体(C)と称す)も一般に知られるエステル化反
応によつて得られる。すなわち、本発明に用いる
ヒマシ油誘導体(C)は、(A)または(B)に結合するヒド
ロキシル基と上記脂肪酸との脱水エステル化反応
により得るか、(A)または(B)と上記脂肪酸の低級エ
ステルとのエステル交換反応によつても得ること
が出来る。ただし、このヒマシ油誘導体(C)は反応
終了時において、ヒマシ油誘導体(C)分子中に少く
とも1ケのヒドロキシル基を残存することが必須
条件であり、(A)または(B)1モルに対し上記脂肪
0.5〜2モルを反応して得られる。 本発明のヒマシ油誘導体(C)を得るに用いる炭素
数12以上の脂肪酸としては、ラウリン酸、ミリス
チン酸、パルミチン酸、ステアリン酸、アラキン
酸、ベヘン酸等の飽和脂肪酸、ネオ酸、オキソ法
により得られる脂肪酸等の側鎖飽和脂肪酸、オレ
イン酸、リノール酸、リノレン酸、アラキドン
酸、リシノール酸等の不飽和脂肪酸が挙げられ
る。 つぎに、炭素数11以上のアルキルまたはアルケ
ニル基を有するヒドロキシ化合物とジカルボン酸
とから得られるジカルボン酸モノエステルに、(A)
または(B)を反応して得られるヒマシ油誘導体(以
下ヒマシ油誘導体(D)と称す)は、ヒマシ油誘導体
(C)と同様に、(A)または(B)1モルに対し、上記ジカ
ルボン酸モノエステル0.5〜2モルを反応して得
られ、ヒマシ油誘導体(D)は分子中に少くとも1ケ
のヒドロキシル基を残存することが必須条件であ
る。 またヒマシ油誘導体(D)を得るに用いるジカルボ
ン酸モノエステルは炭素数11以上のアルキルまた
はアルケニル基を有するヒドロキシ化合物とジカ
ルボン酸をモル比1:1で反応して得られる化合
物で、その分子中にカルボキシル基を1ケ有す
る。炭素数11以上のアルキルまたはアルケニル基
を有するヒドロキシ化合物としては、ラウリルア
ルコール、パルミチルアルコール、セタノール、
ステアリルアルコール、オレイルアルコール、エ
チレングリコールオレエート、プロピレングリコ
ールラウレート、プロピレングリコールステアレ
ート、ポリエチレングリコールパルミテート、ポ
リエチレングリコールオレエート、グリセリンス
テアレート、ソルビトールラウレート、ソルビト
ールオレエート、ペンタエリスリトールステアレ
ート等およびこれらのヒドロキシ化合物にアルキ
レンオキサイドを付加したものが挙げられ、ジカ
ルボン酸としてはコハク酸、アジピン酸、アゼラ
イン酸、セバシン酸、マレイン酸、フマール酸、
イタコン酸等の二塩基性カルボン酸さらに不飽和
脂肪酸を重合して得られるいわゆるダイマー酸が
挙げられる。 本発明に用いるリン酸エステルは、前記(A)、
(B)、(C)、(D)の4群の化合物より選ばれたる少くと
も1種とリン酸または無水リン酸等のリン酸化剤
との反応により、常法に従つて合成され、このよ
うにして得られたリン酸エステルは、リン酸モ
ノ、ジトリエステルを含み、さらに前記(A)、(B)、
(C)、(D)の4群の化合物のうち、その分子中に残存
するヒドロキシル基が2ケ以上のものをリン酸ま
たは無水リン酸と反応させた場合には、ヒドロキ
シル基を有するエステルとリン酸とのエステル化
反応が鎖状または網目状に起り、リン酸のポリエ
ステルを生成し、このようなリン酸エステルを含
有している。これらのリン酸エステルは必要に応
じて、残留酸根を中和して塩として用いる。塩と
しては、ナトリウム、カリウム等のアルカリ金属
塩、カルシウム、マグネシウム等のアルカリ土類
金属塩、有機性アミンまたはその誘導体の塩とし
てアンモニア、モノエタノールアミン、ジエタノ
ールアミン、トリエタノールアミン、炭素数1〜
18の直鎖アルキルアミン、トリエタノールアミン
ステアレート、モルホリン等が挙げられる。この
中和によつて反応生成物の親水性を使用条件に応
じて適正に調節することが出来る特色を持つてい
る。さらにこの中和はリン酸エステルの極性を調
整し、金属面への吸着性をコントロールすること
も出来る。 これらのリン酸エステルまたはその塩は、その
まま圧延油に用いても極めて高い圧延性能を持つ
ているが、必要に応じてそれに他の動植物油脂、
鉱物油、界面活性剤、極圧添加剤を混合して用い
る事が出来る。 以下実施例によつて本発明を説明する。 実施例 1 ヒマシ油935部に無水リン酸71部を60〜70℃で
添加し、4時間反応して、酸価84.7、水酸基価
15.6のリン酸エステルを得た。 このリン酸エステルを苛性ソーダを中和し、そ
の1%水溶液のPHを7.0に調整した。 実施例 2 エチレンオキサイドを10モル付加したヒマシ油
1375部と無水リン酸71部を60〜70℃で4時間反応
し、酸価20、水酸基価50のリン酸エステルを得
た。これにモルホリンにて中和し、その1%水−
エタノール混合溶液にてPH7.0に調整した。 実施例 3 水添ヒマシ油941部、ラウリン酸200部、パラト
ルエンスルホン酸(以下PTSAと記す)11部を
N2ガス気流下に120〜160℃で8時間反応し、酸
価1.0、水酸基価96.0ヒマシ油誘導体を得た。 このヒマシ油誘導体に無水リン酸71部を60〜70
℃で添加し、4時間反応して、酸価4.2、水酸基
価9.0のリン酸エステルを得た。このリン酸エス
テルをトリエタノールアミンステアレートで中和
し、その1%水溶液のPH7.0に調整した。 実施例 4 ステアリン酸ジグリセライド624部に無水コハ
ク酸100部をN2ガス気流下100〜110℃で4時間反
応し、ステアリン酸ジグリセライドサクシネート
を得た。次いでヒマシ油935部、PTSA15部を添
加し、N2ガス気流下150〜180℃で20時間反応し、
酸価5.0、水酸基価70のヒマシ油誘導体を得た。
上記ヒマシ油誘導体を70〜80℃に保持し、無水リ
ン酸71部を添加した。添加終了後70〜80℃で更に
4時間反応を行ない、酸価60、水酸基価20のリン
酸エステルを得た。このリン酸エステルを苛性ソ
ーダで中和し、その1%水溶液のPHを7.0に調整
した。 実施例 5 ヒマシ油935部、ステアリン酸426部、PTSA12
部をN2ガス気流下に120〜160℃で10時間反応し、
酸価3.5、水酸基価62.0のヒマシ油誘導体を得た。 このヒマシ油誘導体に無水リン酸42.6部を70〜
80℃で添加し、4時間反応して、酸価24.0、水酸
基価12.4のリン酸エステルを得た。 このリン酸エステルをジエタノールアミンで中
和し、その1%水−エタノール溶液のPHを7.0に
調整した。 実施例 6 エチレンオキサイド5モル付加した水添ヒマシ
油1161部、牛脂脂肪酸282部、PTSA14部をN2
ス気流下に120〜160℃で8時間反応し、酸価2.0、
水酸基価96.0のヒマシ油誘導体を得た。 このヒマシ油誘導体に無水リン酸113.6部を70
〜80℃で添加し、4時間反応して、酸価46.0、水
酸基価8.0のリン酸エステルを得た。 このリン酸エステルを2−エチルヘキシルアミ
ンで中和し、その1%水−エタノール溶液のPHを
7.0に調整した。 実施例 7 ヒマシ油935部、マレイン酸モノオレート184
部、PTSA11部をN2ガス気流下に150〜180℃で
10時間反応し、酸価1.5、水酸基価92.6のヒマシ
油誘導体を得た。 このヒマシ油誘導体に無水リン酸99部を70〜80
℃で添加し、4時間反応して、酸価36.5、水酸基
価10.6のリン酸エステルを得た。 このリン酸エステルをトリエタノールアミンで
中和し、その1%水−エタノール溶液のPHを7.0
に調整した。 実施例1〜7のリン酸エステル化合物を表−1
のように単体もしくは配合品として圧延性能試験
に供した。 圧延油No.1〜7の摩擦係数(μ)、耐圧性の測
定を行い、その結果を表−2に示す。 また圧延油No.1〜4については圧延材料に油を
そのまま、またNo.5〜7については15%エマルジ
ヨンとして塗布し、試験を行つた。圧延材料への
付着油量はNo.1〜7すべて1g/m2となるように
した。 圧延性の試験の結果を圧下率(%)と圧延荷重
(ton)との関係をもつて、圧延性能評価とし、図
−1に示した。
The present invention relates to rolling oil. Conventionally, palm oil has been used as a rolling oil for steel plates for a long time, but instead, animal and vegetable oils such as beef tallow, lard, Nagasu whale hardened oil, mineral oils, or mixtures of these oils are used as base oils, and additives and oil-based oils are used as rolling oils. Products containing improvers, antioxidants, surfactants, etc. are widely used. In addition, some methods of improving lubricity during rolling include precoating phosphate ester-based extreme pressure additives (Japanese Patent Laid-Open No. 53-135860), and adding solubilized rolling oil (Japanese Patent Laid-Open No. 135860). 50-60671) have also been proposed, but when these alkyl ethoxylate phosphate esters and fatty acid ethoxylate phosphate esters are used, they both have high pressure resistance and excellent extreme pressure properties, but have low oiliness. Therefore, it has the disadvantage of a high coefficient of friction. On the other hand, the progress of rolling machinery equipment has progressed significantly, and as mills have become larger, there has been a demand for rationalization and precision of the rolling process, such as reducing the number of passes, increasing rolling speed, and increasing the standard accuracy of rolled products. As a result, the conditions for rolling oil are becoming more severe.
Palm oil and tallow-based rolling oils are no longer able to satisfy this condition, but at present no alternative rolling oil has yet been found. The present invention aims to provide a rolling oil that has better lubrication performance than conventional palm oil or beef tallow-based rolling oils and can satisfy the harsh rolling processes currently required. . The rolling oil of the present invention is composed of the following. Group (A) is castor oil or hydrogenated castor oil (hereinafter referred to as "hydrogenated castor oil"); (Group B) is castor oil with alkylene oxide added or hydrogenated castor oil with alkylene oxide added (C ) group is a castor oil derivative obtained by esterifying a part of the hydroxyl group of (A) or (B) with a fatty acid having 12 or more carbon atoms (group D) has an alkyl or alkenyl group having 11 or more carbon atoms A castor oil derivative obtained by an esterification reaction between a carboxyl group of a dicarboxylic acid monoester obtained from a hydroxy compound and a dicarboxylic acid and a part of the hydroxyl group of (A) or (B). The main component is a phosphoric acid ester or its salt obtained by the reaction of at least one member selected from the four groups (B), (C), and (D) with phosphoric acid or phosphoric anhydride, and as it is, Alternatively, the present invention relates to a metal rolling oil characterized in that animal and vegetable oils, mineral oils, surfactants, extreme pressure additives, etc. are mixed therewith as required. The hydrogenated castor oil in the present invention can be obtained by hydrogenating castor oil in a conventional manner. Castor oil to which alkylene oxide has been added or hydrogenated castor oil to which alkylene oxide has been added can be obtained by adding alkylene oxide to castor oil or hydrogenated castor oil by a conventional method. As the alkylene oxide, one having 2 to 3 carbon atoms is added in an amount of 2 to 100 moles. Furthermore, a castor oil derivative (hereinafter referred to as castor oil derivative (C)) obtained by reacting (A) or (B) with a fatty acid having 12 or more carbon atoms can also be obtained by a generally known esterification reaction. That is, the castor oil derivative (C) used in the present invention can be obtained by a dehydration esterification reaction between a hydroxyl group bonded to (A) or (B) and the above fatty acid, or by a reaction between (A) or (B) and the above fatty acid. It can also be obtained by transesterification with lower esters. However, the essential condition for this castor oil derivative (C) is that at least one hydroxyl group remains in the molecule of the castor oil derivative (C) at the end of the reaction, and 1 mol of (A) or (B) Against the above fat
It is obtained by reacting 0.5 to 2 moles. The fatty acids having 12 or more carbon atoms used to obtain the castor oil derivative (C) of the present invention include saturated fatty acids such as lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, and behenic acid, neoacids, and Examples include side chain saturated fatty acids such as the obtained fatty acids, and unsaturated fatty acids such as oleic acid, linoleic acid, linolenic acid, arachidonic acid, and ricinoleic acid. Next, (A) is added to a dicarboxylic acid monoester obtained from a hydroxy compound having an alkyl or alkenyl group having 11 or more carbon atoms and a dicarboxylic acid.
The castor oil derivative obtained by reacting or (B) (hereinafter referred to as castor oil derivative (D)) is a castor oil derivative.
Similarly to (C), it is obtained by reacting 1 mole of (A) or (B) with 0.5 to 2 moles of the above dicarboxylic acid monoester, and the castor oil derivative (D) has at least 1 mole in the molecule. It is an essential condition that hydroxyl groups remain. In addition, the dicarboxylic acid monoester used to obtain the castor oil derivative (D) is a compound obtained by reacting a hydroxy compound having an alkyl or alkenyl group having 11 or more carbon atoms with a dicarboxylic acid at a molar ratio of 1:1. It has one carboxyl group. Examples of hydroxy compounds having an alkyl or alkenyl group having 11 or more carbon atoms include lauryl alcohol, palmityl alcohol, cetanol,
Stearyl alcohol, oleyl alcohol, ethylene glycol oleate, propylene glycol laurate, propylene glycol stearate, polyethylene glycol palmitate, polyethylene glycol oleate, glycerin stearate, sorbitol laurate, sorbitol oleate, pentaerythritol stearate, etc., and these The dicarboxylic acids include succinic acid, adipic acid, azelaic acid, sebacic acid, maleic acid, fumaric acid,
Examples include so-called dimer acids obtained by polymerizing dibasic carboxylic acids such as itaconic acid and unsaturated fatty acids. The phosphoric acid ester used in the present invention includes the above (A),
It is synthesized according to a conventional method by reacting at least one compound selected from the four groups of compounds (B), (C), and (D) with a phosphorylating agent such as phosphoric acid or phosphoric anhydride. The phosphoric acid ester thus obtained contains phosphoric acid mono- and ditriesters, and further contains the above-mentioned (A), (B),
Among the four groups of compounds (C) and (D), when a compound with two or more hydroxyl groups remaining in its molecule is reacted with phosphoric acid or phosphoric anhydride, it becomes an ester having a hydroxyl group. The esterification reaction with phosphoric acid occurs in the form of a chain or network to produce polyesters of phosphoric acid, which contain such phosphoric acid esters. These phosphoric acid esters are used as salts by neutralizing residual acid groups, if necessary. Salts include alkali metal salts such as sodium and potassium, alkaline earth metal salts such as calcium and magnesium, salts of organic amines or their derivatives such as ammonia, monoethanolamine, diethanolamine, triethanolamine, and carbon atoms of 1 to 1.
18 linear alkyl amines, triethanolamine stearate, morpholine, etc. This neutralization allows the hydrophilicity of the reaction product to be appropriately adjusted depending on the conditions of use. Furthermore, this neutralization can also adjust the polarity of the phosphate ester and control its adsorption to metal surfaces. These phosphoric acid esters or their salts have extremely high rolling performance even when used directly as rolling oil, but if necessary, other animal or vegetable oils or fats,
Mineral oil, surfactant, and extreme pressure additives can be mixed and used. The present invention will be explained below with reference to Examples. Example 1 71 parts of phosphoric anhydride was added to 935 parts of castor oil at 60 to 70°C and reacted for 4 hours, resulting in an acid value of 84.7 and a hydroxyl value.
The phosphoric acid ester of 15.6 was obtained. This phosphoric acid ester was used to neutralize caustic soda, and the pH of the 1% aqueous solution was adjusted to 7.0. Example 2 Castor oil with 10 moles of ethylene oxide added
1,375 parts of phosphoric anhydride and 71 parts of phosphoric anhydride were reacted at 60 to 70°C for 4 hours to obtain a phosphoric acid ester having an acid value of 20 and a hydroxyl value of 50. This was neutralized with morpholine, and the 1% water
The pH was adjusted to 7.0 with an ethanol mixed solution. Example 3 941 parts of hydrogenated castor oil, 200 parts of lauric acid, and 11 parts of para-toluenesulfonic acid (hereinafter referred to as PTSA) were added.
The reaction was carried out at 120 to 160° C. for 8 hours under a N 2 gas flow to obtain a castor oil derivative with an acid value of 1.0 and a hydroxyl value of 96.0. Add 71 parts of phosphoric anhydride to this castor oil derivative and add 60 to 70 parts of phosphoric anhydride.
C. and reacted for 4 hours to obtain a phosphoric acid ester having an acid value of 4.2 and a hydroxyl value of 9.0. This phosphoric acid ester was neutralized with triethanolamine stearate, and the pH of its 1% aqueous solution was adjusted to 7.0. Example 4 Stearic acid diglyceride succinate was obtained by reacting 100 parts of succinic anhydride with 624 parts of stearic acid diglyceride at 100 to 110°C for 4 hours under a N2 gas stream. Next, 935 parts of castor oil and 15 parts of PTSA were added, and the mixture was reacted for 20 hours at 150-180°C under a stream of N2 gas.
A castor oil derivative with an acid value of 5.0 and a hydroxyl value of 70 was obtained.
The above castor oil derivative was maintained at 70 to 80°C, and 71 parts of phosphoric anhydride was added. After the addition was completed, the reaction was further carried out at 70 to 80°C for 4 hours to obtain a phosphoric acid ester having an acid value of 60 and a hydroxyl value of 20. This phosphoric acid ester was neutralized with caustic soda, and the pH of the 1% aqueous solution was adjusted to 7.0. Example 5 Castor oil 935 parts, stearic acid 426 parts, PTSA12
react at 120-160℃ for 10 hours under N2 gas flow,
A castor oil derivative with an acid value of 3.5 and a hydroxyl value of 62.0 was obtained. 42.6 parts of phosphoric anhydride is added to this castor oil derivative from 70 to 70 parts.
The mixture was added at 80°C and reacted for 4 hours to obtain a phosphoric acid ester having an acid value of 24.0 and a hydroxyl value of 12.4. This phosphoric acid ester was neutralized with diethanolamine, and the pH of the 1% water-ethanol solution was adjusted to 7.0. Example 6 1161 parts of hydrogenated castor oil to which 5 moles of ethylene oxide had been added, 282 parts of beef tallow fatty acid, and 14 parts of PTSA were reacted at 120 to 160°C for 8 hours under a stream of N2 gas, resulting in an acid value of 2.0,
A castor oil derivative with a hydroxyl value of 96.0 was obtained. Add 113.6 parts of phosphoric anhydride to this castor oil derivative and add 70
It was added at ~80°C and reacted for 4 hours to obtain a phosphoric acid ester having an acid value of 46.0 and a hydroxyl value of 8.0. Neutralize this phosphoric acid ester with 2-ethylhexylamine, and adjust the pH of the 1% water-ethanol solution.
Adjusted to 7.0. Example 7 935 parts of castor oil, 184 parts of maleic acid monooleate
and 11 parts of PTSA at 150-180 °C under N2 gas flow.
After reacting for 10 hours, a castor oil derivative with an acid value of 1.5 and a hydroxyl value of 92.6 was obtained. Add 70 to 80 parts of phosphoric anhydride to this castor oil derivative.
C. and reacted for 4 hours to obtain a phosphoric acid ester having an acid value of 36.5 and a hydroxyl value of 10.6. This phosphoric acid ester was neutralized with triethanolamine, and the pH of its 1% water-ethanol solution was adjusted to 7.0.
Adjusted to. Table 1 shows the phosphoric acid ester compounds of Examples 1 to 7.
It was subjected to rolling performance tests as a single unit or as a blended product. The friction coefficient (μ) and pressure resistance of rolling oil Nos. 1 to 7 were measured, and the results are shown in Table 2. For rolling oils Nos. 1 to 4, the oils were applied as they were to the rolled material, and for Nos. 5 to 7, the oils were applied as 15% emulsions for testing. The amount of oil adhering to the rolled material was set to 1 g/m 2 for all Nos. 1 to 7. The results of the rolling property test are shown in Figure 1 as a rolling performance evaluation based on the relationship between rolling reduction (%) and rolling load (ton).

【表】【table】

【表】【table】

【表】 比較試料として、市販の牛脂系圧延油を用い
た。 本発明の鋼板用圧延油の潤滑性に関する試験法
は下記の通りである。 摩擦係数試験法 曽田式振子型油性試験機N−型 耐荷重能試験法 シエル型高速四球式摩擦試験機 圧延試験法 圧延機:四段ロール式圧延機 ワークロール直径150mm巾140mm バツクアツプロール直径250mm巾140mm ロール材質:クロム鋼 ロール周速:30m/min 圧延材料:SPC−C 厚さ0.60mm×巾50mm×長さ150mm 圧延性能の測定法 圧延前の鋼板に50mmの間隔(l1)で2本の線を
引き、これを圧延して圧延後の間隔(l2)を測定
し、次式により圧下率を求めた。 圧下率(%)=l2−l1/l2×100 またその時の圧延荷重(ton)をロードセルにて
測定した。
[Table] Commercially available tallow-based rolling oil was used as a comparative sample. The test method regarding the lubricity of the rolling oil for steel plates of the present invention is as follows. Friction coefficient test method Soda pendulum type oil tester N-type load carrying capacity test method Shell type high speed four ball friction tester Rolling test method Rolling mill: Four-roll rolling machine Work roll diameter 150mm Width 140mm Back-up roll diameter 250mm Width 140mm Roll material: Chrome steel Roll circumferential speed: 30m/min Rolling material: SPC-C Thickness 0.60mm x Width 50mm x Length 150mm Method of measuring rolling performance Two rolls are placed on the steel plate before rolling at intervals of 50mm (l 1 ). A line was drawn, the line was rolled, the distance (l 2 ) after rolling was measured, and the rolling reduction was determined using the following formula. Rolling ratio (%)=l 2 −l 1 /l 2 ×100 Further, the rolling load (ton) at that time was measured using a load cell.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は実施例及び比較例の圧延性能を圧延荷重
(ton)と圧下率(%)の関係により示した圧延性
能比較線図である。
The drawing is a rolling performance comparison diagram showing the rolling performance of Examples and Comparative Examples in terms of the relationship between rolling load (ton) and rolling reduction (%).

Claims (1)

【特許請求の範囲】 1 (A)群としてヒマシ油または水素添加したヒマ
シ油 (B)群としてアルキレンオキサイドを付加したヒ
マシ油、またはアルキレンオキサイドを付加した
水素添加ヒマシ油 (C)群として(A)または(B)のヒドロキシル基の一部
を、炭素数12以上の脂肪酸にてエステル化して得
られるヒマシ油誘導体 (D)群として炭素数11以上のアルキルまたはアル
ケニル基をもつたヒドロキシ化合物とジカルボン
酸とから得られるジカルボン酸モノエステルのカ
ルボキシル基と、(A)または(B)のヒドロキシル基の
一部とのエステル化反応によつて得られるヒマシ
油誘導体 上記(A)、(B)、(C)、(D)の4群より選ばれたる少く
とも1種とリン酸または無水リン酸との反応によ
つて得られるリン酸エステルまたはその塩を主要
成分とし、そのまま、または必要に応じ、それに
動植物油脂、鉱物油、界面活性剤、極圧添加剤等
を混合して用いることを特徴とする金属圧延油。
[Scope of Claims] 1. Castor oil or hydrogenated castor oil as group (A); (B) castor oil with alkylene oxide added, or hydrogenated castor oil with alkylene oxide added; (C) as group (A). ) or a castor oil derivative obtained by esterifying a part of the hydroxyl group of (B) with a fatty acid having 12 or more carbon atoms.Group D is a hydroxy compound having an alkyl or alkenyl group having 11 or more carbon atoms and a dicarboxylic acid. A castor oil derivative obtained by an esterification reaction between the carboxyl group of a dicarboxylic acid monoester obtained from an acid and a part of the hydroxyl group of (A) or (B). The main component is a phosphoric acid ester or a salt thereof obtained by the reaction of at least one member selected from the four groups C) and (D) with phosphoric acid or phosphoric anhydride, and can be used as is or as necessary. A metal rolling oil characterized in that it is mixed with animal and vegetable oils, mineral oils, surfactants, extreme pressure additives, etc.
JP8870779A 1979-07-14 1979-07-14 Metal rolling oil Granted JPS5614591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8870779A JPS5614591A (en) 1979-07-14 1979-07-14 Metal rolling oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8870779A JPS5614591A (en) 1979-07-14 1979-07-14 Metal rolling oil

Related Child Applications (3)

Application Number Title Priority Date Filing Date
JP18464783A Division JPS5984989A (en) 1983-10-03 1983-10-03 Rolling mill oil
JP18464883A Division JPS5984988A (en) 1983-10-03 1983-10-03 Rolling mill oil
JP18464683A Division JPS5984987A (en) 1983-10-03 1983-10-03 Rolling mill oil

Publications (2)

Publication Number Publication Date
JPS5614591A JPS5614591A (en) 1981-02-12
JPS633919B2 true JPS633919B2 (en) 1988-01-26

Family

ID=13950354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8870779A Granted JPS5614591A (en) 1979-07-14 1979-07-14 Metal rolling oil

Country Status (1)

Country Link
JP (1) JPS5614591A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5817197A (en) * 1981-07-23 1983-02-01 Miyoshi Oil & Fat Co Ltd Metal processing oil
JPS6422789A (en) * 1987-07-15 1989-01-25 Takenaka Komuten Co Lifting carrying method of lifting conveyor
JP2620123B2 (en) * 1988-09-02 1997-06-11 清水建設株式会社 Temporary lifting equipment for construction work
DE59309569D1 (en) * 1992-08-11 1999-06-17 Clariant Gmbh Surface-active compounds based on modified castor oil fat bodies

Also Published As

Publication number Publication date
JPS5614591A (en) 1981-02-12

Similar Documents

Publication Publication Date Title
US4557846A (en) Lubricating oil compositions containing hydroxamide compounds as friction reducers
JPS633919B2 (en)
JPH10298575A (en) Rust-preventive composition
US3214376A (en) Lubricating grease compositions
JPS6358199B2 (en)
JPH06206853A (en) Alkenyl succinic acid derivative as metal processing auxiliary
JPS6252795B2 (en)
JPH108077A (en) Lubricant for metal plastic working
JPS6326159B2 (en)
JPH0522753B2 (en)
JPS635437B2 (en)
JPS6253557B2 (en)
JPS642640B2 (en)
JPS635439B2 (en)
JPS6252797B2 (en)
JPS6358878B2 (en)
JPS6358875B2 (en)
JPS6358879B2 (en)
JPS6296594A (en) Metal rolling oil
JPS6358876B2 (en)
JPS635438B2 (en)
JP3038444B2 (en) Cold rolling oil for stainless steel
JPS6339987A (en) Metal rolling oil
JPS6358877B2 (en)
JPS6358880B2 (en)