Nothing Special   »   [go: up one dir, main page]

JPS63244731A - Plasma vapor growth device - Google Patents

Plasma vapor growth device

Info

Publication number
JPS63244731A
JPS63244731A JP62076384A JP7638487A JPS63244731A JP S63244731 A JPS63244731 A JP S63244731A JP 62076384 A JP62076384 A JP 62076384A JP 7638487 A JP7638487 A JP 7638487A JP S63244731 A JPS63244731 A JP S63244731A
Authority
JP
Japan
Prior art keywords
substrate
gas
reaction chamber
plasma
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62076384A
Other languages
Japanese (ja)
Other versions
JPH0587130B2 (en
Inventor
Mitsuaki Yano
矢野 満明
Kenji Nakatani
健司 中谷
Hiroshi Okaniwa
宏 岡庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP62076384A priority Critical patent/JPS63244731A/en
Priority to US07/166,689 priority patent/US4920917A/en
Priority to DE3808974A priority patent/DE3808974A1/en
Priority to FR8803589A priority patent/FR2613535B1/en
Publication of JPS63244731A publication Critical patent/JPS63244731A/en
Publication of JPH0587130B2 publication Critical patent/JPH0587130B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To make it possible to let a composition and an impurity distribution have the desired depth profile in the single layer formed in the same reaction chamber by a method wherein the partition plates, with which reaction gas will be shut off, are arranged in the substrate conveying direction vertical to the surface of discharge electrodes leaving the prescribed intervals, plasmic atmosphere space is divided at least into a plurality of sections having no gas diffusion in the direction where the substrate is conveyed excluding the limited gap of a substrate passage and the like, and the thin film having the prescribed compositional distribution in the direction of film thickness is formed. CONSTITUTION:In the reaction chamber 2 where i-type amorphous silicon is formed, five partition plates 11, which partition the plasmic atmosphere space between the opposing discharge electrodes 6 and 7, are provided vertical to the surface of the electrodes in the direction where substrate are conveyed leaving the prescribed intervals and excluding the necessary passage and a gap 14 in such a manner that the whole cross section of the reaction chamber is shut off. Accordingly, the plasma space is divided into a plurality of sections within the surface of the electrodes, and in order to have the reaction gas fed from the gas introducing hole 15, provided at the downstream end in the substrate conveying direction of the reaction chamber, to reach the exhaust port 16 at the end of the upstream, it is necessary that the gas is made to flow passing through the gap 14 provided by the partition plates 11 without fail.

Description

【発明の詳細な説明】 く技術分野〉 本発明は化学的気相分解(CVD)によるプラズマ雰囲
気中で薄膜を形成するプラズマ気相成長装置に関し、特
に非晶質シリコン太陽電池の製造に好適なプラズマ気相
成長装置に関する。
[Detailed Description of the Invention] Technical Field> The present invention relates to a plasma vapor phase growth apparatus for forming a thin film in a plasma atmosphere by chemical vapor phase decomposition (CVD), and is particularly suitable for manufacturing amorphous silicon solar cells. The present invention relates to a plasma vapor phase growth apparatus.

〈従来技術〉 化学的気相分解によるプラズマ雰囲気中で基板上に薄膜
半導体層等を成膜して半導体装置等を製造するプラズマ
気相成長装置は、例えばシラン(Si H4)ガスを放
電分解して非晶質シリコン太陽電池を製造する方法とし
て広く実用化された公知の技術である。この方法では組
成やドーピング不純物の母が異なる複数の層を形成する
場合は、単一の反応室を用いて各層の成膜ごとに反応ガ
スを切り替えるか、複数の専用反応室を連結して反応室
ごとに反応ガスを変えて成膜し、順次基板を移送させる
方法が行なわれている。これは単一の反応室内ではプラ
ズマ雰囲気中のガス組成は空間的にほぼ均一であり、反
応室内に組成の異なったガス雰囲気を適当に分布させる
ことができないた− めである。
<Prior art> Plasma vapor phase growth equipment, which manufactures semiconductor devices by forming thin film semiconductor layers on substrates in a plasma atmosphere using chemical vapor phase decomposition, uses, for example, discharge decomposition of silane (SiH4) gas. This is a well-known technique that has been widely put into practical use as a method for manufacturing amorphous silicon solar cells. When forming multiple layers with different compositions and doping impurity bases using this method, you can use a single reaction chamber and switch the reaction gas for each layer, or connect multiple dedicated reaction chambers for the reaction. A method is used in which films are formed using different reaction gases in each chamber, and the substrates are sequentially transferred. This is because the gas composition in the plasma atmosphere is spatially almost uniform within a single reaction chamber, and gas atmospheres having different compositions cannot be appropriately distributed within the reaction chamber.

しかし、何らかの方法で単一反応室内のガス組成に所望
の空間的分布をもたせることが可能ならば、単一の反応
室内で定常的に放電するプラズマ雰囲気中のガス組成の
異なる領域を基板を移送するだけで組成やドーピング量
の異なった複数層を一気に形成することが可能となり、
製造工程及び装置の簡略化が実現される。
However, if it is possible to somehow create a desired spatial distribution of the gas composition within a single reaction chamber, then the substrate can be transferred through regions with different gas compositions in a plasma atmosphere that is constantly discharged within a single reaction chamber. By simply doing this, it is possible to form multiple layers with different compositions and doping amounts all at once.
Simplification of the manufacturing process and equipment is realized.

また、CVDによるプラズマ雰囲気中で基板上に1il
ll半導体層を形成する手法の一つであるロール・ツー
・ロール方式においても、単一反応室内の反応ガスの組
成に所望の空間分布をもたせることができないために、
従来、次のような欠点が存在した。即ち、ロール・ツー
・ロール方式では定常放電プラズマ中で可撓性の帯状基
板を連続搬送して成膜するために、各反応室には同一組
成の反応ガスを連続的に供給する必要があって一定性で
組成やドーピングの異なる複数層を形成するためにはそ
の数だけの専用反応室が不可欠であった。
In addition, 1il was deposited on the substrate in a plasma atmosphere by CVD.
Even in the roll-to-roll method, which is one of the methods for forming a semiconductor layer, it is not possible to give the desired spatial distribution to the composition of the reaction gas in a single reaction chamber.
Conventionally, there have been the following drawbacks. In other words, in the roll-to-roll method, a flexible strip substrate is continuously conveyed in a steady discharge plasma to form a film, so it is necessary to continuously supply a reaction gas of the same composition to each reaction chamber. In order to consistently form multiple layers with different compositions and dopings, it was necessary to have as many dedicated reaction chambers as possible.

更に、複数の反応室をもつロール・ツー・ロール方式に
おいては、各反応室は完全に分離・独立している訳では
なく、基板の通路で連結されている。このため、隣接し
た反応室間で該基板通路を経由して各反応室の反応ガス
の相互混合をさけることができない。この相互混合が作
成しようとする薄膜半導体装置の特性を劣化させる場合
には反応室間の基板通路に一方向性のガスの流れを形成
したり、特開昭58−216475号公報、特開昭59
−34668号公報等に開示の如く、反応室間に専用の
緩衝室を設けて油気又は差動排気して必要な程度迄ガス
分離を行なっていた。しかし、かかる従来方法ではひと
たびこれらガス分離機構を越えて侵入した隣接反応室の
反応ガスは反応室全域に拡散して反応室内で均一となり
、隣接層との界面の膜厚方向の組成分布や不純物分布の
プロファイルの制御性、例えばゆるやかな傾斜接合にす
るか、シャープな階段接合にするかと云った制御性にと
ぼしかった。
Furthermore, in a roll-to-roll system having a plurality of reaction chambers, the reaction chambers are not completely separated and independent, but are connected by passages in the substrate. Therefore, it is impossible to avoid mutual mixing of the reaction gases in the reaction chambers between adjacent reaction chambers via the substrate passage. If this mutual mixing deteriorates the characteristics of the thin film semiconductor device to be fabricated, a unidirectional gas flow may be formed in the substrate passage between the reaction chambers, or 59
As disclosed in Japanese Patent No. 34668, etc., a dedicated buffer chamber was provided between the reaction chambers, and oil or gas was differentially pumped out to perform gas separation to the extent necessary. However, in such conventional methods, once the reaction gas from the adjacent reaction chamber enters beyond these gas separation mechanisms, it diffuses throughout the reaction chamber and becomes uniform within the reaction chamber, resulting in the composition distribution in the film thickness direction at the interface with the adjacent layer and impurities. The controllability of the distribution profile, such as whether to make a gentle sloped joint or a sharp step joint, was poor.

〈目的〉 本発明はかかる現状に鑑みなされたもので、前述のCV
Dのプラズマ気相成長装置に関し単一反応室内での反応
ガスの空間分布を制御することにより、上記従来技術の
欠点を解消して同一反応室内で成膜した単一層内でも組
成や不純物分布に所望のデプスプロファイルをもたせる
ことを可能としたプラズマ気相成長装置、特にロール・
ツー・ロール方式においては隣接半導体層との界面急峻
性を制御できるプラズマ気相成長装置を提供することを
目的とする。
<Purpose> The present invention has been made in view of the current situation, and is
By controlling the spatial distribution of the reactant gas within a single reaction chamber with respect to the plasma vapor phase growth apparatus of D, the drawbacks of the above-mentioned conventional techniques can be overcome and the composition and impurity distribution can be controlled even within a single layer formed within the same reaction chamber. Plasma vapor phase epitaxy equipment that makes it possible to provide the desired depth profile, especially roll and
In the two-roll method, the object is to provide a plasma vapor phase growth apparatus that can control the steepness of the interface with an adjacent semiconductor layer.

く構成〉 すなわち本発明は、前述の対向する放電電極間の化学的
気相分解によるプラズマ雰囲気中を通して基板を搬送し
つつ、該基板上に薄膜を形成するようになしたプラズマ
気相成長装置において、反応ガスを遮断する仕切板を基
板搬送方向に所定間隔で放電電極面に垂直方向に配設し
て、少なくともプラズマ雰囲気を基板通路等の限られた
隙間を除いて基板搬送方向にガス拡散のない複数の区域
に区画し、膜厚方向に所定の組成分布を有する薄膜を形
成することを特徴とするプラズマ気相成長装置である。
In other words, the present invention provides a plasma vapor deposition apparatus that forms a thin film on a substrate while transporting the substrate through a plasma atmosphere caused by chemical vapor decomposition between opposing discharge electrodes. , partition plates for blocking reaction gas are arranged perpendicularly to the discharge electrode surface at predetermined intervals in the substrate transport direction, and at least the plasma atmosphere is prevented from gas diffusion in the substrate transport direction except for limited gaps such as substrate passages. This plasma vapor phase epitaxy apparatus is characterized in that it forms a thin film having a predetermined composition distribution in the film thickness direction.

上記本発明は、放電電極間に垂直にガスを遮断する仕切
板を設けてプラズマ雰囲気を区画してもプラズマ放電は
影響されず安定製膜ができることを見出すと共に、ガス
を遮断できる仕切板により区画されたプラズマ雰囲気の
各区域間の反応ガスの流路を基板表面近傍等に限定する
ことにより、ガス導入口と排気口の基板搬送方向の位置
により基板搬送方向のガス組成分布を制御できることを
見出しなされたものである。
The present invention has found that even if the plasma atmosphere is partitioned by providing a partition plate that blocks gas vertically between the discharge electrodes, plasma discharge is not affected and stable film formation can be performed. We discovered that by restricting the flow path of the reactive gas between each area of the plasma atmosphere to the vicinity of the substrate surface, it is possible to control the gas composition distribution in the substrate transport direction by controlling the positions of the gas inlet and exhaust port in the substrate transport direction. It has been done.

なお、この理由は前記仕切板により区画されたプラズマ
雰囲気の各区域間の基板搬送方向のガスの相互拡散が限
定され、各区域のガス組成は略独立したものとなるため
と思われる。
The reason for this is believed to be that mutual diffusion of gas in the substrate transport direction between the zones of the plasma atmosphere divided by the partition plates is limited, and the gas compositions of each zone become substantially independent.

従って、本発明の仕切板はガスを遮断できるものであれ
ば良く、その材は特に限定されないが、中でもプラズマ
損傷のないものが好ましく、ステンレス等が使用される
。なお、仕切板は反応室と共に接地するのが一般である
が、浮遊もしくは適当なバイアス電圧を印加させても良
い。そしてその形状は、基板搬送方向のガスの拡散が無
視できるものであれば良く、通常は基板搬送路及び放電
電極面との間に微小な間隙を有するのみで、その他の部
分は完全に遮断し、前記間隙以外ではガス移動のない形
状が選定される。このようにすると間隙部でガス流速が
大となり、ガス拡散の防止がより完全となる点で好まし
い。しかし、反応交内の部材の配置によりガス流路が限
定される場合には該ガス流路を遮断するように仕切板は
設置すれば良いことは云うまでもない。なお、仕切板は
少なくとも基板前面との間にガス流路となるスリットを
有する必要がある。
Therefore, the partition plate of the present invention may be made of any material as long as it can block gas, and its material is not particularly limited, but it is preferably one that is free from plasma damage, and stainless steel or the like is preferably used. Although the partition plate is generally grounded together with the reaction chamber, it may be floating or a suitable bias voltage may be applied thereto. The shape may be such that the diffusion of gas in the substrate transport direction can be ignored, and usually there is only a small gap between the substrate transport path and the discharge electrode surface, and other parts are completely blocked. , a shape is selected that does not allow gas movement outside the gap. This is preferable because the gas flow rate increases in the gap and gas diffusion is more completely prevented. However, if the gas flow path is limited due to the arrangement of members in the reaction chamber, it goes without saying that a partition plate may be installed to block the gas flow path. Note that the partition plate needs to have at least a slit between it and the front surface of the substrate to serve as a gas flow path.

又仕切板の数及びその間隙は、形成する膜の膜厚方向の
プロファイルに応じて選定される。この選定は実験によ
る。
Further, the number of partition plates and the gap between them are selected depending on the profile of the film to be formed in the film thickness direction. This selection is based on experimentation.

一方反応ガスの導入口、排気口の配置も、同様に形成す
る膜厚方向のプロファイルに応じて実験により選定され
る。例えば2層膜を形成する場合には夫々の反応ガスの
導入口を反応室の両端に、共通の排気口をその中間に順
次配置すれば良く、又一層膜でその膜内の組成を変化さ
せたい場合は夫々の反応ガスの導入口を反応室の基板搬
送方向の両端部に配置し、その一端に共通の排気口を設
けること等により適当な勾配の組成分布を得ることがで
きる。
On the other hand, the arrangement of the reactant gas inlet and exhaust port is similarly selected through experiments according to the profile in the thickness direction of the film to be formed. For example, when forming a two-layer film, it is sufficient to sequentially arrange the inlets for each reaction gas at both ends of the reaction chamber and a common exhaust port in the middle, or to change the composition within the film with a single-layer film. If desired, a composition distribution with an appropriate gradient can be obtained by arranging the inlets for each reaction gas at both ends of the reaction chamber in the substrate transport direction and providing a common exhaust port at one end.

以上の本発明は単独の反応室で多層膜を形成するのに適
用できる他、特開昭58−218475号公報等の如く
複数の反応室を連結したものにおいて、その一層のプロ
ファイルを制御するのにも適用できる。
The present invention described above can be applied not only to forming a multilayer film in a single reaction chamber, but also to controlling the profile of a single layer in a structure in which a plurality of reaction chambers are connected, such as in JP-A-58-218475. It can also be applied to

又本発明は、可撓性の長尺基板を連続的にロール・ツー
・ロール方式で搬送しつつ膜形成するものにおいて、単
独反応室での多層膜形成等の如く大巾な装置の簡略化を
可能としたり、従来不可能であった多層膜中の一層のプ
ロファイル制御ができる連続膜形成装置を特徴とする特
にその効果は大である。
In addition, the present invention is for forming a film while continuously conveying a flexible long substrate in a roll-to-roll manner, and it is possible to greatly simplify the equipment used to form a multilayer film in a single reaction chamber. It is especially effective because it features a continuous film forming apparatus that can control the profile of a single layer in a multilayer film, which was previously impossible.

以下、本発明の詳細を非晶質シリコン太陽電池の連続製
造装置を例に説明する。
Hereinafter, the details of the present invention will be explained using an example of a continuous manufacturing apparatus for amorphous silicon solar cells.

〈実施例〉 第1図は上記実施例の非晶質シリコン太陽電池の連続製
造装置の構成図である。
<Example> FIG. 1 is a block diagram of a continuous manufacturing apparatus for amorphous silicon solar cells according to the above example.

その基本構成は前述の特開昭58−216475号公報
Its basic structure is disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 58-216475.

特開昭59−34668号公報開示のものと同じで、p
型。
Same as that disclosed in Japanese Patent Application Laid-open No. 59-34668, p.
Type.

i型及びn型の各非晶質シリコン層を形成するCVDプ
ラズマ放電の各反応室1.2.3及び巻出室18並びに
巻取室19をガス隔離のためのII!i室13で連結し
、巻出しロール20から巻取りロール21へ基板17を
ロール・ツー・ロール方式で移送しつつ、p、i、nの
3WIを連続形成する構成となっている。なお、図の4
〜9は放電電極で、図の10は各放?!電極に高周波電
力を供給する高周波電源である。
II! for gas isolation of each reaction chamber 1.2.3 of the CVD plasma discharge forming the i-type and n-type amorphous silicon layers, the unwinding chamber 18, and the winding chamber 19! The configuration is such that three WIs, p, i, and n, are continuously formed while being connected in an i-chamber 13 and transferring the substrate 17 from an unwinding roll 20 to a winding roll 21 in a roll-to-roll manner. In addition, 4 in the figure
~9 is the discharge electrode, and 10 in the figure is each discharge electrode. ! This is a high-frequency power source that supplies high-frequency power to the electrodes.

ところで、i形非晶質シリコンを形成する反応室2は本
発明に従い以下の構成となっている。対向する放電電極
6,7の中間のプラズマ雰囲気を基板搬送方向に必要な
通路を除いて区画する仕切板11を電極面に垂直かつ第
2図の通り隙間14を除いて反応室の全断面を遮断する
ように基板の搬送方向に所定間隔になるように5枚設置
した。従って該仕切板11によりプラズマ空間は、電極
面内で複数の区域に区分され、反応室2の基板搬送方向
下流端に設けたガス導入口15から供給された反応ガス
はその上流端部の排気ボート16に達するためには必ず
該仕切板11で設定された隙間14を通って流れる。
Incidentally, the reaction chamber 2 for forming i-type amorphous silicon has the following configuration according to the present invention. A partition plate 11 that partitions the plasma atmosphere between the facing discharge electrodes 6 and 7 except for a passage necessary in the substrate transport direction is installed perpendicular to the electrode surface and covers the entire cross section of the reaction chamber excluding the gap 14 as shown in FIG. Five boards were installed at predetermined intervals in the transport direction of the board so as to block the board. Therefore, the plasma space is divided into a plurality of areas within the electrode plane by the partition plate 11, and the reaction gas supplied from the gas inlet 15 provided at the downstream end of the reaction chamber 2 in the substrate transport direction is exhausted from the upstream end. In order to reach the boat 16, the water always flows through the gap 14 set by the partition plate 11.

なお、前述の通り仕切板11は隙間14を形成する゛よ
うに対向する放電電極の双方に対して若干の距離を離し
てiQ@されている。この隙間14は1つには反応ガス
の通路として、また、パワー電極に対して電気絶縁のた
め、そしてアース電極に対しては基板17の通路を目的
どしており、本実施例では3mとした。ガス仕切板11
の材料は電気的に導体。
Note that, as described above, the partition plate 11 is spaced a certain distance apart from both of the opposing discharge electrodes so as to form a gap 14. This gap 14 is used as a passage for reactant gas, for electrical insulation from the power electrode, and as a passage for the substrate 17 from the ground electrode, and is 3 m in this embodiment. did. Gas partition plate 11
The material is an electrical conductor.

不導体のいずれであっても本発明の目的を達するが、プ
ラズマ雰囲気中に不純物を放出しないことが必要である
。本例ではステンレス合金で作成し、電気的にはアース
に接地した。
Although any nonconductor can achieve the purpose of the present invention, it is necessary that no impurities be released into the plasma atmosphere. In this example, it was made of stainless steel and electrically grounded.

かかる複数反応室型ロール・ツー・ロール方式のCVD
プラズマ気相成長装置で、5iHaガスを原料にロール
状に巻き上げた薄帯状長尺基板上にp、i、n形非晶質
シリコン膜を順次積層して太陽電池を形成した。
Such multiple reaction chamber roll-to-roll CVD
A solar cell was formed by sequentially stacking p-, i-, and n-type amorphous silicon films on a thin strip-like long substrate made of 5iHa gas rolled up into a roll using a plasma vapor deposition apparatus.

基板17として厚さ100μmのポリエチレンテレフタ
レートのフィルム上に3000人のアルミニウム金属と
50人のステンレス合金を積層して用い、具体的には前
述の特開昭59−34668号公報等と同じ方法でp、
i、n形の非晶質シリコン層を一走行で連続成膜した。
As the substrate 17, 3,000 aluminum metals and 50 stainless steel alloys were laminated on a polyethylene terephthalate film with a thickness of 100 μm. ,
I and N type amorphous silicon layers were continuously formed in one run.

すなわちpおよびn形の非晶質シリコン層はそれぞれS
!H4ガスにジボラン<82 H6ンまたはホスフィン
(PH3)をドープして形成され、その厚さは200〜
300人である。
That is, the p- and n-type amorphous silicon layers are each S
! It is formed by doping H4 gas with diborane <82 H6 or phosphine (PH3), and its thickness is 200 ~
There are 300 people.

i形非晶質シリコン層は約5000人の厚さで、反応ガ
スは不純物ガスをドープしていないSiH4ガスを用い
た。
The i-type amorphous silicon layer had a thickness of about 5000 nm, and the reaction gas used was SiH4 gas not doped with any impurity gas.

ところで本例のロール・ツー・ロール方式では、通常、
隣接するp、n形非晶質シリコンを形成する反応室1,
3から1層を形成する反応室2へ828e及びPH3ガ
スが緩衝室13を経由して微量混入する。
By the way, in the roll-to-roll method of this example, normally,
a reaction chamber 1 forming adjacent p-type and n-type amorphous silicon;
A small amount of 828e and PH3 gas are mixed into the reaction chamber 2 forming one layer from the buffer chamber 13 through the buffer chamber 13.

ところで反応室2は前述の構成としであるので、i形非
晶質シリコンを形成する反応室2において反応ガスはn
層用の反応室3寄りのガス導入口15から導入されp層
用の反応室1寄りの排気口16の方向に流れる。このよ
うにして成膜したp、:。
By the way, since the reaction chamber 2 has the above-mentioned configuration, the reaction gas in the reaction chamber 2 for forming i-type amorphous silicon is n
The gas is introduced from the gas inlet 15 near the reaction chamber 3 for the layer and flows toward the exhaust port 16 near the reaction chamber 1 for the p layer. p, which was formed in this way:

n積層型の非晶質シリコン膜について、ボロン(B)原
子のデプスプロファイルを二次イオン質量分析法(Si
 MS)で測定した結果を第3図に実1mAで示す。比
較のために、他の条件は同じに、仕切板11を設置しな
い従来装置の場合により形成した同じp、i、n積層型
の非晶質シリコン膜の分析結果を破線Bで同図に示した
The depth profile of boron (B) atoms was measured using secondary ion mass spectrometry (Si
The results measured by MS) are shown in Figure 3 at 1 mA. For comparison, the analysis results of the same p-, i-, and n-layered amorphous silicon film formed using a conventional apparatus without the partition plate 11 under the same conditions are shown in the figure by a broken line B. Ta.

仕切板11を設けない従来装置の場合には隣接反応室1
.3から混入したB2 Haガスがill用の反応室2
全体に均一に拡散する結果、i層中のB原子の膜厚方向
の濃度プロファイルはフラットになっている。一方、仕
切板11を設置した実施例の場合はpmと1層との界面
におけるB原子の組成プロファイルは切れが急峻になっ
ており、また、ill中のプロファイルは一定の勾配の
傾斜をもっていることがわかる。この結果は、仕切板1
1によってi反応室2のプラズマ空間を区分することに
より、同一反応市内であってもn層用の反応室3寄りの
部分からp層用の反応室1寄りの部分に亘ってプラズマ
雰囲気中の反応ガスの組成が一定の空間分布を有するこ
とを示している。即ち本発明より1つ反応室内の反応ガ
スに必要な空間分布が実現できることを意味しており、
本発明が従来不可能であって膜組成制御を可能とする優
れた効果のあることを示している。
In the case of a conventional device that does not have a partition plate 11, the adjacent reaction chamber 1
.. B2 Ha gas mixed in from 3 is in reaction chamber 2 for ill.
As a result of uniform diffusion throughout, the concentration profile of B atoms in the i-layer in the film thickness direction is flat. On the other hand, in the case of the embodiment in which the partition plate 11 is installed, the composition profile of B atoms at the interface between pm and the first layer has a steep cut, and the profile in the ill has a constant slope. I understand. This result is the partition plate 1
By dividing the plasma space of the i-reaction chamber 2 by 1, even within the same reaction area, the plasma atmosphere extends from the part near the reaction chamber 3 for the n-layer to the part near the reaction chamber 1 for the p-layer. shows that the composition of the reactant gas has a constant spatial distribution. This means that the present invention can realize the necessary spatial distribution of the reaction gas in the reaction chamber.
This shows that the present invention has an excellent effect of enabling film composition control, which was previously impossible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例の非晶質シリコン太陽電池の製造装置の
構成説明図、第2図は第1図A−A’線での側断面図、
第3図は実施結果を示すグラフである。 1.2.3:反応室   11:仕切板13:緩衝室 
      14:隙間17:基板 第31刀 長面1・5つ5¥二(トm)
FIG. 1 is an explanatory diagram of the configuration of an apparatus for manufacturing an amorphous silicon solar cell according to an example, and FIG. 2 is a side sectional view taken along line A-A' in FIG. 1.
FIG. 3 is a graph showing the implementation results. 1.2.3: Reaction chamber 11: Partition plate 13: Buffer chamber
14: Gap 17: Board No. 31 long side 1.5 5 yen 2 (tom)

Claims (1)

【特許請求の範囲】 1、対向する放電電極間の化学的気相分解によるプラズ
マ雰囲気中を通して基板を搬送しつつ、該基板上に薄膜
を形成するようになしたプラズマ気相成長装置において
、反応ガスを遮断する仕切板を基板搬送方向に所定間隔
で放電電極面に垂直方向に配設して、少なくともプラズ
マ雰囲気を基板通路等の限られた隙間を除いて基板搬送
方向にガス拡散のない複数の区域に区画し、膜厚方向に
所定の組成分布を有する薄膜を形成することを特徴とす
るプラズマ気相成長装置。 2、仕切板は前記隙間を除いて反応室の全断面を遮断す
るように設けられている特許請求の範囲第1項記載のプ
ラズマ気相成長装置。 3、反応室の基板搬送方向の一端に反応ガスの排気口が
設けられ、その他端に反応ガスの導入口が設けられてい
る特許請求の範囲第1項若しくは第2項記載のプラズマ
気相成長装置。 4、前記基板が可撓性の長尺の基板であり、ロール・ツ
ー・ロール方式で搬送される特許請求の範囲第1項〜第
3項記載のいずれかのプラズマ気相成長装置。 5、形成する薄膜が非晶質シリコン薄膜である特許請求
の範囲第1項〜第4項記載のいずれかのプラズマ気相成
長装置。
[Scope of Claims] 1. In a plasma vapor deposition apparatus that forms a thin film on a substrate while transporting the substrate through a plasma atmosphere caused by chemical vapor decomposition between opposing discharge electrodes, Gas-blocking partition plates are arranged perpendicularly to the discharge electrode surface at predetermined intervals in the substrate transport direction, so that at least the plasma atmosphere can be divided into multiple spaces without gas diffusion in the substrate transport direction, except for limited gaps such as substrate passages. 1. A plasma vapor phase epitaxy apparatus characterized in that a thin film is formed by dividing the region into two regions and having a predetermined composition distribution in the film thickness direction. 2. The plasma vapor phase growth apparatus according to claim 1, wherein the partition plate is provided to block the entire cross section of the reaction chamber except for the gap. 3. The plasma vapor deposition according to claim 1 or 2, wherein a reaction gas exhaust port is provided at one end of the reaction chamber in the substrate transport direction, and a reaction gas inlet port is provided at the other end. Device. 4. The plasma vapor deposition apparatus according to any one of claims 1 to 3, wherein the substrate is a flexible elongated substrate and is transported by a roll-to-roll method. 5. The plasma vapor phase epitaxy apparatus according to any one of claims 1 to 4, wherein the thin film to be formed is an amorphous silicon thin film.
JP62076384A 1987-03-18 1987-03-31 Plasma vapor growth device Granted JPS63244731A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP62076384A JPS63244731A (en) 1987-03-31 1987-03-31 Plasma vapor growth device
US07/166,689 US4920917A (en) 1987-03-18 1988-03-11 Reactor for depositing a layer on a moving substrate
DE3808974A DE3808974A1 (en) 1987-03-18 1988-03-17 ARRANGEMENT FOR DEPOSITING A MATERIAL LAYER ON A MOVING CARRIER
FR8803589A FR2613535B1 (en) 1987-03-18 1988-03-18 REACTOR FOR LAYING A LAYER ON A MOBILE SUBSTRATE FOR THE MANUFACTURE OF A SEMICONDUCTOR DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62076384A JPS63244731A (en) 1987-03-31 1987-03-31 Plasma vapor growth device

Publications (2)

Publication Number Publication Date
JPS63244731A true JPS63244731A (en) 1988-10-12
JPH0587130B2 JPH0587130B2 (en) 1993-12-15

Family

ID=13603840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62076384A Granted JPS63244731A (en) 1987-03-18 1987-03-31 Plasma vapor growth device

Country Status (1)

Country Link
JP (1) JPS63244731A (en)

Also Published As

Publication number Publication date
JPH0587130B2 (en) 1993-12-15

Similar Documents

Publication Publication Date Title
US4920917A (en) Reactor for depositing a layer on a moving substrate
EP0041773B1 (en) Solar cell production
US4519339A (en) Continuous amorphous solar cell production system
US5946587A (en) Continuous forming method for functional deposited films
JPS6243554B2 (en)
IE830541L (en) Photovoltaic devices.
US4462333A (en) Process gas introduction, confinement and evacuation system for glow discharge deposition apparatus
US4537795A (en) Method for introducing sweep gases into a glow discharge deposition apparatus
EP2256782B1 (en) Plasma deposition source and method for depositing thin films
US4520757A (en) Process gas introduction, confinement and evacuation system for glow discharge deposition apparatus
JPH0824107B2 (en) Semiconductor film deposition equipment
JP2006032720A (en) Plasma treatment device and solar cell
JPS5972722A (en) Substrate shield for preventing irregular film from deposit-ing
JPS63244731A (en) Plasma vapor growth device
JPH0272677A (en) Apparatus for manufacturing thin film semiconductor
EP0106521B1 (en) Baffle system for glow discharge deposition apparatus
US20040250763A1 (en) Fountain cathode for large area plasma deposition
JPS6239533B2 (en)
JPS6239532B2 (en)
JPH0227775A (en) Manufacture of solar cell
JP2765371B2 (en) Film processing equipment
JP3181761B2 (en) Method and apparatus for continuously forming functional deposited film
JP3169243B2 (en) Continuous formation method of deposited film
JP2009267261A (en) Thin film manufacturing apparatus, thin film manufacturing method, thin film solar cell manufacturing apparatus, and thin film solar cell manufacturing method
JP3403039B2 (en) Apparatus and method for manufacturing thin film semiconductor by plasma CVD method

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees