Nothing Special   »   [go: up one dir, main page]

JPS6243554B2 - - Google Patents

Info

Publication number
JPS6243554B2
JPS6243554B2 JP56075588A JP7558881A JPS6243554B2 JP S6243554 B2 JPS6243554 B2 JP S6243554B2 JP 56075588 A JP56075588 A JP 56075588A JP 7558881 A JP7558881 A JP 7558881A JP S6243554 B2 JPS6243554 B2 JP S6243554B2
Authority
JP
Japan
Prior art keywords
substrate
deposition
glow discharge
deposition chamber
continuously
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56075588A
Other languages
Japanese (ja)
Other versions
JPS57122581A (en
Inventor
Izu Masatsugu
Debitsudo Kyanera Binsento
Robaato Obushinsukii Sutanfuoodo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Energy Conversion Devices Inc
Original Assignee
Energy Conversion Devices Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Energy Conversion Devices Inc filed Critical Energy Conversion Devices Inc
Publication of JPS57122581A publication Critical patent/JPS57122581A/en
Publication of JPS6243554B2 publication Critical patent/JPS6243554B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/517Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using a combination of discharges covered by two or more of groups C23C16/503 - C23C16/515
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 本発明は太陽電池を製造するための装置に係
る。この発明は相異なる導電型のアモルフアス半
導体材料で形成された互いに隣接する層が分離さ
れた別々のグロー放電堆積室内で堆積せしめられ
るような太陽電池の製造方法および装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for manufacturing solar cells. The present invention relates to a method and apparatus for manufacturing solar cells in which adjacent layers formed of amorphous semiconductor materials of different conductivity types are deposited in separate and separate glow discharge deposition chambers.

太陽光を使用可能な電気エネルギに変換する構
造体として光起電力装置が知られている。この種
の装置の一つとして不純物が添加されたアモルフ
アスシリコンの多層構造体からなるアモルフアス
シリコン太陽電池がある。このようなアモルフア
スシリコン太陽電池および該電池構造体用の不純
物添加層をグロー放電チヤンバ内で連続的に堆積
させる方法は米国特許第4226898号明細書に記載
されている。
A photovoltaic device is known as a structure that converts sunlight into usable electrical energy. One example of this type of device is an amorphous silicon solar cell made of a multilayer structure of amorphous silicon to which impurities are added. A method for continuously depositing doped layers for such amorphous silicon solar cells and cell structures in a glow discharge chamber is described in US Pat. No. 4,226,898.

しかし乍ら、この特許明細書の記載では、アモ
ルフアス材料からなる不純物添加層および真性層
は製造装置内の単一の真空チヤンバ内で形成され
る。こ製造装置の場合、種々のドープ材料を含む
反応ガス混合物(不純物添加層を形成する場合)
およびドープ材料を含まない反応ガス混合物(真
性層を形成する場合)が、複数の導管を介して、
単一のチヤンバ内に順次導入される。
However, as described in this patent, the doped layer and the intrinsic layer of amorphous material are formed in a single vacuum chamber within a manufacturing device. In the case of this production equipment, a reaction gas mixture containing various doping materials (in case of forming an impurity doped layer)
and the reactant gas mixture without doping material (if forming an intrinsic layer) via a number of conduits.
are introduced sequentially into a single chamber.

単一チヤンバでのバツチ処理方式では、最終電
池構造体の最適化および生産速度が望みの場合よ
りも制限されてしまう。相異なるタイプの材料で
形成された隣接層(真性層も含む)を有する多層
構造体からなる太陽電池を単一のグロー放電チヤ
ンバ(堆積室)内で作製する場合、複雑な制御装
置や時間のかかる技術が必要となる。特に、一つ
一つの電池を製造するために減圧および加熱をい
ちいちおこない、各層を堆積させた後に冷却をお
こなうことは電池を作製するための平均時間を大
幅に長びかせることとなる。
A single chamber batch processing approach may limit the optimization and production rate of the final cell structure more than desired. The fabrication of solar cells consisting of multilayer structures with adjacent layers (including intrinsic layers) made of different types of materials in a single glow discharge chamber (deposition chamber) requires complex control equipment and time constraints. Such technology is required. In particular, the repeated depressurization and heating and cooling after each layer is deposited to produce each battery greatly increases the average time to produce the battery.

さらに、不所望な処理や他の要因によつて相異
なるタイプの材料で形成された層、特に真性層が
汚染されることは電池を最適に動作させるために
は避けなければならない。そうするためには、単
一チヤンバ方式の場合、交叉汚染を避けるために
中途で排気をおこなう必要がある。
Furthermore, contamination of layers made of different types of materials, especially intrinsic layers, due to undesired processing or other factors must be avoided for optimal operation of the cell. In order to do so, in the case of a single chamber system, it is necessary to perform evacuation midway to avoid cross-contamination.

従来技術の上記した欠点その他の不利点は、こ
の発明に従つて、相異なる電気特性を有するアモ
ルフアスシリコンよりなる隣接層を別々の環境的
に隔離乃至分離されたグロー放電領域内で基板上
に堆積することによつて克服することができる。
これら分離された領域はそれぞれ所定の反応ガス
混合物を収容し、交叉汚染を避けるために相互に
分離された複数個の隣接する堆積室であつてよ
い。基板は分離された領域あるいは室内を順次進
行ないし運搬され、個々の電池構成に必要とされ
る異なる電気特性を持つ隣接層が被着される。該
基板はステンレス鋼のような連続ウエブであつて
よく、分離された領域ないし室内に実質的に連続
的に供給され、所望電池構造体が得られるように
各層が堆積される。特定の電池形状に必要な場
合、マスクを用いてもよい。
The above-mentioned and other disadvantages of the prior art are overcome by the present invention, in which adjacent layers of amorphous silicon having different electrical properties are deposited on a substrate in separate environmentally isolated glow discharge regions. It can be overcome by depositing.
These separate regions each contain a predetermined reaction gas mixture and may be a plurality of adjacent deposition chambers separated from each other to avoid cross-contamination. The substrates are sequentially advanced or transported through separate areas or chambers and adjacent layers having different electrical properties required for the particular cell configuration are deposited. The substrate may be a continuous web, such as stainless steel, which is fed substantially continuously into separate areas or chambers, and each layer is deposited to obtain the desired cell structure. A mask may be used if required for the particular cell configuration.

次に本発明による好ましい一具体例を図面に基
づいて説明する。
Next, a preferred specific example of the present invention will be explained based on the drawings.

第1図には、この発明に従う太陽電池の連続製
造シスチテムの一態様における様々な工程が示さ
れている。基板10はその上にアモルフアスシリ
コンが堆積され得る所望材料からなり、入射太陽
光に対して透明であつても不透明であつてもよ
い。また、基板10はウエブ又はウエブ状の搬送
機構によつて担持された個々のプレート例えば金
属箔、金属、ガラスまたはポリマーであつてよ
い。ステンレス鋼もしくはアルミニウムのような
金属またはポリマーである場合、該ウエブは大き
なロールのような半連続給源から供給できる。
FIG. 1 shows various steps in one embodiment of a continuous solar cell production system according to the present invention. Substrate 10 is comprised of any desired material on which amorphous silicon may be deposited, and may be transparent or opaque to incident sunlight. The substrate 10 may also be an individual plate, such as a metal foil, metal, glass or polymer, carried by a web or web-like transport mechanism. If it is a metal or polymer, such as stainless steel or aluminum, the web can be fed from a semi-continuous source, such as a large roll.

基板10が連続ウエブからなる場合、ウエブ状
基板10の両側縁部に沿つてスプロケツト孔を形
成する穿孔機12によつて基板10にスプロケツ
ト孔をあけ、このスプロケツト孔によつて基板1
0を長手方向に進めると共に以後の工程を長手方
向に統合させる長手方向の参照マークを与える。
もちろん、穿孔機12およびスプロケツト孔は用
いなくともよく、エツジガイドその他の整合装置
を用いてもよい。
When the substrate 10 is made of a continuous web, sprocket holes are bored in the substrate 10 by a punching machine 12 that forms sprocket holes along both side edges of the web-like substrate 10, and the sprocket holes are formed in the substrate 1 through the sprocket holes.
0 longitudinally and provides a longitudinal reference mark that longitudinally integrates subsequent steps.
Of course, the punch 12 and sprocket holes may not be used, and edge guides or other alignment devices may be used.

穿孔後、基板10はそれがアルミニウムで形成
されており所望の場合、陽極酸化浴中に搬送され
そこで基板10上、特に、被着乃至堆積がおこな
われる表面上に酸化アルミニウム絶縁層16(第
4図参照)が形成される。基板10としてステン
レス鋼を用いかつ絶縁層を望む場合、例えば
SiO2,Si3N4等を基板10上に被着乃至堆積させ
るようにしてもよい。
After drilling, the substrate 10, if it is made of aluminum, is transported to an anodizing bath where a fourth insulating layer 16 of aluminum oxide is deposited on the substrate 10, in particular on the surface on which the deposition will take place. (see figure) is formed. If stainless steel is used as the substrate 10 and an insulating layer is desired, for example
SiO 2 , Si 3 N 4 or the like may be deposited on the substrate 10 .

次に、一連のベースコンタクトを絶縁層上に所
望により形成する。このベースコンタクトはスプ
ロケツト孔と共に長手方向に整列させることがで
き、その結果、ベースコンタクトを適切に位置決
めして装置の一連の動作を行ない得る。第4図に
は、これらベースコンタクトのうちの2つが符号
18および20で示されている。所定の電池に要
求される直列または並列接続配置に応じて、ベー
スコンタクトの配向は第1図に示すようにまたは
第1図とは異なるように選ぶことができる。この
ベースコンタクトを形成するための装置22は通
常のものであり、典型的には、機械的もしくはリ
トグラフ的マスクの適用、その後のベースコンタ
クトの形成およびその後のマスク除去をおこなう
ものである。実際のベースコンタクトの形成は当
該分野で知られた方法例えば蒸着、スパツタ、シ
ルクスクリーニング、印刷等によつておこなうこ
とができ、その詳細な説明は当業者には不要であ
ろう。
A series of base contacts are then optionally formed on the insulating layer. The base contact can be longitudinally aligned with the sprocket holes so that the base contact can be properly positioned to perform a sequence of operations of the device. Two of these base contacts are shown at 18 and 20 in FIG. Depending on the series or parallel connection arrangement required for a given cell, the orientation of the base contacts can be chosen as shown in FIG. 1 or differently from FIG. The apparatus 22 for forming this base contact is conventional and typically involves application of a mechanical or lithographic mask, subsequent formation of the base contact, and subsequent mask removal. The actual formation of the base contact can be carried out by methods known in the art, such as vapor deposition, sputtering, silk screening, printing, etc., and a detailed explanation thereof will not be necessary for those skilled in the art.

導電性基板10は絶縁層およびベースコンタク
トを形成することなくそのまま共通電極として用
いることができ、したがつて絶縁層およびベース
コンタクトの形成工程およびマスク工程を省くこ
とができる。この場合、全ての電池は共通電極と
なる基板10で並列に接続される(第5図参
照)。逆に基板10としてガラス基板またはポリ
マー基板を用いる場合、絶縁層を形成しなくても
よい。
The conductive substrate 10 can be used as a common electrode as it is without forming an insulating layer and a base contact, and therefore the step of forming the insulating layer and the base contact and the masking step can be omitted. In this case, all the cells are connected in parallel with a substrate 10 serving as a common electrode (see FIG. 5). Conversely, when a glass substrate or a polymer substrate is used as the substrate 10, it is not necessary to form an insulating layer.

穿孔、陽極酸化およびベースコンタクトの形成
は、これらがおこなわれる場合、移動している同
一の基板に対して行なうように順次配置された装
置によつて連続的におこなつてもよいが、各工程
が完了する毎に連続ウエブ状基板を巻き取るよう
にして、各工程を別々の装置を用いて、別々にお
こなつてもよい。
Drilling, anodizing, and base contact formation, if performed, may be performed sequentially by equipment arranged sequentially to act on the same moving substrate, but each step Each step may be performed separately using separate equipment, with the continuous web-like substrate being wound up each time the step is completed.

アモルフアスシリコンの基板10への堆積乃至
被着は第1図および第2図に示す堆積室24,2
6,28内でおこなわれる。堆積室24の内部の
一例が第3図に示されている。第2図には、三つ
の別別の堆積室が示されているが、一つの大きな
室を適当に個々の堆積乃至被着領域に仕切り、そ
の各領域を個々の導電形(例えば、n形、p形ま
たは真性)のアモルフアスシリコンを被着するた
めにのみ用いるようにしてもよい。
The deposition or adhesion of amorphous silicon onto the substrate 10 is carried out in the deposition chambers 24 and 2 shown in FIGS.
It will be held on 6.28. An example of the interior of the deposition chamber 24 is shown in FIG. Although three separate deposition chambers are shown in FIG. 2, one large chamber can be suitably partitioned into individual deposition or deposition regions, each of which is of a particular conductivity type (e.g., n-type). , p-type, or intrinsic) amorphous silicon.

各被着乃至堆積領域は、堆積層の厚さおよび堆
積速度に応じた室の長さまたは室モジユールの数
によつて規定される。全ての被着乃至堆積領域は
互いに分離されている。この被着乃至堆積装置2
4,26,28は夫々個個の反応ガス混合物のプ
ラズマからアモルフアスシリコンのp形層、真性
層およびn形層(または、n形層、真性層及びp
形層)をグロー放電堆積させるものである。各層
を別々に堆積させることによつて電気特性の良好
なアモルフアスシリコン層からなる電池が得られ
る。
Each deposition area is defined by the length of the chamber or the number of chamber modules depending on the thickness of the deposited layer and the rate of deposition. All deposition areas are separated from each other. This deposition device 2
4, 26, and 28 respectively form p-type, intrinsic and n-type layers of amorphous silicon (or n-type, intrinsic and p-type layers) from plasmas of individual reactant gas mixtures.
(form layer) is deposited by glow discharge. By depositing each layer separately, a battery consisting of an amorphous silicon layer with good electrical properties is obtained.

アモルフアスシリコン層を堆積させた後、最上
位のアモルフアスシリコン層上に、光電池で発生
した電流を集めるためのトツプコンタクト層30
を被着乃至堆積させる(第4図)。この層30
は、基板10が不透明の場合、照射される光エネ
ルギを太陽電池のシリコン層に通すために透明な
材料で形成されている。
After depositing the amorphous silicon layer, a top contact layer 30 is placed on top of the amorphous silicon layer for collecting the current generated in the photovoltaic cell.
(FIG. 4). This layer 30
is made of a transparent material in order to pass the applied light energy to the silicon layer of the solar cell when the substrate 10 is opaque.

普通用いられる透明な導電材料は酸化インジウ
ムスズ、酸化スズまたは酸化インジウムである。
透明基板上に形成された電池の場合、該構造体は
基板上に透明導電性酸化物(TCO)を、そして
最上層上に不透明コンタクトを形成したものであ
つてよい。殆んどの場合、TCO層は大きな領域
の電池から電流を集めるに充分な導電性がないの
で、当業者によく知られているように、TCOと
ともに適当な金属で形成された電流収集用グリツ
ドが用いられる。各電池が電気的に分離されてい
る(共通層によつて並列接続されていない)場
合、金属接続層31をさらに堆積させて個々の電
池を直列もしくは並列に接続することができる
(第4図)。
Commonly used transparent conductive materials are indium tin oxide, tin oxide or indium oxide.
For cells formed on transparent substrates, the structure may include a transparent conductive oxide (TCO) on the substrate and an opaque contact on the top layer. In most cases, the TCO layer is not conductive enough to collect current from a large area of the cell, so a current collection grid made of a suitable metal is used along with the TCO, as is well known to those skilled in the art. used. If each cell is electrically isolated (not connected in parallel by a common layer), a metal connection layer 31 can be further deposited to connect the individual cells in series or parallel (Fig. 4). ).

アモルフアスシリコン層は可視領域の太陽光を
非常に反射させるものであるから、通常ならば入
射エネルギの多くは反射されてしまう。このエネ
ルギ損失を防止するために、反射防止(AR)層
32を形成する(第6図)。このAR層は反射する
光の量を減少させる。AR層は硫化亜鉛、酸化ジ
ルコニウム、窒化ケイ素および酸化チタンのよう
な絶縁材料で形成することができる。しかし乍
ら、TCOをトツプコンタクト層として用いる場
合、該TCO層の厚さを該TCO層がトツプコンタ
クトとして且つAR層として機能するように選ぶ
ことができる。こうすると、電池の構造および製
造工程が簡略化される。第1図に示す堆積装置3
4はトツプコンタクト層30およびAR層32
を、これらの層30,32が用いられる場合、被
着するものである。
Since the amorphous silicon layer is highly reflective of visible sunlight, much of the incident energy would normally be reflected. To prevent this energy loss, an antireflection (AR) layer 32 is formed (FIG. 6). This AR layer reduces the amount of light reflected. The AR layer can be formed from insulating materials such as zinc sulfide, zirconium oxide, silicon nitride, and titanium oxide. However, if TCO is used as a top contact layer, the thickness of the TCO layer can be chosen such that the TCO layer functions as a top contact and as an AR layer. This simplifies the battery structure and manufacturing process. Deposition device 3 shown in FIG.
4 is a top contact layer 30 and an AR layer 32
are deposited if these layers 30, 32 are used.

層30,32の被着によつて太陽電池構造体の
形成は完了するが、該電池構造体を物理的損傷か
ら保護するために、更にラミネートをおこなうこ
とが望ましい。ラミネータ36によつて、太陽電
池構造体の全要素が形成されている基板の表面お
よび裏面に保護ウエブ38,40が被着される。
Although the deposition of layers 30 and 32 completes the formation of the solar cell structure, additional lamination is desirable to protect the cell structure from physical damage. A laminator 36 applies protective webs 38, 40 to the front and back sides of the substrate on which all the elements of the solar cell structure are formed.

このラミネート工程が終つたならば、太陽電池
を外部と接続することができ、ウエブ状基板は、
所望の電圧および電流の供給に要求される通りに
切断される。こうして、連続帯状片が形成され
得、太陽電池の経済的な製造が行なわれ得る。
Once this lamination process is completed, the solar cell can be connected to the outside, and the web-like substrate is
It is disconnected as required to supply the desired voltage and current. In this way, continuous strips can be formed and economical production of solar cells can be carried out.

この発明において重要な点は第2図に概略的に
示すように別々の堆積室24,26,28内で
別々のアモルフアスシリコン層の堆積が行なわれ
ることである。三つの分離された堆積室はp形ア
モルフアスシリコン層42、真性アモルフアスシ
リコン層44およびn形アモルフアスシリコン層
46(第4図)を順次堆積させるためのものとし
て示されている。既述のように、室24,26,
28は個々の反応ガス混合物の成分が混入し合う
のを避けるために相互に分離乃至隔離されてい
る。アモルフアスシリコン層の堆積は逆の順序、
n形層46、真性層44、p形層42の順序でお
こなつてもよい。
An important aspect of the invention is that the deposition of separate amorphous silicon layers takes place in separate deposition chambers 24, 26, and 28, as schematically shown in FIG. Three separate deposition chambers are shown for sequentially depositing a p-type amorphous silicon layer 42, an intrinsic amorphous silicon layer 44, and an n-type amorphous silicon layer 46 (FIG. 4). As mentioned above, chambers 24, 26,
28 are separated from each other to avoid mixing of the components of the individual reaction gas mixtures. The amorphous silicon layer is deposited in the reverse order,
The n-type layer 46, the intrinsic layer 44, and the p-type layer 42 may be formed in this order.

第4図に示す層配置は頂部から入射する光に対
するものである。不透明基板10の代りに透明な
基板を用いた場合、光は基板10側から入射され
得る(第6図)。さらに、所望に応じて、シヨツ
トキ障壁又はM―I―Sを用いることができる
(第7図)。
The layer arrangement shown in FIG. 4 is for light incident from the top. When a transparent substrate is used instead of the opaque substrate 10, light can be incident from the substrate 10 side (FIG. 6). Additionally, a shot barrier or M-IS can be used if desired (FIG. 7).

以上において、堆積室乃至堆積領域の数および
長さ、製造ラインに沿つてのその位置並びに堆積
されるべき材料は、所望の太陽電池構造体毎に選
択され得る。
In the above, the number and length of the deposition chambers or regions, their location along the production line and the material to be deposited can be selected for each desired solar cell structure.

第3図には、堆積室24の一例がより詳しく示
されている。第3図において、基板10は該図面
を見る者に向つて(手前側に)移動する。ハウジ
ング48は堆積室24を包囲しており、下記の如
く実質的に連続的に基板10を進入・退出させる
ための出入口を有している。ヒータ50は基板1
0の近傍に位置する大面積赤外線ヒータであつて
よい(第3図)。堆積は基板10の反対側表面で
生じる。基板の加熱およびその温度制御は本件と
同時に米国にロバート・エフ・エジヤートン
(Robert F.Edgerton)によつて出願された「ア
パレータス・フオー・レギユレイテイング・サブ
ストレート・テンパラチヤー・イン・ア・コンテ
イニユアス・プラズマ・デポジシヨン・プロセ
ス」という名称の米国出願に記載された方法およ
び装置によつておこなうことができる。
FIG. 3 shows an example of the deposition chamber 24 in more detail. In FIG. 3, the substrate 10 is moved toward the viewer (towards the viewer). Housing 48 surrounds deposition chamber 24 and has an inlet/outlet for substantially continuous entry and exit of substrate 10, as described below. The heater 50 is the substrate 1
It may be a large area infrared heater located near zero (FIG. 3). Deposition occurs on the opposite surface of substrate 10. The heating of the substrate and its temperature control are described in the patent application filed in the United States by Robert F. Edgerton at the same time as this case. It can be carried out by the method and apparatus described in the US application entitled ``Tensual Plasma Deposition Process''.

処理用仕込みガスは、例えば該ガスを基板10
の一方の表面(堆積されるべき側の表面)に沿つ
て基板の中心に向かい基板の進行方向に直交する
方向の流れになるように導く複数の開口を有する
一対のマニホールド52,52から、基板10の
堆積表面側に供給される。あるいは、反応ガスは
例えば本件と同時に米国にマサツグ・イズ、チモ
シー・ジエイ・バーナード(Timothy・J・
Barnard)およびデイビツド・エイ・ガツツソ
(David A・Guttuso)によつて出願された「カ
ソード・フオー・ジエネレイテイング・ア・プラ
ズマ」という名称の米国出願に記載されている装
置によつて均一に導入することができる。
For example, the processing preparation gas may be applied to the substrate 10.
The substrate is deposited from a pair of manifolds 52, 52 having a plurality of openings that direct the flow along one surface (the surface to be deposited) toward the center of the substrate and perpendicular to the direction of movement of the substrate. 10 is supplied to the deposition surface side. Alternatively, the reactant gas may be supplied to the United States at the same time as the present case, such as Masatsugu Iss, Timothy J. Bernard (Timothy J.
Barnard and David A. Guttuso, entitled ``Cathode for Generating a Plasma''. can be introduced.

反応室に供給されるガスは好ましくはSiF4およ
び水素であり、アルゴンあるいは他のガス例えば
米国特許第4226898号もしくは本件と同時に米国
にビンセント・デー・カネラ(Vincent D・
Cannella)およびマサツグ・イズによつて出願さ
れた「インプルーブド・メソツド・フオー・プラ
ズマ・デポジシヨン・オブ・アモルフアス・マテ
リアル」という名称の米国出願に記載されている
不活性ガスのような不活性希釈ガスを含んでいて
もよい。
The gases supplied to the reaction chamber are preferably SiF 4 and hydrogen, and argon or other gases such as U.S. Pat.
An inert diluent gas, such as the inert gas described in the U.S. application entitled "Improved Method for Plasma Deposition of Amorphous Materials," filed by Cannella and Masatsugu Is. May contain.

均一なガス流が望ましく、したがつて好ましく
は多数の開口部がマニホールド52,52に形成
されている。その結果ガスが基板10の堆積側表
面に実質的に平行に且つ隣接して導びかれ得る。
Uniform gas flow is desired and therefore a large number of openings are preferably formed in the manifolds 52,52. As a result, the gas can be directed substantially parallel to and adjacent to the deposition side surface of the substrate 10.

排気ポート56は真空ポンプ(図示しない)に
接続されており、これによつて使用済のガスが排
出され、圧力平衡が維持される。電極58が基板
10から間隔をおいて設置されており、電極58
と基板10との間でプラズマが発生する。ガスは
電極58を通つて、好ましくは電極58に形成さ
れた複数個の開口60を通つて排出され、均一な
流れが維持される。プラズマ中において、処理用
ガスは主にフツ化ケイ素―水素ガス混合物であ
り、種々の種例えばSiF4,SiF3,SiF2,SiFや水
素を含む他の種例えばSiHF,SiHF2,SiHF3等さ
らに必要に応じて当該分野でよく知られたドープ
成分を含む。当業者によれば、これら種のいくつ
かは遷移性のものである。排気ポート56の所で
実現される真空度ないし減圧の程度はグロー放電
プラズマが基板10の面で維持されうるような圧
力を与える程度である。0.1ないし3トルの範囲
の圧力が好ましい。
Exhaust port 56 is connected to a vacuum pump (not shown) to evacuate spent gas and maintain pressure balance. An electrode 58 is installed at a distance from the substrate 10, and the electrode 58
Plasma is generated between the substrate 10 and the substrate 10 . Gas is exhausted through electrode 58, preferably through a plurality of apertures 60 formed in electrode 58, and a uniform flow is maintained. In the plasma, the processing gas is mainly a silicon fluoride-hydrogen gas mixture, including various species such as SiF 4 , SiF 3 , SiF 2 , SiF and other species containing hydrogen such as SiHF, SiHF 2 , SiHF 3 etc. Furthermore, if necessary, a dope component well known in the art is included. According to those skilled in the art, some of these species are transitional. The degree of vacuum or reduced pressure achieved at exhaust port 56 is such as to provide a pressure such that a glow discharge plasma can be maintained at the surface of substrate 10. Pressures in the range of 0.1 to 3 Torr are preferred.

基板10は接地されているが、電極58は、ア
モルフアスシリコン層を堆積させるグロー放電プ
ラズマを基板10の近傍に発生させ維持するため
の電気エネルギを供給する電源62に接続されて
いる。電源62は典型的にはラジオ周波数域で動
作する交流電源であるが、グロー放電プラズマを
発生させる電圧で動作する直流電源であつてもよ
い。ラジオ周波数の電力を望む場合、電源は例え
ば前記三番目に記した米国出願に記載されている
通り低電力で50ないし200キロヘルツで動作し得
る。グロー放電プラズマを発生させる供給電力に
加えて、電源62は電極58と基板10との間に
直流バイアスを印加して基板バイアスを制御する
ことができる。プラズマに印加される直流バイア
スによつてプラズマからのアモルフアスシリコン
の堆積工程がよりよく制御される。
Although the substrate 10 is grounded, the electrode 58 is connected to a power source 62 that provides electrical energy to generate and maintain a glow discharge plasma in the vicinity of the substrate 10 that deposits the amorphous silicon layer. Power supply 62 is typically an AC power supply operating in the radio frequency range, but may also be a DC power supply operating at a voltage that produces a glow discharge plasma. If radio frequency power is desired, the power supply may operate at low power from 50 to 200 kilohertz, for example as described in the third-noted US application. In addition to providing power to generate the glow discharge plasma, power supply 62 can apply a DC bias between electrode 58 and substrate 10 to control substrate bias. The DC bias applied to the plasma provides better control over the deposition process of amorphous silicon from the plasma.

デイスクリートな乃至ストリツプ状の電池を作
製する場合、プラズマからアモルフアスシリコン
を所望部分にのみ堆積させるように基板の表面を
マスクする必要があるかもしれない。このマスク
は基板10の面に近接して基板10と共に移動す
るマスク用無端ベルト64(第2図)によつて実
現され得る。位置合せは基板の側縁部に形成され
た孔によつておこなうことができ、マスク64は
基板10に対して適切に位置決めされ得る。スト
リツプ状電池は各堆積室を通る基板の進行方向と
平行に配向せしめられ得、その場合、長手方向の
位置合せは不要となる。マスク64は連続帯状マ
スクであり、ハウジング48内の案内ロール65
(第2図)の回りを動く。マスクベルト64のう
ち下側に位置しており、直接機能しない部分63
(第2図)は電極58の下に位置していてもよ
い。マスクベルト64は開放領域が大きいので、
排気ポート56から真空ポンプに至る排出ガスの
流れを妨害しない。
When fabricating discrete or strip cells, it may be necessary to mask the surface of the substrate so that the plasma deposits amorphous silicon only on the desired areas. This mask may be realized by an endless mask belt 64 (FIG. 2) that moves with the substrate 10 in close proximity to the surface of the substrate 10. Alignment can be accomplished by holes formed in the side edges of the substrate so that the mask 64 can be properly positioned relative to the substrate 10. The strip cells can be oriented parallel to the direction of travel of the substrate through each deposition chamber, in which case no longitudinal alignment is required. Mask 64 is a continuous strip mask, and guide roll 65 within housing 48
(Figure 2). A portion 63 of the mask belt 64 that is located on the lower side and does not function directly
(FIG. 2) may be located below the electrode 58. Since the mask belt 64 has a large open area,
The flow of exhaust gas from the exhaust port 56 to the vacuum pump is not obstructed.

各堆積室24,26,28は互いに同様に形成
されており、堆積室26,28もそれぞれ基板1
0の前進方向に移動するマスクベルト66,68
を有している。各堆積室24,26,28は同じ
構造であつてよいが、各室内で堆積される層のタ
イプの差異の故に、各室中で発生せしめられるプ
ラズマの成分はやや異なつている。マニホールド
に供給されるガスは各堆積室毎に異なるものであ
つてよいが、各堆積室内への供給ガスを同一と
し、別の処でドープガス例えばn形を与えるホス
フイン(PH3)またはp形を与えるジボラン
(B2H6)を供給するようにしてもよい。例えば、
アルゴンのような不活性ガス中のドープガス源を
別に設けることができる。基板10の堆積表面に
供給されるガスの流れは均一であることが望まし
いので、ドープガスと不活性ガスとの混合ガス源
を別に設けた場合、ガスがマニホールド52,5
2中に供給されマニホールド52,52の開口か
ら放出される前に混合しておくことが好ましい。
Each of the deposition chambers 24, 26, 28 is formed in the same way, and each of the deposition chambers 26, 28 also has a substrate 1.
Mask belts 66, 68 moving in the forward direction of 0
have. Although each deposition chamber 24, 26, 28 may be of the same construction, the composition of the plasma generated in each chamber is somewhat different due to the differences in the type of layer deposited within each chamber. The gas supplied to the manifold may be different for each deposition chamber, but the gas supplied to each deposition chamber is the same and the doping gas, e.g. phosphine (PH 3 ) to provide n-type or p-type, is added elsewhere. Alternatively, diborane (B 2 H 6 ) may be supplied. for example,
A separate source of dope gas in an inert gas such as argon can be provided. It is desirable that the flow of the gas supplied to the deposition surface of the substrate 10 be uniform, so if a separate source of a mixed gas of dope gas and inert gas is provided, the gas will flow through the manifolds 52, 5.
It is preferable to mix the liquids before they are supplied into the manifolds 2 and discharged from the openings of the manifolds 52, 52.

各堆積室24,26,28内における基板10
の滞留時間は堆積されるべき層の堆積速度および
厚さに応じて異なる。例えば、P―I―N装置を
作る場合、それぞれの層の厚さは50〜200Å、
2000〜6000Åおよび100〜500Åであり得る。すな
わち、基板が連続ウエブからなる場合、各室での
堆積速度が同じならば、異なる堆積領域は堆積す
べき厚さに比例した長さである。堆積層の厚さは
例えば本件と同時に米国にロバート・エフ・エジ
ヤートン(Robert F・Edgerton)によつて「オ
プチカル・メソツズ・フオー・コントローリン
グ・レイヤー・シツクネス」という名称で出願さ
れた米国出願に記載された方法および装置によつ
て監視し制御することができる。
Substrate 10 in each deposition chamber 24, 26, 28
The residence time of depends on the deposition rate and thickness of the layer to be deposited. For example, when making a PIN device, the thickness of each layer is 50 to 200 Å,
It can be 2000-6000 Å and 100-500 Å. That is, if the substrate consists of a continuous web and the deposition rate in each chamber is the same, the different deposition areas will have lengths proportional to the thickness to be deposited. The thickness of the deposited layer is described, for example, in a U.S. application filed at the same time as this case by Robert F. Edgerton under the title ``Optical Methods for Controlling Layer Thickness.'' can be monitored and controlled by the methods and equipment provided.

アモルフアスシリコンのプラズマ堆積用供給ガ
スおよびドープガス等各堆積室24,26,28
内の工程可変因子を制御するためにそれぞれに制
御装置70,72,74が接続されている。ま
た、適切なプラズマ放電の平衡を維持するための
適切な圧力レベルを維持するために真空ポンプも
制御され、加熱器の温度も制御される。こうし
て、連続製造がおこなえる。この装置系は基板を
ゆつくりと連続的に進行させて、あるいは基板の
所要部分を一工程から次の工程へと循環させて動
作させることができる。
Deposition chambers 24, 26, 28 for supply gas and dope gas for plasma deposition of amorphous silicon
Control devices 70, 72, and 74 are connected to each of them to control process variables within. The vacuum pump is also controlled to maintain proper pressure levels to maintain proper plasma discharge balance, and the heater temperature is also controlled. In this way, continuous production can be performed. This system can be operated by slowly advancing the substrate in a continuous manner or by cycling the required portions of the substrate from one step to the next.

各堆積室は、アモルフアスシリコンを堆積させ
るための正確な条件を与え得、かつ適切な不純物
ドープレベルを達成し得るような制御されたガス
雰囲気を持つ必要がある。基板10が各堆積室に
入りあるいはそこから退出するスリツトは狭く、
形成されるが、更に、隣接する堆積室内のガスの
相互混合・汚染を防止する分離手段が要求され
る。この分離手段は、基板10が通過し得る狭い
スリツトを有しており基板を囲包する分離装置7
6,78からなる。各分離装置中のスリツト乃至
中央の孔部は排気されていてもあるいはアルゴン
その他の不活性ガスが流されていてもよく、いず
れの場合でも、基板10が分離装置を通る際基板
10の該通過部分から全ての反応ガスが除去せし
められる。
Each deposition chamber must have a controlled gas atmosphere that can provide precise conditions for depositing amorphous silicon and achieve appropriate impurity doping levels. The slits through which the substrate 10 enters and exits each deposition chamber are narrow;
However, separation means are also required to prevent intermixing and contamination of gases in adjacent deposition chambers. This separating means has a narrow slit through which the substrate 10 can pass, and the separating device 7 surrounds the substrate.
It consists of 6,78. The slit or central hole in each separator may be evacuated or flushed with argon or other inert gas, in which case the substrate 10 passes through the separator. All reactant gases are removed from the part.

上記分離装置は例えば本件と同時に米国にマサ
ツグ・イズおよびデイビツト・エイ・ガツツソ
(David A・Gattuso)によつて「アイソレーシ
ヨン・バルブ」という名称で出願された米国特許
に記載された分離弁であつてもよい。第2図にお
いて、ウエブ状基板10の供給および引取りは真
空室内でおこなうものとして示されているが、完
全な連続系の場合、基板は他の工程から進入し、
他の工程へと退出するであろうから、堆積室24
の入口およびチヤンバ28の出口にも分離装置が
必要となろう。
The above-mentioned separation device is, for example, the separation valve described in the U.S. patent filed under the name "Isolation Valve" by Masatsugu I. and David A. Gattuso in the United States at the same time as this case. It may be hot. In FIG. 2, it is shown that the web-shaped substrate 10 is supplied and withdrawn within a vacuum chamber, but in the case of a completely continuous system, the substrate would enter from another process.
The deposition chamber 24 will exit to another process.
Separation devices would also be required at the inlet of the chamber 28 and the outlet of the chamber 28.

以上の如く構成された装置では、堆積室24,
26,28間の堆積雰囲気の分離が達成され、ア
モルフアスシリコン堆積用供給ガスの連続流入お
よびドープガスの制御された流入並びに使用済の
反応ガスの真空排気によつて各堆積室内で制御さ
れ平衡を保つた動作が維持され、各堆積室内に安
定なプラズマおよび堆積条件が維持される。
In the apparatus configured as described above, the deposition chamber 24,
Separation of the deposition atmosphere between 26 and 28 was achieved, with controlled equilibrium within each deposition chamber by continuous inflow of amorphous silicon deposition feed gas and controlled inflow of dope gas, as well as vacuum evacuation of spent reactant gases. A stable operation is maintained and stable plasma and deposition conditions are maintained within each deposition chamber.

第4図ないし第7図にはこの発明によつて作製
された太陽電池の4つの例が示されている。第4
図には複数個のP―I―N電池80からなる太陽
電池が示されている。基板10は金属であつても
絶縁体であつてもよい。電池80は既述のマスク
によつて相互に分離されたストリツプ状に形成さ
れたものであつてよい。絶縁層16が金属基板1
0上に被着されているが、これは基板が絶縁体の
場合は省いてもよい。
FIGS. 4-7 show four examples of solar cells made according to the present invention. Fourth
The figure shows a solar cell consisting of a plurality of PIN cells 80. The substrate 10 may be made of metal or an insulator. The cells 80 may be formed in strips separated from each other by the masks described above. The insulating layer 16 is the metal substrate 1
0, but this may be omitted if the substrate is an insulator.

複数個のベースコンタクト(そのうち2つが1
8と20で示されている)が絶縁層16上に被着
されている。以後の被着乃至堆積は各コンタクト
上で同じであり、p形層42、ついで真性層44
およびn形層46が被着されている。酸化インジ
ウム―スズのようなトツプコンタクト層30が被
着され、必要に応じてAR層が被着されている。
電池は電流を集めるためのグリツド82を含んで
いてもよく、このグリツド82は所望に応じて例
えば接続金属層31によつて他の電池に電気的に
接続されていてもよい。そして、電池全体がラミ
ネート層38および40によつて保護され囲包さ
れている。
Multiple base contacts (2 of which are 1
8 and 20) are deposited on the insulating layer 16. The subsequent deposition is the same on each contact, starting with the p-type layer 42 and then the intrinsic layer 44.
and n-type layer 46 is deposited. A top contact layer 30 such as indium-tin oxide is deposited and optionally an AR layer.
The cell may include a grid 82 for collecting current, which grid 82 may be electrically connected to other cells, for example by a connecting metal layer 31, if desired. The entire cell is then protected and surrounded by laminate layers 38 and 40.

第5図には第二の態様に従うP―I―Nタイプ
の太陽電池装置84が示されている。この装置で
は、金属基板10全体にわたつてp形層42、真
性層44およびn形層46が堆積されている。
個々の電池86は並列接続され、マスクまたは
TCO層30のホトリトグラフイによつて規定さ
れている。電池86は電流収集用のグリツド8
2′を有していてもよく、このグリツド82′は所
望に応じて接続し得る。
FIG. 5 shows a PIN type solar cell device 84 according to the second embodiment. In this device, a p-type layer 42, an intrinsic layer 44, and an n-type layer 46 are deposited over a metal substrate 10.
Individual batteries 86 are connected in parallel and masked or
Defined by photolithography of TCO layer 30. The battery 86 is connected to the grid 8 for current collection.
2', and this grid 82' can be connected as desired.

第6図にはガラスのような透明基板を持つ第三
の態様に従うP―I―Nタイプの電池装置88が
示されている。この場合、太陽光は基板10側か
ら入射するように示されている。基板10には
AR層32が形成され、ついで所望によりグリツ
ド90が形成されている。その次に、p形層4
2、真性層44およびn形層46が形成されてい
る。p形層42を光の入射側に用いているので、
TCO30とp形層42の間に中間層を設けてそ
れらの間の電気的適合性を改善することが望まし
い。最後に、平行な底部導体92が最上層46上
に所望パターンで被着される。
FIG. 6 shows a PIN type battery device 88 according to a third embodiment having a transparent substrate such as glass. In this case, sunlight is shown to be incident from the substrate 10 side. On the board 10
AR layer 32 is formed, followed by grid 90, if desired. Next, p-type layer 4
2. An intrinsic layer 44 and an n-type layer 46 are formed. Since the p-type layer 42 is used on the light incident side,
It is desirable to provide an intermediate layer between TCO 30 and p-type layer 42 to improve electrical compatibility therebetween. Finally, parallel bottom conductors 92 are deposited on top layer 46 in the desired pattern.

第7図には、M―I―Sタイプの装置94が示
されている。金属基板10上にはn形層46およ
び真性層44が形成されている。層44上に絶縁
層96が形成され、ついで良作用性金属コンタク
ト98が個々の電池に形成されている。コンタク
ト98にAR層32を形成できる。
In FIG. 7, an M-I-S type device 94 is shown. An n-type layer 46 and an intrinsic layer 44 are formed on the metal substrate 10. An insulating layer 96 is formed over layer 44, and active metal contacts 98 are then formed on the individual cells. An AR layer 32 can be formed on the contact 98.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の太陽電池製造工程の一例を
示す図、第2図はこの発明による好ましい一具体
例の太陽電池製造装置の説明図、第3図は第2図
の堆積室の構成を一部切欠して示す図、第4図な
いし第7図はこの発明に従つて得た太陽電池構造
体の断面説明図である。 10……基板、24,26,28……グロー放
電堆積室装置、42……p形アモルフアスシリコ
ン層、44……真性アモルフアスシリコン層、4
6……n形アモルフアスシリコン層、56……排
気ポート、58……電極、62……電源、64,
66,68……マスク、52……マニホールド、
76,78……分離装置。
FIG. 1 is a diagram showing an example of the solar cell manufacturing process of the present invention, FIG. 2 is an explanatory diagram of a solar cell manufacturing apparatus according to a preferred embodiment of the invention, and FIG. 3 is a diagram showing the configuration of the deposition chamber of FIG. 2. The partially cutaway figures and FIGS. 4 to 7 are explanatory cross-sectional views of the solar cell structure obtained according to the present invention. 10... Substrate, 24, 26, 28... Glow discharge deposition chamber device, 42... P-type amorphous silicon layer, 44... Intrinsic amorphous silicon layer, 4
6...n-type amorphous silicon layer, 56...exhaust port, 58...electrode, 62...power supply, 64,
66, 68...mask, 52...manifold,
76, 78...separation device.

Claims (1)

【特許請求の範囲】 1 帯状基板を該基板の長手方向に連続的に進行
させるように該基板を連続的に移動させる基板進
行装置と、 該進行装置の制御下で長手方向に連続的に動い
ている帯状基板の一方の表面上にn形及びp形の
うちの一方の導電形の第一のアモルフアス半導体
層を連続的にグロー放電堆積させるべく、帯状基
板の進行路に沿つて設けられた第一のグロー放電
堆積室を有する第一のグロー放電堆積装置と、 前記進行装置の制御下で帯状基板が連続的に通
過せしめられるスリツトを介して第一のグロー放
電堆積室に連通されており、前記進行装置の制御
下で長手方向に連続的に動いている帯状基板上の
前記第一のアモルフアス半導体層上にn形及びp
形のうち他方の導電形の第二のアモルフアス半導
体層を連続的にグロー放電堆積させるように構成
された第二のグロー放電堆積室を有する第二のグ
ロー放電堆積装置と、 第一及び第二のグロー放電堆積室の夫々におい
てグロー放電堆積が連続的に行なわれている間、
帯状基板が第一のグロー放電堆積室と第二のグロ
ー放電堆積室との間のスリツトを通つて連続的に
動いている際、第一の堆積室と第二の堆積室とが
スリツトの周壁と基板との間の間隙で連通されて
いるスリツトにおいて第一の堆積室中の堆積雰囲
気が第二の堆積室中の堆積雰囲気により汚染され
るのを防止する分離手段と を有するアモルフアス太陽電池の製造装置。 2 前記第一及び第二の堆積装置の夫々は、前記
第一及び第二の層の夫々を所定の形状で堆積せし
め得るマスクを有している特許請求の範囲第1項
に記載の製造装置。 3 前記マスクが、帯状基板の近傍において帯状
基板と同じ方向に移動する面を有する無端ベルト
からなる特許請求の範囲第2項に記載の製造装
置。 4 前記第一及び第二の堆積装置の夫々は、基板
の前記一方の表面の極めて近くに反応ガスを導く
ように構成された複数の開口部を規定しているマ
ニホールドを基板の各側縁に隣接して有している
特許請求の範囲第1項から第3項のいずれかに記
載の製造装置。 5 マニホールドの前記開口部は、基板の側縁か
ら中央に向かつて基板の進行方向に実質的に直交
する方向に反応ガスを導くように構成されてお
り、前記第一及び第二のの堆積装置の夫々は、新
たな反応ガスの基板への流れと使用済ガスの基板
からの除去との平衡を達成するため反応ガスの流
れが基板に関して実質的に対称になるように、マ
ニホールドから実質的に対称に一組の排気ポート
を堆積室中に有している特許請求の範囲第4項に
記載の製造装置。 6 前記第一及び第二の堆積装置の夫々は、基板
の前記一方の表面に隣接してプラズマを発生させ
るべく電源に接続された電極を有している特許請
求の範囲第1項から第5項のいずれかに記載の製
造装置。 7 前記電源は、前記電極に対する直流制御バイ
アスを基板に与えるように構成されている特許請
求の範囲第6項に記載の製造装置。 8 帯状基板を該基板の長手方向に連続的に進行
させるように該基板を連続的に移動させる基板進
行装置と、 該進行装置の制御下で長手方向に連続的に動い
ている帯状基板の一方の表面上にn形及びp形の
うちの一方の導電形の第一のアモルフアス半導体
層を連続的にグロー放電堆積させるべく、帯状基
板の進行路に沿つて設けられた第一のグロー放電
堆積室を有する第一のグロー放電堆積装置と、 前記進行装置の制御下で帯状基板が連続的に通
過せしめられる第一のスリツトを介して第一のグ
ロー放電堆積室に連通されており、前記進行装置
の制御下で長手方向に連続的に動いている帯状基
板上の前記第一のアモルフアス半導体層上に実質
的に真性のアモルフアス半導体層を連続的にグロ
ー放電堆積させるように構成された第二のグロー
放電堆積室を有する第二のグロー放電堆積装置
と、 前記進行装置の制御下で帯状基板が連続的に通
過せしめられる第二のスリツトを介して第二のグ
ロー放電堆積室に連通されており、前記進行装置
の制御下で長手方向に連続的に動いている帯状基
板上の前記第二のアモルフアス半導体層上にn形
及びp形のうち他方の導電形の第三のアモルフア
ス半導体層を連続的にグロー放電堆積させるよう
に構成された第三のグロー放電堆積室を有する第
三のグロー放電堆積装置と、 第一及び第二のグロー放電堆積室の夫々におい
てグロー放電堆積が連続的に行なわれている間、
帯状基板が第一のグロー放電堆積室と第二のグロ
ー放電堆積室との間の第一のスリツトを通つて連
続的に動いている際、第一の堆積室と第二の堆積
室とが第一のスリツトの周壁と基板との間の間隙
で連通されている第一のスリツトにおいて第一の
堆積室中の堆積雰囲気が第二の堆積室中の堆積雰
囲気によつて汚染されるのを防止する第一の分離
手段と、 第二及び第三のグロー放電堆積室の夫々におい
てグロー放電堆積が連続的に行なわれている間、
帯状基板が第二のグロー放電堆積室と第三のグロ
ー放電堆積室との間の第二のスリツトを通つて連
続的に動いている際、第二の堆積室と第三の堆積
室とが第二のスリツトの周壁と基板との間の間隙
で連通されている第二のスリツトにおいて第二の
堆積室中の堆積雰囲気が第三の堆積室中の堆積雰
囲気によつて汚染されるのを防止する第二の分離
手段と を有するアモルフアス太陽電池製造装置。 9 前記第一、第二、及び第三の堆積装置の夫々
は、前第一、第二、及び第三の層の夫々を所定の
形状で堆積せしめ得るマスクを有している特許請
求の範囲第8項に記載の製造装置。 10 前記マスクが、帯状基板の近傍において帯
状基板と同じ方向に移動する面を有する無端ベル
トからなる特許請求の範囲第9項に記載の製造装
置。 11 前記第一、第二、及び第三の堆積装置の
夫々は、基板の前記一方の表面の極めて近くに反
応ガスを導くように構成された複数の開口部を規
定しているマニホールドの夫々を基板の各側縁に
隣接して有している特許請求の範囲第8項から第
10項のいずれかに記載の製造装置。 12 マニホールドの前記開口部は、基板の側縁
から中央に向かつて基板の進行方向に実質的に直
交する方向に反応ガスを導くように構成されてお
り、前記第一、第二及び第三の堆積装置の夫々
は、新たな反応ガスの基板への流れと使用済ガス
の基板からの除去との平衡を達成するため反応ガ
スの流れが基板に関して実質的に対称になるよう
に、マニホールドから実質的に対称に一組の排気
ポートを堆積室中に有している特許請求の範囲第
11項に記載の製造装置。 13 前記第一及び第三の堆積装置の夫々に導入
される反応ガスが、シリコン含有ガスとドープガ
スとを含む特許請求の範囲第8項から第12項の
いずれかに記載の製造装置。 14 前記反応ガスがアルゴンと混合されている
特許請求の範囲第13項に記載の製造装置。 15 前記第一及び第三の堆積装置のうちの一方
に導入されるドープガスがB2H6である特許請求
の範囲第13項に記載の製造装置。 16 前記第一及び第三の堆積装置のうちの他方
に導入されるドープガスがPH3である特許請求の
範囲第15項に記載の製造装置。 17 前記第一、第二及び第三の堆積装置の夫々
は、基板の前記一方の表面に隣接してプラズマを
発生させるべく電源に接続された電極を有してい
る特許請求の範囲第8項から第16項のいずれか
に記載の製造装置。 18 前記電源は前記電極に対する直流制御バイ
アスを基板に与えるように構成されている特許請
求の範囲第17項に記載の装置。
[Scope of Claims] 1. A substrate advancing device that continuously moves a strip-shaped substrate so as to continuously advance the substrate in the longitudinal direction of the substrate; and a substrate advancing device that moves continuously in the longitudinal direction under the control of the advancing device. A first amorphous semiconductor layer of one of n-type and p-type conductivity is continuously deposited by glow discharge on one surface of the strip-shaped substrate. a first glow discharge deposition device having a first glow discharge deposition chamber; and a slit through which the strip substrate is continuously passed under the control of the advance device, the substrate being communicated with the first glow discharge deposition chamber. , n-type and p-type semiconductor layers are deposited on the first amorphous semiconductor layer on the strip substrate that is continuously moving in the longitudinal direction under the control of the advancing device.
a second glow discharge deposition apparatus having a second glow discharge deposition chamber configured to continuously glow discharge deposit a second amorphous semiconductor layer of the other conductivity type; While glow discharge deposition is being carried out continuously in each of the glow discharge deposition chambers,
When the strip substrate is continuously moving through the slit between the first glow discharge deposition chamber and the second glow discharge deposition chamber, the first deposition chamber and the second deposition chamber are connected to the peripheral wall of the slit. and separation means for preventing the deposition atmosphere in the first deposition chamber from being contaminated by the deposition atmosphere in the second deposition chamber in the slit communicating with the substrate through a gap between the amorphous solar cell and the substrate. Manufacturing equipment. 2. The manufacturing apparatus according to claim 1, wherein each of the first and second deposition apparatuses has a mask that allows each of the first and second layers to be deposited in a predetermined shape. . 3. The manufacturing apparatus according to claim 2, wherein the mask comprises an endless belt having a surface that moves in the same direction as the strip substrate in the vicinity of the strip substrate. 4. Each of the first and second deposition devices includes a manifold on each side of the substrate defining a plurality of openings configured to direct a reactant gas in close proximity to the one surface of the substrate. The manufacturing apparatus according to any one of claims 1 to 3, which are adjacent to each other. 5. The opening of the manifold is configured to direct the reactant gas from the side edges of the substrate toward the center and in a direction substantially perpendicular to the direction of movement of the substrate, and the opening of the manifold each from the manifold so that the flow of reactant gas is substantially symmetrical with respect to the substrate to achieve equilibrium between the flow of new reactant gas to the substrate and the removal of spent gas from the substrate. 5. The manufacturing apparatus of claim 4, having a symmetrical set of exhaust ports in the deposition chamber. 6. Claims 1 to 5, wherein each of the first and second deposition devices has an electrode adjacent to the one surface of the substrate and connected to a power source to generate plasma. Manufacturing equipment according to any of the above. 7. The manufacturing apparatus according to claim 6, wherein the power source is configured to apply a DC control bias to the electrode to the substrate. 8. A substrate advancing device that continuously moves the substrate so as to continuously advance the strip substrate in the longitudinal direction of the substrate; and one of the strip substrates that moves continuously in the longitudinal direction under the control of the advancing device. A first glow discharge deposition layer provided along the traveling path of the strip-shaped substrate in order to continuously glow discharge deposit a first amorphous semiconductor layer of one of the n-type and p-type conductivity on the surface of the substrate. a first glow discharge deposition device having a chamber; and a first glow discharge deposition chamber connected to the first glow discharge deposition chamber through a first slit through which the strip substrate is continuously passed under the control of the advancement device; a second layer configured to continuously glow discharge deposit a substantially intrinsic amorphous semiconductor layer onto the first amorphous semiconductor layer on the strip substrate moving continuously in the longitudinal direction under the control of the apparatus; a second glow discharge deposition device having a glow discharge deposition chamber of; and a second glow discharge deposition device communicating with the second glow discharge deposition chamber via a second slit through which the strip substrate is continuously passed under the control of the advancing device. and depositing a third amorphous semiconductor layer of the other conductivity type of n-type and p-type on the second amorphous semiconductor layer on the strip substrate that is continuously moving in the longitudinal direction under the control of the advancing device. a third glow discharge deposition apparatus having a third glow discharge deposition chamber configured to perform continuous glow discharge deposition; and a third glow discharge deposition device configured to perform glow discharge deposition continuously in each of the first and second glow discharge deposition chambers. While it is being done
When the strip substrate is continuously moving through the first slit between the first glow discharge deposition chamber and the second glow discharge deposition chamber, the first deposition chamber and the second deposition chamber are connected to each other. The deposition atmosphere in the first deposition chamber is prevented from being contaminated by the deposition atmosphere in the second deposition chamber in the first slit, which is communicated with the peripheral wall of the first slit through the gap between the substrate and the first slit. while glow discharge deposition is being continuously performed in each of the second and third glow discharge deposition chambers;
When the strip substrate is continuously moved through the second slit between the second glow discharge deposition chamber and the third glow discharge deposition chamber, the second deposition chamber and the third deposition chamber are connected to each other. The deposition atmosphere in the second deposition chamber is prevented from being contaminated by the deposition atmosphere in the third deposition chamber in the second slit, which is communicated with the peripheral wall of the second slit through the gap between the substrate and the second slit. an amorphous solar cell manufacturing apparatus having a second separation means for preventing 9. Claims in which each of the first, second, and third deposition devices has a mask that allows each of the first, second, and third layers to be deposited in a predetermined shape. The manufacturing apparatus according to item 8. 10. The manufacturing apparatus according to claim 9, wherein the mask comprises an endless belt having a surface that moves in the same direction as the strip substrate in the vicinity of the strip substrate. 11 Each of the first, second, and third deposition devices includes a respective manifold defining a plurality of openings configured to direct a reactant gas in close proximity to the one surface of the substrate. The manufacturing apparatus according to any one of claims 8 to 10, wherein the manufacturing apparatus is provided adjacent to each side edge of the substrate. 12 The opening of the manifold is configured to guide the reactive gas from the side edge of the substrate toward the center and in a direction substantially perpendicular to the direction of movement of the substrate, and the opening of the manifold Each of the deposition devices has substantially the same flow from the manifold so that the flow of reactant gas is substantially symmetrical with respect to the substrate to achieve equilibrium between the flow of fresh reactant gas to the substrate and the removal of spent gas from the substrate. 12. The manufacturing apparatus according to claim 11, further comprising a set of symmetrically symmetrical exhaust ports in the deposition chamber. 13. The manufacturing apparatus according to any one of claims 8 to 12, wherein the reaction gas introduced into each of the first and third deposition apparatuses includes a silicon-containing gas and a dope gas. 14. The manufacturing apparatus according to claim 13, wherein the reaction gas is mixed with argon. 15. The manufacturing apparatus according to claim 13 , wherein the dope gas introduced into one of the first and third deposition apparatuses is B2H6 . 16. The manufacturing apparatus according to claim 15, wherein the dope gas introduced into the other of the first and third deposition apparatuses is PH3 . 17. Claim 8, wherein each of the first, second and third deposition devices has an electrode adjacent to the one surface of the substrate connected to a power source to generate plasma. 17. The manufacturing apparatus according to any one of Item 16. 18. The apparatus of claim 17, wherein the power source is configured to provide a substrate with a DC controlled bias to the electrode.
JP56075588A 1980-05-19 1981-05-19 Method and device for producing solar battery as well as method and chamber for coating amorphous silicon Granted JPS57122581A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US06/151,301 US4400409A (en) 1980-05-19 1980-05-19 Method of making p-doped silicon films

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP3112649A Division JP2741638B2 (en) 1980-05-19 1991-02-21 Manufacturing method of amorphous silicon solar cell

Publications (2)

Publication Number Publication Date
JPS57122581A JPS57122581A (en) 1982-07-30
JPS6243554B2 true JPS6243554B2 (en) 1987-09-14

Family

ID=22538142

Family Applications (5)

Application Number Title Priority Date Filing Date
JP1152074A Expired - Lifetime JP2539916B2 (en) 1980-05-19 1981-05-15 Photovoltaic element
JP56073356A Granted JPS5743413A (en) 1980-05-19 1981-05-15 Semiconductor element and method of producing same
JP56075588A Granted JPS57122581A (en) 1980-05-19 1981-05-19 Method and device for producing solar battery as well as method and chamber for coating amorphous silicon
JP60077525A Granted JPS6122622A (en) 1980-05-19 1985-04-11 Method and device for producing photovoltaic power panel
JP61054540A Granted JPS61287176A (en) 1980-05-19 1986-03-12 Substrate and photovoltaic device having the same

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP1152074A Expired - Lifetime JP2539916B2 (en) 1980-05-19 1981-05-15 Photovoltaic element
JP56073356A Granted JPS5743413A (en) 1980-05-19 1981-05-15 Semiconductor element and method of producing same

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP60077525A Granted JPS6122622A (en) 1980-05-19 1985-04-11 Method and device for producing photovoltaic power panel
JP61054540A Granted JPS61287176A (en) 1980-05-19 1986-03-12 Substrate and photovoltaic device having the same

Country Status (19)

Country Link
US (1) US4400409A (en)
JP (5) JP2539916B2 (en)
KR (3) KR840000756B1 (en)
AU (3) AU542845B2 (en)
BR (1) BR8103030A (en)
CA (1) CA1184096A (en)
DE (3) DE3153270C2 (en)
ES (3) ES502281A0 (en)
FR (1) FR2482786B1 (en)
GB (3) GB2076433B (en)
IE (1) IE52688B1 (en)
IL (1) IL62883A (en)
IN (1) IN155670B (en)
IT (1) IT1135827B (en)
MX (1) MX155307A (en)
NL (1) NL8102411A (en)
PH (1) PH18408A (en)
SE (1) SE456380B (en)
ZA (1) ZA813076B (en)

Families Citing this family (137)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5091334A (en) * 1980-03-03 1992-02-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JPS5713777A (en) 1980-06-30 1982-01-23 Shunpei Yamazaki Semiconductor device and manufacture thereof
US4677738A (en) * 1980-05-19 1987-07-07 Energy Conversion Devices, Inc. Method of making a photovoltaic panel
US5262350A (en) * 1980-06-30 1993-11-16 Semiconductor Energy Laboratory Co., Ltd. Forming a non single crystal semiconductor layer by using an electric current
US6900463B1 (en) 1980-06-30 2005-05-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US5859443A (en) * 1980-06-30 1999-01-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US4542711A (en) * 1981-03-16 1985-09-24 Sovonics Solar Systems Continuous system for depositing amorphous semiconductor material
EP0078541B1 (en) * 1981-11-04 1991-01-16 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Flexible photovoltaic device
US4485125A (en) * 1982-03-19 1984-11-27 Energy Conversion Devices, Inc. Method for continuously producing tandem amorphous photovoltaic cells
JPS58169980A (en) * 1982-03-19 1983-10-06 Matsushita Electric Ind Co Ltd Manufacture of photo voltaic element
US4423701A (en) * 1982-03-29 1984-01-03 Energy Conversion Devices, Inc. Glow discharge deposition apparatus including a non-horizontally disposed cathode
US4462332A (en) * 1982-04-29 1984-07-31 Energy Conversion Devices, Inc. Magnetic gas gate
JPS58196063A (en) * 1982-05-10 1983-11-15 Matsushita Electric Ind Co Ltd Manufacture of photovoltaic element
JPS5934668A (en) * 1982-08-21 1984-02-25 Agency Of Ind Science & Technol Manufacture of thin solar battery
JPS5950575A (en) * 1982-09-16 1984-03-23 Agency Of Ind Science & Technol Manufacture of solar battery
JPS5961077A (en) * 1982-09-29 1984-04-07 Nippon Denso Co Ltd Amorphous silicon solar battery
US4443652A (en) * 1982-11-09 1984-04-17 Energy Conversion Devices, Inc. Electrically interconnected large area photovoltaic cells and method of producing said cells
US4515107A (en) * 1982-11-12 1985-05-07 Sovonics Solar Systems Apparatus for the manufacture of photovoltaic devices
JPS59201471A (en) * 1983-04-29 1984-11-15 Semiconductor Energy Lab Co Ltd Photoelectric conversion semiconductor device
US4483883A (en) * 1982-12-22 1984-11-20 Energy Conversion Devices, Inc. Upstream cathode assembly
US4513684A (en) * 1982-12-22 1985-04-30 Energy Conversion Devices, Inc. Upstream cathode assembly
JPS60119784A (en) * 1983-12-01 1985-06-27 Kanegafuchi Chem Ind Co Ltd Manufacture of insulation metal base plate and device utilizing thereof
AU562641B2 (en) 1983-01-18 1987-06-18 Energy Conversion Devices Inc. Electronic matrix array
US4479455A (en) * 1983-03-14 1984-10-30 Energy Conversion Devices, Inc. Process gas introduction and channeling system to produce a profiled semiconductor layer
JPH0614556B2 (en) * 1983-04-29 1994-02-23 株式会社半導体エネルギー研究所 Photoelectric conversion device and manufacturing method thereof
JPS59228716A (en) * 1983-06-10 1984-12-22 Sanyo Electric Co Ltd Vapor growth method
US4480585A (en) * 1983-06-23 1984-11-06 Energy Conversion Devices, Inc. External isolation module
DE3400843A1 (en) * 1983-10-29 1985-07-18 VEGLA Vereinigte Glaswerke GmbH, 5100 Aachen METHOD FOR MANUFACTURING AUTOMOTIVE GLASS DISC WITH STRIP-SHAPED FAIRING PROTECTION FILTERS BY VAPORIZING OR SPUTTERING, AND DEVICE FOR CARRYING OUT THE METHOD
US4514583A (en) * 1983-11-07 1985-04-30 Energy Conversion Devices, Inc. Substrate for photovoltaic devices
JPS60214572A (en) * 1984-04-11 1985-10-26 Matsushita Electric Ind Co Ltd Thin-film solar cell and manufacture thereof
US4634605A (en) * 1984-05-23 1987-01-06 Wiesmann Harold J Method for the indirect deposition of amorphous silicon and polycrystalline silicone and alloys thereof
JPS61133676A (en) * 1984-12-03 1986-06-20 Showa Alum Corp Substrate for amorphous si solar battery
JPS6142972A (en) * 1984-08-06 1986-03-01 Showa Alum Corp Manufacture of substrate for a-si solar cell
JPS6179548U (en) * 1984-10-31 1986-05-27
US4609771A (en) * 1984-11-02 1986-09-02 Sovonics Solar Systems Tandem junction solar cell devices incorporating improved microcrystalline p-doped semiconductor alloy material
JPS61133675A (en) * 1984-12-03 1986-06-20 Showa Alum Corp Manufacture of substrate for amorphous si solar battery
US4566403A (en) * 1985-01-30 1986-01-28 Sovonics Solar Systems Apparatus for microwave glow discharge deposition
FR2581781B1 (en) * 1985-05-07 1987-06-12 Thomson Csf NON-LINEAR CONTROL ELEMENTS FOR FLAT ELECTROOPTIC DISPLAY SCREEN AND MANUFACTURING METHOD THEREOF
US4664951A (en) * 1985-07-31 1987-05-12 Energy Conversion Devices, Inc. Method provided for corrective lateral displacement of a longitudinally moving web held in a planar configuration
JPS6292485A (en) * 1985-10-18 1987-04-27 Sanyo Electric Co Ltd Manufacture of solar cell
FR2593343B1 (en) * 1986-01-20 1988-03-25 Thomson Csf MATRIX OF PHOTOSENSITIVE ELEMENTS AND ITS MANUFACTURING METHOD, READING METHOD THEREOF, AND APPLICATION OF THIS MATRIX TO IMAGE TAKING
JPH0744286B2 (en) * 1986-03-04 1995-05-15 三菱電機株式会社 Method for manufacturing amorphous photovoltaic module
IL82673A0 (en) * 1986-06-23 1987-11-30 Minnesota Mining & Mfg Multi-chamber depositions system
US4841908A (en) * 1986-06-23 1989-06-27 Minnesota Mining And Manufacturing Company Multi-chamber deposition system
US4874631A (en) * 1986-06-23 1989-10-17 Minnesota Mining And Manufacturing Company Multi-chamber deposition system
US5031571A (en) * 1988-02-01 1991-07-16 Mitsui Toatsu Chemicals, Inc. Apparatus for forming a thin film on a substrate
DE3809010C2 (en) * 1988-03-17 1998-02-19 Siemens Ag Process for producing microcrystalline, n- or p-type silicon layers using the glow discharge plasma technique, suitable for solar cells
JPH0351971Y2 (en) * 1988-05-12 1991-11-08
US5053625A (en) * 1988-08-04 1991-10-01 Minnesota Mining And Manufacturing Company Surface characterization apparatus and method
US5001939A (en) * 1988-08-04 1991-03-26 Minnesota Mining And Manufacturing Co. Surface characterization apparatus and method
JPH02235327A (en) * 1989-03-08 1990-09-18 Fujitsu Ltd Device and method of growing semiconductor
US5098850A (en) * 1989-06-16 1992-03-24 Canon Kabushiki Kaisha Process for producing substrate for selective crystal growth, selective crystal growth process and process for producing solar battery by use of them
DE69030140T2 (en) * 1989-06-28 1997-09-04 Canon Kk Method and arrangement for the continuous formation of a large-area thin layer deposited by microwave plasma CVD
US5130170A (en) * 1989-06-28 1992-07-14 Canon Kabushiki Kaisha Microwave pcvd method for continuously forming a large area functional deposited film using a curved moving substrate web with microwave energy with a directivity in one direction perpendicular to the direction of microwave propagation
US5281541A (en) * 1990-09-07 1994-01-25 Canon Kabushiki Kaisha Method for repairing an electrically short-circuited semiconductor device, and process for producing a semiconductor device utilizing said method
JP2824808B2 (en) * 1990-11-16 1998-11-18 キヤノン株式会社 Apparatus for continuously forming large-area functional deposited films by microwave plasma CVD
US5225378A (en) * 1990-11-16 1993-07-06 Tokyo Electron Limited Method of forming a phosphorus doped silicon film
US5629054A (en) * 1990-11-20 1997-05-13 Canon Kabushiki Kaisha Method for continuously forming a functional deposit film of large area by micro-wave plasma CVD method
JP2810532B2 (en) * 1990-11-29 1998-10-15 キヤノン株式会社 Method and apparatus for forming deposited film
JP3101330B2 (en) * 1991-01-23 2000-10-23 キヤノン株式会社 Method and apparatus for continuously forming large-area functional deposited film by microwave plasma CVD
JP2975151B2 (en) * 1991-03-28 1999-11-10 キヤノン株式会社 Continuous production equipment for semiconductor devices
JP3118037B2 (en) * 1991-10-28 2000-12-18 キヤノン株式会社 Method and apparatus for forming deposited film
JP3073327B2 (en) * 1992-06-30 2000-08-07 キヤノン株式会社 Deposition film formation method
DE4324320B4 (en) * 1992-07-24 2006-08-31 Fuji Electric Co., Ltd., Kawasaki Method and device for producing a thin-film photovoltaic conversion device
US5821597A (en) * 1992-09-11 1998-10-13 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device
US6720576B1 (en) 1992-09-11 2004-04-13 Semiconductor Energy Laboratory Co., Ltd. Plasma processing method and photoelectric conversion device
DE69410301T2 (en) * 1993-01-29 1998-09-24 Canon Kk Process for the production of functional deposited layers
JPH0653534A (en) * 1993-02-04 1994-02-25 Semiconductor Energy Lab Co Ltd Photoelectric converter
JP3571785B2 (en) * 1993-12-28 2004-09-29 キヤノン株式会社 Method and apparatus for forming deposited film
DE9407482U1 (en) * 1994-05-05 1994-10-06 Balzers und Leybold Deutschland Holding AG, 63450 Hanau Functional device for a vacuum system for the treatment of disc-shaped workpieces
JP3169337B2 (en) * 1995-05-30 2001-05-21 キヤノン株式会社 Photovoltaic element and method for manufacturing the same
US6273955B1 (en) 1995-08-28 2001-08-14 Canon Kabushiki Kaisha Film forming apparatus
US6096389A (en) * 1995-09-14 2000-08-01 Canon Kabushiki Kaisha Method and apparatus for forming a deposited film using a microwave CVD process
JP3025179B2 (en) * 1995-09-28 2000-03-27 キヤノン株式会社 Method for forming photoelectric conversion element
JPH09199431A (en) 1996-01-17 1997-07-31 Canon Inc Method and device for formation of thin film
US6153013A (en) * 1996-02-16 2000-11-28 Canon Kabushiki Kaisha Deposited-film-forming apparatus
US5849108A (en) * 1996-04-26 1998-12-15 Canon Kabushiki Kaisha Photovoltaic element with zno layer having increasing fluorine content in layer thickness direction
JP3437386B2 (en) * 1996-09-05 2003-08-18 キヤノン株式会社 Photovoltaic element and manufacturing method thereof
US6159763A (en) * 1996-09-12 2000-12-12 Canon Kabushiki Kaisha Method and device for forming semiconductor thin film, and method and device for forming photovoltaic element
US6057005A (en) * 1996-12-12 2000-05-02 Canon Kabushiki Kaisha Method of forming semiconductor thin film
US6159300A (en) * 1996-12-17 2000-12-12 Canon Kabushiki Kaisha Apparatus for forming non-single-crystal semiconductor thin film, method for forming non-single-crystal semiconductor thin film, and method for producing photovoltaic device
US6726812B1 (en) 1997-03-04 2004-04-27 Canon Kabushiki Kaisha Ion beam sputtering apparatus, method for forming a transparent and electrically conductive film, and process for the production of a semiconductor device
JPH1180964A (en) 1997-07-07 1999-03-26 Canon Inc Deposited film forming device by plasma cvd method
US6268233B1 (en) 1998-01-26 2001-07-31 Canon Kabushiki Kaisha Photovoltaic device
JPH11246971A (en) 1998-03-03 1999-09-14 Canon Inc Production of microcrystal silicon series thin film and producing device therefor
JPH11251612A (en) 1998-03-03 1999-09-17 Canon Inc Manufacture of photovoltaic element
US6287943B1 (en) 1998-07-31 2001-09-11 Canon Kabushiki Kaisha Deposition of semiconductor layer by plasma process
JP2000192244A (en) 1998-10-16 2000-07-11 Canon Inc Device and method for forming deposited film
JP2000204478A (en) 1998-11-11 2000-07-25 Canon Inc Substrate treating device and substrate treatment
JP2001040478A (en) 1999-05-27 2001-02-13 Canon Inc Device and method for forming deposition film
JP3870014B2 (en) 1999-07-26 2007-01-17 キヤノン株式会社 Vacuum processing apparatus and vacuum processing method
US6547922B2 (en) 2000-01-31 2003-04-15 Canon Kabushiki Kaisha Vacuum-processing apparatus using a movable cooling plate during processing
JP2001323376A (en) * 2000-03-06 2001-11-22 Canon Inc Equipment for depositing film
US6667240B2 (en) 2000-03-09 2003-12-23 Canon Kabushiki Kaisha Method and apparatus for forming deposited film
JP4439665B2 (en) * 2000-03-29 2010-03-24 株式会社半導体エネルギー研究所 Plasma CVD equipment
JP2002020863A (en) 2000-05-01 2002-01-23 Canon Inc Method and system for forming deposit film, and method for treating substrate
US6541316B2 (en) * 2000-12-22 2003-04-01 The Regents Of The University Of California Process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction
JP2002305315A (en) 2001-01-31 2002-10-18 Canon Inc Method of forming semiconductor element, and semiconductor element
KR100434794B1 (en) * 2001-02-22 2004-06-07 최동열 Fabric for inkjet printing and process for producing the same
JP4651072B2 (en) 2001-05-31 2011-03-16 キヤノン株式会社 Deposited film forming method and deposited film forming apparatus
GB0202125D0 (en) * 2002-01-30 2002-03-20 Qinetiq Ltd Dark coatings
ATE326556T1 (en) * 2002-03-15 2006-06-15 Vhf Technologies Sa APPARATUS AND METHOD FOR PRODUCING FLEXIBLE SEMICONDUCTOR DEVICES
GB0212062D0 (en) * 2002-05-24 2002-07-03 Vantico Ag Jetable compositions
JP2004043910A (en) * 2002-07-12 2004-02-12 Canon Inc Process and apparatus for forming deposition film
JP2004300574A (en) * 2003-03-20 2004-10-28 Canon Inc Substrate treatment apparatus
JP4731913B2 (en) 2003-04-25 2011-07-27 株式会社半導体エネルギー研究所 Pattern forming method and semiconductor device manufacturing method
JP2004335706A (en) * 2003-05-07 2004-11-25 Canon Inc Method for forming semiconductor element
US7768018B2 (en) * 2003-10-10 2010-08-03 Wostec, Inc. Polarizer based on a nanowire grid
RU2240280C1 (en) 2003-10-10 2004-11-20 Ворлд Бизнес Ассошиэйтс Лимитед Method for forming orderly undulating nanostructures (variants)
US7462514B2 (en) * 2004-03-03 2008-12-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same, liquid crystal television, and EL television
US20050196710A1 (en) * 2004-03-04 2005-09-08 Semiconductor Energy Laboratory Co., Ltd. Method for forming pattern, thin film transistor, display device and method for manufacturing the same, and television apparatus
JP4416569B2 (en) * 2004-05-24 2010-02-17 キヤノン株式会社 Deposited film forming method and deposited film forming apparatus
US7446335B2 (en) * 2004-06-18 2008-11-04 Regents Of The University Of Minnesota Process and apparatus for forming nanoparticles using radiofrequency plasmas
US8158517B2 (en) * 2004-06-28 2012-04-17 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing wiring substrate, thin film transistor, display device and television device
US20090014423A1 (en) * 2007-07-10 2009-01-15 Xuegeng Li Concentric flow-through plasma reactor and methods therefor
US8066840B2 (en) * 2007-01-22 2011-11-29 Solopower, Inc. Finger pattern formation for thin film solar cells
US20080191193A1 (en) * 2007-01-22 2008-08-14 Xuegeng Li In situ modification of group iv nanoparticles using gas phase nanoparticle reactors
US20080220175A1 (en) * 2007-01-22 2008-09-11 Lorenzo Mangolini Nanoparticles wtih grafted organic molecules
US8471170B2 (en) 2007-07-10 2013-06-25 Innovalight, Inc. Methods and apparatus for the production of group IV nanoparticles in a flow-through plasma reactor
US8968438B2 (en) * 2007-07-10 2015-03-03 Innovalight, Inc. Methods and apparatus for the in situ collection of nucleated particles
GB2453766A (en) * 2007-10-18 2009-04-22 Novalia Ltd Method of fabricating an electronic device
DE102008043458A1 (en) * 2008-11-04 2010-05-12 Q-Cells Se Semiconductor solar cell, has semiconductor base structure limiting n-doped semiconductor layer and p-doped semiconductor layer directly to each other, where semiconductor layers are provided in semiconductor structure
KR20110015998A (en) * 2009-08-10 2011-02-17 삼성전자주식회사 Solar cell and method for manufacturing the same
US20110083724A1 (en) * 2009-10-08 2011-04-14 Ovshinsky Stanford R Monolithic Integration of Photovoltaic Cells
TWI501412B (en) * 2010-06-22 2015-09-21 Iner Aec Executive Yuan Solar cell having improved light-trapping structure
ES2509967T3 (en) * 2011-02-24 2014-10-20 Soitec Solar Gmbh Solar cell arrangements for photovoltaic concentrator modules
WO2013006077A1 (en) 2011-07-06 2013-01-10 Wostec, Inc. Solar cell with nanostructured layer and methods of making and using
WO2013022365A1 (en) 2011-08-05 2013-02-14 Wostec, Inc. Light emitting diode with nanostructured layer and methods of making and using
US9057704B2 (en) 2011-12-12 2015-06-16 Wostec, Inc. SERS-sensor with nanostructured surface and methods of making and using
US9035174B2 (en) * 2011-12-19 2015-05-19 Nthdegree Technologies Worldwide Inc. Forming graded index lens in an all atmospheric pressure printing process to form photovoltaic panels
US9653627B2 (en) 2012-01-18 2017-05-16 Wostec, Inc. Arrangements with pyramidal features having at least one nanostructured surface and methods of making and using
WO2013141740A1 (en) 2012-03-23 2013-09-26 Wostec, Inc. Sers-sensor with nanostructured layer and methods of making and using
WO2014142700A1 (en) 2013-03-13 2014-09-18 Wostec Inc. Polarizer based on a nanowire grid
US9748423B2 (en) * 2014-01-16 2017-08-29 Fundacio Institut De Ciencies Fotoniques Photovoltaic device with fiber array for sun tracking
EP3161857B1 (en) 2014-06-26 2021-09-08 Wostec, Inc. Method of forming a wavelike hard nanomask on a topographic feature
WO2018093284A1 (en) 2016-11-18 2018-05-24 Wostec, Inc. Optical memory devices using a silicon wire grid polarizer and methods of making and using
WO2018156042A1 (en) 2017-02-27 2018-08-30 Wostec, Inc. Nanowire grid polarizer on a curved surface and methods of making and using

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51141587A (en) * 1975-05-30 1976-12-06 Sharp Kk Method of producing solar battery
JPS554994A (en) * 1978-06-20 1980-01-14 Siemens Ag Solar battery and method of manufacturing same

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US406452A (en) * 1889-07-09 Method of making cannon
FR2133498B1 (en) * 1971-04-15 1977-06-03 Labo Electronique Physique
GB1342972A (en) * 1971-08-28 1974-01-10 Wildt Mellor Bromley Ltd Knitting machine needle
JPS5631297B2 (en) * 1973-05-29 1981-07-20
US3979271A (en) * 1973-07-23 1976-09-07 Westinghouse Electric Corporation Deposition of solid semiconductor compositions and novel semiconductor materials
FR2265872B1 (en) * 1974-03-27 1977-10-14 Anvar
US3969163A (en) * 1974-09-19 1976-07-13 Texas Instruments Incorporated Vapor deposition method of forming low cost semiconductor solar cells including reconstitution of the reacted gases
JPS51113481A (en) * 1975-03-28 1976-10-06 Sony Corp Semiconductor device
IT1062510B (en) * 1975-07-28 1984-10-20 Rca Corp SEMICONDUCTIVE DEVICE PRESENTING AN ACTIVE REGION OF AMORPHOUS SILICON
US4064521A (en) * 1975-07-28 1977-12-20 Rca Corporation Semiconductor device having a body of amorphous silicon
US4152535A (en) * 1976-07-06 1979-05-01 The Boeing Company Continuous process for fabricating solar cells and the product produced thereby
US4042418A (en) 1976-08-02 1977-08-16 Westinghouse Electric Corporation Photovoltaic device and method of making same
DE2638269C2 (en) * 1976-08-25 1983-05-26 Wacker-Chemitronic Gesellschaft für Elektronik-Grundstoffe mbH, 8263 Burghausen Process for the production of substrate-bound, large-area silicon
US4196438A (en) * 1976-09-29 1980-04-01 Rca Corporation Article and device having an amorphous silicon containing a halogen and method of fabrication
US4133697A (en) * 1977-06-24 1979-01-09 Nasa Solar array strip and a method for forming the same
US4117506A (en) * 1977-07-28 1978-09-26 Rca Corporation Amorphous silicon photovoltaic device having an insulating layer
DE2746967C2 (en) * 1977-10-19 1981-09-24 Siemens AG, 1000 Berlin und 8000 München Electrophotographic recording drum
DE2757301A1 (en) * 1977-12-22 1979-07-05 Leybold Heraeus Gmbh & Co Kg Multiple element solar cell - has semiconductor elements enclosed between conductive and insulating layers with ends folded over and interlocked
US4265991A (en) * 1977-12-22 1981-05-05 Canon Kabushiki Kaisha Electrophotographic photosensitive member and process for production thereof
US4264962A (en) 1978-02-07 1981-04-28 Beam Engineering Kabushiki Kaisha Small-sized electronic calculator
US4342044A (en) * 1978-03-08 1982-07-27 Energy Conversion Devices, Inc. Method for optimizing photoresponsive amorphous alloys and devices
US4217374A (en) * 1978-03-08 1980-08-12 Energy Conversion Devices, Inc. Amorphous semiconductors equivalent to crystalline semiconductors
US4226898A (en) * 1978-03-16 1980-10-07 Energy Conversion Devices, Inc. Amorphous semiconductors equivalent to crystalline semiconductors produced by a glow discharge process
US4163677A (en) * 1978-04-28 1979-08-07 Rca Corporation Schottky barrier amorphous silicon solar cell with thin doped region adjacent metal Schottky barrier
US4202928A (en) * 1978-07-24 1980-05-13 Rca Corporation Updateable optical storage medium
JPS5529154A (en) * 1978-08-23 1980-03-01 Shunpei Yamazaki Semiconductor device
JPS5559783A (en) * 1978-10-27 1980-05-06 Canon Inc Electronic device with solar battery
JPS5578524A (en) * 1978-12-10 1980-06-13 Shunpei Yamazaki Manufacture of semiconductor device
GB2038086A (en) * 1978-12-19 1980-07-16 Standard Telephones Cables Ltd Amorphous semiconductor devices
JPS5934421B2 (en) * 1979-11-29 1984-08-22 住友電気工業株式会社 Thin film manufacturing method
DE3000889C2 (en) * 1980-01-11 1984-07-26 Siemens AG, 1000 Berlin und 8000 München Use of a metal foil rotating around two rolls for continuous casting of amorphous silicon
FR2490019B1 (en) * 1980-09-09 1985-10-31 Energy Conversion Devices Inc METHOD AND DEVICE FOR INCREASING THE INTERVAL OF BANDS OF PHOTOSENSITIVE AMORPHOUS ALLOYS AND ALLOYS OBTAINED

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51141587A (en) * 1975-05-30 1976-12-06 Sharp Kk Method of producing solar battery
JPS554994A (en) * 1978-06-20 1980-01-14 Siemens Ag Solar battery and method of manufacturing same

Also Published As

Publication number Publication date
ES8306923A1 (en) 1983-06-01
JPS61287176A (en) 1986-12-17
GB2146045A (en) 1985-04-11
JPH0461510B2 (en) 1992-10-01
GB2147316A (en) 1985-05-09
IT1135827B (en) 1986-08-27
DE3153269C2 (en) 1986-05-15
DE3153269A1 (en) 1985-06-13
DE3119481A1 (en) 1982-01-28
JPS6122622A (en) 1986-01-31
IN155670B (en) 1985-02-23
KR860001476A (en) 1986-02-26
IT8121753A0 (en) 1981-05-15
KR890003499B1 (en) 1989-09-22
AU542845B2 (en) 1985-03-21
IL62883A0 (en) 1981-07-31
DE3153270C2 (en) 1986-03-27
JPH0355977B2 (en) 1991-08-27
FR2482786A1 (en) 1981-11-20
PH18408A (en) 1985-06-24
FR2482786B1 (en) 1986-03-07
JPS57122581A (en) 1982-07-30
CA1184096A (en) 1985-03-19
JP2539916B2 (en) 1996-10-02
ES512728A0 (en) 1983-06-01
GB2076433B (en) 1985-06-12
ES8207658A1 (en) 1982-10-01
AU3487584A (en) 1985-03-07
KR840000756B1 (en) 1984-05-31
IE52688B1 (en) 1988-01-20
SE456380B (en) 1988-09-26
DE3119481C2 (en) 1986-01-02
GB8323742D0 (en) 1983-10-05
AU556596B2 (en) 1986-11-13
KR890003498B1 (en) 1989-09-22
JPS5743413A (en) 1982-03-11
KR830006816A (en) 1983-10-06
MX155307A (en) 1988-02-16
KR860001475A (en) 1986-02-26
JPH02168676A (en) 1990-06-28
AU3487484A (en) 1985-03-07
GB2146045B (en) 1985-09-25
GB2076433A (en) 1981-12-02
NL8102411A (en) 1981-12-16
JPS6236633B2 (en) 1987-08-07
ES512729A0 (en) 1983-06-01
ZA813076B (en) 1982-05-26
IL62883A (en) 1984-11-30
ES502281A0 (en) 1982-10-01
GB8323741D0 (en) 1983-10-05
US4400409A (en) 1983-08-23
AU556493B2 (en) 1986-11-06
IE811099L (en) 1981-11-19
GB2147316B (en) 1985-10-30
BR8103030A (en) 1982-02-09
SE8103043L (en) 1981-11-20
ES8306921A1 (en) 1983-06-01
AU7065381A (en) 1981-11-26

Similar Documents

Publication Publication Date Title
JPS6243554B2 (en)
JP2741638B2 (en) Manufacturing method of amorphous silicon solar cell
US4519339A (en) Continuous amorphous solar cell production system
US4663828A (en) Process and apparatus for continuous production of lightweight arrays of photovoltaic cells
US4663829A (en) Process and apparatus for continuous production of lightweight arrays of photovoltaic cells
US4678679A (en) Continuous deposition of activated process gases
EP0060627B1 (en) Apparatus for regulating substrate temperature in a continuous plasma deposition process
US4545136A (en) Isolation valve
US6268235B1 (en) Method for manufacturing a photoelectric conversion device
JPH05121338A (en) Method and apparatus for forming deposited film
US4480585A (en) External isolation module
US4525376A (en) Optical methods for controlling layer thickness
JPH0824107B2 (en) Semiconductor film deposition equipment
JPH0642451B2 (en) Glow discharge deposition equipment
EP0060625B1 (en) Plasma deposition of amorphous materials
EP0118643B1 (en) Cathode assembly for glow discharge deposition apparatus
JP4126810B2 (en) Thin film solar cell manufacturing equipment
EP0060626B1 (en) Isolation valve
US4645866A (en) Photovoltaic device and a method of producing the same
JP3367981B2 (en) Method and apparatus for forming deposited film
EP0106521B1 (en) Baffle system for glow discharge deposition apparatus
JP3181121B2 (en) Deposition film formation method
JP3554314B2 (en) Deposition film formation method
JP3169243B2 (en) Continuous formation method of deposited film
JPS6030124A (en) Multistage electrode type semiconductor thin-film forming device