Nothing Special   »   [go: up one dir, main page]

JPS63236358A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS63236358A
JPS63236358A JP6882287A JP6882287A JPS63236358A JP S63236358 A JPS63236358 A JP S63236358A JP 6882287 A JP6882287 A JP 6882287A JP 6882287 A JP6882287 A JP 6882287A JP S63236358 A JPS63236358 A JP S63236358A
Authority
JP
Japan
Prior art keywords
layer
collector
gaas
angstrom
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6882287A
Other languages
Japanese (ja)
Other versions
JP2633848B2 (en
Inventor
Toshiyuki Usagawa
利幸 宇佐川
Masao Yamane
正雄 山根
Takeyuki Hiruma
健之 比留間
Tomoyoshi Mishima
友義 三島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62068822A priority Critical patent/JP2633848B2/en
Publication of JPS63236358A publication Critical patent/JPS63236358A/en
Application granted granted Critical
Publication of JP2633848B2 publication Critical patent/JP2633848B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)
  • Bipolar Integrated Circuits (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To conductive to be able to form thinner by about 1/3 a P<-> GaAs collector layer than that in the conventional structure without deteriorating breakdown strength of a base-collector by a method wherein the P<-> GaAs collector layer of a two-dimensional electron gas heterobipolar transistor (2DEG- HBT) is permuted to a P<-> AlxGa1-xAs layer. CONSTITUTION:For example, a P<+> GaAs layer 41 (collector layer) containing Be of 1X10<19>cm<-3>, a P<-> AlxGa1-xAs (x-0.3) layer 50 containing Be of 10<15>cm<-3>, an undoped GaAs layer 42, an N-type AlyGa1-yAs (y-0.3) layer 43 containing Si of 4X10<18>cm<-3>, an AleGa1-eAs layer 45 containing Be of 1X10<17>cm<-3> and moreover, a P<+> (Be-10<19>cm<-3>) GaAs layer 45' are respectively formed on a semi-insulative GaAs substrate 40 in 4000 Angstrom , 1000 Angstrom , 100 Angstrom , 250 Angstrom , 2000 Angstrom and 1000 Angstrom using an MBE (molecular beam epitaxy) method. After that, after an emitter region, a base region and an interelement isolation region are formed by a normal method, a metal emitter electrode 25, a metal base electrode 24 and a metal collector electrode 26 are each formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、二次元状組付をベース層に用いるバイポーラ
型トランジスタに係り、特にベース・コレクタ耐圧向上
、或いはカットオフ周波数fT向上に好適な二次元電子
ガスヘテロバイポーラトランジスタに関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a bipolar transistor using a two-dimensional assembly in the base layer, and in particular to a bipolar transistor suitable for improving the base-collector breakdown voltage or the cut-off frequency fT. Regarding two-dimensional electron gas hetero-bipolar transistors.

〔従来の技術〕[Conventional technology]

砒化ガリウム(GaAs)とアルミニウム砒化ガリウム
(A Q zGal−xA s )とのヘテロ接合界面
に形成される2次元状担体をベース層に用いた新構造の
HBT (総称として2DEC−HBTと呼ぶ)を既に
特許出願している(特願昭60−164126号、特願
昭60−164128号、特願昭61−40244号)
We have developed an HBT with a new structure (generally referred to as 2DEC-HBT) using a two-dimensional carrier formed at the heterojunction interface between gallium arsenide (GaAs) and aluminum gallium arsenide (AQzGal-xAs) as the base layer. Patent applications have already been filed (Japanese Patent Application No. 164126/1980, 164128/1980, 40244/1982)
.

またこれらの出願は、特開昭60−134479号にお
いて、接合型ゲート構造(同公開特許公報第5゜6図で
、ゲートがP型A Q G a A sまたはG a 
A sである場合に対応する)とした場合の特有の作用
を用いた新原理と基づくバイポーラトランジスタと云う
こともできる。
In addition, these applications disclose, in JP-A No. 60-134479, a junction type gate structure (as shown in Fig. 5-6 of the same publication, the gate is of P type A Q Ga As or Ga
It can also be said to be a bipolar transistor based on a new principle that uses the unique action of the case (corresponding to the case of A s).

以上の特許出願にて述べられているトランジスタを総称
して2DEG−HBTと呼ぶ。
The transistors described in the above patent applications are collectively referred to as 2DEG-HBT.

本発明は、2DEG−HBTのベースコレクタ間高耐圧
化成いは高いカットオフ周波数を与える構造についての
2DEC−HBTの改良に関する。
The present invention relates to an improvement of the 2DEC-HBT with respect to the structure of the 2DEG-HBT that provides a high breakdown voltage between base and collector and a high cutoff frequency.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記特許出願の構造において、G a A s 。 In the structure of the above patent application, G.a.A.s.

A Q G a A sヘテロ界面の2次元電子ガスを
ベースに用いるとき、ベース・コレクタ走行時間tは で与えられる。ただし、Dnは正孔のベース拡散係数W
Bはベース膜厚Xnはコレクタ膜厚V3は正孔飽和速度
である。右辺第1項は2次元電子層の通過時間で約0 
、05psec、第2項はP″−GaAsコレクタ層が
3000人の場合約1.50psecである。
When a two-dimensional electron gas at the A Q Ga As heterointerface is used as the base, the base-collector transit time t is given by: However, Dn is the base diffusion coefficient of holes W
B is the base film thickness Xn, and collector film thickness V3 is the hole saturation velocity. The first term on the right side is the transit time of the two-dimensional electron layer, which is approximately 0.
, 05 psec, and the second term is approximately 1.50 psec when the number of P″-GaAs collector layers is 3000.

即ち、t はほとんどすべてp″″G a A sコレ
クタ走行時間により支配されている。
That is, t is almost entirely dominated by the p″″G a As collector transit time.

t を更に小さくしようとするとp−−GaAsコレク
層の薄膜化(x、→小)が最も効果的であるが、従来の
2DEG−HBTの場合1500〜2000人が下限で
ある。p−型コレクタ層を700人〜1000人程度に
薄膜化できれば、t は従来の1.55psecから0
.55psecと約1/3に小さくできる。
In order to further reduce t, the most effective method is to make the p--GaAs collector layer thinner (x, → smaller), but in the case of a conventional 2DEG-HBT, the lower limit is 1500 to 2000. If the p-type collector layer can be made thinner to about 700 to 1000 layers, t can be reduced from the conventional 1.55 psec to 0.
.. It can be reduced to about 1/3 of 55 psec.

この様に薄い(700〜1000人)コレクタ層は通常
のHBTでは実現することは不可能であり、この場合、
pnp型2DEG−HBTはpnp型でありながら通常
のnpn型HBTに比較して約3倍も高速になる。
It is impossible to realize such a thin collector layer (700 to 1000 people) with a normal HBT, and in this case,
Although the pnp type 2DEG-HBT is a pnp type, it is about three times faster than a normal npn type HBT.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、p−型G a A s  コレクタ層をp
−型AΩx G a l−X A s層に置きかえるこ
とで達成できる。
The above purpose is to convert the p-type GaAs collector layer into p
This can be achieved by replacing it with a -type AΩx Gal-X As layer.

第1図に本発明2DEG−HBTのデバイス断面構造(
第1図(a))と対応するエネルギーバンド図(第1図
(b) 、  ((1) ’)を示す。40は半絶縁性
GaAs基板、41はP十型G a A s 。
Figure 1 shows the device cross-sectional structure of the 2DEG-HBT of the present invention (
An energy band diagram (FIG. 1(b), ((1)') corresponding to FIG. 1(a)) is shown. 40 is a semi-insulating GaAs substrate, and 41 is a P-type GaAs.

50はp″″″型AA xG a t−xA g(P型
ドーピングレベルは大略101番〜1017aa’″”
)’、42はアンドープG a A sで膜厚100人
〜150人程度。
50 is p""" type AA xG a t-xA g (P type doping level is approximately 101 to 1017aa'")
)', 42 is undoped GaAs and has a film thickness of about 100 to 150 layers.

43はn型AQGaAs、45はp型AQGaAa(又
はG a A s )で24.25.26は各々ベース
電極メタル、エミッタ電極メタル、コレクタ電・極メタ
ルである。59は2次元状電子ガス(20EG)を示し
ている。
43 is n-type AQGaAs, 45 is p-type AQGaAa (or GaAs), and 24, 25, and 26 are base electrode metal, emitter electrode metal, and collector electrode/pole metal, respectively. 59 indicates a two-dimensional electron gas (20EG).

又、p−型A Q、 xG a 1−xA s 50は
、AQ組成をグレーディッド(graded)にして、
エネルギーバンド図を第1図(Q)の様にすることも可
能である。即ち、2DEG側AQ組成Xを太きく(0,
2〜0.45)P+:Iレクタ層側Xを小さく(〜0.
0)することも可能である。
In addition, p-type AQ, xG a 1-xA s 50 has a graded AQ composition,
It is also possible to make the energy band diagram as shown in FIG. 1 (Q). That is, the AQ composition X on the 2DEG side is made thicker (0,
2 to 0.45) P+: Make the I-rector layer side X smaller (~0.45)
0) is also possible.

〔作用〕[Effect]

この様にp−型コレクタ層をp−型A Q GaAsに
することにより、ベース・コレクタ間に電位を印加した
場合 (1)AI2GaAsのアバランシェ破壊電圧はG a
 A sに比べ3割程度大きい (2)’2DEGががコレクタ側A Q G a A 
sのヘテロ接合障壁により消失しにくくなる ことにより、高いベース・コレクタ電圧まで2DECは
消出せずに残っている。
By making the p-type collector layer p-type A Q GaAs in this way, when a potential is applied between the base and collector (1) the avalanche breakdown voltage of AI2GaAs is Ga
A Q G a A
2DEC remains undisappeared up to high base-collector voltages because it is difficult to dissipate due to the heterojunction barrier of s.

即ち、同一のベース・コレクタ電圧では、P−型コレク
タ層50.50’ を従来より薄膜化(700人〜10
00人)できるので、従来の1ntrivoic f 
tの約3倍の値を実現でき、従来のnpn型HB Tの
約3倍の高速性を実現できる。
That is, at the same base-collector voltage, the P-type collector layer 50.50' is made thinner than before (700 to 10
00 people), so the conventional 1ntrivoic f
It is possible to realize a value that is approximately three times as large as t, and it is possible to achieve a high speed that is approximately three times that of the conventional npn type HBT.

〔実施例〕〔Example〕

以下本発明の実施例を通して更に詳しく本発明を説明す
る。
The present invention will be explained in more detail below through examples.

実施例1 第1図(a)はG a A s / A Q G a 
A s ヘラロ接合を用いたpnp型2DEG−HBT
の試作例である。
Example 1 Figure 1 (a) shows Ga As / A Q Ga
PNP type 2DEG-HBT using A s Helaro junction
This is a prototype example.

半絶縁性GaAs40基板上にMBE (分子線エピタ
キシー; Mo1ecular Beam Epifa
xy)法を用いてBeをlXl0”m″″3″3含有小
型G a A 541(コレクタ層)を4000 A 
B eを1QLIs備−♂含有するP−型AnxGaz
−xAs(x〜0.3)50を1000人、アンドープ
GaAs42を100人、Siを4 X 10 ”am
−”含有するn型Al2yGat−yAs(y〜0.3
 )43を250人。
MBE (Molecular Beam Epitaxy) on semi-insulating GaAs40 substrate
xy) method to prepare a small G a A 541 (collector layer) containing Be at 4000 A
P-type AnxGaz containing 1QLIs B e
−xAs(x~0.3)50 to 1000, undoped GaAs42 to 100, Si to 4×10”am
-” containing n-type Al2yGat-yAs (y~0.3
) 43 to 250 people.

BeをI X 1017am−8含有するA Q EG
 a t−pA s45を2000人更にP+型(B 
e 〜101gcm−8)G a A s 41を10
00人形式する。その後、エミッタ領域、ベース領域素
子間分離領域を通常の方法で形成後、エミッタ電極金属
25(AuRn/ A u )ベース電極金属24 (
A u G e / N i /A u )コレクタ電
極金属26 (A u Rn / A u )を各々形
成した。
A Q EG containing Be I X 1017am-8
2000 people with a t-pA s45 and P+ type (B
e ~101gcm-8) Ga As 41 to 10
Format 00 people. Thereafter, after forming an emitter region, a base region and an inter-element isolation region by a normal method, an emitter electrode metal 25 (AuRn/Au) and a base electrode metal 24 (
A collector electrode metal 26 (AuGe/Ni/Au) (AuRn/Au) was formed.

正孔のp−型A Q G a A s層50の走行を良
くするために、第1図(c)に示す様にAQ組成比Xを
gradedにしても良い。即ち、p十型G a A 
sコレクタ[41側でX=O,Oとし、2DEG側でx
=0.35  に選びその間のAQ組成比を連結的に変
えた。
In order to improve the propagation of holes through the p-type AQGaAs layer 50, the AQ composition ratio X may be graded as shown in FIG. 1(c). That is, p-type G a A
s collector [X = O, O on the 41 side, x on the 2DEG side
= 0.35, and the AQ composition ratio between them was changed in a connected manner.

P型AΩGaAs45のドーピングレベルは目的に応じ
て通常1×1017〜5X10”■−8の範囲で使用す
ることが多い。
The doping level of P-type AΩGaAs45 is usually used in the range of 1×10 17 to 5×10”−8 depending on the purpose.

実施例2 第2図(a)、(b)にHB TとFETを同一基板に
作製した例を示す。
Example 2 FIGS. 2(a) and 2(b) show an example in which an HBT and a FET were fabricated on the same substrate.

実施例1と同−二ピウェーハに対し、2DEG−HBT
は、実施例1と同様に形成できる。一方2DEGをF 
E T (Field Effect Transis
for)の能動層とに用いる場合、ソース・ドレイン電
極20.21をA u G s / N i / A 
uを用いてn型A Q G a A s層43上に形成
し、接合型ゲート電極メタル22としてA u Rn 
/ A uを用いて2DEG−FETを形成した。
For the same two-layer wafer as in Example 1, 2DEG-HBT
can be formed in the same manner as in Example 1. On the other hand, 2DEG is F
E T (Field Effect Transis
for), the source/drain electrodes 20.21 are A u G s / N i / A
A u Rn is formed on the n-type A Q Ga As layer 43 using A u Rn as the junction type gate electrode metal 22.
/Au was used to form a 2DEG-FET.

第2図(a)において2DEG−FET部分をAでDE
G−HBT部分をBで示す。
In Fig. 2(a), the 2DEG-FET part is DE
The G-HBT portion is indicated by B.

又、2DEG−FETはショットキー接合型ゲート構造
を用いることが多いので、その場合には第2図(b)の
Aの部分に示すように、P型エミッタ145.45’ 
を除去してショットキーゲートメタル22′ (たとえ
ばT i / P t / A u 。
Furthermore, since 2DEG-FETs often use a Schottky junction type gate structure, in that case, a P-type emitter 145.45' is used as shown in part A of FIG. 2(b).
Schottky gate metal 22' (for example, T i / P t / A u ).

A n + W S x 、等)を形成する。A n + W S x, etc.) is formed.

FET部分のしきい値V t hはA Q G a A
 s膜厚をエツチング等で調整して決めているのは従来
FETと同様である。
The threshold value V th of the FET part is A Q G a A
The film thickness is determined by adjusting it by etching or the like, as in conventional FETs.

p型A Q、G a A s層45のドーピングベルは
目的に応じて通常1×10170−δ〜lXIO20■
−3の範囲で用いることが多い。
The doping level of the p-type AQ, GaAs layer 45 is usually 1×10170−δ to lXIO20■ depending on the purpose.
-3 is often used.

以上の実施例ではG a A s / A Q G a
 A sヘテロ接合系の場合について述べたが、他の二
元/三元系ヘテロ接合、例えばG a A s / G
 e 。
In the above example, Ga As / A Q Ga
Although the case of the A s heterozygous system has been described, other binary/ternary heterozygous systems, such as G a A s / G
e.

AQGaAs/Ge、I nAllAs/InGaAs
+I n G a A s P / I n P等のヘ
テロ接合においても2次元状担体が形成される。従来の
コレクタ層を上記本発明の様に禁止帯の広い半導体ヘテ
ロ接合におきかえることで同様な効果を出すことができ
る。
AQGaAs/Ge, InAllAs/InGaAs
A two-dimensional carrier is also formed in a heterojunction such as +I n Ga As P / I n P. A similar effect can be obtained by replacing the conventional collector layer with a semiconductor heterojunction having a wide forbidden band as in the present invention.

又、以上の実施例でn型とP型を入れかえる(SiとB
eを入れかえる)と二次元正孔ガス(Two Dime
nsional Ho1e Ga5)を用いて同様の発
明を実施できる。
Also, in the above embodiments, n-type and P-type are replaced (Si and B
(replace e) and two-dimensional hole gas (Two Dime
A similar invention can be carried out using the national Hole Ga5).

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ベース・コレクタ耐圧を劣化させるこ
となくp−型コレクタ層を従来構造より約1/3薄膜化
することができたのでpnp型でありながら1通常のn
pn型HBTより約3倍高いJT(ガツトオフ周波数)
を実現できた。
According to the present invention, the p-type collector layer can be made approximately 1/3 thinner than the conventional structure without deteriorating the base-collector breakdown voltage.
JT (gut-off frequency) approximately 3 times higher than pn-type HBT
I was able to realize this.

又、pnp型2DEG−HBT と2DEC−FETを
自然な形で同一基板に形成できた。
Furthermore, a pnp type 2DEG-HBT and a 2DEC-FET could be formed on the same substrate in a natural manner.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明を説明するため及び本発明の実施
例1のトランジスタ断面構造図、同図(b)(Q)はそ
のエネルギーバンド図、及び第2図は本発明の実施例2
のpnp型2DEG−HBTと2DEG−FETを同一
基板内に形成した時の断面構造図である。 20.21・・・ソース・ドレイン電極メタル、22・
・・j−FETゲート電極メタル、22′・・・ショッ
トキーゲートメタル、24・・・ベース電極メタル、2
5・・・エミッタ電極メタル、26・・・コレクタ電極
メタル、40・・・半絶縁性GaAs基板、41・・・
p + G a A s 、 42−アンドープG a
 A s、43− n A Q G a A s、45
− p A Q G a A s、50=−p−AQG
aAs、50 ’ −graded p−A 17. 
GaAs、59・・・2DEG。 第 1図 第1図
FIG. 1(a) is a cross-sectional structure diagram of a transistor according to a first embodiment of the present invention for explaining the present invention, FIG. 1(b) and (Q) are its energy band diagrams, and FIG. 2 is an embodiment of the present invention. 2
FIG. 2 is a cross-sectional structural diagram when a pnp type 2DEG-HBT and a 2DEG-FET are formed in the same substrate. 20.21... Source/drain electrode metal, 22.
...j-FET gate electrode metal, 22'... Schottky gate metal, 24... base electrode metal, 2
5... Emitter electrode metal, 26... Collector electrode metal, 40... Semi-insulating GaAs substrate, 41...
p + G a As , 42-undoped G a
As, 43-n A Q Ga As, 45
-pAQGaAs,50=-p-AQG
aAs, 50'-graded p-A 17.
GaAs, 59...2DEG. Figure 1Figure 1

Claims (1)

【特許請求の範囲】[Claims] 1、エネルギー禁止帯幅の広い半導体層 I と、それよ
りエネルギー禁止帯幅の狭い半導体層IIと、両者のヘテ
ロ接合界面に形成される二次元状担体と、前記半導体層
I に電気的に接続された電極と、前記半導体層IIとヘ
テロ接合している前記半導体層IIよりエネルギー禁止帯
幅の広い半導体層IIIと、前記半導体層 I と接して形成
された前記半導体層 I とは逆導電型の半導体層IVと、
前記半導体層III、IVに各々電気的に接続された電極を
有する半導体装置。
1. A semiconductor layer I with a wide energy gap, a semiconductor layer II with a narrower energy gap, a two-dimensional carrier formed at the heterojunction interface between the two, and the semiconductor layer
an electrode electrically connected to the semiconductor layer I, a semiconductor layer III having a wider energy gap than the semiconductor layer II and having a heterojunction with the semiconductor layer II, and the semiconductor layer formed in contact with the semiconductor layer I. A semiconductor layer IV of a conductivity type opposite to I,
A semiconductor device having electrodes electrically connected to the semiconductor layers III and IV, respectively.
JP62068822A 1987-03-25 1987-03-25 Semiconductor device Expired - Lifetime JP2633848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62068822A JP2633848B2 (en) 1987-03-25 1987-03-25 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62068822A JP2633848B2 (en) 1987-03-25 1987-03-25 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS63236358A true JPS63236358A (en) 1988-10-03
JP2633848B2 JP2633848B2 (en) 1997-07-23

Family

ID=13384788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62068822A Expired - Lifetime JP2633848B2 (en) 1987-03-25 1987-03-25 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2633848B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5293084A (en) * 1991-09-10 1994-03-08 Hitachi, Ltd. High speed logic circuit
US5567961A (en) * 1992-08-21 1996-10-22 Hitachi, Ltd. Semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60120551A (en) * 1983-12-05 1985-06-28 Fujitsu Ltd Semiconductor integrated circuit device
JPS6139576A (en) * 1984-07-31 1986-02-25 Fujitsu Ltd Semiconductor device
JPS6225454A (en) * 1985-07-26 1987-02-03 Hitachi Ltd Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60120551A (en) * 1983-12-05 1985-06-28 Fujitsu Ltd Semiconductor integrated circuit device
JPS6139576A (en) * 1984-07-31 1986-02-25 Fujitsu Ltd Semiconductor device
JPS6225454A (en) * 1985-07-26 1987-02-03 Hitachi Ltd Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5293084A (en) * 1991-09-10 1994-03-08 Hitachi, Ltd. High speed logic circuit
US5567961A (en) * 1992-08-21 1996-10-22 Hitachi, Ltd. Semiconductor device

Also Published As

Publication number Publication date
JP2633848B2 (en) 1997-07-23

Similar Documents

Publication Publication Date Title
US5705827A (en) Tunnel transistor and method of manufacturing same
US5903018A (en) Bipolar transistor including a compound semiconductor
JPH0626242B2 (en) Semiconductor integrated circuit device
JPH05275463A (en) Semiconductor device
JP2804095B2 (en) Heterojunction bipolar transistor
EP0292568B1 (en) Hetero-junction bipolar transistor
US6465815B2 (en) High-breakdown voltage heterostructure field-effect transistor for high temperature operations
US5814843A (en) Heterojunction bipolar transistor having a graded-composition base region
US5466955A (en) Field effect transistor having an improved transistor characteristic
EP0092645B1 (en) Transistor and circuit including a transistor
JPS63236358A (en) Semiconductor device
JPS6052060A (en) Heterojunction semiconductor device
JP2564296B2 (en) Semiconductor device
JP2695832B2 (en) Heterojunction field effect transistor
JPH0738393B2 (en) Semiconductor device
KR100337942B1 (en) Double heterojunction bipolar transistor
JP2834172B2 (en) Field effect transistor
JP3247961B2 (en) Heterojunction bipolar transistor
JPH02271534A (en) Heterojunction bipolar transistor
JP2777898B2 (en) Compound semiconductor device
JP2786208B2 (en) Semiconductor device
JPH04214637A (en) Semiconductor device
JPH04214636A (en) Semiconductor device
JPH0680674B2 (en) Bipolar transistor
JPH04214638A (en) Semiconductor device