JPS63236358A - Semiconductor device - Google Patents
Semiconductor deviceInfo
- Publication number
- JPS63236358A JPS63236358A JP6882287A JP6882287A JPS63236358A JP S63236358 A JPS63236358 A JP S63236358A JP 6882287 A JP6882287 A JP 6882287A JP 6882287 A JP6882287 A JP 6882287A JP S63236358 A JPS63236358 A JP S63236358A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- collector
- gaas
- angstrom
- type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims description 14
- 229910001218 Gallium arsenide Inorganic materials 0.000 abstract description 17
- 229910052751 metal Inorganic materials 0.000 abstract description 17
- 239000002184 metal Substances 0.000 abstract description 17
- 239000000758 substrate Substances 0.000 abstract description 7
- 238000000034 method Methods 0.000 abstract description 6
- 230000015556 catabolic process Effects 0.000 abstract description 5
- 238000001451 molecular beam epitaxy Methods 0.000 abstract description 4
- 230000005533 two-dimensional electron gas Effects 0.000 abstract description 4
- 230000002542 deteriorative effect Effects 0.000 abstract description 2
- 238000002955 isolation Methods 0.000 abstract description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 10
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 1
- FTWRSWRBSVXQPI-UHFFFAOYSA-N alumanylidynearsane;gallanylidynearsane Chemical compound [As]#[Al].[As]#[Ga] FTWRSWRBSVXQPI-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000004047 hole gas Substances 0.000 description 1
- 102000030938 small GTPase Human genes 0.000 description 1
- 108060007624 small GTPase Proteins 0.000 description 1
Landscapes
- Bipolar Transistors (AREA)
- Bipolar Integrated Circuits (AREA)
- Junction Field-Effect Transistors (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、二次元状組付をベース層に用いるバイポーラ
型トランジスタに係り、特にベース・コレクタ耐圧向上
、或いはカットオフ周波数fT向上に好適な二次元電子
ガスヘテロバイポーラトランジスタに関する。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a bipolar transistor using a two-dimensional assembly in the base layer, and in particular to a bipolar transistor suitable for improving the base-collector breakdown voltage or the cut-off frequency fT. Regarding two-dimensional electron gas hetero-bipolar transistors.
砒化ガリウム(GaAs)とアルミニウム砒化ガリウム
(A Q zGal−xA s )とのヘテロ接合界面
に形成される2次元状担体をベース層に用いた新構造の
HBT (総称として2DEC−HBTと呼ぶ)を既に
特許出願している(特願昭60−164126号、特願
昭60−164128号、特願昭61−40244号)
。We have developed an HBT with a new structure (generally referred to as 2DEC-HBT) using a two-dimensional carrier formed at the heterojunction interface between gallium arsenide (GaAs) and aluminum gallium arsenide (AQzGal-xAs) as the base layer. Patent applications have already been filed (Japanese Patent Application No. 164126/1980, 164128/1980, 40244/1982)
.
またこれらの出願は、特開昭60−134479号にお
いて、接合型ゲート構造(同公開特許公報第5゜6図で
、ゲートがP型A Q G a A sまたはG a
A sである場合に対応する)とした場合の特有の作用
を用いた新原理と基づくバイポーラトランジスタと云う
こともできる。In addition, these applications disclose, in JP-A No. 60-134479, a junction type gate structure (as shown in Fig. 5-6 of the same publication, the gate is of P type A Q Ga As or Ga
It can also be said to be a bipolar transistor based on a new principle that uses the unique action of the case (corresponding to the case of A s).
以上の特許出願にて述べられているトランジスタを総称
して2DEG−HBTと呼ぶ。The transistors described in the above patent applications are collectively referred to as 2DEG-HBT.
本発明は、2DEG−HBTのベースコレクタ間高耐圧
化成いは高いカットオフ周波数を与える構造についての
2DEC−HBTの改良に関する。The present invention relates to an improvement of the 2DEC-HBT with respect to the structure of the 2DEG-HBT that provides a high breakdown voltage between base and collector and a high cutoff frequency.
上記特許出願の構造において、G a A s 。 In the structure of the above patent application, G.a.A.s.
A Q G a A sヘテロ界面の2次元電子ガスを
ベースに用いるとき、ベース・コレクタ走行時間tは
で与えられる。ただし、Dnは正孔のベース拡散係数W
Bはベース膜厚Xnはコレクタ膜厚V3は正孔飽和速度
である。右辺第1項は2次元電子層の通過時間で約0
、05psec、第2項はP″−GaAsコレクタ層が
3000人の場合約1.50psecである。When a two-dimensional electron gas at the A Q Ga As heterointerface is used as the base, the base-collector transit time t is given by: However, Dn is the base diffusion coefficient of holes W
B is the base film thickness Xn, and collector film thickness V3 is the hole saturation velocity. The first term on the right side is the transit time of the two-dimensional electron layer, which is approximately 0.
, 05 psec, and the second term is approximately 1.50 psec when the number of P″-GaAs collector layers is 3000.
即ち、t はほとんどすべてp″″G a A sコレ
クタ走行時間により支配されている。That is, t is almost entirely dominated by the p″″G a As collector transit time.
t を更に小さくしようとするとp−−GaAsコレク
層の薄膜化(x、→小)が最も効果的であるが、従来の
2DEG−HBTの場合1500〜2000人が下限で
ある。p−型コレクタ層を700人〜1000人程度に
薄膜化できれば、t は従来の1.55psecから0
.55psecと約1/3に小さくできる。In order to further reduce t, the most effective method is to make the p--GaAs collector layer thinner (x, → smaller), but in the case of a conventional 2DEG-HBT, the lower limit is 1500 to 2000. If the p-type collector layer can be made thinner to about 700 to 1000 layers, t can be reduced from the conventional 1.55 psec to 0.
.. It can be reduced to about 1/3 of 55 psec.
この様に薄い(700〜1000人)コレクタ層は通常
のHBTでは実現することは不可能であり、この場合、
pnp型2DEG−HBTはpnp型でありながら通常
のnpn型HBTに比較して約3倍も高速になる。It is impossible to realize such a thin collector layer (700 to 1000 people) with a normal HBT, and in this case,
Although the pnp type 2DEG-HBT is a pnp type, it is about three times faster than a normal npn type HBT.
上記目的は、p−型G a A s コレクタ層をp
−型AΩx G a l−X A s層に置きかえるこ
とで達成できる。The above purpose is to convert the p-type GaAs collector layer into p
This can be achieved by replacing it with a -type AΩx Gal-X As layer.
第1図に本発明2DEG−HBTのデバイス断面構造(
第1図(a))と対応するエネルギーバンド図(第1図
(b) 、 ((1) ’)を示す。40は半絶縁性
GaAs基板、41はP十型G a A s 。Figure 1 shows the device cross-sectional structure of the 2DEG-HBT of the present invention (
An energy band diagram (FIG. 1(b), ((1)') corresponding to FIG. 1(a)) is shown. 40 is a semi-insulating GaAs substrate, and 41 is a P-type GaAs.
50はp″″″型AA xG a t−xA g(P型
ドーピングレベルは大略101番〜1017aa’″”
)’、42はアンドープG a A sで膜厚100人
〜150人程度。50 is p""" type AA xG a t-xA g (P type doping level is approximately 101 to 1017aa'")
)', 42 is undoped GaAs and has a film thickness of about 100 to 150 layers.
43はn型AQGaAs、45はp型AQGaAa(又
はG a A s )で24.25.26は各々ベース
電極メタル、エミッタ電極メタル、コレクタ電・極メタ
ルである。59は2次元状電子ガス(20EG)を示し
ている。43 is n-type AQGaAs, 45 is p-type AQGaAa (or GaAs), and 24, 25, and 26 are base electrode metal, emitter electrode metal, and collector electrode/pole metal, respectively. 59 indicates a two-dimensional electron gas (20EG).
又、p−型A Q、 xG a 1−xA s 50は
、AQ組成をグレーディッド(graded)にして、
エネルギーバンド図を第1図(Q)の様にすることも可
能である。即ち、2DEG側AQ組成Xを太きく(0,
2〜0.45)P+:Iレクタ層側Xを小さく(〜0.
0)することも可能である。In addition, p-type AQ, xG a 1-xA s 50 has a graded AQ composition,
It is also possible to make the energy band diagram as shown in FIG. 1 (Q). That is, the AQ composition X on the 2DEG side is made thicker (0,
2 to 0.45) P+: Make the I-rector layer side X smaller (~0.45)
0) is also possible.
この様にp−型コレクタ層をp−型A Q GaAsに
することにより、ベース・コレクタ間に電位を印加した
場合
(1)AI2GaAsのアバランシェ破壊電圧はG a
A sに比べ3割程度大きい
(2)’2DEGががコレクタ側A Q G a A
sのヘテロ接合障壁により消失しにくくなる
ことにより、高いベース・コレクタ電圧まで2DECは
消出せずに残っている。By making the p-type collector layer p-type A Q GaAs in this way, when a potential is applied between the base and collector (1) the avalanche breakdown voltage of AI2GaAs is Ga
A Q G a A
2DEC remains undisappeared up to high base-collector voltages because it is difficult to dissipate due to the heterojunction barrier of s.
即ち、同一のベース・コレクタ電圧では、P−型コレク
タ層50.50’ を従来より薄膜化(700人〜10
00人)できるので、従来の1ntrivoic f
tの約3倍の値を実現でき、従来のnpn型HB Tの
約3倍の高速性を実現できる。That is, at the same base-collector voltage, the P-type collector layer 50.50' is made thinner than before (700 to 10
00 people), so the conventional 1ntrivoic f
It is possible to realize a value that is approximately three times as large as t, and it is possible to achieve a high speed that is approximately three times that of the conventional npn type HBT.
以下本発明の実施例を通して更に詳しく本発明を説明す
る。The present invention will be explained in more detail below through examples.
実施例1
第1図(a)はG a A s / A Q G a
A s ヘラロ接合を用いたpnp型2DEG−HBT
の試作例である。Example 1 Figure 1 (a) shows Ga As / A Q Ga
PNP type 2DEG-HBT using A s Helaro junction
This is a prototype example.
半絶縁性GaAs40基板上にMBE (分子線エピタ
キシー; Mo1ecular Beam Epifa
xy)法を用いてBeをlXl0”m″″3″3含有小
型G a A 541(コレクタ層)を4000 A
B eを1QLIs備−♂含有するP−型AnxGaz
−xAs(x〜0.3)50を1000人、アンドープ
GaAs42を100人、Siを4 X 10 ”am
−”含有するn型Al2yGat−yAs(y〜0.3
)43を250人。MBE (Molecular Beam Epitaxy) on semi-insulating GaAs40 substrate
xy) method to prepare a small G a A 541 (collector layer) containing Be at 4000 A
P-type AnxGaz containing 1QLIs B e
−xAs(x~0.3)50 to 1000, undoped GaAs42 to 100, Si to 4×10”am
-” containing n-type Al2yGat-yAs (y~0.3
) 43 to 250 people.
BeをI X 1017am−8含有するA Q EG
a t−pA s45を2000人更にP+型(B
e 〜101gcm−8)G a A s 41を10
00人形式する。その後、エミッタ領域、ベース領域素
子間分離領域を通常の方法で形成後、エミッタ電極金属
25(AuRn/ A u )ベース電極金属24 (
A u G e / N i /A u )コレクタ電
極金属26 (A u Rn / A u )を各々形
成した。A Q EG containing Be I X 1017am-8
2000 people with a t-pA s45 and P+ type (B
e ~101gcm-8) Ga As 41 to 10
Format 00 people. Thereafter, after forming an emitter region, a base region and an inter-element isolation region by a normal method, an emitter electrode metal 25 (AuRn/Au) and a base electrode metal 24 (
A collector electrode metal 26 (AuGe/Ni/Au) (AuRn/Au) was formed.
正孔のp−型A Q G a A s層50の走行を良
くするために、第1図(c)に示す様にAQ組成比Xを
gradedにしても良い。即ち、p十型G a A
sコレクタ[41側でX=O,Oとし、2DEG側でx
=0.35 に選びその間のAQ組成比を連結的に変
えた。In order to improve the propagation of holes through the p-type AQGaAs layer 50, the AQ composition ratio X may be graded as shown in FIG. 1(c). That is, p-type G a A
s collector [X = O, O on the 41 side, x on the 2DEG side
= 0.35, and the AQ composition ratio between them was changed in a connected manner.
P型AΩGaAs45のドーピングレベルは目的に応じ
て通常1×1017〜5X10”■−8の範囲で使用す
ることが多い。The doping level of P-type AΩGaAs45 is usually used in the range of 1×10 17 to 5×10”−8 depending on the purpose.
実施例2
第2図(a)、(b)にHB TとFETを同一基板に
作製した例を示す。Example 2 FIGS. 2(a) and 2(b) show an example in which an HBT and a FET were fabricated on the same substrate.
実施例1と同−二ピウェーハに対し、2DEG−HBT
は、実施例1と同様に形成できる。一方2DEGをF
E T (Field Effect Transis
for)の能動層とに用いる場合、ソース・ドレイン電
極20.21をA u G s / N i / A
uを用いてn型A Q G a A s層43上に形成
し、接合型ゲート電極メタル22としてA u Rn
/ A uを用いて2DEG−FETを形成した。For the same two-layer wafer as in Example 1, 2DEG-HBT
can be formed in the same manner as in Example 1. On the other hand, 2DEG is F
E T (Field Effect Transis
for), the source/drain electrodes 20.21 are A u G s / N i / A
A u Rn is formed on the n-type A Q Ga As layer 43 using A u Rn as the junction type gate electrode metal 22.
/Au was used to form a 2DEG-FET.
第2図(a)において2DEG−FET部分をAでDE
G−HBT部分をBで示す。In Fig. 2(a), the 2DEG-FET part is DE
The G-HBT portion is indicated by B.
又、2DEG−FETはショットキー接合型ゲート構造
を用いることが多いので、その場合には第2図(b)の
Aの部分に示すように、P型エミッタ145.45’
を除去してショットキーゲートメタル22′ (たとえ
ばT i / P t / A u 。Furthermore, since 2DEG-FETs often use a Schottky junction type gate structure, in that case, a P-type emitter 145.45' is used as shown in part A of FIG. 2(b).
Schottky gate metal 22' (for example, T i / P t / A u ).
A n + W S x 、等)を形成する。A n + W S x, etc.) is formed.
FET部分のしきい値V t hはA Q G a A
s膜厚をエツチング等で調整して決めているのは従来
FETと同様である。The threshold value V th of the FET part is A Q G a A
The film thickness is determined by adjusting it by etching or the like, as in conventional FETs.
p型A Q、G a A s層45のドーピングベルは
目的に応じて通常1×10170−δ〜lXIO20■
−3の範囲で用いることが多い。The doping level of the p-type AQ, GaAs layer 45 is usually 1×10170−δ to lXIO20■ depending on the purpose.
-3 is often used.
以上の実施例ではG a A s / A Q G a
A sヘテロ接合系の場合について述べたが、他の二
元/三元系ヘテロ接合、例えばG a A s / G
e 。In the above example, Ga As / A Q Ga
Although the case of the A s heterozygous system has been described, other binary/ternary heterozygous systems, such as G a A s / G
e.
AQGaAs/Ge、I nAllAs/InGaAs
+I n G a A s P / I n P等のヘ
テロ接合においても2次元状担体が形成される。従来の
コレクタ層を上記本発明の様に禁止帯の広い半導体ヘテ
ロ接合におきかえることで同様な効果を出すことができ
る。AQGaAs/Ge, InAllAs/InGaAs
A two-dimensional carrier is also formed in a heterojunction such as +I n Ga As P / I n P. A similar effect can be obtained by replacing the conventional collector layer with a semiconductor heterojunction having a wide forbidden band as in the present invention.
又、以上の実施例でn型とP型を入れかえる(SiとB
eを入れかえる)と二次元正孔ガス(Two Dime
nsional Ho1e Ga5)を用いて同様の発
明を実施できる。Also, in the above embodiments, n-type and P-type are replaced (Si and B
(replace e) and two-dimensional hole gas (Two Dime
A similar invention can be carried out using the national Hole Ga5).
本発明によれば、ベース・コレクタ耐圧を劣化させるこ
となくp−型コレクタ層を従来構造より約1/3薄膜化
することができたのでpnp型でありながら1通常のn
pn型HBTより約3倍高いJT(ガツトオフ周波数)
を実現できた。According to the present invention, the p-type collector layer can be made approximately 1/3 thinner than the conventional structure without deteriorating the base-collector breakdown voltage.
JT (gut-off frequency) approximately 3 times higher than pn-type HBT
I was able to realize this.
又、pnp型2DEG−HBT と2DEC−FETを
自然な形で同一基板に形成できた。Furthermore, a pnp type 2DEG-HBT and a 2DEC-FET could be formed on the same substrate in a natural manner.
第1図(a)は本発明を説明するため及び本発明の実施
例1のトランジスタ断面構造図、同図(b)(Q)はそ
のエネルギーバンド図、及び第2図は本発明の実施例2
のpnp型2DEG−HBTと2DEG−FETを同一
基板内に形成した時の断面構造図である。
20.21・・・ソース・ドレイン電極メタル、22・
・・j−FETゲート電極メタル、22′・・・ショッ
トキーゲートメタル、24・・・ベース電極メタル、2
5・・・エミッタ電極メタル、26・・・コレクタ電極
メタル、40・・・半絶縁性GaAs基板、41・・・
p + G a A s 、 42−アンドープG a
A s、43− n A Q G a A s、45
− p A Q G a A s、50=−p−AQG
aAs、50 ’ −graded p−A 17.
GaAs、59・・・2DEG。
第 1図
第1図FIG. 1(a) is a cross-sectional structure diagram of a transistor according to a first embodiment of the present invention for explaining the present invention, FIG. 1(b) and (Q) are its energy band diagrams, and FIG. 2 is an embodiment of the present invention. 2
FIG. 2 is a cross-sectional structural diagram when a pnp type 2DEG-HBT and a 2DEG-FET are formed in the same substrate. 20.21... Source/drain electrode metal, 22.
...j-FET gate electrode metal, 22'... Schottky gate metal, 24... base electrode metal, 2
5... Emitter electrode metal, 26... Collector electrode metal, 40... Semi-insulating GaAs substrate, 41...
p + G a As , 42-undoped G a
As, 43-n A Q Ga As, 45
-pAQGaAs,50=-p-AQG
aAs, 50'-graded p-A 17.
GaAs, 59...2DEG. Figure 1Figure 1
Claims (1)
りエネルギー禁止帯幅の狭い半導体層IIと、両者のヘテ
ロ接合界面に形成される二次元状担体と、前記半導体層
I に電気的に接続された電極と、前記半導体層IIとヘ
テロ接合している前記半導体層IIよりエネルギー禁止帯
幅の広い半導体層IIIと、前記半導体層 I と接して形成
された前記半導体層 I とは逆導電型の半導体層IVと、
前記半導体層III、IVに各々電気的に接続された電極を
有する半導体装置。1. A semiconductor layer I with a wide energy gap, a semiconductor layer II with a narrower energy gap, a two-dimensional carrier formed at the heterojunction interface between the two, and the semiconductor layer
an electrode electrically connected to the semiconductor layer I, a semiconductor layer III having a wider energy gap than the semiconductor layer II and having a heterojunction with the semiconductor layer II, and the semiconductor layer formed in contact with the semiconductor layer I. A semiconductor layer IV of a conductivity type opposite to I,
A semiconductor device having electrodes electrically connected to the semiconductor layers III and IV, respectively.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62068822A JP2633848B2 (en) | 1987-03-25 | 1987-03-25 | Semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62068822A JP2633848B2 (en) | 1987-03-25 | 1987-03-25 | Semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63236358A true JPS63236358A (en) | 1988-10-03 |
JP2633848B2 JP2633848B2 (en) | 1997-07-23 |
Family
ID=13384788
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62068822A Expired - Lifetime JP2633848B2 (en) | 1987-03-25 | 1987-03-25 | Semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2633848B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5293084A (en) * | 1991-09-10 | 1994-03-08 | Hitachi, Ltd. | High speed logic circuit |
US5567961A (en) * | 1992-08-21 | 1996-10-22 | Hitachi, Ltd. | Semiconductor device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60120551A (en) * | 1983-12-05 | 1985-06-28 | Fujitsu Ltd | Semiconductor integrated circuit device |
JPS6139576A (en) * | 1984-07-31 | 1986-02-25 | Fujitsu Ltd | Semiconductor device |
JPS6225454A (en) * | 1985-07-26 | 1987-02-03 | Hitachi Ltd | Semiconductor device |
-
1987
- 1987-03-25 JP JP62068822A patent/JP2633848B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60120551A (en) * | 1983-12-05 | 1985-06-28 | Fujitsu Ltd | Semiconductor integrated circuit device |
JPS6139576A (en) * | 1984-07-31 | 1986-02-25 | Fujitsu Ltd | Semiconductor device |
JPS6225454A (en) * | 1985-07-26 | 1987-02-03 | Hitachi Ltd | Semiconductor device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5293084A (en) * | 1991-09-10 | 1994-03-08 | Hitachi, Ltd. | High speed logic circuit |
US5567961A (en) * | 1992-08-21 | 1996-10-22 | Hitachi, Ltd. | Semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
JP2633848B2 (en) | 1997-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5705827A (en) | Tunnel transistor and method of manufacturing same | |
US5903018A (en) | Bipolar transistor including a compound semiconductor | |
JPH0626242B2 (en) | Semiconductor integrated circuit device | |
JPH05275463A (en) | Semiconductor device | |
JP2804095B2 (en) | Heterojunction bipolar transistor | |
EP0292568B1 (en) | Hetero-junction bipolar transistor | |
US6465815B2 (en) | High-breakdown voltage heterostructure field-effect transistor for high temperature operations | |
US5814843A (en) | Heterojunction bipolar transistor having a graded-composition base region | |
US5466955A (en) | Field effect transistor having an improved transistor characteristic | |
EP0092645B1 (en) | Transistor and circuit including a transistor | |
JPS63236358A (en) | Semiconductor device | |
JPS6052060A (en) | Heterojunction semiconductor device | |
JP2564296B2 (en) | Semiconductor device | |
JP2695832B2 (en) | Heterojunction field effect transistor | |
JPH0738393B2 (en) | Semiconductor device | |
KR100337942B1 (en) | Double heterojunction bipolar transistor | |
JP2834172B2 (en) | Field effect transistor | |
JP3247961B2 (en) | Heterojunction bipolar transistor | |
JPH02271534A (en) | Heterojunction bipolar transistor | |
JP2777898B2 (en) | Compound semiconductor device | |
JP2786208B2 (en) | Semiconductor device | |
JPH04214637A (en) | Semiconductor device | |
JPH04214636A (en) | Semiconductor device | |
JPH0680674B2 (en) | Bipolar transistor | |
JPH04214638A (en) | Semiconductor device |