JPS63190164A - Vacuum deposition method - Google Patents
Vacuum deposition methodInfo
- Publication number
- JPS63190164A JPS63190164A JP62021780A JP2178087A JPS63190164A JP S63190164 A JPS63190164 A JP S63190164A JP 62021780 A JP62021780 A JP 62021780A JP 2178087 A JP2178087 A JP 2178087A JP S63190164 A JPS63190164 A JP S63190164A
- Authority
- JP
- Japan
- Prior art keywords
- base material
- vacuum
- substrate
- heated
- fine powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001771 vacuum deposition Methods 0.000 title claims abstract description 14
- 238000000034 method Methods 0.000 title abstract description 14
- 239000000463 material Substances 0.000 claims abstract description 55
- 238000010894 electron beam technology Methods 0.000 claims abstract description 12
- 239000000126 substance Substances 0.000 claims description 8
- 239000000843 powder Substances 0.000 abstract description 13
- 238000010438 heat treatment Methods 0.000 abstract description 11
- 239000000758 substrate Substances 0.000 abstract description 11
- 238000001704 evaporation Methods 0.000 abstract description 8
- 230000008020 evaporation Effects 0.000 abstract description 7
- 238000000151 deposition Methods 0.000 abstract description 3
- 239000013078 crystal Substances 0.000 abstract description 2
- 230000008022 sublimation Effects 0.000 abstract 1
- 238000000859 sublimation Methods 0.000 abstract 1
- 239000010409 thin film Substances 0.000 description 21
- 239000010408 film Substances 0.000 description 12
- 239000002245 particle Substances 0.000 description 7
- 239000010419 fine particle Substances 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 5
- 238000007740 vapor deposition Methods 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000007738 vacuum evaporation Methods 0.000 description 4
- 239000005083 Zinc sulfide Substances 0.000 description 3
- 239000013543 active substance Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 229910052984 zinc sulfide Inorganic materials 0.000 description 3
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000004020 luminiscence type Methods 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 238000004017 vitrification Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/32—Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electroluminescent Light Sources (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は真空蒸着法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a vacuum deposition method.
(従来技術)
従来、金属や半導体あるいは絶縁物の薄膜を形成する手
法としてスパッタリングや真空蒸着法が広く用いられて
いる。抵抗加熱蒸着法や電子ビーム蒸着法などで知られ
ている真空蒸着法は、(イ)装置が簡単である。(ロ)
薄膜の成長速度が速いので真空槽からの汚染が少なく所
望の膜厚が得られる、(ハ)被着面の前面に開口部を有
するマスクを置くことにより所望のパターンの薄膜か得
られるなどの利点があるために、Zn5%Zn5e。(Prior Art) Conventionally, sputtering and vacuum evaporation methods have been widely used as methods for forming thin films of metals, semiconductors, or insulators. The vacuum evaporation method, which is known as the resistance heating evaporation method and the electron beam evaporation method, has (a) a simple device; (B)
Because the thin film grows at a fast rate, the desired film thickness can be obtained with less contamination from the vacuum chamber; and (c) by placing a mask with openings in front of the deposition surface, a thin film with the desired pattern can be obtained. Because of its advantages, Zn5% Zn5e.
CdS、 CaSeなどのII−VI族化合物半導体薄
膜の成膜手段として広く用いられており、たとえば薄膜
EL素子の発光層や薄膜トランジスタの薄膜半導体層の
形成手段として実用化されている。。It is widely used as a means for forming II-VI group compound semiconductor thin films such as CdS and CaSe, and has been put into practical use, for example, as a means for forming light-emitting layers of thin-film EL devices and thin-film semiconductor layers of thin-film transistors. .
■−■族化合物半導体を真空蒸着法で成膜するときの共
通する問題点としてIf−Vl族化合物半導体となる材
料(以下「母材」という)が蒸発源により加熱されると
蒸気として蒸発するだけでなく微粒子としても飛散する
ため膜面に数ミクロンの母材微粒子が散在した状態で蒸
着膜が形成され、膜表面が凹凸に荒れたり、薄11iE
L素子のように母材薄膜の上下に絶縁層を成膜する場合
はこの母材微粒子が上下の絶縁層をつき破ってスポット
状の破壊(セルフヒーリング型破壊)を起こしたり、ス
ポット状に留まらずこの破壊が広がって画素の大部分を
破壊してしまうおそれもある(プロパゲーション型破壊
)。A common problem when forming ■-■ group compound semiconductors using the vacuum evaporation method is that when the material that becomes the If-Vl group compound semiconductor (hereinafter referred to as the "base material") is heated by an evaporation source, it evaporates as vapor. In addition to scattering as fine particles, the deposited film is formed with base material fine particles of several microns scattered on the film surface, causing the film surface to become rough and uneven.
When insulating layers are formed above and below a base material thin film, as in the case of an L element, the base material fine particles may break through the upper and lower insulating layers and cause spot-like destruction (self-healing type destruction), or they may not remain in a spot-like state. There is also the risk that Zuko's destruction will spread and destroy most of the pixels (propagation type destruction).
このような問題を解決する手段として、たとえば特開昭
57−99723号におけるように、真空槽内に配置し
た母材と被着面との間に母材の蒸気は通過するが、飛散
粒子は阻止するメツシュを配置することにより被着面に
付着する母材粒子を大幅に制限する方法が提案されてい
る。メツシュを用いるこの方法は、メツシュの目詰りが
進むために均質な膜厚が得られない、成膜速度を一定に
するために電子ビーム発生源のパワーを上げると蒸発温
度が変ってしまい均質な膜が得られない。As a means to solve this problem, for example, as in Japanese Patent Application Laid-Open No. 57-99723, vapor of the base material passes between the base material and the adhered surface placed in a vacuum chamber, but the scattered particles are A method has been proposed in which the amount of base material particles adhering to the surface to be adhered to is greatly restricted by arranging a blocking mesh. In this method using a mesh, it is difficult to obtain a uniform film thickness because the mesh becomes clogged, and when the power of the electron beam source is increased to keep the film formation rate constant, the evaporation temperature changes and a uniform film thickness cannot be obtained. A film cannot be obtained.
メツシュで阻止できる粒子の粒径に限界があるなどの問
題がある。There are problems such as there is a limit to the particle size that can be blocked by the mesh.
一方、薄膜EL素子などに用いられる蛍光体薄膜の製造
に際して起こる表面の凹凸やピンホールの発生を防ぐた
めに、Mn、 Cu、^g%Tb%S■などの活性物質
を蒸発させるとともに、活性物質を含まない硫化亜鉛焼
結体に°電子ビームを照射して加熱蒸発させ基板上に活
性物質分布が均一で表面の凹凸の少ない高品質の硫化亜
鉛焼結体を形成する製造方法が知られている(特開昭5
8−157886号)。On the other hand, in order to prevent surface irregularities and pinholes that occur during the production of phosphor thin films used in thin-film EL devices, active substances such as Mn, Cu, ^g%Tb%S■, etc. are evaporated, and active substances There is a known manufacturing method in which a zinc sulfide sintered body containing no zinc sulfide is heated and evaporated by irradiation with an electron beam to form a high-quality zinc sulfide sintered body with a uniform distribution of active substances on the substrate and less surface irregularities. There is (Unexamined Japanese Patent Application Publication No. 5)
No. 8-157886).
しかしながらいずれかの製法にしても、発光母材として
焼結体を用いており、しかも母材の加熱に粒子の飛散が
激しい電子ビームを用いているために、電子ビームを照
射し加熱した際内部突沸ガスや帯電などにより焼結体で
ある発光母材の微粉が飛散し、その一部が基板に到達し
て付着し蒸着表面が凹凸に荒れてしまうことは避けられ
ない。However, in either manufacturing method, a sintered body is used as the luminescent base material, and an electron beam that scatters a lot of particles is used to heat the base material. It is unavoidable that fine powder of the luminescent base material, which is a sintered body, is scattered due to bumping gas or electrical charging, and some of it reaches and adheres to the substrate, making the vapor deposition surface rough and uneven.
特にこの現象は母材として昇華性物質を用いた場合に顕
著である。また薄膜EL素子の場合このような微粉体が
存在すると絶縁破壊や層間剥離を起こし易くなるために
、微粉体を極力少なくすることが望まれる。This phenomenon is particularly noticeable when a sublimable substance is used as the base material. Further, in the case of a thin film EL element, the presence of such fine powder tends to cause dielectric breakdown and delamination, so it is desirable to reduce the amount of fine powder as much as possible.
(発明の目的および構成)
本発明は上記の点にかんがみてなされたもので、微粉体
のない滑らかな蒸着表面を有する蒸着膜を形成すること
を目的とし、この目的を達成するために、非焼結体の昇
華性母材を用いるようにしたものである。(Object and Structure of the Invention) The present invention has been made in view of the above points, and an object of the present invention is to form a vapor deposited film having a smooth vapor deposition surface free of fine particles. A sublimable base material of sintered body is used.
(実施例) 以下本発明を図面に基づいて説明する。(Example) The present invention will be explained below based on the drawings.
第1図は本発明による真空蒸着法を用いた真空蒸着装置
の一実施例の概路線図であり、薄膜EL素子の発光層形
成用として例示した。−図において、lは真空容器、2
は薄膜を形成すべき基板、3は基板l加熱用のヒータ、
4は基板2に向う粒子の進行を阻止するシャッタ、5は
10SJpZnSeなどの非焼結発光母材、6は発光母
材加熱用の電子ビーム発生源、7はMnなどのフレーク
状発光中心材料、8は発光中心材料加熱用の抵抗線加熱
ルツボである0発光母材5はCVD (化学的気相成長
)法またはCZ (Czochralski )法ある
いはFZ(フロートゾーン)法あるいは溶融後固結させ
る方法(ガラス化、アモルファス)などで製造される単
結晶体または多結晶体である。FIG. 1 is a schematic diagram of an embodiment of a vacuum evaporation apparatus using the vacuum evaporation method according to the present invention, and is illustrated as an example for forming a light emitting layer of a thin film EL element. - In the figure, l is a vacuum vessel, 2
3 is a substrate on which a thin film is to be formed; 3 is a heater for heating the substrate;
4 is a shutter that prevents particles from advancing toward the substrate 2; 5 is a non-sintered luminescent base material such as 10SJpZnSe; 6 is an electron beam source for heating the luminescent base material; 7 is a flaky luminescent center material such as Mn; 8 is a resistance wire heating crucible for heating the luminescent center material; 0. The luminescent base material 5 is produced by the CVD (chemical vapor deposition) method, the CZ (Czochralski) method, the FZ (float zone) method, or the method of solidifying after melting ( It is a single crystal or polycrystal that is manufactured by vitrification, amorphous, etc.
さて、電子ビーム発生源6からの電子ビームを非焼結体
発光母材5に照射して加熱蒸発させると、蒸発して蒸気
となった発光母材5が基板2の被着面に蒸着する。Now, when the non-sintered luminescent base material 5 is irradiated with an electron beam from the electron beam generation source 6 and heated and evaporated, the luminescent base material 5 evaporated into vapor is deposited on the deposition surface of the substrate 2. .
一方、このとき同時に発光中心材料7を抵抗線加熱によ
り蒸発させる。発光母材5と発光中心材料7の蒸発量比
は100対0.Olからioo対10の間で選ぶのがよ
い。Meanwhile, at the same time, the luminescent center material 7 is evaporated by resistance wire heating. The evaporation ratio of the luminescent base material 5 and luminescent center material 7 is 100:0. It is better to choose between ol and ioo vs. 10.
昇華性物質を母材として蒸着する場合、非昇華性物質の
ように固溶状態になることなく母材は加熱により表面か
ら順次昇華蒸発してゆくため、焼結体(粉体な成形後焼
結したもの)の母材では、粒状の微粉が飛散する。しか
しながら母材を結晶体のような非焼結体とすることによ
り前述した微粉の飛散を防止することができる。When a sublimable substance is vapor-deposited as a base material, the base material will sublimate and evaporate sequentially from the surface by heating without becoming a solid solution like a non-sublimable substance. In the base material of the solidified material, fine granular powder is scattered. However, by making the base material a non-sintered body such as a crystalline body, the above-mentioned scattering of the fine powder can be prevented.
これにより基板2上に発光中心を発光母材5中に0.0
1〜lO%含む表面の滑らかなEL発光層が得られる。This allows the luminescent center to be placed on the substrate 2 at 0.00% in the luminescent base material 5.
An EL light-emitting layer with a smooth surface containing 1 to 10% is obtained.
第2図は本発明に用いる真空蒸着装置の他の実施例の概
路線図であり、この実施例は非焼結発光母材と発光中心
材料とを同一の電子ビームにより交互に加熱蒸着させる
ものである0図中第1図と同じ参照数字は同じ構成部分
を示している。FIG. 2 is a schematic diagram of another embodiment of the vacuum evaporation apparatus used in the present invention, in which a non-sintered luminescent base material and a luminescent center material are alternately heated and vapor-deposited by the same electron beam. In Figure 0, the same reference numerals as in Figure 1 indicate the same components.
電子ビーム発生源6から発生される電子ビームにより非
焼結体発光母材5と発光中心材料7とを交互に照射する
時間をコントロールして蒸発量比を決定する。The evaporation amount ratio is determined by controlling the time during which the non-sintered luminescent base material 5 and the luminescent center material 7 are alternately irradiated with the electron beam generated from the electron beam generation source 6.
この実施例でも第1図の実施例と同様に非焼結体発光母
材5を使用するので、微粉体の飛散が極めて少なく滑ら
かな表面を有するEL発光層を・形成することができる
。Since this embodiment also uses the non-sintered luminescent base material 5 as in the embodiment shown in FIG. 1, it is possible to form an EL luminescent layer having a smooth surface with very little scattering of fine powder.
第3図は本発明により製造した薄膜EL素子の蛍光層に
ついて蒸着表面に付着している微粉体の数を従来の焼結
体発光母材使用の場合と比較して示すものである。FIG. 3 shows the number of fine particles adhering to the evaporation surface of the fluorescent layer of the thin film EL device manufactured according to the present invention in comparison with the case of using a conventional sintered luminescent base material.
第3図においてAは本発明による製法、Bは従来の蒸着
法による微粉体飛散数を示しており、前者では1 cm
”当り10”〜10コ個、後者では1 cm”当り10
’〜10’個で、微粉体飛散数は従来の11500から
1/1000に減少していることがわかる。In Fig. 3, A shows the number of fine powders scattered by the manufacturing method according to the present invention, and B shows the number of fine powders scattered by the conventional vapor deposition method.
"10" to 10 pieces per "1 cm" in the latter case
It can be seen that the number of scattered fine powders is reduced from the conventional 11500 to 1/1000 for '~10' particles.
発光特性についてみると、発光閾値、最高輝度とも従来
とほぼ同じであるが、耐圧特性についてはプロパゲーシ
ョン型破壊はほぼ同じであるものの、セルフヒーリング
型破壊は本発明による薄膜には全く現われなかった。Looking at the luminescence properties, the luminescence threshold and maximum brightness are almost the same as in the conventional film.As for the pressure resistance properties, although the propagation type breakdown is almost the same, self-healing type breakdown does not appear at all in the thin film according to the present invention. .
上記実施例では非焼結体発光母材を用いて薄膜EL素子
の蛍光層を蒸着する場合について例示したが、非焼結性
の昇華性物質を蒸発させて薄膜を形成する蒸着法に適用
できるものである。In the above example, the case where a fluorescent layer of a thin film EL element is vapor-deposited using a non-sintered luminescent base material is illustrated, but it can also be applied to a vapor deposition method that forms a thin film by vaporizing a non-sinterable sublimable substance. It is something.
(発明の効果)
以上説明したように、本発明おいては、非焼結体の昇華
性物質を加熱蒸発させ蒸着させて薄膜を形成するように
したので、微粉体が飛散することなく非常に滑らかな蒸
着膜を形成することができる0本発明により薄膜EL素
子の蛍光膜を形成すると絶縁破壊や居間剥離のない信頼
性の高い薄膜EL素子ができ、特に昇華性物質の加熱に
電子ビームを用いる場合は粒子の飛散が多いだけに特に
有効である。(Effects of the Invention) As explained above, in the present invention, the non-sintered sublimable substance is heated and evaporated to form a thin film, so that the fine powder is not scattered and is extremely thin. A smooth vapor deposited film can be formed.By forming a fluorescent film for a thin film EL device according to the present invention, a highly reliable thin film EL device without dielectric breakdown or peeling can be produced. It is particularly effective when used because there are many particles scattered.
第1図は本発明による真空蒸着法を実施する真空蒸着装
置の一実施例の概路線図、第2図は本発明による真空蒸
着法を実施する真空蒸着装置の他の実施例の概路線図、
第3図は本発明により製造した薄膜上に付着した微粉体
の数を従来の蒸着法と比較して示すグラフである。
1・・・真空容器、2・・・基板、4・・・シャッタ、
5・・・発光母材、6・・・電子ビーム発生源、フ・・
・発光中心材料、8・・・抵抗線加熱ルツボ
特許出願人 日産自動車株式会社
代理人 弁理士 鈴 木 弘 男
第1図
第2図FIG. 1 is a schematic diagram of one embodiment of a vacuum evaporation apparatus for carrying out the vacuum evaporation method according to the present invention, and FIG. 2 is a schematic diagram of another embodiment of the vacuum evaporation apparatus for carrying out the vacuum evaporation method according to the present invention. ,
FIG. 3 is a graph showing the number of fine particles deposited on a thin film produced according to the present invention in comparison with a conventional vapor deposition method. 1... Vacuum container, 2... Substrate, 4... Shutter,
5... Luminescent base material, 6... Electron beam generation source, F...
・Luminescence center material, 8...Resistance wire heating crucible patent applicant: Nissan Motor Co., Ltd. Representative Patent attorney: Hiroshi Suzuki (Figure 1) Figure 2
Claims (4)
発させて蒸着する真空蒸着法において、前記母材が非焼
結体であることを特徴とする真空蒸着法。(1) A vacuum evaporation method in which a base material, which is a sublimable substance, is heated and evaporated in a vacuum atmosphere.The vacuum evaporation method is characterized in that the base material is a non-sintered body.
求の範囲第1項に記載の真空蒸着法。(2) The vacuum evaporation method according to claim 1, wherein the base material is a material for forming a light emitting layer of an EL device.
範囲第1項に記載の真空蒸着法。(3) The vacuum evaporation method according to claim 1, in which an electron beam is used to heat the base material.
1項に記載の真空蒸着法。(4) The vacuum evaporation method according to claim 1, wherein the sublimable substance is a crystalline substance.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62021780A JP2529563B2 (en) | 1987-02-03 | 1987-02-03 | Vacuum deposition method |
DE19883803189 DE3803189A1 (en) | 1987-02-03 | 1988-02-03 | Vacuum evaporation process employing a sublimable source material |
US07/511,970 US4976988A (en) | 1987-02-03 | 1990-04-17 | Vacuum evaporation method for zinc sulfide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62021780A JP2529563B2 (en) | 1987-02-03 | 1987-02-03 | Vacuum deposition method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63190164A true JPS63190164A (en) | 1988-08-05 |
JP2529563B2 JP2529563B2 (en) | 1996-08-28 |
Family
ID=12064574
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62021780A Expired - Lifetime JP2529563B2 (en) | 1987-02-03 | 1987-02-03 | Vacuum deposition method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2529563B2 (en) |
DE (1) | DE3803189A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100711488B1 (en) | 2005-12-24 | 2007-04-24 | 주식회사 포스코 | Manufacturing method of aluminum-magnesium alloy film |
JP2008214461A (en) * | 2007-03-02 | 2008-09-18 | Canon Inc | Phosphor film and phosphor film production method |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19852326A1 (en) * | 1998-11-12 | 1999-11-18 | Siemens Ag | Method and apparatus for producing a substrate coated with a doped fluorescent material, e.g. for radiation detectors |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50120966A (en) * | 1974-03-07 | 1975-09-22 | ||
JPS6067666A (en) * | 1983-09-21 | 1985-04-18 | Matsushita Electric Ind Co Ltd | Thin film forming method |
JPS6134890A (en) * | 1984-07-27 | 1986-02-19 | 日本電信電話株式会社 | Method of forming electric field light emitting thin film |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2762722A (en) * | 1953-05-18 | 1956-09-11 | Bausch & Lomb | Method and apparatus for coating by thermal evaporation |
US3094395A (en) * | 1959-01-12 | 1963-06-18 | Gen Dynamics Corp | Method for evaporating subliming materials |
GB918382A (en) * | 1960-11-29 | 1963-02-13 | Gen Electric Co Ltd | Improvements in or relating to the formation of thin films |
US3153137A (en) * | 1961-10-13 | 1964-10-13 | Union Carbide Corp | Evaporation source |
US3344768A (en) * | 1965-08-30 | 1967-10-03 | Burroughs Corp | Powder evaporation apparatus |
-
1987
- 1987-02-03 JP JP62021780A patent/JP2529563B2/en not_active Expired - Lifetime
-
1988
- 1988-02-03 DE DE19883803189 patent/DE3803189A1/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50120966A (en) * | 1974-03-07 | 1975-09-22 | ||
JPS6067666A (en) * | 1983-09-21 | 1985-04-18 | Matsushita Electric Ind Co Ltd | Thin film forming method |
JPS6134890A (en) * | 1984-07-27 | 1986-02-19 | 日本電信電話株式会社 | Method of forming electric field light emitting thin film |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100711488B1 (en) | 2005-12-24 | 2007-04-24 | 주식회사 포스코 | Manufacturing method of aluminum-magnesium alloy film |
JP2008214461A (en) * | 2007-03-02 | 2008-09-18 | Canon Inc | Phosphor film and phosphor film production method |
Also Published As
Publication number | Publication date |
---|---|
DE3803189C2 (en) | 1990-02-08 |
DE3803189A1 (en) | 1988-08-11 |
JP2529563B2 (en) | 1996-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Öztaş et al. | Characterization of copper-doped sprayed ZnS thin films | |
US6086945A (en) | Method of forming polycrystalline silicon thin layer | |
US20100006430A1 (en) | Sputtering deposition apparatus and backing plate for use in sputtering deposition apparatus | |
US4976988A (en) | Vacuum evaporation method for zinc sulfide | |
JP2000128698A (en) | ITO material, ITO film, method for forming the same, and EL element | |
JP4110966B2 (en) | Vapor deposition apparatus and vapor deposition method | |
JPS63190164A (en) | Vacuum deposition method | |
US3925146A (en) | Method for producing epitaxial thin-film fabry-perot cavity suitable for use as a laser crystal by vacuum evaporation and product thereof | |
JPS5919190B2 (en) | Manufacturing method of lead film | |
KR102732452B1 (en) | Method for forming transition metal dichalcogenide film and method of manufacturing an electric device including the same | |
JP2010056483A (en) | Method of manufacturing film | |
WO1992006798A1 (en) | In situ growth of superconducting films | |
US4981712A (en) | Method of producing thin-film electroluminescent device using CVD process to form phosphor layer | |
JP2516251B2 (en) | Manufacturing method of oxide superconducting film | |
US3889016A (en) | Method of making a direct current electroluminescent device | |
JPS5827240B2 (en) | Heat treatment method for zinc sulfide single crystal | |
JPS6134890A (en) | Method of forming electric field light emitting thin film | |
GB2273815A (en) | Method for preparing thin-film electro-luminescence element | |
JPS6155237B2 (en) | ||
SERGEYEVA et al. | The Process of Formation of Epitaxial Cadmium and Zinc Oxide Films by Interaction of Single-Crystal | |
Sharma et al. | The preparation of InSb films | |
JPS6315716B2 (en) | ||
JPH0812970A (en) | Production of el element | |
JPS6270290A (en) | Production of semiconductor | |
JPH088062A (en) | Manufacture of electroluminescent element and device for manufacturing same |