JPS63173866A - 無脈動ポンプの制御方式 - Google Patents
無脈動ポンプの制御方式Info
- Publication number
- JPS63173866A JPS63173866A JP62002909A JP290987A JPS63173866A JP S63173866 A JPS63173866 A JP S63173866A JP 62002909 A JP62002909 A JP 62002909A JP 290987 A JP290987 A JP 290987A JP S63173866 A JPS63173866 A JP S63173866A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- plunger
- speed
- microcomputer
- pump
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002131 composite material Substances 0.000 claims abstract description 3
- 238000001514 detection method Methods 0.000 claims description 8
- 230000009977 dual effect Effects 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 5
- 230000010349 pulsation Effects 0.000 abstract description 20
- 230000005540 biological transmission Effects 0.000 abstract description 2
- 230000033001 locomotion Effects 0.000 description 8
- 239000007788 liquid Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000003638 chemical reducing agent Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 238000004811 liquid chromatography Methods 0.000 description 2
- 244000235756 Microcos paniculata Species 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000010339 medical test Methods 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 239000010979 ruby Substances 0.000 description 1
- 229910001750 ruby Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B11/00—Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation
- F04B11/005—Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation using two or more pumping pistons
- F04B11/0075—Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation using two or more pumping pistons connected in series
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B11/00—Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation
- F04B11/005—Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation using two or more pumping pistons
- F04B11/0058—Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation using two or more pumping pistons with piston speed control
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Positive-Displacement Pumps (AREA)
- Reciprocating Pumps (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
め要約のデータは記録されません。
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、液体クロマトグラフィ、医用検査装置などに
用いられる無脈動ポンプに係り、特に圧力脈動を小さく
するようにプランジャの速度制御を行う無脈動ポンプの
制御方式に関する。
用いられる無脈動ポンプに係り、特に圧力脈動を小さく
するようにプランジャの速度制御を行う無脈動ポンプの
制御方式に関する。
従来の無脈動ポンプ装置は、特開昭57−70975に
記載のように、2つのプランツヤを1つのカム駆動によ
り往復運動させて各プランジャの4ング動作による合成
吐出量を得るようにした二連式往復動?ングにおいて、
カムに回転数制御回路を接続した駆動モータを連結する
とともに1合成吐出部の圧力の検出出力信号を直流分除
去回路と増幅回路に通し九後、その信号を反転して回転
数設定回路から出力される信号に加えて補正する構成と
なっている。又、回転数制御回路は、回転数設定回路と
、主増幅器と、駆動モータの出力を主増幅器にフィード
バックするタコジェネレータとから構成している。
記載のように、2つのプランツヤを1つのカム駆動によ
り往復運動させて各プランジャの4ング動作による合成
吐出量を得るようにした二連式往復動?ングにおいて、
カムに回転数制御回路を接続した駆動モータを連結する
とともに1合成吐出部の圧力の検出出力信号を直流分除
去回路と増幅回路に通し九後、その信号を反転して回転
数設定回路から出力される信号に加えて補正する構成と
なっている。又、回転数制御回路は、回転数設定回路と
、主増幅器と、駆動モータの出力を主増幅器にフィード
バックするタコジェネレータとから構成している。
上記従来技術は、(り圧力検出器の検出信号を増幅器を
介してそのままフィードバックしているため、本来圧力
脈動が生じる前に制御すべきところを機器の持つ時定数
分だけ位相が遅れて回転数制御することになシ、圧力変
動開始時の圧力リップルを除去できないこと、(2)圧
力検出器の検出信号を直流分除去回路に通しているため
圧力変動分しか検出していないが、実際は正確には圧力
変動を時間微分した信号に定数を掛けた値を駆動モータ
の速度補正値とすべきであるので、上記従来技術では正
しい速度補正が行われているとは言えないこと、という
問題点があり次。
介してそのままフィードバックしているため、本来圧力
脈動が生じる前に制御すべきところを機器の持つ時定数
分だけ位相が遅れて回転数制御することになシ、圧力変
動開始時の圧力リップルを除去できないこと、(2)圧
力検出器の検出信号を直流分除去回路に通しているため
圧力変動分しか検出していないが、実際は正確には圧力
変動を時間微分した信号に定数を掛けた値を駆動モータ
の速度補正値とすべきであるので、上記従来技術では正
しい速度補正が行われているとは言えないこと、という
問題点があり次。
本発明の目的は、上記の欠点を改良し圧力脈動の小さい
二連式往復動ポンプの制御方式を提供す通路と吐出通路
に逆止弁を有するシリンダヘッド中に形成したポンプ室
中で往復運動するプランジャ及びプランジャを往復運動
させるための駆動装置からなる二連式往復動型無脈動ポ
ンプにおいて、合成吐出量の圧力検出信号の時間微分信
号を出力する回路とプランジャの位置を検出する回路と
を設げ、それらの出力信号をマイクロコンピュータに入
力して、二つのプランジャの速度の和が一定となる駆動
パターンを算出し、該駆動パターンを、前記合成吐出量
の圧力の時間微分値の符号反転した値に比例した値を該
駆動パターンに加算することによって、逐次補正するプ
ランジャ速度制御を行うことを特徴とするものである。
二連式往復動ポンプの制御方式を提供す通路と吐出通路
に逆止弁を有するシリンダヘッド中に形成したポンプ室
中で往復運動するプランジャ及びプランジャを往復運動
させるための駆動装置からなる二連式往復動型無脈動ポ
ンプにおいて、合成吐出量の圧力検出信号の時間微分信
号を出力する回路とプランジャの位置を検出する回路と
を設げ、それらの出力信号をマイクロコンピュータに入
力して、二つのプランジャの速度の和が一定となる駆動
パターンを算出し、該駆動パターンを、前記合成吐出量
の圧力の時間微分値の符号反転した値に比例した値を該
駆動パターンに加算することによって、逐次補正するプ
ランジャ速度制御を行うことを特徴とするものである。
液体クロマトグラフィ等に用いられる無脈動ポンプは、
理想的には脈動なく連続吐出できることが望ましく、又
、高圧の液体を吐出する必要があるため、例えば第2図
に示したように1つの往復動ポンプの吸入側と吐出側に
逆止弁を設け、吐出弁の出口を他の1つの往復動ポンプ
に連通させた構成の2連式の往復動ポンプが用いられる
。この往復動ポンプの2つのプランジャを駆動する機構
には1例えば第2図のように同軸の2つのカムを用いる
もの、又は例えば第3図のように各プランジャを別々の
モータから?−ルねじなどの回転−直線運動変換機構を
介して駆動するものがある。
理想的には脈動なく連続吐出できることが望ましく、又
、高圧の液体を吐出する必要があるため、例えば第2図
に示したように1つの往復動ポンプの吸入側と吐出側に
逆止弁を設け、吐出弁の出口を他の1つの往復動ポンプ
に連通させた構成の2連式の往復動ポンプが用いられる
。この往復動ポンプの2つのプランジャを駆動する機構
には1例えば第2図のように同軸の2つのカムを用いる
もの、又は例えば第3図のように各プランジャを別々の
モータから?−ルねじなどの回転−直線運動変換機構を
介して駆動するものがある。
2つのプランジャの速度パターンは、第4図に示すとお
シであシ、逆止弁の効果を入れると2つのプランジャの
速度の和は一定になるように動作される。こうすること
によって、原理的に脈動のないポンプとなる。しかし、
高圧の液体を連続吐出させるためには、プランジャの運
動方向及び速度を切り換えなければならず、この切シ換
えタイミング時に逆止弁の応答遅れ、洩れなどのため圧
力が低下しタシして圧力リップルが生じる。このため、
この切換区間では、プランジャの速度を制御して圧力脈
動を小さくするようにする必要がある。
シであシ、逆止弁の効果を入れると2つのプランジャの
速度の和は一定になるように動作される。こうすること
によって、原理的に脈動のないポンプとなる。しかし、
高圧の液体を連続吐出させるためには、プランジャの運
動方向及び速度を切り換えなければならず、この切シ換
えタイミング時に逆止弁の応答遅れ、洩れなどのため圧
力が低下しタシして圧力リップルが生じる。このため、
この切換区間では、プランジャの速度を制御して圧力脈
動を小さくするようにする必要がある。
しかし、このプランジャ速度を制御する場合、圧力脈動
にみあった速度補正の大きさと、速度補正の圧力脈動に
対する位相とを適正にしなげれば。
にみあった速度補正の大きさと、速度補正の圧力脈動に
対する位相とを適正にしなげれば。
圧力リップルは残ることになる。例えば、モータにパル
スモータを適用した場合、プランジャの速波数とすると
、 となり、第2グランジヤに注目し次場合、Aをプランジ
ャの断面積、 Qtを洩れ量、Q2を流量、v2をシリ
ンダ及び管路の容積、Kを液体の見叫けの体積弾性係数
、P2を圧力とすると となるから、圧力変動の時間微分は、プランジャ速度の
補正分、すなわち駆動周波数の補正分に対応する。
スモータを適用した場合、プランジャの速波数とすると
、 となり、第2グランジヤに注目し次場合、Aをプランジ
ャの断面積、 Qtを洩れ量、Q2を流量、v2をシリ
ンダ及び管路の容積、Kを液体の見叫けの体積弾性係数
、P2を圧力とすると となるから、圧力変動の時間微分は、プランジャ速度の
補正分、すなわち駆動周波数の補正分に対応する。
従って1本発明では、2つのプランジャを同軸に設けf
c2つのカムで駆動する場合は、2つのプランジャの合
成し次速度の補正分を圧力変動の時間微分値に比例させ
るように設定する。圧力が低下し始めるところでは、プ
ランジャ速度を上げる必要があシ、圧力が上昇し始める
ところでは、逆にプランジャ速度を下げる必要があるの
で、プランジャの合成速度を設定する場合、圧力変動の
時間微分値の符号を逆にする。又、検出した圧力変動の
信号は、増幅器、微分回路を通るため、機器のもってい
る時定数分だけ遅れが生じる。そのため、プランジャ速
度は、少なくともその位相差分補正をマイクロコンピュ
ータの演算処理で行う。
c2つのカムで駆動する場合は、2つのプランジャの合
成し次速度の補正分を圧力変動の時間微分値に比例させ
るように設定する。圧力が低下し始めるところでは、プ
ランジャ速度を上げる必要があシ、圧力が上昇し始める
ところでは、逆にプランジャ速度を下げる必要があるの
で、プランジャの合成速度を設定する場合、圧力変動の
時間微分値の符号を逆にする。又、検出した圧力変動の
信号は、増幅器、微分回路を通るため、機器のもってい
る時定数分だけ遅れが生じる。そのため、プランジャ速
度は、少なくともその位相差分補正をマイクロコンピュ
ータの演算処理で行う。
又、2つのプランジャを2つのモータを使用して独立に
駆動する場合は、吐出行程から吸入行程に移行するとこ
ろで逆止弁の応答遅れによる洩れが生じるため、吐出行
程にある方のプランジャに上記したピストン速度補正分
を足し込むようにする。このようにして、圧力変動を検
出しつつ、又、位相をシフトさせ適正なところを設定す
るようにフィードバックをかける。
駆動する場合は、吐出行程から吸入行程に移行するとこ
ろで逆止弁の応答遅れによる洩れが生じるため、吐出行
程にある方のプランジャに上記したピストン速度補正分
を足し込むようにする。このようにして、圧力変動を検
出しつつ、又、位相をシフトさせ適正なところを設定す
るようにフィードバックをかける。
こうすることによシ、圧力脈動にみあったプランジャ速
度の補正が行えるし、圧力脈動に対し適正なタイミング
でプランジャ速度の補正が行える。
度の補正が行えるし、圧力脈動に対し適正なタイミング
でプランジャ速度の補正が行える。
以下1本発明の実施例を図面を参照して説明する。第2
図は本発明に用いる二連式往復動型無脈動Iングの一例
を示し、ノクルスモータ1でベルト2を介して同一軸上
のカム3を回転させ、このカム3にバネ力で当接するカ
ムフォロア4を有するピストン5,6により、該ピスト
ン5,6の先端に連結した耐摩耗性・耐薬品性のある材
料(例えばルビー)製の第1グランジヤ8および第2プ
ランジヤ9をシリンダヘッド11中に形成されたポンプ
室中で往復動させてポンプ作用を行うものである。10
はシール、18m、18bは図示の如く接続された逆止
弁である。このポンプは、第4図に示すように、二つの
プランジャの速度を合成した速度が一定となるように二
つのカム3,3の曲線を創成してあり、第1グランジヤ
は第2グランジヤの倍の速度で動き、第2ポンプに補填
を行いつつ液体を吐出し、第1ポンプが吸入行程のとき
は、逆止弁が作用することによシ、第2ポンプのみで送
液を行うようになりている。
図は本発明に用いる二連式往復動型無脈動Iングの一例
を示し、ノクルスモータ1でベルト2を介して同一軸上
のカム3を回転させ、このカム3にバネ力で当接するカ
ムフォロア4を有するピストン5,6により、該ピスト
ン5,6の先端に連結した耐摩耗性・耐薬品性のある材
料(例えばルビー)製の第1グランジヤ8および第2プ
ランジヤ9をシリンダヘッド11中に形成されたポンプ
室中で往復動させてポンプ作用を行うものである。10
はシール、18m、18bは図示の如く接続された逆止
弁である。このポンプは、第4図に示すように、二つの
プランジャの速度を合成した速度が一定となるように二
つのカム3,3の曲線を創成してあり、第1グランジヤ
は第2グランジヤの倍の速度で動き、第2ポンプに補填
を行いつつ液体を吐出し、第1ポンプが吸入行程のとき
は、逆止弁が作用することによシ、第2ポンプのみで送
液を行うようになりている。
第3図は本発明に用いる二連式往復動型無脈動ポンプの
他の例を示すもので、二つの別個のパルスモータ1の回
転運動を、遊星歯車減速機14゜スラスト軸受15、ゾ
ールねじ16からなる駆動伝達系を介して、ピストン5
.6の直線往復運動に変換することによって、該ピスト
ン5,6の先端に連結した第1グランジヤ8および第2
グランジヤ9を別個のパルスモータ1.1で駆動するよ
うになっている。10はシール、18m、18bは逆止
弁である。
他の例を示すもので、二つの別個のパルスモータ1の回
転運動を、遊星歯車減速機14゜スラスト軸受15、ゾ
ールねじ16からなる駆動伝達系を介して、ピストン5
.6の直線往復運動に変換することによって、該ピスト
ン5,6の先端に連結した第1グランジヤ8および第2
グランジヤ9を別個のパルスモータ1.1で駆動するよ
うになっている。10はシール、18m、18bは逆止
弁である。
上記のIンプを用いた本発明の実施例を第1図を参照し
て説明する。流量設定器26(あるいは外部流量コント
ローラ)で設定された流量設定信号は、二進化十進−二
進コード変換回路27で二進コードに変換されてマイク
ロコンピュータ24に入力される。この信号と、この信
号の他にスタート・ストラグボタン28からのスタート
信号がパルス発生回路29を経てマイクロコンピュータ
24に入力されると、マイクロコンピュータ24はパル
スモータ駆動周波数等を計算してマイクロコンピュータ
24の出力ポートからノ々ルスモータドライバ25へ第
4図で示し次プランジャ速度駆動パターンをつくシ出す
パルス列、回転方向を決める信号、電流制御信号等を出
力する。これらの信号はパルスモータドライバ25で分
配されて、この実施例では、2台のパルスモータ1を駆
動する。ノ母ルスモータ1が回転すると遊星歯車減速機
14により減速され、スラスト軸受15.ざ−ルねじ1
6よりなる駆動伝達系を介して回転運動が直線往復運動
に変換され、プランジャを往復運動させて、前記第4図
を用いて説明したような送液のしかたで液体を高圧にし
て吐出する。この場合、前に述べた逆止弁の応答遅れの
他、液体を低圧から高圧にする際の体積弾性率が使用す
る液体で異なること等の原因で、タイミングがずれて脈
動が発生する。圧力センサ20がライン圧力と圧力変動
を検出するために設けられており、その検出信号は図示
はしていないが、増幅器及びノイズを除去するためのフ
ィルタを通して微分回路21に入力される。微分回路2
1の出力はい変換器22でデジタル信号に変換されてマ
イクロコンピュータ24に入る。一方、圧力脈動の発生
する位置を検出する手段としてモータlに取シ付けられ
たロータリエンコーダ19およびそれに接続された回転
角度検出回路23が設けられており、これにより、脈動
の発生するパルスモータ回転角度あるいは、基準点から
のパルスモータへ出力しft、 /4ルス数を検出する
。
て説明する。流量設定器26(あるいは外部流量コント
ローラ)で設定された流量設定信号は、二進化十進−二
進コード変換回路27で二進コードに変換されてマイク
ロコンピュータ24に入力される。この信号と、この信
号の他にスタート・ストラグボタン28からのスタート
信号がパルス発生回路29を経てマイクロコンピュータ
24に入力されると、マイクロコンピュータ24はパル
スモータ駆動周波数等を計算してマイクロコンピュータ
24の出力ポートからノ々ルスモータドライバ25へ第
4図で示し次プランジャ速度駆動パターンをつくシ出す
パルス列、回転方向を決める信号、電流制御信号等を出
力する。これらの信号はパルスモータドライバ25で分
配されて、この実施例では、2台のパルスモータ1を駆
動する。ノ母ルスモータ1が回転すると遊星歯車減速機
14により減速され、スラスト軸受15.ざ−ルねじ1
6よりなる駆動伝達系を介して回転運動が直線往復運動
に変換され、プランジャを往復運動させて、前記第4図
を用いて説明したような送液のしかたで液体を高圧にし
て吐出する。この場合、前に述べた逆止弁の応答遅れの
他、液体を低圧から高圧にする際の体積弾性率が使用す
る液体で異なること等の原因で、タイミングがずれて脈
動が発生する。圧力センサ20がライン圧力と圧力変動
を検出するために設けられており、その検出信号は図示
はしていないが、増幅器及びノイズを除去するためのフ
ィルタを通して微分回路21に入力される。微分回路2
1の出力はい変換器22でデジタル信号に変換されてマ
イクロコンピュータ24に入る。一方、圧力脈動の発生
する位置を検出する手段としてモータlに取シ付けられ
たロータリエンコーダ19およびそれに接続された回転
角度検出回路23が設けられており、これにより、脈動
の発生するパルスモータ回転角度あるいは、基準点から
のパルスモータへ出力しft、 /4ルス数を検出する
。
これらの信号はマイクロコンピュータ24に入力され、
前記のデジタル化された圧力変動の時間微分信号は、定
数をかけることによりプランジャ速度の補正分すなわち
パルスモータ駆動周波数の補正分に換算され、符号を変
えて、検出し次圧力脈動発生位置で1回前のパルスモー
タ駆動周波数に足し込まれる。ただし、第2図に示した
ポンプを用いる場合では、プランジャ速度の補正は逆上
弁の効果を考慮した2つのプランジャ速度を合成した速
度の補正であυ、第3図に示したポンプを用いる場合で
は、プランジャ速度の補正は、前記したように吐出行程
にあるプランジャ側の方に行う。
前記のデジタル化された圧力変動の時間微分信号は、定
数をかけることによりプランジャ速度の補正分すなわち
パルスモータ駆動周波数の補正分に換算され、符号を変
えて、検出し次圧力脈動発生位置で1回前のパルスモー
タ駆動周波数に足し込まれる。ただし、第2図に示した
ポンプを用いる場合では、プランジャ速度の補正は逆上
弁の効果を考慮した2つのプランジャ速度を合成した速
度の補正であυ、第3図に示したポンプを用いる場合で
は、プランジャ速度の補正は、前記したように吐出行程
にあるプランジャ側の方に行う。
次に、圧力脈動を小さくするためにプランジャ速度補正
の位相を適正に設定する方法について述べる。前にも述
べたように、各機器での位相の遅れのため、パルスモー
タの回転角度を検出して求めたプランジャ速度補正タイ
ミングは必ずしも適正といえない。そこで、第一回目は
見込まれる遅れ時間だけ速度補正のタイミングを前にず
らせ、その次からは、圧力脈動の発生位置がずれたかど
うか、符号が変ったかどうかを判定して位相シフトを決
め、設定した範囲内に変動値が納まればロックする。具
体的には、圧力脈動の発生位置が変らず、符号も変わら
ない場合は、さらに設定したタイミングを前に進ませ、
符号が変わる場合は位相が前に進みすぎ次ためであると
して、前の値の例えば1/2遅らせるように制御する。
の位相を適正に設定する方法について述べる。前にも述
べたように、各機器での位相の遅れのため、パルスモー
タの回転角度を検出して求めたプランジャ速度補正タイ
ミングは必ずしも適正といえない。そこで、第一回目は
見込まれる遅れ時間だけ速度補正のタイミングを前にず
らせ、その次からは、圧力脈動の発生位置がずれたかど
うか、符号が変ったかどうかを判定して位相シフトを決
め、設定した範囲内に変動値が納まればロックする。具
体的には、圧力脈動の発生位置が変らず、符号も変わら
ない場合は、さらに設定したタイミングを前に進ませ、
符号が変わる場合は位相が前に進みすぎ次ためであると
して、前の値の例えば1/2遅らせるように制御する。
こうすることにより、適正なタイミング及び適正な補正
値でプランジャ速度の補正が行うことができる。
値でプランジャ速度の補正が行うことができる。
本発明によれば、圧力脈動の変動分を除去するのに適正
な大きさのプランジャ速度の補正を行うことができ、t
fC圧力脈動に対しグランシャ速度の補正を最適な位相
差で行うことができるので、圧力脈動を極めて小さくで
きる効果がある。
な大きさのプランジャ速度の補正を行うことができ、t
fC圧力脈動に対しグランシャ速度の補正を最適な位相
差で行うことができるので、圧力脈動を極めて小さくで
きる効果がある。
第1図は本発明の一実施例の制御回路系統図、第2図、
第3図は本発明の適用される二連式往復動型無脈動ポン
プの二つの例を夫々示した図、第4図(a) 、 (b
)は本発明の基本的なプランジャ速度パターンを示した
図である。 1・・・パルスモータ、 2・・・タイミングベルト
、3・・・カム、 4・・・カムフォロワ。 5・・・第1ピストン、 6・・・第2ピストン、8
・・・第1グランジヤ、9・・・第2fランジヤ、10
・・・シール、 11・・・シリンダヘッド。 14・・・遊星歯車減速機、 15・・・スラスト軸受
、16・・・ゲールねじ、 18apH3b・・・
逆止弁、19・・・ロータリエンコーダ、 20・・
・圧力センサ。 21・・・微分回路、 22・・・ψ変換器。 23・・・回転角度検出回路、24・・・マイクロコン
ピュータ、25・・・ノ臂ルスモータトライバ、 26・・・流量設定器、 27・・・コード変換回
路、28・・・スタート書ストップ?タン、29・・・
/4’ルス発生回路。 一゛、−−1 代理人 本 多 小 平: ニ ー 月 第1図 19回転角度検出益 22 AID変換る 3加1
1丈定る20圧カセンサ 24マイクロコ)ピ
ユータ 27]−ド変狽ロ詫421徴づ)ロン鯵
25パルス七−タトライバ 28スタートスト〃
°ボタン第3図
第3図は本発明の適用される二連式往復動型無脈動ポン
プの二つの例を夫々示した図、第4図(a) 、 (b
)は本発明の基本的なプランジャ速度パターンを示した
図である。 1・・・パルスモータ、 2・・・タイミングベルト
、3・・・カム、 4・・・カムフォロワ。 5・・・第1ピストン、 6・・・第2ピストン、8
・・・第1グランジヤ、9・・・第2fランジヤ、10
・・・シール、 11・・・シリンダヘッド。 14・・・遊星歯車減速機、 15・・・スラスト軸受
、16・・・ゲールねじ、 18apH3b・・・
逆止弁、19・・・ロータリエンコーダ、 20・・
・圧力センサ。 21・・・微分回路、 22・・・ψ変換器。 23・・・回転角度検出回路、24・・・マイクロコン
ピュータ、25・・・ノ臂ルスモータトライバ、 26・・・流量設定器、 27・・・コード変換回
路、28・・・スタート書ストップ?タン、29・・・
/4’ルス発生回路。 一゛、−−1 代理人 本 多 小 平: ニ ー 月 第1図 19回転角度検出益 22 AID変換る 3加1
1丈定る20圧カセンサ 24マイクロコ)ピ
ユータ 27]−ド変狽ロ詫421徴づ)ロン鯵
25パルス七−タトライバ 28スタートスト〃
°ボタン第3図
Claims (1)
- 【特許請求の範囲】 1、吸入通路と吐出通路に逆止弁を有するシリンダヘッ
ド中に形成したポンプ室中で往復運動するプランジャ及
びプランジャを往復運動させるための駆動装置からなる
二連式往復動型無脈動ポンプにおいて、合成吐出量の圧
力検出信号の時間微分信号を出力する回路とプランジャ
の位置を検出する回路とを設け、それらの出力信号をマ
イクロコンピュータに入力して、二つのプランジャの速
度の和が一定となる駆動パターンを算出し、該駆動パタ
ーンを、前記合成吐出量の圧力の時間微分値の符号反転
した値に比例した値を該駆動パターンに加算することに
よって、逐次補正するプランジャ速度制御を行うことを
特徴とする無脈動ポンプの制御方式。 2、前記検出したプランジャの位置に対して1回目の補
正タイミングを圧力変動の開始位置及び符号の変化を判
別して逐次ずらせていくように制御する特許請求の範囲
第1項記載の無脈動ポンプの制御方式。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62002909A JPS63173866A (ja) | 1987-01-09 | 1987-01-09 | 無脈動ポンプの制御方式 |
US07/141,218 US4808077A (en) | 1987-01-09 | 1988-01-06 | Pulsationless duplex plunger pump and control method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62002909A JPS63173866A (ja) | 1987-01-09 | 1987-01-09 | 無脈動ポンプの制御方式 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63173866A true JPS63173866A (ja) | 1988-07-18 |
Family
ID=11542483
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62002909A Pending JPS63173866A (ja) | 1987-01-09 | 1987-01-09 | 無脈動ポンプの制御方式 |
Country Status (2)
Country | Link |
---|---|
US (1) | US4808077A (ja) |
JP (1) | JPS63173866A (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH028738A (ja) * | 1988-06-27 | 1990-01-12 | Yokogawa Electric Corp | 送液装置 |
JP2009013957A (ja) * | 2007-07-09 | 2009-01-22 | Hitachi High-Technologies Corp | 送液装置とその制御方法 |
JP2013238466A (ja) * | 2012-05-15 | 2013-11-28 | Shimadzu Corp | 往復動型ポンプの制御装置及び制御方法 |
Families Citing this family (74)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3640236A1 (de) * | 1986-11-25 | 1988-06-01 | Rexroth Mannesmann Gmbh | Anordnung zum erzeugen hoher hydraulischer druecke |
US5354179A (en) * | 1990-08-01 | 1994-10-11 | Matsushita Electric Industrial Co., Ltd. | Fluid rotating apparatus |
EP0472933B2 (en) * | 1990-08-01 | 2003-12-03 | Matsushita Electric Industrial Co., Ltd. | Fluid rotating apparatus |
US5108264A (en) * | 1990-08-20 | 1992-04-28 | Hewlett-Packard Company | Method and apparatus for real time compensation of fluid compressibility in high pressure reciprocating pumps |
JPH055492A (ja) * | 1991-06-28 | 1993-01-14 | Matsushita Electric Ind Co Ltd | 流体回転装置 |
JP3074829B2 (ja) * | 1991-09-05 | 2000-08-07 | 松下電器産業株式会社 | 流体回転装置 |
JP3074845B2 (ja) * | 1991-10-08 | 2000-08-07 | 松下電器産業株式会社 | 流体回転装置 |
JPH05195957A (ja) * | 1992-01-23 | 1993-08-06 | Matsushita Electric Ind Co Ltd | 真空ポンプ |
JPH05202855A (ja) * | 1992-01-29 | 1993-08-10 | Matsushita Electric Ind Co Ltd | 流体回転装置 |
JPH05272478A (ja) * | 1992-01-31 | 1993-10-19 | Matsushita Electric Ind Co Ltd | 真空ポンプ |
US5253981A (en) * | 1992-03-05 | 1993-10-19 | Frank Ji-Ann Fu Yang | Multichannel pump apparatus with microflow rate capability |
JP3569924B2 (ja) * | 1992-03-19 | 2004-09-29 | 松下電器産業株式会社 | 流体回転装置 |
DE4221805A1 (de) * | 1992-07-03 | 1994-01-05 | Mak System Gmbh | Verfahren und Einrichtung zum Starten einer Gasturbine |
US5374173A (en) * | 1992-09-04 | 1994-12-20 | Matsushita Electric Industrial Co., Ltd. | Fluid rotating apparatus with sealing arrangement |
US5480288A (en) * | 1993-03-25 | 1996-01-02 | Fluid Management Limited Partnership | Pump module for dispensing apparatus |
JP3331749B2 (ja) * | 1994-06-27 | 2002-10-07 | 松下電器産業株式会社 | 真空ポンプ |
JPH0828471A (ja) * | 1994-07-11 | 1996-01-30 | Matsushita Electric Ind Co Ltd | 容積型ポンプ |
JPH106954A (ja) * | 1996-06-27 | 1998-01-13 | Unisia Jecs Corp | ポンプ装置およびブレーキ制御装置 |
JPH10176654A (ja) * | 1996-12-16 | 1998-06-30 | Unisia Jecs Corp | ポンプ装置 |
DE19727623C1 (de) * | 1997-06-28 | 1998-07-30 | Hofmann Walter Maschf | Verfahren zur Förderung von Flüssigkeiten mit Hilfe einer aus zwei einzelnen oszillierenden Verdrängerpumpen bestehenden Pumpenkombination und Vorrichtung zur Durchführung des Verfahrens |
US8172546B2 (en) * | 1998-11-23 | 2012-05-08 | Entegris, Inc. | System and method for correcting for pressure variations using a motor |
US6212997B1 (en) | 1999-02-01 | 2001-04-10 | Nordson Corporation | Reciprocating fluid pumps with chromium nitride coated components in contact with non-metallic packing and gasket materials for increased seal life |
US6121746A (en) * | 1999-06-10 | 2000-09-19 | General Electric Company | Speed reduction switch |
EP1236893A1 (fr) * | 2001-02-28 | 2002-09-04 | FMSW sprl | Dispositif de dosage de fluide à flux continu |
JP4276827B2 (ja) * | 2002-10-18 | 2009-06-10 | 株式会社日立ハイテクノロジーズ | 液体クロマトグラフ用ポンプ及びその運転方法 |
JP2004150402A (ja) * | 2002-11-01 | 2004-05-27 | Hitachi High-Technologies Corp | 液体クロマトグラフ用ポンプ |
JP4206308B2 (ja) * | 2003-08-01 | 2009-01-07 | 株式会社日立ハイテクノロジーズ | 液体クロマトグラフ用ポンプ |
US7458782B1 (en) * | 2004-01-23 | 2008-12-02 | Spadola Jr Joseph | Computer monitoring system for pumps |
US20050234394A1 (en) * | 2004-03-26 | 2005-10-20 | Rod Ross | Dual cylinder vacuum pump for medical aspiration system |
GB2433792B (en) * | 2004-07-13 | 2008-09-10 | Waters Investments Ltd | High pressure pump controller |
CN101155992B (zh) * | 2004-11-23 | 2013-02-20 | 恩特格里公司 | 用于可变原位置分配系统的系统和方法 |
JP4709629B2 (ja) * | 2005-10-19 | 2011-06-22 | 株式会社日立ハイテクノロジーズ | ポンプ装置 |
US8241013B2 (en) * | 2005-10-27 | 2012-08-14 | Waters Technologies Corporation | Serial capillary pump |
US8753097B2 (en) * | 2005-11-21 | 2014-06-17 | Entegris, Inc. | Method and system for high viscosity pump |
EP1952022B1 (en) * | 2005-11-21 | 2014-11-12 | Entegris, Inc. | System and method for a pump with reduced form factor |
US8025486B2 (en) * | 2005-12-02 | 2011-09-27 | Entegris, Inc. | System and method for valve sequencing in a pump |
US8083498B2 (en) | 2005-12-02 | 2011-12-27 | Entegris, Inc. | System and method for position control of a mechanical piston in a pump |
WO2007067343A2 (en) * | 2005-12-02 | 2007-06-14 | Entegris, Inc. | O-ring-less low profile fittings and fitting assemblies |
US7878765B2 (en) * | 2005-12-02 | 2011-02-01 | Entegris, Inc. | System and method for monitoring operation of a pump |
US8029247B2 (en) * | 2005-12-02 | 2011-10-04 | Entegris, Inc. | System and method for pressure compensation in a pump |
JP4845969B2 (ja) * | 2005-12-02 | 2011-12-28 | エンテグリース,インコーポレイテッド | ポンプ制御装置を結合する入出力システム、方法、および装置 |
US7850431B2 (en) * | 2005-12-02 | 2010-12-14 | Entegris, Inc. | System and method for control of fluid pressure |
WO2007067360A2 (en) * | 2005-12-05 | 2007-06-14 | Entegris, Inc. | Error volume system and method for a pump |
TWI402423B (zh) * | 2006-02-28 | 2013-07-21 | Entegris Inc | 用於一幫浦操作之系統及方法 |
US7684446B2 (en) | 2006-03-01 | 2010-03-23 | Entegris, Inc. | System and method for multiplexing setpoints |
US7494265B2 (en) * | 2006-03-01 | 2009-02-24 | Entegris, Inc. | System and method for controlled mixing of fluids via temperature |
DE602006006634D1 (de) * | 2006-10-25 | 2009-06-18 | Agilent Technologies Inc | Pumpvorrichtung mit veränderlicher Phasendifferenz zwischen den Pumpkolben |
US20090092511A1 (en) * | 2007-10-05 | 2009-04-09 | Fangfang Jiang | Heart-shaped cam constant flow pump |
WO2009081399A1 (en) * | 2007-12-21 | 2009-07-02 | Medingo Ltd. | Devices and methods for powering a medical device |
US20090220358A1 (en) * | 2008-02-29 | 2009-09-03 | Putzmeister America, Inc. | Unequal length alternating hydraulic cylinder drive system for continuous material output flow with equal material output pressure |
GB2474388B (en) * | 2008-08-07 | 2012-11-21 | Agilent Technologies Inc | Synchronization of supply flow paths |
US8182680B2 (en) | 2009-04-29 | 2012-05-22 | Agilent Technologies, Inc. | Primary piston correction during transfer |
DE102009020414A1 (de) * | 2009-05-08 | 2010-11-11 | Lewa Gmbh | Vergleichmäßigung des Förderstroms bei oszillierenden Verdrängerpumpen |
DE102009057792B4 (de) * | 2009-12-11 | 2016-08-18 | Harm Kölln | Kontinuierlich fördernde Infusionspumpe |
US8943950B2 (en) * | 2010-08-24 | 2015-02-03 | Miva Engineering Ltd. | Reciprocating pump flow control |
WO2013043868A1 (en) | 2011-09-21 | 2013-03-28 | Medrad, Inc. | Continuous multi-fluid delivery system and method |
CH706929A1 (de) * | 2012-09-11 | 2014-03-14 | Werner Doebelin | Ultra-Hochdruck-Spritzenpumpensystem für den Gradienten Betrieb im Bereich der HPLC. |
US9719504B2 (en) | 2013-03-15 | 2017-08-01 | Integrated Designs, L.P. | Pump having an automated gas removal and fluid recovery system and method |
DE102013104505A1 (de) * | 2013-05-02 | 2014-11-06 | Xylem Ip Holdings Llc | Pumpaggregat sowie Verfahren zum Betreiben eines Pumpaggregates |
US10393106B2 (en) * | 2014-12-15 | 2019-08-27 | Sustainable Waste Power Systems, Inc. | Pumps, pump assemblies, and methods of pumping fluids |
KR102528289B1 (ko) | 2015-01-09 | 2023-05-03 | 바이엘 헬쓰케어 엘엘씨 | 다회 사용 1회용 세트를 갖는 다중 유체 전달 시스템 및 그 특징부 |
KR20180034305A (ko) | 2015-02-24 | 2018-04-04 | 410 메디칼, 인크. | 유체 주입용 장치 및 키트 |
US20160265521A1 (en) * | 2015-03-12 | 2016-09-15 | Colterwell Ltd. | Pump assemblies |
US20180209405A1 (en) * | 2015-08-13 | 2018-07-26 | Vindum Engineering Inc. | Improved pulse-free metering pump and methods relating thereto |
FR3044052B1 (fr) * | 2015-11-25 | 2019-09-13 | Exel Industries | Pompe d'alimentation d'un systeme d'application d'un produit de revetement liquide |
US10711788B2 (en) | 2015-12-17 | 2020-07-14 | Wayne/Scott Fetzer Company | Integrated sump pump controller with status notifications |
EP3445978B1 (en) * | 2016-04-19 | 2021-03-10 | Clearmotion, Inc. | Active hydraulec ripple cancellation methods and systems |
US20180306179A1 (en) * | 2017-04-24 | 2018-10-25 | Wanner Engineering, Inc. | Zero pulsation pump |
USD893552S1 (en) | 2017-06-21 | 2020-08-18 | Wayne/Scott Fetzer Company | Pump components |
JP6849095B2 (ja) * | 2017-10-23 | 2021-03-24 | 株式会社島津製作所 | 送液装置及び流体クロマトグラフ |
USD890211S1 (en) | 2018-01-11 | 2020-07-14 | Wayne/Scott Fetzer Company | Pump components |
WO2020061025A1 (en) * | 2018-09-18 | 2020-03-26 | Waters Technologies Corporation | Variable output liquid chromatography pump drive |
CN112943598A (zh) * | 2021-03-30 | 2021-06-11 | 李建华 | 一种低脉冲高压柱塞泵 |
US20230213030A1 (en) * | 2021-12-30 | 2023-07-06 | Acist Medical Systems, Inc. | Dual-piston fluid pump |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4912401A (ja) * | 1972-05-17 | 1974-02-02 | ||
GB1534650A (en) * | 1977-06-14 | 1978-12-06 | Mueszeripari Muevek Lab | Pulsation-free feeding pump |
US4359312A (en) * | 1978-08-15 | 1982-11-16 | Zumtobel Kg | Reciprocating pump for the pulsation-free delivery of a liquid |
FR2461126A1 (fr) * | 1978-12-15 | 1981-01-30 | Gilson Medical Electronic Fran | Pompe a piston a debit reglable precisement |
US4389163A (en) * | 1979-01-02 | 1983-06-21 | Altex Scientific, Inc. | Pressure booster system for fluids |
US4225290A (en) * | 1979-02-22 | 1980-09-30 | Instrumentation Specialties Company | Pumping system |
US4236877A (en) * | 1979-04-18 | 1980-12-02 | Curtis-Dyna Products Corporation | Highly accurate low volume metering pump |
US4321014A (en) * | 1979-12-31 | 1982-03-23 | Polaroid Corporation | Constant flow pumping apparatus |
US4352636A (en) * | 1980-04-14 | 1982-10-05 | Spectra-Physics, Inc. | Dual piston pump |
JPS5770976A (en) * | 1980-10-18 | 1982-05-01 | Nikkiso Co Ltd | Non-pulsation metering pump |
US4566858A (en) * | 1981-10-08 | 1986-01-28 | Nikkiso Co., Ltd. | Pulsation-free volumetric pump |
US4556367A (en) * | 1982-01-29 | 1985-12-03 | The Perkin-Elmer Corporation | Solvent delivery system |
DE3203722C2 (de) * | 1982-02-04 | 1985-08-01 | Gynkotek Gesellschaft für den Bau wissenschaftlich-technischer Geräte mbH, 8000 München | Schubkolbenpumpe zur pulsationsarmen Förderung einer Flüssigkeit |
US4552513A (en) * | 1983-03-07 | 1985-11-12 | Spectra-Physics, Inc. | Multiple piston pump control |
US4681513A (en) * | 1985-02-01 | 1987-07-21 | Jeol Ltd. | Two-stage pump assembly |
JPH0754114B2 (ja) * | 1985-02-01 | 1995-06-07 | 日本電子株式会社 | 送液ポンプの制御方法 |
US4595495A (en) * | 1985-02-22 | 1986-06-17 | Eldex Laboratories, Inc. | Programmable solvent delivery system and process |
-
1987
- 1987-01-09 JP JP62002909A patent/JPS63173866A/ja active Pending
-
1988
- 1988-01-06 US US07/141,218 patent/US4808077A/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH028738A (ja) * | 1988-06-27 | 1990-01-12 | Yokogawa Electric Corp | 送液装置 |
JP2009013957A (ja) * | 2007-07-09 | 2009-01-22 | Hitachi High-Technologies Corp | 送液装置とその制御方法 |
JP2013238466A (ja) * | 2012-05-15 | 2013-11-28 | Shimadzu Corp | 往復動型ポンプの制御装置及び制御方法 |
Also Published As
Publication number | Publication date |
---|---|
US4808077A (en) | 1989-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS63173866A (ja) | 無脈動ポンプの制御方式 | |
US9410543B2 (en) | Pump for liquid chromatograph, and liquid chromatograph | |
EP0334994B1 (en) | Reciprocating type fluid delivery pump | |
US4600365A (en) | Displacement pump for low-pulsation delivery of a liquid | |
US5257914A (en) | Electronic control interface for fluid powered diaphragm pump | |
US6293756B1 (en) | Pump | |
EP0303220A2 (en) | Low pulsation displacement pump | |
EP2107241A2 (en) | A Piston Pump Having a Force Sensor and a Method for Controlling Said Pump | |
US20080101970A1 (en) | Pumping apparatus having a varying phase relationship between reciprocating piston motions | |
JPH10501042A (ja) | 人工知能論理フィードバック制御を使用する2モード液体クロマトグラフィ | |
US4752385A (en) | Liquid chromatograph | |
US4566858A (en) | Pulsation-free volumetric pump | |
CN111936743B (zh) | 无脉动泵 | |
JP2585615B2 (ja) | 無脈動ポンプの制御方法 | |
JP2723912B2 (ja) | 無脈動ポンプの制御装置 | |
CA1181509A (en) | Pulsation-free volumetric pump | |
GB1505521A (en) | Liquid chromatography apparatus and method | |
US4790732A (en) | Driving means of the triple-cylinder plunger pump | |
JPH02176174A (ja) | 無脈動ポンプの制御方法 | |
JPS6067749A (ja) | 燃料噴射ポンプの噴射時期制御装置 | |
JPH02176173A (ja) | 無脈動ポンプの制御方法 | |
JPS63176681A (ja) | 往復ポンプ | |
JP2552654B2 (ja) | 無脈動定量ポンプ | |
JP5186435B2 (ja) | ポンプシステム | |
JPS6375375A (ja) | ピストンポンプの微小駆動装置 |