Nothing Special   »   [go: up one dir, main page]

JPS631726B2 - - Google Patents

Info

Publication number
JPS631726B2
JPS631726B2 JP55092929A JP9292980A JPS631726B2 JP S631726 B2 JPS631726 B2 JP S631726B2 JP 55092929 A JP55092929 A JP 55092929A JP 9292980 A JP9292980 A JP 9292980A JP S631726 B2 JPS631726 B2 JP S631726B2
Authority
JP
Japan
Prior art keywords
metal
components
particle layer
electrode
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55092929A
Other languages
Japanese (ja)
Other versions
JPS5718313A (en
Inventor
Hiromitsu Tagi
Norya Sato
Makoto Ogawa
Katsuhiko Pponjo
Kusuo Kuguhara
Shoji Kuroda
Kenichi Hasegawa
Hiroyuki Hoashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9292980A priority Critical patent/JPS5718313A/en
Publication of JPS5718313A publication Critical patent/JPS5718313A/en
Publication of JPS631726B2 publication Critical patent/JPS631726B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Non-Adjustable Resistors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は製造容易、安価にして、諸特性の安定
したセラミツク電子部品を製造できるようにする
ことを目的とするセラミツク電子部品の製造方法
に関するものである。 従来から誘電体、圧電体、半導体等の機能特性
を利用したセラミツク電子部品の電極材料の製造
に際し、磁器素体の表面にAg、Ag−Pd、Ag−
Pt、Ag−Ni、等の貴金属を主体とした焼付電極
法が実用化されている。しかし近年の貴金属の高
騰に伴ない、各メツキ方法が開発されつつある。
しかしながらこれら方法にも多くの欠点がある。
例えば、磁器素体表面に焼付銀電極を形成し、そ
の後ニツケル電極や銅電極を電解メツキ法により
設けることも可能であるが、この方法では焼付金
属層表面が粗面で多くの小孔が存在するため、メ
ツキ処理においてメツキ液がこの小孔内部に浸透
し、焼付金属層と磁器素体の付着強度を劣化させ
る欠点があつた。他の方法としては無電解メツキ
法が用いられており、無電解ニツケルメツキ法は
最初に塩化錫と塩化パラジウムを化学的反応によ
り触媒活性化処理を施すことが一般的であつた。
しかしセラミツク電子部品用の電極として使用す
る場合には多くの問題点がある。即ち電極材料及
び関連材料の種類、取付方法によつて引張強度
(銀焼付電極に比べ1/2に低下)、さらには電気的
特性(寿命テストによる特性劣化)等が著しく劣
化するものであつた。例えば磁器コンデンサ、圧
電素子、半導体素子に電極を形成する場合、無電
解ニツケルメツキ法はその工法性質上、基板全周
表面上に形成され易く、その場合は周側面の被膜
を研削除去して対向容量電極を形成するが、この
場合は沿面耐電圧距離は基板の厚みで決定し、電
極周端部における電界の集中によつて絶縁破壊が
起り易く、基板の厚みを余り薄くすることはでき
ないものであつた。又これらの方法に対し部分メ
ツキ方法としては磁器表面に所要パターンの金属
層を形成するに際、あらかじめ磁器表面の所要部
に樹脂のメツキレジストを付与し、次いで磁器面
を活性化したのちメツキレジストを除去し、その
後無電解メツキを施して磁器表面に金属層を形成
する方法、又真空蒸着法、フオトエツチング法等
種々の方法があるが、何れもセラミツク電子部品
用電極としては満足する結果が得られない。即ち
従来から知られているメツキ付与方法ではメツキ
の密着性が悪く、特に小型化を目的としたコンデ
ンサ製品の素体厚みは0.1〜0.3m/mと薄く、形
状は4.5〜16φと種々あり、量産性を考慮した場
合、困難であつた。さらに容量値を少しでも大き
く得るために、全面に電極を形成した場合は上述
したように寿命特性が極度に悪く、信頼性上から
は磁器面の電極部に縁を設けることが設計上必要
であつた。 本発明は上記の多くの欠点を除去し、寿命特性
において著しく安定した特性を有するセラミツク
電子部品の製造方法に関するものである。即ち本
発明は誘電体、圧電体、半導体等のセラミツク基
板の必要個所にAg成分が99.5〜55wt%、Co、
Fe、Sn、Mo、W、Mn、Zn、Cu成分の1種ある
いは2種以上の成分が0.5〜45wt%の比率範囲内
の電極材料と、有機質バインダとからなる混合ペ
イントを付与し、その後350℃〜880℃の温度範囲
で熱処理を施し、基板上に0.1〜1.5μの金属微粒
子層を形成し、その後Pd、Pt、Ph、Os、Ir、Ru
の金属イオンのうち少なくとも1種が含まれてい
る溶液中で置換処理を施し、その後無電解メツキ
法によりニツケル又は銅の金属電極を形成するこ
とを特徴とするものであり、本発明の方法によつ
て得られた電極は従来迄の焼付銀電極法によつて
得られた物に対し非常に良好な特性を有し充分な
機能を得ることができるものである。 以下本発明の実施例について説明する。誘電体
セラミツク基板としてはPbTiO3−BaTiO3
SrTiO3−Bi2O3系の素体を用い、厚み0.15〜
1.3m/m、形状4φ〜12φの基板の表面を粗くする
ためにフツ酸及び硝酸で表面処理を行なつた後、
基板(素子)の両面に1m/mの縁が残るような
マスクを用い、吹付あるいは印刷方法を用いた。
尚Ag化合物が1種又は2種以上が含まれている
ペイントの作成としては、Ag粉末及び各種金属
粉末を用い、成分割合としては金属成分が5〜
30wt%、アミド系、フエノール系、セルローズ
系等の有機バインダ成分を5〜10wt%、エチル
セロセルブ、ブチルカルビトール、アルコール等
の溶剤成分を残分として用い、印刷用としては粘
度(約30000〜60000cps)を吹付用(100〜
400cps)に調整しセラミツク基板の裏表に付与し
た。その後80℃〜100℃の温度で乾燥し溶剤を蒸
発させた後、電気炉を用い、450℃〜880℃の温度
範囲で焼付を行ない0.1〜1.5μの金属あるいは合
金微粒子層を形成し、Pd、Pt、Ph、Os、Ir、Ru
等の金属イオンが0.001wt%含まれている溶液中
で置換処理を施し、その後硫酸ニツケルに次亜燐
酸ナトリウムを含むメツキ液に浸漬してニツケル
膜を形成した。尚銅メツキは硫酸銅を用いて銅膜
を形成した。次にリード端子付の方法としては、
Pb−Sn系主体の半田材料を用い、浸漬法により
リード線を取付け、その後フエノール系被覆樹
脂、ワツクス含浸を行ない完成品とした。尚本発
明でAg成分とMo、W、Mn、Zn、Cu成分の1種
又は2種以上の成分を含むペーストを付与し、そ
の後350℃〜880℃の間で焼付を行なうことの必要
性は、セラミツク基板面に安定した金属微粒子層
を形成することであり、350℃以下では樹脂成分
が残り、金属電極の形成が不安定になり、メツキ
後引張強度が低下する。又損失角も悪化する。
880℃以上では金属成分が一部溶解し、メツキが
困難になる。又電気特性も悪化するため好ましく
ない。尚銀成分99.5%以上、Co、Fe、Sn、Mo、
W、Mn、Zn、Cu成分0.5%以下では基板との接
着強度が低下し好ましくない。又Ag成分55wt%
以下、Co、Fe、Sn、Mo、W、Mn、Zn、Cu成
分45wt%以上では酸化膜ができ、電気特性が悪
化し、基板との接着強度も低下するため好ましく
ない。 尚本発明においてペイント焼付後の0.1〜1.5μ
の金属粒子層の上にPt、Pd、Ph、Os、Ir、Ruの
金属を析出させ、さらにNi、Cuメツキを行なう
ことによつて電極としての機能が生じるものであ
る。尚従来からのコンデンサ等の電極材料として
用いられている焼付銀は、焼付後膜厚が3〜20μ
と厚く形成されており、その膜層自体が電極層と
して利用できるものであるが、本発明の焼付後の
金属粒子層は1.5μ以下と著しく薄く、それ自体で
は電極機能としての働きはなく、又半田付もでき
ないものであり、その後のPd、Pt、Ph、Os、
Ir、Ruの金属析出後Ni、Cuメツキによつて初め
て電極機能として利用でき、半田付も可能になる
ものである。尚、本発明は焼付後の金属粒子層と
して0.1〜1.5μの範囲内で存在しておれば充分に
その機能を発揮することができるもので、コンデ
ンサの電極として利用した場合、1.5μ以上では従
来迄の焼付銀(銀厚み5〜20μ)と比較して価格
的にも特長が無く、特に湿中負荷寿命特性におい
てAgのイオンマイグレーシヨンが発生し好まし
くない。尚本実施例としては誘電体磁器材料のみ
について述べたが、他の圧電体、絶縁体、磁器半
導体等350℃以上に耐えるセラミツク物質であれ
ば全く問題はなく、従来迄の浸漬無電解メツキ法
とは全く異なる新しいメツキ方法により製造した
セラミツク電子部品の製造方法である。尚本発明
において接着強度を向上させるために焼結剤とし
て少量のガラス粉末、あるいはBi2O3、Pb3O4
B2O3等も効果がある。又Niメツキ等において微
量のCo、Crも硬度を高める効果もある。さらに
スクリーン時の「タレ」防止として炭素粉末、粘
土等の少量添加も効果がある。 後表においてNo.1、9、10、16、17、23は本発
明外の比較例である。No.1〜9迄はペイントの焼
付温度を750℃一定、金属層厚み約0.5μ一定とし、
Ag成分とCo、Fe、Sn、Mo、W、Mn、Zn、Cu
等の金属成分の比率を変化させたもので、No.1は
セラミツクとの接着強度が低く、No.9のように
Ni、Co、Fe、Sn金属成分
The present invention relates to a method for manufacturing ceramic electronic components that is easy to manufacture, inexpensive, and has stable characteristics. Conventionally, when manufacturing electrode materials for ceramic electronic components that utilize the functional properties of dielectrics, piezoelectrics, semiconductors, etc., Ag, Ag-Pd, Ag-
Baked electrode methods mainly using noble metals such as Pt, Ag-Ni, etc. have been put into practical use. However, with the recent rise in the price of precious metals, various plating methods are being developed.
However, these methods also have many drawbacks.
For example, it is possible to form baked silver electrodes on the surface of the porcelain body and then provide nickel electrodes or copper electrodes by electrolytic plating, but with this method, the surface of the baked metal layer is rough and has many small holes. Therefore, during the plating process, the plating liquid penetrates into the small holes, which deteriorates the adhesion strength between the fired metal layer and the porcelain body. Another method used is the electroless plating method, which generally involves first subjecting tin chloride and palladium chloride to a catalytic activation treatment through a chemical reaction.
However, there are many problems when used as electrodes for ceramic electronic components. In other words, depending on the type of electrode material and related materials and the mounting method, the tensile strength (reduced to 1/2 compared to silver-baked electrodes) and electrical properties (deterioration of properties due to life tests) were significantly degraded. . For example, when forming electrodes on ceramic capacitors, piezoelectric elements, and semiconductor elements, the electroless nickel plating method tends to form electrodes on the entire circumferential surface of the substrate due to the nature of the method. An electrode is formed, but in this case, the creepage withstand voltage distance is determined by the thickness of the substrate, and the concentration of the electric field at the edge of the electrode tends to cause dielectric breakdown, so the thickness of the substrate cannot be made very thin. It was hot. In contrast to these methods, the partial plating method involves applying a resin plating resist to the required portions of the porcelain surface in advance when forming a metal layer with a desired pattern on the porcelain surface, then activating the porcelain surface and applying the plating resist. There are various methods such as removing the metal layer and then applying electroless plating to form a metal layer on the porcelain surface, vacuum evaporation method, photo etching method, etc., but all of them give satisfactory results as electrodes for ceramic electronic components. I can't get it. In other words, the adhesion of the plating is poor with conventional plating methods, and the thickness of capacitor products aimed at miniaturization is as thin as 0.1 to 0.3 m/m, and the shapes vary from 4.5 to 16 φ. This was difficult when considering mass production. Furthermore, if electrodes are formed on the entire surface in order to obtain as large a capacitance value as possible, the life characteristics will be extremely poor as described above, and from the viewpoint of reliability, it is necessary in the design to provide an edge on the electrode portion of the porcelain surface. It was hot. The present invention is directed to a method for manufacturing ceramic electronic components that eliminates many of the above-mentioned drawbacks and has extremely stable lifetime characteristics. That is, in the present invention, Ag components of 99.5 to 55 wt%, Co,
A mixed paint consisting of an electrode material containing one or more of Fe, Sn, Mo, W, Mn, Zn, and Cu components in a ratio range of 0.5 to 45 wt% and an organic binder is applied, and then 350 Heat treatment is performed at a temperature range of ℃~880℃ to form a 0.1~1.5μ metal fine particle layer on the substrate, and then Pd, Pt, Ph, Os, Ir, Ru
The method of the present invention is characterized by performing a substitution treatment in a solution containing at least one kind of metal ions, and then forming a nickel or copper metal electrode by an electroless plating method. The electrode thus obtained has much better properties than those obtained by the conventional baked silver electrode method and can provide sufficient functionality. Examples of the present invention will be described below. PbTiO 3 −BaTiO 3 − is used as a dielectric ceramic substrate.
Using SrTiO 3 −Bi 2 O 3 based body, thickness 0.15~
After performing surface treatment with hydrofluoric acid and nitric acid to roughen the surface of a 1.3m/m, 4φ to 12φ substrate,
A spraying or printing method was used using a mask that left edges of 1 m/m on both sides of the substrate (device).
In addition, to create a paint containing one or more types of Ag compounds, Ag powder and various metal powders are used, and the proportion of the metal components is 5 to 5.
30wt%, 5 to 10wt% of organic binder components such as amide, phenol, and cellulose, and solvent components such as ethyl celloselb, butyl carbitol, and alcohol as the remainder, and the viscosity for printing (approximately 30,000 to 60,000 cps). For spraying (100~
400 cps) and applied to both sides of the ceramic substrate. After drying at a temperature of 80℃ to 100℃ to evaporate the solvent, baking is performed in an electric furnace at a temperature range of 450℃ to 880℃ to form a layer of metal or alloy fine particles of 0.1 to 1.5μ. , Pt, Ph, Os, Ir, Ru
A substitution treatment was performed in a solution containing 0.001 wt% of metal ions such as, and then immersed in a plating solution containing nickel sulfate and sodium hypophosphite to form a nickel film. For copper plating, a copper film was formed using copper sulfate. Next, as a method with lead terminals,
Lead wires were attached using a dipping method using a Pb-Sn based solder material, and then impregnated with a phenol based coating resin and wax to create a finished product. In addition, in the present invention, it is necessary to apply a paste containing an Ag component and one or more of Mo, W, Mn, Zn, and Cu components, and then perform baking at a temperature between 350°C and 880°C. The purpose is to form a stable metal fine particle layer on the ceramic substrate surface. If the temperature is below 350°C, the resin component will remain, making the formation of the metal electrode unstable and reducing the tensile strength after plating. Moreover, the loss angle also worsens.
At temperatures above 880°C, some of the metal components will melt, making plating difficult. Further, the electrical characteristics are also deteriorated, which is not preferable. Silver content: 99.5% or more, Co, Fe, Sn, Mo,
If the W, Mn, Zn, or Cu content is less than 0.5%, the adhesive strength with the substrate decreases, which is not preferable. Also, Ag content 55wt%
Below, Co, Fe, Sn, Mo, W, Mn, Zn, and Cu components of 45 wt % or more are not preferable because an oxide film is formed, the electrical properties deteriorate, and the adhesive strength with the substrate decreases. In addition, in the present invention, 0.1 to 1.5μ after paint baking
The function as an electrode is created by depositing metals such as Pt, Pd, Ph, Os, Ir, and Ru on the metal particle layer, and then plating with Ni and Cu. Baked silver, which is conventionally used as an electrode material for capacitors, has a film thickness of 3 to 20 μm after baking.
The film layer itself can be used as an electrode layer, but the metal particle layer of the present invention after baking is extremely thin, less than 1.5μ, and does not function as an electrode by itself. Also, it cannot be soldered, so Pd, Pt, Ph, Os,
Only by plating Ni and Cu after the metal deposition of Ir and Ru, can it be used as an electrode function and can also be soldered. In addition, the present invention can fully exhibit its function as long as the metal particle layer exists within the range of 0.1 to 1.5μ after baking, and when used as an electrode for a capacitor, if the metal particle layer is 1.5μ or more, Compared to conventional baked silver (silver thickness 5 to 20 μm), it does not have any advantages in terms of price, and is undesirable because Ag ion migration occurs particularly in the humidity load life characteristics. Although only dielectric ceramic materials have been described in this example, there is no problem with other ceramic materials that can withstand temperatures of 350°C or higher, such as piezoelectric materials, insulators, and ceramic semiconductors, and conventional immersion electroless plating methods can be used. This is a method for manufacturing ceramic electronic components using a new plating method that is completely different from the previous method. In the present invention, a small amount of glass powder, Bi 2 O 3 , Pb 3 O 4 ,
B 2 O 3 etc. are also effective. Also, trace amounts of Co and Cr in Ni plating etc. also have the effect of increasing hardness. Furthermore, it is also effective to add small amounts of carbon powder, clay, etc. to prevent "sagging" during screening. In the table below, Nos. 1, 9, 10, 16, 17, and 23 are comparative examples outside the present invention. For Nos. 1 to 9, the paint baking temperature was kept constant at 750℃, and the metal layer thickness was kept constant at about 0.5μ.
Ag components and Co, Fe, Sn, Mo, W, Mn, Zn, Cu
No. 1 has low adhesion strength to ceramic, while No. 9 has a different ratio of metal components.
Ni, Co, Fe, Sn metal components

【表】【table】

【表】【table】

【表】 が多くなると接着強度、さらには誘電特性も著し
く悪化するものであつた。No.2〜8は良好な特性
を示しており、特にNo.3〜5は良好なものであ
る。尚、上記表において、Co、Fe、Sn、Mo、
W、Mn、Zn、Cuの成分比率の欄では、〓内に記
載した金属成分全ての合計量を記入しており、
個々の金属成分の比率については、任意に設定す
ればよく、要はAg成分以外の金属成分の合計量
が本発明の範囲であればよい。No.10〜16迄は焼付
温度を変化させた実施例であり、最適温度はNo.
13、14であつた。No.10の低い温度及びNo.16の高い
温度の実施例は何れも誘電特性さらには接着強度
も低いものである。No.17〜23は焼付後の金属層の
厚みを変化させたものでNo.17はセラミツクとの接
着性が著しく低く、又寿命後の誘電正接が劣化す
るため好ましくない。No.23の厚い膜ではメツキの
付着量が極度に多くなり設計通りの寸法精度が得
がたく好ましくない。尚磁器コンデンサを量産す
る場合、EIA、JIS規格の等級に伴ない容量値の
許容範囲が決められており、ただ単に特性値が高
いものより決められた範囲内で再現性及び歩留の
著しく良好なものが生産性が良く、本発明も厚み
1.5μ〜0.1μの範囲内において、安定した特性を発
揮するものである。尚No.1〜23迄はAg成分とCu
成分の組成比の実施例であるがNo.24〜27は他の金
属粉末を用いた実施例であり、何れも良好な特性
を示している。 以上の実施例で述べたように本発明によつて得
られたセラミツク電子部品はセラミツク基板への
局部メツキが容易に形成でき、又従来の焼付電極
銀に比べ価格も著しく安価であり、特性的にも良
好なもので現在の貴金属の高騰に充分対処でき、
さらに工業的量産化に適した産業価値の大なるセ
ラミツク電子部品の製造方法である。
[Table] When the amount increased, the adhesive strength and furthermore the dielectric properties deteriorated significantly. Nos. 2 to 8 show good characteristics, and Nos. 3 to 5 are particularly good. In addition, in the above table, Co, Fe, Sn, Mo,
In the component ratio columns for W, Mn, Zn, and Cu, enter the total amount of all metal components listed in 〓.
The ratio of each metal component may be set arbitrarily, and the point is that the total amount of metal components other than the Ag component may be within the range of the present invention. Nos. 10 to 16 are examples in which the baking temperature was changed, and the optimum temperature is No.
It was 13 or 14. Both the low temperature example No. 10 and the high temperature example No. 16 have low dielectric properties and low adhesive strength. Nos. 17 to 23 have different thicknesses of the metal layers after baking, and No. 17 is not preferred because it has extremely low adhesion to ceramics and the dielectric loss tangent deteriorates after life. With the thick film of No. 23, the amount of plating deposited is extremely large, making it difficult to obtain the dimensional accuracy as designed, which is undesirable. When mass producing porcelain capacitors, the allowable range of capacitance value is determined according to the grade of EIA and JIS standards, and reproducibility and yield are significantly better within the determined range than those that simply have high characteristic values. Productivity is good, and the present invention also reduces thickness.
It exhibits stable characteristics within the range of 1.5μ to 0.1μ. In addition, Nos. 1 to 23 have Ag components and Cu
Regarding the composition ratio of the components, Nos. 24 to 27 are examples using other metal powders, and all of them show good characteristics. As described in the above examples, the ceramic electronic components obtained by the present invention can be easily locally plated on ceramic substrates, are significantly cheaper than conventional baked silver electrodes, and have excellent characteristics. It is also in good condition and can adequately cope with the current soaring price of precious metals.
Furthermore, it is a method for manufacturing ceramic electronic components of great industrial value, which is suitable for industrial mass production.

Claims (1)

【特許請求の範囲】 1 Ag成分が99.5〜55wt%、Co、Fe、Sn、Mo、
W、Mn、Zn、Cu成分の1種あるいは2種以上の
成分が0.5〜45wt%の比率範囲内の電極材料と、
有機質バインダとからなる混合ペイントをセラミ
ツク基板の必要個所に付与し、その後350℃〜880
℃の温度範囲で熱処理を施し、基板上に0.1〜
1.5μの金属粒子層を形成し、その後Pd、Pt、Rh、
Os、Ir、Ruの金属イオンのうち少なくとも1種
が含まれている溶液中で金属粒子層上にその金属
を析出させる置換処理を施し、その後無電解メツ
キ法によりニツケル又は銅の金属電極を形成する
ことを特徴とするセラミツク電子部品の製造方
法。 2 印刷あるいは吹付可能なペースト中にAg成
分が99.5〜55wt%、Co、Fe、Sn、Mo、W、
Mn、Zn、Cu成分の1種あるいは2種以上の成分
が0.5〜45wt%の比率範囲内の電極材料と、有機
質バインダとからなる混合ペイントを用い、化学
的処理あるいは機械的処理により表面を粗くした
セラミツク基板に端面部が残るように塗布し、そ
の後350℃〜880℃の温度範囲で熱処理を施し、基
板上に0.1〜1.5μの金属粒子層を形成し、その後
Pd、Pt、Rh、Os、Ir、Ruの金属イオンのうち少
なくとも1種が含まれている溶液中で金属粒子層
上にその金属イオンを析出させる置換処理を施
し、その後無電解メツキ法によりニツケル又は銅
メツキの金属電極を形成することを特徴とするセ
ラミツク電子部品の製造方法。
[Claims] 1 Ag component is 99.5 to 55 wt%, Co, Fe, Sn, Mo,
An electrode material containing one or more of W, Mn, Zn, and Cu components in a ratio range of 0.5 to 45 wt%;
A mixed paint consisting of an organic binder is applied to the required locations on the ceramic substrate, and then heated at 350℃ to 880℃.
Heat treatment is carried out in the temperature range of 0.1~
Form a 1.5μ metal particle layer, then Pd, Pt, Rh,
A substitution treatment is performed to precipitate the metal on the metal particle layer in a solution containing at least one of Os, Ir, and Ru metal ions, and then a nickel or copper metal electrode is formed by electroless plating. A method of manufacturing a ceramic electronic component, characterized by: 2 Printable or sprayable paste contains 99.5 to 55wt% Ag, Co, Fe, Sn, Mo, W,
Using a mixed paint consisting of an electrode material containing one or more of Mn, Zn, and Cu components in a ratio range of 0.5 to 45 wt% and an organic binder, the surface is roughened by chemical or mechanical treatment. The coated ceramic substrate is coated so that the edge portion remains, and then heat treated at a temperature range of 350℃ to 880℃ to form a metal particle layer of 0.1 to 1.5μ on the substrate.
A substitution treatment is performed to precipitate the metal ions on the metal particle layer in a solution containing at least one of the metal ions Pd, Pt, Rh, Os, Ir, and Ru, and then electroless plating is applied to nickel. Or a method for producing ceramic electronic components, which comprises forming copper-plated metal electrodes.
JP9292980A 1980-07-07 1980-07-07 Method of producing ceramic electronic part Granted JPS5718313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9292980A JPS5718313A (en) 1980-07-07 1980-07-07 Method of producing ceramic electronic part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9292980A JPS5718313A (en) 1980-07-07 1980-07-07 Method of producing ceramic electronic part

Publications (2)

Publication Number Publication Date
JPS5718313A JPS5718313A (en) 1982-01-30
JPS631726B2 true JPS631726B2 (en) 1988-01-13

Family

ID=14068178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9292980A Granted JPS5718313A (en) 1980-07-07 1980-07-07 Method of producing ceramic electronic part

Country Status (1)

Country Link
JP (1) JPS5718313A (en)

Also Published As

Publication number Publication date
JPS5718313A (en) 1982-01-30

Similar Documents

Publication Publication Date Title
US4477296A (en) Method for activating metal particles
US4735676A (en) Method for forming electric circuits on a base board
JPH0837127A (en) Monolithic ceramic capacitor and its production
JPS5926662B2 (en) Electroless plating active metal material paste and plating method using the same
JPH0136243B2 (en)
US4168519A (en) Capacitor with tin-zinc electrodes
JPH0266101A (en) Electric conductive particles and manufacture thereof
JPS634327B2 (en)
JPS631726B2 (en)
JPS634332B2 (en)
JPS629204B2 (en)
JPS634338B2 (en)
JPS631727B2 (en)
JP2574383B2 (en) Electrode forming method for ceramic electronic parts
JPS634329B2 (en)
JPS634331B2 (en)
JPH0237117B2 (en) KIBANNIDODENKAIROOKEISEISURUHOHO
JPS631728B2 (en)
JPS6322046B2 (en)
JPS5926661B2 (en) Electroless plating active metal material paste and plating method using the same
JP2000306763A (en) Laminated ceramic capacitor and manufacture thereof
JPS6225748B2 (en)
JPS631729B2 (en)
JPS5948950B2 (en) Active metal material paste for electroless plating and plating method using it
JPS634694B2 (en)