JPS5948950B2 - Active metal material paste for electroless plating and plating method using it - Google Patents
Active metal material paste for electroless plating and plating method using itInfo
- Publication number
- JPS5948950B2 JPS5948950B2 JP8821680A JP8821680A JPS5948950B2 JP S5948950 B2 JPS5948950 B2 JP S5948950B2 JP 8821680 A JP8821680 A JP 8821680A JP 8821680 A JP8821680 A JP 8821680A JP S5948950 B2 JPS5948950 B2 JP S5948950B2
- Authority
- JP
- Japan
- Prior art keywords
- metal
- plating
- weight
- electroless
- resins
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Chemically Coating (AREA)
Description
【発明の詳細な説明】
本発明は製造容易、安価にして、かつ諸特性の安定した
セラミツク物質への無電解メツキの下地活性用金属材料
ペーストおよびそれによるメツキ方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a metal material paste for base activation of electroless plating on ceramic materials that is easy to manufacture, inexpensive, and has stable properties, and a plating method using the paste.
従来から誘導体、圧電体、半導体絶縁体等の機能特性を
利用したセラミツク電子部品の電極材料としては磁器素
体の表面にAg.Ag−Pd.Ag一Pt.Ag−Ni
、等の貴金属を主体とした焼付電極法が実用化されてい
る。Conventionally, Ag. Ag-Pd. Ag1Pt. Ag-Ni
Baked electrode methods using precious metals such as , etc. have been put into practical use.
しかし近年の貴金属の高騰に伴ない、各メツキ方法が開
発されつつある。しかしながらこれら方法にも多くの欠
点が有る。例えば、磁器素体表面に焼付銀電極を形成し
、その後金属電極としてニツケル電極、銅電極を電解メ
ツキ法により設ける事も可能であるが、この方法では焼
付金属層表面が粗面で多くの小孔が存在するため、メツ
キ処理においてメツキ液がこの小孔内部に浸透し、焼付
金属層と磁器素体の付着強度を劣化させる欠点があつた
。他の方法としては無電解メツキ法が用いられており、
無電解ニツケルメツキは最初に塩化スズと塩化パラジウ
ムを化学的反応により触媒活性化処理を施こす事が一般
的であつた。しかしセラミツク電子部品用の電極として
使用する場合には多くの問題点がある。即ち電極材料及
び関連材料の種類、取付方法によつて引張強度(銀焼付
電極に比べ1/2に低下)、さらには電気的特性(寿命
テストによる特性劣化)等が著しく劣化するものであつ
た。例えば磁器コンデンサ、圧電素子、半導体素子に電
極を形成する場合、無電解ニツケルメツキ方法はその工
法性質上、基板全周表面上に形成され易く、その場合は
周側面の被膜を研削除去して対向容量電極を形成するが
、この場合は沿面耐電圧距離は基板の厚みで決定し、電
極周端部における電界の集中によつて絶縁破壊が起り易
く、基板の厚みを余り薄くする事は出来ないものであつ
た。又これら方法に対し部分メツキ方法としては磁器表
面に所要パターンの金属層を形成するに際し、あらかじ
め磁器表面の所要部に樹脂のメツキレジストを付与し、
次いで磁器面を活性化したのちメツキレジストを除去し
、その後無電解メツキを施して磁器表面に金属層を形成
する方法、また真空蒸着法、フオトエツチング法等種々
の方法があるが、いづれもセラミツク電子部品用電極と
しては満足する結果が得られない。即ち従来から知られ
ているメツキ付与方法ではメツキの密着性が悪く、特に
小型化を目的としたコンデンサ製品の素体厚みは0.1
〜0.3mmと薄く、形状は4.5〜16φと種々有り
、量産性を考慮した場合、困難なものであつた。さらに
容量値を少しでも大きく得る為、全面に電極を形成した
場合は上記にも述べた様に寿命特性が極度に悪く信頼上
からも磁器面の電極部に縁を設ける事が設計上必要であ
つた。本発明は上記の様な従来の無電解メツキ法とは異
なる新しい方法によつてセラミツク物質の必要個所に取
付ける事が容易であるメツキ下地活性金属材料ペースト
及びそれによるメツキ方法を提供するものである。However, with the recent rise in the price of precious metals, various plating methods are being developed. However, these methods also have many drawbacks. For example, it is possible to form baked silver electrodes on the surface of the porcelain body and then provide nickel electrodes and copper electrodes as metal electrodes by electrolytic plating, but with this method, the surface of the baked metal layer is rough and many small Due to the presence of the holes, the plating liquid penetrates into the small holes during the plating process, resulting in a disadvantage of deteriorating the adhesion strength between the fired metal layer and the porcelain body. Another method used is electroless plating,
It was common for electroless nickel metallization to first undergo a catalytic activation treatment through a chemical reaction between tin chloride and palladium chloride. However, there are many problems when used as electrodes for ceramic electronic components. That is, depending on the type of electrode material and related materials and the mounting method, tensile strength (reduced to 1/2 compared to silver-baked electrodes), electrical properties (deterioration of properties due to life test), etc. were significantly degraded. . For example, when forming electrodes on ceramic capacitors, piezoelectric elements, and semiconductor elements, the electroless nickel plating method tends to form electrodes on the entire circumferential surface of the substrate due to the nature of the method. An electrode is formed, but in this case, the creepage withstand voltage distance is determined by the thickness of the substrate, and dielectric breakdown is likely to occur due to concentration of the electric field at the peripheral edge of the electrode, so the thickness of the substrate cannot be made very thin. It was hot. In addition, in contrast to these methods, the partial plating method involves applying a resin plating resist to the required portions of the porcelain surface in advance when forming a metal layer with a desired pattern on the porcelain surface.
There are various methods such as activating the porcelain surface, removing the plating resist, and then applying electroless plating to form a metal layer on the porcelain surface, vacuum evaporation method, photo etching method, etc., but none of them are suitable for ceramics. Satisfactory results cannot be obtained as electrodes for electronic components. In other words, the adhesion of plating is poor with conventional plating methods, and in particular, the thickness of capacitor products aimed at miniaturization is 0.1
It is as thin as ~0.3 mm, and has various shapes ranging from 4.5 to 16 φ, making it difficult to mass-produce it. Furthermore, in order to obtain as much capacitance as possible, if electrodes are formed on the entire surface, as mentioned above, the life characteristics will be extremely poor, and from the standpoint of reliability, it is necessary in the design to provide an edge around the electrode part on the porcelain surface. It was hot. The present invention provides a plating base active metal material paste that can be easily attached to required locations on ceramic materials by a new method different from the conventional electroless plating method as described above, and a plating method using the paste. .
即ち本発明は、誘電体、半導体、圧電体、絶縁体等のセ
ラミツク物質への無電解ニツケルまたは銅メツキの下地
活性用金属として、銀化合物を溶剤で完全に溶解させて
なる金属ワニスを、繊維素系誘導体、ゴム誘導体、ビニ
ール系誘導体等の脂溶性、水溶性、両性樹脂の1種ある
いは2種以上のビヒクルに金属銀成分に換算し0.05
〜30Wt%を分散して無電解メツキ下地活性金属材料
ペーストを構成し、該ペーストをセラミツク物質の必要
個所へ、スクリーン印刷、吹付法あるいはその他の方法
により塗布し、その後350℃〜850℃の温度範囲内
で焼付処理を施こし、その後無電解銅メツキを行うか、
あるいはPd.Pt.Rh.Os.Ir、Ruイオンの
うち少なくとも1種が含まれている溶液中で置換処理を
施こし、その後無電解ニツケルまたは銅メツキを行なう
事を特徴としたものであり、本発明の方法によつて得た
電極は従来までの化学還元メツキ方法によつて得たもの
に比べ接着強度、電気特性等の諸特性において優秀な特
性を得るものである。That is, the present invention uses a metal varnish made by completely dissolving a silver compound in a solvent as a base active metal for electroless nickel or copper plating on ceramic materials such as dielectrics, semiconductors, piezoelectrics, and insulators. 0.05 in terms of metallic silver component in one or more vehicles of fat-soluble, water-soluble, amphoteric resins such as base derivatives, rubber derivatives, vinyl derivatives, etc.
~30 Wt% is dispersed to form an electroless plating base active metal material paste, and the paste is applied to the required areas of the ceramic material by screen printing, spraying or other methods, and then heated at a temperature of 350°C to 850°C. Apply baking treatment within the range and then perform electroless copper plating, or
Or Pd. Pt. Rh. Os. It is characterized by performing a substitution treatment in a solution containing at least one of Ir and Ru ions, and then performing electroless nickel or copper plating, and is obtained by the method of the present invention. The electrode has superior properties such as adhesive strength and electrical properties compared to those obtained by conventional chemical reduction plating methods.
以下本発明の一実施例および限定理由に付いて説明する
。An embodiment of the present invention and reasons for limitation will be described below.
無電解メツキ下地活性ペーストの作製方法としては、A
gNO3、AgNO2、Ag2SO4、AgCN等の銀
化合物を用い、H2Oあるいはブチルカルビートル、タ
ーピネオイル、エチルアルコール等の溶剤を用い、有機
質バインダとしてエチルセルローズ、サク酸セルローズ
、ブチルゴム、ポリビニールブチラール等の樹脂を用い
、成分割合として金属成分を0.05〜30wt%、樹
脂成分を1〜10Wt%、残分に溶剤成分を用い、スク
リーン印刷用としては粘度約30000〜60000C
PS、吹付用としては粘度約100〜400CPSに調
整し、これらでセラミツク物質への無電解メツキの下地
活性用ペーストを構成した。The method for preparing the active paste for electroless plating is A.
Using a silver compound such as gNO3, AgNO2, Ag2SO4, AgCN, etc., using a solvent such as H2O or butyl carbitol, turpine oil, or ethyl alcohol, and using a resin such as ethyl cellulose, cellulose succinate, butyl rubber, or polyvinyl butyral as an organic binder. , the metal component is 0.05 to 30 wt%, the resin component is 1 to 10 wt%, and the remainder is a solvent component, and the viscosity is about 30,000 to 60,000 C for screen printing.
The PS was adjusted to have a viscosity of about 100 to 400 CPS for spraying, and was used to form a base activation paste for electroless plating on ceramic materials.
なおスクリーン印刷の寸法精度を向上ノさせる為、炭素
成分を0.1〜30wt%の範囲内で添加する事によつ
て印刷精度を著しく高める事が可能である。従来からの
銀ペーストは金属成分が80wt%以上である為、印刷
時の「タレ」がないものであつたが、樹脂成分が多くな
ると「タレ」1が発生するもので、これの防止として最
高の効果がある。なお1Wt%まででは効果が薄く、3
0wt%を越えると焼付時において完全に飛散せず炭素
成分が残る為、電気特性等に悪影響を与えて好ましくな
い。また炭素成分の代りに、無機原料としてノ2μ以下
の粒径を有するCacO3、SiO2、MgO、粘土粉
末等の添加も効果がある。次にセラミツク物質への利用
方法としては電子部品に使用する誘電体セラミツク基板
としてBaTlO3−BaZrO3−CaTiO3系の
素体を用い、厚み0.15mm〜2mm形状4〜20φ
の基板を用い、素子の両面に0.5mmの縁が残る様な
マスクによる吹付及び印刷方法を用い、塗布後80゜〜
100℃の温度で乾燥し溶剤を蒸発させた後、電気炉を
用い、350〜850℃の温度範囲で焼付を行ない、金
属銀粒・子を析出させる。In order to improve the dimensional accuracy of screen printing, it is possible to significantly improve the printing accuracy by adding a carbon component within the range of 0.1 to 30 wt%. Conventional silver paste has a metal content of 80wt% or more, so there is no sagging during printing, but when the resin content increases, sagging occurs, so this is the best way to prevent this. There is an effect. Note that the effect is weak up to 1 Wt%, and 3
If it exceeds 0 wt%, the carbon component will not be completely dispersed during baking and the carbon component will remain, which will adversely affect electrical properties, etc., which is not preferable. In addition, instead of the carbon component, it is also effective to add CacO3, SiO2, MgO, clay powder, etc. having a particle size of 2 microns or less as an inorganic raw material. Next, as a method of using ceramic materials, a BaTlO3-BaZrO3-CaTiO3-based element body is used as a dielectric ceramic substrate used for electronic parts, and the thickness is 0.15 mm to 2 mm and the shape is 4 to 20 φ.
Using a spraying and printing method using a mask that leaves a 0.5 mm edge on both sides of the element, the temperature is 80°~ after coating.
After drying at a temperature of 100°C to evaporate the solvent, baking is performed using an electric furnace at a temperature range of 350 to 850°C to precipitate metal silver particles.
なお350゜〜850℃の間で焼付を行なう事の必要性
はセラミツク基板面に強固な金属銀粒子層を形成する為
であり、350℃まででは樹脂成分が残り、Ni.Cu
メツキの着付が悪くなり、850℃を越えると銀粒子が
溶融する為好ましくない。その後Pd.Pt.Rh、0
s.Ir.Ruイオンが0.05wt%含まれている溶
液中で1分間置換処理を施こし、水洗後、Niメツキと
しては、硫酸ニツケルに次亜燐酸ナトリウム(又はヒド
ラジン、水素化ほう素化合物等)を含むメツキ液に浸漬
してニツケル膜を形成し、またCuメツキとしては硫酸
銅、還元剤としてホルマリン、錯化剤としてロツセル塩
、アルカリ剤として水酸化ナトリウムを用いて銅膜を形
成し、無電解メツキを行なつた。なお本発明の無電解メ
ツキ下地活性金属材料は金属銀の粒子層は1μ以下存在
しておれば充分にその機能を発揮する事が出来るもので
、コンデンサの電極として利用した場合、1μ以上では
従来の焼付銀(銀厚み5μ〜20μ)と比較して価額的
にも特徴が無く、特に湿中負荷寿命特性においてAgの
イオンマイグレーシヨンが発生し好ましくない。The necessity of baking between 350° and 850°C is to form a strong metallic silver particle layer on the surface of the ceramic substrate; at temperatures up to 350°C, resin components remain and Ni. Cu
If the temperature exceeds 850° C., the silver particles will melt, which is not preferable. Then Pd. Pt. Rh, 0
s. Ir. Substitution treatment was performed for 1 minute in a solution containing 0.05 wt% Ru ions, and after washing with water, the Ni plating was made using nickel sulfate containing sodium hypophosphite (or hydrazine, boron hydride compounds, etc.). A nickel film is formed by immersing it in a plating solution, and a copper film is formed using copper sulfate as Cu plating, formalin as a reducing agent, Rothsel salt as a complexing agent, and sodium hydroxide as an alkaline agent. I did this. The active metal material for electroless plating of the present invention can fully exhibit its function as long as the particle layer of metallic silver is 1 μm or less, and when used as a capacitor electrode, it cannot be used as a conventional material for a layer of metal silver of 1 μm or more. Compared to baked silver (silver thickness: 5 μm to 20 μm), it has no features in terms of price, and is undesirable because Ag ion migration occurs particularly in the humidity load life characteristics.
また本発明において、ペースト焼付後の金属銀粒子層が
1μ以下の粒子層の上に無電解Cuメツキするか、Pd
lPt..RhlOs.Ir.Ruイオンの少くとも1
種(を含む金属イオンを析出させた後無電解Ni.Cu
メツキを行なう事によつて電極としての機能が生ずるも
のである。In addition, in the present invention, the metal silver particle layer after paste baking is plated with electroless Cu or Pd
lPt. .. RhlOs. Ir. At least one Ru ion
Electroless Ni.Cu after precipitating metal ions (including seeds)
By plating, it functions as an electrode.
なお従来からコンデンサ等の電極材料として用いられて
いる焼付銀は焼付後膜厚が3〜20μと厚く形成されて
おり、その膜層自体が電極層として利用出来るものであ
るが、本発明の下地金属銀粒子層はlμ以下と著しく薄
く、それ自体では電極機能としての働きもなく、又、半
田付等も出来ないものであり、その後の無電解Cuメツ
キ析出あるいはPd.Pt.Rh、0s.Ir.Ruイ
オン析出後無電解Ni.Cuメツキによつてはじめて電
極機能として利用出来、又半田付も可能になるものであ
る。なお本実施としては誘電体磁器材料のみに付いて述
べたが、他の圧電体、絶縁体、ガラス、半導体等350
℃以上に耐えるセラミツク物質であれば全く問題はなく
、従来の浸漬無電解メツキ法とは全く異なる新しいメツ
キ下地形成方法であり、特に局部メツキ等に用いると効
果が充分に発揮出来るものである。Baked silver, which has conventionally been used as an electrode material for capacitors, has a thick film thickness of 3 to 20 μm after baking, and the film layer itself can be used as an electrode layer. The metallic silver particle layer is extremely thin, less than 1μ, and does not function as an electrode by itself, nor can it be soldered, etc., and cannot be used for subsequent electroless Cu plating deposition or Pd. Pt. Rh, 0s. Ir. After Ru ion precipitation, electroless Ni. Only by Cu plating can it be used as an electrode function, and can it also be soldered. Although this implementation has been described only for dielectric ceramic materials, it can also be applied to other piezoelectric materials, insulators, glass, semiconductors, etc.
There is no problem at all as long as the ceramic material can withstand temperatures above .degree. C., and it is a new method of forming a plating base that is completely different from the conventional immersion electroless plating method, and it is particularly effective when used for local plating.
Claims (1)
を脂溶性樹脂、水溶性樹脂、両性樹脂の1種あるいは2
種以上のビヒクルに分散し、金属成分として0.05〜
30重量パーセントを含有させてなる無電解メッキ下地
活性金属材料ペースト。 2 銀化合物を溶剤で完全に溶解させてなる金属ワニス
を脂溶性樹脂、水溶性樹脂、両性樹脂の1種あるいは2
種以上のビヒクルに分散し、金属成分として、0.05
〜30重量パーセントを含有せしめ、さらに炭素粉末0
.1〜30重量パーセントを添加してなる無電解メッキ
下地活性金属材料ペースト。 3 銀化合物を溶剤で完全に溶解させてなる金属ワニス
を脂溶性樹脂、水溶性樹脂、両性樹脂の1種あるいは2
種以上のビヒクルに分散し、金属成分として0.05〜
30重量パーセントを含有せしめ、さらに2μ以下の粉
末粒径を有する無機原料を2重量パーセント以下添加し
てなる無電解メッキ下地活性金属材料ペースト。 4 銀化合物を溶剤で完全に溶解させてなる金属ワニス
を脂溶性樹脂、水溶性樹脂、両性樹脂の1種あるいは2
種以上のビヒクルに分散し、金属成分として0.05〜
30重量パーセントを含有させてなる無電解メッキ下地
活性金属材料ペーストをセラミック物質へ塗布し、35
0〜850℃の温度範囲内で焼付処理を施こし、金属微
粒子を析出させ、その後、無電解銅メッキを行うことを
特徴とするメッキ方法。 5 銀化合物を溶剤で完全に溶解させてなる金属ワニス
を脂溶性樹脂、水溶性樹脂、両性樹脂の1種あるいは2
種以上のビヒクルに分散し、金属成分として0.05〜
30重量パーセントを含有せしめ、さらに炭素粉末0.
1〜30重量パーセントを添加してなる無電解メッキ下
地活性金属材料ペーストをセラミック物質へ塗布し、3
50〜850℃の温度範囲内で焼付処理を施こし、金属
微粒子を析出させ、その後、無電解銅メッキを行うこと
を特徴とするメッキ方法。 6 銀化合物を溶剤で完全に溶解させてなる金属ワニス
を脂溶性樹脂、水溶性樹脂、両性樹脂の1種あるいは2
種以上のビヒクルに分散し、金属成分として0.05〜
30重量パーセントを含有せしめ、さらに2μ以下の粉
末粒径を有する無機原料を2重量パーセント以下添加し
てなる無電解メッキ下地活性金属材料ペーストをセラミ
ック物質へ塗布し、350〜850℃の温度範囲内で焼
付処理を施こし、金属微粒子を析出させ、その後、無電
解銅メッキを行うことを特徴とするメッキ方法。 7 銀化合物を溶剤で完全に溶解させてなる金属ワニス
を脂溶性樹脂、水溶性樹脂、両性樹脂の1種あるいは2
種以上のビヒクルに分散し、金属成分として0.05〜
30重量パーセントを含有させてなる無電解メッキ下地
活性金属材料ペーストをセラミック物質へ塗布し、35
0〜850℃の温度範囲内で焼付処理を施こし、金属微
粒子を析出させ、その後、Pd、Pt、Rh、Os、I
r、Ruイオンのうち少くとも1種が含まれている溶液
中で置換処理を施こし、その後無電解ニッケルメッキ、
無電解銅メッキのいずれかを行うことを特徴とするメッ
キ方法。 8 銀化合物を溶剤で完全に溶解させてなる金属ワニス
を脂溶性樹脂、水溶性樹脂、両性樹脂の1種あるいは2
種以上のビヒクルに分散し、金属成分として0.05〜
30重量パーセントを含有せしめ、さらに炭素粉末0.
1〜30重量パーセントを添加してなる無電解メッキ下
地活性金属材料ペーストをセラミック物質へ塗布し、3
50〜850℃の温度範囲内で焼付処理を施こし、金属
微粒子を析出させ、その後、Pd、Pt、Rh、Os、
Ir、Ruイオンのうち少くとも1種が含まれている溶
液中で置換処理を施こし、その後無電解ニッケルメッキ
、無電解銅メッキのいずれかを行うことを特徴とするメ
ッキ方法。 9 銀化合物を溶剤で完全に溶解させてなる金属ワニス
を脂溶性樹脂、水溶性樹脂、両性樹脂の1種あるいは2
種以上のビヒクルに分散し、金属成分として0.05〜
30重量パーセントを含有せしめ、さらに2μ以下の粉
末粒径を有する無機原料を2重量パーセント以下添加し
てなる無電解メッキ下地活性金属材料ペーストをセラミ
ック物質へ塗布し、350〜850℃の温度範囲内で焼
付処理を施こし、金属微粒子を析出させ、その後、Pd
、Pt、Rh、Os、Ir、Ruイオンのうち少くとも
1種が含まれている溶液中で置換処理を施こし、その後
無電解ニッケルメッキ、無電解銅メッキのいずれかを行
うことを特徴とするメッキ方法。[Claims] 1. A metal varnish made by completely dissolving a silver compound in a solvent, and one or two of a fat-soluble resin, a water-soluble resin, and an amphoteric resin.
Dispersed in a vehicle of more than 0.05% as a metal component
An electroless plating base active metal material paste containing 30% by weight. 2 A metal varnish made by completely dissolving a silver compound in a solvent is mixed with one or two of fat-soluble resins, water-soluble resins, and amphoteric resins.
Dispersed in a vehicle of at least 0.05% as a metal component
~30% by weight and additionally 0 carbon powder
.. An electroless plating base active metal material paste containing 1 to 30 percent by weight. 3 A metal varnish made by completely dissolving a silver compound in a solvent is mixed with one or two of fat-soluble resin, water-soluble resin, and amphoteric resin.
Dispersed in a vehicle of more than 0.05% as a metal component
An active metal material paste for electroless plating, which contains 30% by weight and further contains 2% by weight or less of an inorganic raw material having a powder particle size of 2μ or less. 4 A metal varnish made by completely dissolving a silver compound in a solvent is mixed with one or two of fat-soluble resin, water-soluble resin, and amphoteric resin.
Dispersed in a vehicle of more than 0.05% as a metal component
Applying an electroless plating base active metal material paste containing 30 weight percent to the ceramic material,
A plating method characterized by performing a baking treatment within a temperature range of 0 to 850°C to precipitate metal fine particles, and then performing electroless copper plating. 5 A metal varnish made by completely dissolving a silver compound in a solvent is mixed with one or two of fat-soluble resins, water-soluble resins, and amphoteric resins.
Dispersed in a vehicle of more than 0.05% as a metal component
30% by weight and additionally 0.3% by weight of carbon powder.
Applying an electroless plating base active metal material paste containing 1 to 30 weight percent of the paste to the ceramic material;
A plating method characterized by performing a baking treatment within a temperature range of 50 to 850°C to precipitate metal fine particles, and then performing electroless copper plating. 6 A metal varnish made by completely dissolving a silver compound in a solvent is mixed with one or two of fat-soluble resins, water-soluble resins, and amphoteric resins.
Dispersed in a vehicle of more than 0.05% as a metal component
An electroless plating base active metal material paste containing 30% by weight and further adding 2% by weight or less of an inorganic raw material having a powder particle size of 2 μ or less is applied to the ceramic material, and the paste is applied within a temperature range of 350 to 850°C. A plating method characterized by performing a baking treatment to precipitate fine metal particles, and then performing electroless copper plating. 7 A metal varnish made by completely dissolving a silver compound in a solvent is mixed with one or two of fat-soluble resins, water-soluble resins, and amphoteric resins.
Dispersed in a vehicle of more than 0.05% as a metal component
Applying an electroless plating base active metal material paste containing 30 weight percent to the ceramic material,
Baking treatment is performed within a temperature range of 0 to 850°C to precipitate metal fine particles, and then Pd, Pt, Rh, Os, I
Replacement treatment is performed in a solution containing at least one of r and Ru ions, followed by electroless nickel plating,
A plating method characterized by performing any of electroless copper plating. 8 A metal varnish made by completely dissolving a silver compound in a solvent is mixed with one or two of fat-soluble resins, water-soluble resins, and amphoteric resins.
Dispersed in a vehicle of more than 0.05% as a metal component
30% by weight and additionally 0.3% by weight of carbon powder.
Applying an electroless plating base active metal material paste containing 1 to 30 weight percent of the paste to the ceramic material;
Baking treatment is performed within a temperature range of 50 to 850°C to precipitate metal fine particles, and then Pd, Pt, Rh, Os,
A plating method characterized by performing a substitution treatment in a solution containing at least one type of Ir and Ru ions, and then performing either electroless nickel plating or electroless copper plating. 9 A metal varnish made by completely dissolving a silver compound in a solvent is mixed with one or two of fat-soluble resins, water-soluble resins, and amphoteric resins.
Dispersed in a vehicle of more than 0.05% as a metal component
An electroless plating base active metal material paste containing 30% by weight and further adding 2% by weight or less of an inorganic raw material having a powder particle size of 2 μ or less is applied to the ceramic material, and the paste is applied within a temperature range of 350 to 850°C. Baking treatment is performed to precipitate metal fine particles, and then Pd
, Pt, Rh, Os, Ir, and Ru ions are subjected to substitution treatment in a solution containing at least one kind of ion, and then either electroless nickel plating or electroless copper plating is performed. plating method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8821680A JPS5948950B2 (en) | 1980-06-28 | 1980-06-28 | Active metal material paste for electroless plating and plating method using it |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8821680A JPS5948950B2 (en) | 1980-06-28 | 1980-06-28 | Active metal material paste for electroless plating and plating method using it |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5713163A JPS5713163A (en) | 1982-01-23 |
JPS5948950B2 true JPS5948950B2 (en) | 1984-11-29 |
Family
ID=13936696
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8821680A Expired JPS5948950B2 (en) | 1980-06-28 | 1980-06-28 | Active metal material paste for electroless plating and plating method using it |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5948950B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016194966A1 (en) * | 2015-06-02 | 2016-12-08 | 株式会社村田製作所 | Metal layer formation method |
WO2016194967A1 (en) * | 2015-06-02 | 2016-12-08 | 株式会社村田製作所 | Metal layer formation method |
-
1980
- 1980-06-28 JP JP8821680A patent/JPS5948950B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5713163A (en) | 1982-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR900003152B1 (en) | Method for forming capacitive circuit on circuit board | |
JPS5926662B2 (en) | Electroless plating active metal material paste and plating method using the same | |
US3859128A (en) | Composition for resistive material and method of making | |
US4510179A (en) | Electrode on heat-resisting and isolating substrate and the manufacturing process for it | |
JPS5948950B2 (en) | Active metal material paste for electroless plating and plating method using it | |
US4559279A (en) | Electrode on heat-resisting and isolating substrate | |
JPS5926661B2 (en) | Electroless plating active metal material paste and plating method using the same | |
JPS634332B2 (en) | ||
JPS634327B2 (en) | ||
JPS6225748B2 (en) | ||
JPS6039154B2 (en) | Electroless plating base active paste and electroless plating method using the same | |
JPS58161759A (en) | Method for plating on aluminum base plate | |
JPS634338B2 (en) | ||
JPS646530B2 (en) | ||
JPS6237112B2 (en) | ||
JP2002275509A (en) | Method for manufacturing metal powder, metal powder, conductive paste which uses the same and multilayer ceramic electronic parts which use the same | |
JPS631729B2 (en) | ||
JP2574383B2 (en) | Electrode forming method for ceramic electronic parts | |
JPH03215916A (en) | Method for formation of electrode and electronic part using it | |
JPS631728B2 (en) | ||
JPH027167B2 (en) | ||
JPS634335B2 (en) | ||
JPH02178910A (en) | Manufacture of laminate-type ceramic chip capacitor | |
JPS629204B2 (en) | ||
JPS6316897B2 (en) |