Nothing Special   »   [go: up one dir, main page]

JPS63120230A - Spectrophotometer - Google Patents

Spectrophotometer

Info

Publication number
JPS63120230A
JPS63120230A JP26595686A JP26595686A JPS63120230A JP S63120230 A JPS63120230 A JP S63120230A JP 26595686 A JP26595686 A JP 26595686A JP 26595686 A JP26595686 A JP 26595686A JP S63120230 A JPS63120230 A JP S63120230A
Authority
JP
Japan
Prior art keywords
array
diffraction grating
concave diffraction
rowland circle
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26595686A
Other languages
Japanese (ja)
Other versions
JPH0415408B2 (en
Inventor
Kazuaki Okubo
和明 大久保
Hideo Nishiyama
西山 英夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26595686A priority Critical patent/JPS63120230A/en
Publication of JPS63120230A publication Critical patent/JPS63120230A/en
Publication of JPH0415408B2 publication Critical patent/JPH0415408B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)

Abstract

PURPOSE:To almost linearily form a dispersion image on a light receiver array with respect to all of wavelengths, by arranging the light receiver array at the predetermined optimum position inside the Rowland circle of a concave diffraction lattice. CONSTITUTION:A light receiver array 5 is arranged to the Rowland circle 2 of a concave diffraction lattice 1 at the optimum position 0.125-1.5% inside the diameter of said circle 2 and a dispersion image is almost linearily formed within a range of -1.8-+1.8 deg. to the normal line passing the center of the grating 1 with respect to all of wavelengths and the sensitivity wavelength band half value width errors of array elements coincide at the min. Therefore, when a sensitivity wavelength band half value width is allowed to coincide with the wavelength interval of the array elements through an incident slit 3, the integral of radiation energy and the multiple integral of a spectrum and tristimulus values for calculating a measured value can be accurately performed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光源色や物体色を短時間のうちに精度良く測
定することを可能にし、カラーマツチングや自動着色に
おけるカラーモニタ、光源やCRTディスプレイなどの
光色評価などを正しく行なう分光測光器に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention makes it possible to accurately measure light source color and object color in a short time, and is useful for color monitors, light sources, and CRT displays in color matching and automatic coloring. This invention relates to a spectrophotometer that accurately evaluates the color of light.

従来の技術 従来は、一般の回折格子モノクロメータの出射スリット
の位置に、リニアイメージセンサを配置し、多チヤンネ
ル光電検出器として使用した分光測光器があった。(例
えば、内田他「リニアセンサを用いた分光測光システム
J (1983)No、73P、198インターフエイ
ス)、 角井他「固体イメージセンサの測光特性と分光
測定への応用」照明学会誌V。
2. Description of the Related Art Conventionally, there has been a spectrophotometer in which a linear image sensor is placed at the exit slit of a general diffraction grating monochromator and used as a multichannel photoelectric detector. (For example, Uchida et al., "Spectrophotometry System Using Linear Sensor J (1983) No. 73P, 198 Interface"), Kakui et al., "Photometric Characteristics of Solid-State Image Sensors and Application to Spectrometry," Journal of the Illumination Society of Japan V.

1.61 No、7 PI3(昭和52年)) これら
の装置は、いずれも分光プロフィルを観測することを第
一の目的としたものであった。
1.61 No. 7 PI3 (1972)) The primary purpose of all of these devices was to observe spectral profiles.

発明が解決しようとする問題点 一般に、回折格子モノクロメータは、出射スリット上に
、ある波長の光を結像する構造となっている。このとき
、その出射スリットの近くに結像される、分散像の結像
面は、平面とはならない。
Problems to be Solved by the Invention In general, a diffraction grating monochromator has a structure in which light of a certain wavelength is imaged onto an exit slit. At this time, the imaging plane of the dispersed image formed near the exit slit is not a plane.

たとえば、凹面回折格子を使用したモノクロメータの場
合、凹面格子の曲率半径Rを直径とする円(Rowla
nd円)上に入射スリットを置くと、すべての光は波長
の順にこのロウランド(Rowland )円の円周」
−結像する。したがって、この波長分解された光を、直
線(平面)の受光器アレイで、検出しようとする場合、
受光面上に、波長に対してリニアな分散像が結像せず、
たとえば、受光面中央を、ロウランド円上にもってくる
と、受光面上に投影される分散光の波長は、受光面の端
に行くにしたがって、拡がりが大きくなる。すなわち線
分散が大きく変化する。
For example, in the case of a monochromator using a concave diffraction grating, a circle whose diameter is the radius of curvature R of the concave grating (Rowla
If we place an input slit on the nd circle), all the light will travel around the circumference of this Rowland circle in order of wavelength.
-Image formed. Therefore, when trying to detect this wavelength-resolved light with a linear (plane) receiver array,
A linear dispersion image with respect to wavelength is not formed on the light receiving surface,
For example, when the center of the light-receiving surface is placed on the Rowland circle, the wavelength of the dispersed light projected onto the light-receiving surface becomes wider as it approaches the edge of the light-receiving surface. In other words, the line dispersion changes significantly.

受光器アレイの各素子の有効感度領域の形状は同じであ
るから、各アレイに対する感度波長帯域特性も変化する
Since the shape of the effective sensitivity region of each element of the photoreceiver array is the same, the sensitivity wavelength band characteristics for each array also change.

分光測定による放射のエネルギー積分や、測色値を正l
ノくもとめるためにスペクトルと三刺徴値との重価積分
を正確に行なうためには、受光器アレイの中心の波長間
隔(受光面上の線分散と受光器アレイ間の距離より求め
る。)と、各受光器アレイの感度波長帯域半値幅が一致
しなければならない。(これに間する詳細な説明は 渡
合:照明学会放射の応用、開運計測研究会資料AR−8
1−20(1981)にある。)従ってこのためには、
受光器の各アレイの感度波長帯域半値幅を一定にし、か
つその値とアレイの波長間隔を一致させなければならな
い。
Calculate the energy integral of radiation through spectrometry and the colorimetric value.
In order to accurately perform the weighted integration of the spectrum and the triad value, it is necessary to determine the wavelength interval at the center of the photoreceiver array (calculated from the line dispersion on the photoreceptor surface and the distance between the photoreceiver arrays). and the half-width of the sensitivity wavelength band of each photoreceiver array must match. (For a detailed explanation of this, see Watai: Application of Radiation, Illuminating Society of Japan, Kaiun Measurement Study Group Material AR-8.
1-20 (1981). ) Therefore for this,
The half-width of the sensitivity wavelength band of each array of photodetectors must be constant, and that value must match the wavelength spacing of the arrays.

問題点を解決するための手段 上記の問題点を解決するために、本発明は凹面回折格子
のロウランド円の円周上よりわずかに内側に受光器アレ
イの中心の受光面がくるように受光器アレイを配置し、
分散光を受光器アレイ上に波長に対してリニアに投影す
るようにしたものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides optical receivers such that the light-receiving surface at the center of the receiver array is located slightly inside the circumference of the Rowland circle of the concave diffraction grating. Place the array,
Dispersed light is projected onto a photoreceiver array linearly with respect to wavelength.

作用 上記の手段によって、受光器アレイ上に波長に対してリ
ニアに分散光が投映されることにより、受光器アレイの
感度波長帯域半値幅が、すべてのアレイに対して一致さ
せることができ、さらに入射スリット幅を使って感度波
長帯域半値幅を、アレイの波長間隔(モノクロメータの
線分散よりもとめる。)に一致させれば、放射のエネル
ギー積分や、測色値をもとめるためにスペクトルと三刺
激値との重価積分を正確に行なうことができ、測色精度
は向上する。
Effect: By projecting the dispersed light linearly with respect to wavelength onto the photoreceiver array by the above means, the half width of the sensitivity wavelength band of the photoreceiver array can be made the same for all arrays. By using the entrance slit width to match the half-width of the sensitivity wavelength band to the wavelength interval of the array (determined from the linear dispersion of the monochromator), the spectrum and tristimulus can be used to calculate the radiation energy integral and colorimetric value. It is possible to accurately perform weighted integration with values, and the colorimetric accuracy is improved.

実施例 本発明の一実施例として、凹面回折格子のロウランド円
の0.13%内側に、受光器アレイを配置した分光測光
器について説明する。第1図に、上記分光測光器の構成
を示す。図において1は凹面回折格子、2は前記凹面回
折格子1のロウランド円である。そのロウランド円2の
円周上に入射スリット3を設け、それを通して外部から
凹面回折格子1に光を導くと、それによって生ずる分散
像4はロウランド円2上に沿って結像する。この分散像
4を凹面回折格子のロウランド円の直径の0.13%ロ
ウランド円内側に配置した受光器アレイ5上に結像する
Embodiment As an embodiment of the present invention, a spectrophotometer will be described in which a photodetector array is arranged 0.13% inside the Rowland circle of a concave diffraction grating. FIG. 1 shows the configuration of the spectrophotometer described above. In the figure, 1 is a concave diffraction grating, and 2 is a Rowland circle of the concave diffraction grating 1. When an entrance slit 3 is provided on the circumference of the Rowland circle 2 and light is guided from the outside to the concave diffraction grating 1 through the entrance slit 3, the resulting dispersed image 4 is formed along the Rowland circle 2. This dispersed image 4 is focused on a photoreceptor array 5 placed inside the Rowland circle by 0.13% of the diameter of the Rowland circle of the concave diffraction grating.

実際の実施例の回折格子の分散について考える。Let us consider the dispersion of the diffraction grating in an actual example.

凹面回折格子1の焦点距離Rを200mm、刻線間隔d
:1/150m111とし、回折格子の中心法線に対し
て入射各5″となる位置に入射スリットを配置する。回
折格子の中心法線と回折光のなす角をβとすれば、線分
散りは次式で与えられる。ただしmは整数である。
The focal length R of the concave diffraction grating 1 is 200 mm, and the groove interval d
: 1/150 m111, and the entrance slits are arranged at positions that are 5" from the center normal of the diffraction grating. If the angle between the center normal of the diffraction grating and the diffracted light is β, the linear dispersion is is given by the following formula, where m is an integer.

凹面回折格子の正常分散域で回折光を検出するために、
βを−1,8°から+1.8°の間に検出領域なさだの
ると、このとき分散像はロウランド円2上で波長 37
0nmから790nmのものがえられる。ざらにβ=+
1 .86ノときの線分散は、(1)式より0.04O40
07(/nm)ゆえ検出領域内での線分散の変化は、0
.04000から、0.04007と、波長370nm
から790nmの闇で、ロウランド円2上で、0.02
%以内と、はとんど変化しない。
In order to detect the diffracted light in the normal dispersion region of the concave diffraction grating,
If β is set with no detection area between -1.8° and +1.8°, then the dispersion image will be on the Rowland circle 2 with a wavelength of 37
The wavelength range is from 0 nm to 790 nm. Roughly β = +
1. The line dispersion at 86 knots is 0.04O40 from equation (1).
07 (/nm), therefore the change in linear dispersion within the detection region is 0.
.. From 04000 to 0.04007 and wavelength 370nm
In the darkness of 790 nm from 0.02 on Rowland circle 2
Within %, there is almost no change.

また、波長370nmから790nmの間の分散像4の
ロウランド円2上での機械幅は約16mmゆえ、このあ
いだのロウランド円上の分散像4の湾曲を凹面回折格子
のロウランド円の0.13%内側、すなわち凹面回折格
子の中心法線に沿って0.26n+lT+、ロウランド
円より内側に配置した受光器アレイ5上に結像する。
In addition, since the mechanical width of the dispersion image 4 on the Rowland circle 2 between wavelengths 370 nm and 790 nm is approximately 16 mm, the curvature of the dispersion image 4 on the Rowland circle during this period is 0.13% inside the Rowland circle of the concave diffraction grating. , that is, an image is formed on the photoreceiver array 5 arranged 0.26n+lT+ along the center normal of the concave diffraction grating and inside the Rowland circle.

このとき、受光器アレイ5のアレイ間隔が50μのもの
を使用すれば、波長370nmから790nmの間のス
ペクトルを320分割した分解能で捕えることができる
。このとき、受光器アレイ5の、各アレイの波長間隔や
感度波長帯域特性は、はとんど変化せず精度の高い測光
側色が実現できる。図2に実際の各素子の波長位置の、
各素子の波長間隔を一定(0,9nn)とした場合に対
する波長のずれを示す。
At this time, if a photoreceiver array 5 with an array spacing of 50 microns is used, it is possible to capture a spectrum between wavelengths 370 nm and 790 nm with a resolution divided into 320. At this time, the wavelength spacing and sensitivity wavelength band characteristics of each array of the photoreceiver array 5 hardly change, and highly accurate photometric color can be realized. Figure 2 shows the actual wavelength position of each element.
The wavelength shift is shown when the wavelength interval of each element is constant (0,9 nn).

さらに入射スリット幅を使って感度波長帯域半値幅を、
アレイの波長間隔(モノクロメータの線分散よりもとめ
る。)に一致させれば、放射のエネルギー積分や、測色
値をもとめるためにスペクトルと三刺激値との単価積分
を正確に行なうことができ、潤色精度は向上する。
Furthermore, using the input slit width, the half-width of the sensitivity wavelength band is
By matching the wavelength interval of the array (determined from the linear dispersion of the monochromator), it is possible to accurately integrate the energy of radiation and the unit value integration of the spectrum and tristimulus values to obtain the colorimetric value. The coloring accuracy is improved.

発明の効果 以上述べできたように、本発明の構成によって、受光器
アレイを最適位置にもってくることによって、受光器ア
レイ上に波長に対して最もリニアにちがい分散光が投影
されることにより、受光器アレイの感度波長帯域半値幅
が、すべてのアレイに対して最小限の誤差で一致させる
ことができ、さらに入射スリット幅を使って感度波長帯
域半値幅を、アレイの波長間隔(モノクロメータの線分
散よりもとめる。)に一致させれば、放射のエネルギー
積分や、潤色値をもとめるためにスペクトルと三刺漁値
との単価積分を正確に行なうことができ、潤色精度は向
上する。
Effects of the Invention As described above, with the configuration of the present invention, by bringing the photoreceiver array to the optimal position, the dispersed light is projected onto the photoreceiver array most linearly with respect to the wavelength. The half-width of the sensitivity wavelength band of the receiver array can be matched with minimal error for all arrays, and the input slit width can be used to match the half-width of the sensitivity wavelength band with the wavelength spacing of the array (monochromator). (determined from line dispersion), it is possible to accurately integrate the energy of radiation and the unit price integration between the spectrum and the three-striped value in order to obtain the embellishment value, and the embellishment accuracy improves.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における分光測光器の構成図
、第2図は同分光測光器における受光器アレイの各素子
の波長位置の、等間隔波長目盛からのずれを示す特性図
である。 1、。6凹面回折格子   202.ロウランド円32
.。入射スリット   4゜。7分散像518.受光器
アレイ
Fig. 1 is a configuration diagram of a spectrophotometer according to an embodiment of the present invention, and Fig. 2 is a characteristic diagram showing the deviation of the wavelength position of each element of the photoreceiver array in the spectrophotometer from a uniformly spaced wavelength scale. be. 1. 6 concave diffraction grating 202. Rowland yen 32
.. . Incidence slit 4°. 7 dispersion image 518. receiver array

Claims (1)

【特許請求の範囲】[Claims] 凹面回折格子と入射スリットおよび前記凹面回折格子か
らの光スペクトルを一度に受光し測定する機能を持つ受
光器アレイを組合せた分光測光器において、前記凹面回
折格子のロウランド円の直径の0.125〜0.15%
、ロウランド円の内側に前記受光器アレイを配置し、凹
面回折格子の中心法線に対して−1.8°から+1.8
°の間の分散像を前記受光器アレイ上に、波長に対して
ほぼリニアに結像することを特徴とする分光測光器。
In a spectrophotometer that combines a concave diffraction grating, an incident slit, and a photoreceiver array having the function of simultaneously receiving and measuring the light spectrum from the concave diffraction grating, the diameter of the Rowland circle of the concave diffraction grating is 0.125 to 0.125. 0.15%
, the photoreceiver array is arranged inside the Rowland circle, and the angle is from −1.8° to +1.8° with respect to the center normal of the concave diffraction grating.
A spectrophotometer, characterized in that a dispersion image between .degree. and .degree.
JP26595686A 1986-11-07 1986-11-07 Spectrophotometer Granted JPS63120230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26595686A JPS63120230A (en) 1986-11-07 1986-11-07 Spectrophotometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26595686A JPS63120230A (en) 1986-11-07 1986-11-07 Spectrophotometer

Publications (2)

Publication Number Publication Date
JPS63120230A true JPS63120230A (en) 1988-05-24
JPH0415408B2 JPH0415408B2 (en) 1992-03-17

Family

ID=17424392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26595686A Granted JPS63120230A (en) 1986-11-07 1986-11-07 Spectrophotometer

Country Status (1)

Country Link
JP (1) JPS63120230A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0533066A2 (en) * 1991-09-18 1993-03-24 Canon Kabushiki Kaisha Image reading apparatus with reflection type blazed diffraction grating for color separation
JP2009111173A (en) * 2007-10-30 2009-05-21 Horiba Ltd Spectrometric analysis device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5705262B2 (en) * 2013-04-24 2015-04-22 キヤノン株式会社 Spectral colorimeter and image forming apparatus having the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0533066A2 (en) * 1991-09-18 1993-03-24 Canon Kabushiki Kaisha Image reading apparatus with reflection type blazed diffraction grating for color separation
US6028705A (en) * 1991-09-18 2000-02-22 Canon Kabushiki Kaisha Image reading apparatus with reflection type blazed diffraction grating for color separation
JP2009111173A (en) * 2007-10-30 2009-05-21 Horiba Ltd Spectrometric analysis device

Also Published As

Publication number Publication date
JPH0415408B2 (en) 1992-03-17

Similar Documents

Publication Publication Date Title
US4076421A (en) Spectrophotometer with parallel sensing
US5166755A (en) Spectrometer apparatus
US7978324B2 (en) Multi-channel array spectrometer and method for using the same
US5128549A (en) Stray radiation compensation
JPS628729B2 (en)
Brown Ultraviolet, visible, near-infrared spectrophotometers
US12055437B2 (en) Spectrometer and imaging device
JPS61292043A (en) Photodetecting probe for spectocolorimeter
US20120105847A1 (en) Spectrometric measurement system and method for compensating for veiling glare
JPS6038644B2 (en) spectrophotometer
JP2689707B2 (en) Spectrometer with wavelength calibration function
JP2511902B2 (en) Spectrophotometer
JPS63120230A (en) Spectrophotometer
JPH0341326A (en) Spectrometry
KR101054017B1 (en) Calibration method of the spectrometer
JPS63250534A (en) Spectrophotometric device
JPH04252924A (en) Spectrometry
JPS63273023A (en) Spectrophotometer
JPS62226024A (en) Spectroscope
US20200018649A1 (en) Imaging Spectrograph Utilizing the Zero Order of the Diffraction Grating
JP3402524B2 (en) 3D spectrophotometer
JPS63218828A (en) Colorimetric apparatus
JPH0458893B2 (en)
CA1187717A (en) Optical system for a spectrophotometer
KR20010079209A (en) Fast Scanning Double Beam Spectrophotometer for Multichannel Spectroscopy