Nothing Special   »   [go: up one dir, main page]

JP2689707B2 - Spectrometer with wavelength calibration function - Google Patents

Spectrometer with wavelength calibration function

Info

Publication number
JP2689707B2
JP2689707B2 JP2227058A JP22705890A JP2689707B2 JP 2689707 B2 JP2689707 B2 JP 2689707B2 JP 2227058 A JP2227058 A JP 2227058A JP 22705890 A JP22705890 A JP 22705890A JP 2689707 B2 JP2689707 B2 JP 2689707B2
Authority
JP
Japan
Prior art keywords
wavelength
address
photodetector array
line
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2227058A
Other languages
Japanese (ja)
Other versions
JPH04106430A (en
Inventor
和明 大久保
健一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2227058A priority Critical patent/JP2689707B2/en
Priority to DE1991615575 priority patent/DE69115575T2/en
Priority to EP91110401A priority patent/EP0463600B1/en
Publication of JPH04106430A publication Critical patent/JPH04106430A/en
Application granted granted Critical
Publication of JP2689707B2 publication Critical patent/JP2689707B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光源からの光や物体の反射光などの分光分
布を測定するための分光測定装置に関するもので、光源
の光色、演色性を評価したり、物体色の測定など、その
スペクトルに対する効果量の評価に使用するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spectroscopic measurement device for measuring a spectral distribution of light from a light source or reflected light of an object, and evaluates the light color and color rendering of the light source. It is used to evaluate the amount of effect on the spectrum, such as measuring the object color.

従来の技術 光源のエネルギー量や光色、演色性を評価したり、物
体色の測定に分光測定を使用する場合、スペクトルの波
長分解能よりも測定におけるエネルギー積分の精度の向
上が重要となる。すなわち、波長分布の細部の形状よ
り、適当な波長区分に対する放射のエネルギー強度を、
いかに正確にとらえるかが課題となる。これには、使用
する分光器のスペクトル帯域半値幅と測定波長サンプリ
ング間隔を一致させることで実現される。従来の分散素
子駆動型モノクロメータでは、たとえばプリズムモノク
ロメータでは分散曲線と波長目盛りが一致するため、機
械幅を等間隔送りで測定した。このとき、短波長部分と
長波長部分では、線分散の大きさがかなり異なるが、隣
り合う測定波長位置での分散の差は、大きな変化がない
ものとして行なった。また、分散素子駆動型の回折格子
モノクロメータでは、サインバー機構の導入により、分
散曲線と波長目盛りは独立している。しかし回折格子モ
ノクロメータの分散は、プリズムのそれに比べて直線に
近く、また、分光測定の途中で分散の変化に合わせてス
リット幅を機械的に修正することが難しいため、分散の
変化を無視して分光測定をおこなってきた。
2. Description of the Related Art When evaluating the energy amount, light color, and color rendering of a light source or using spectroscopic measurement for measuring an object color, it is important to improve the accuracy of energy integration in the measurement rather than the wavelength resolution of the spectrum. That is, from the shape of the details of the wavelength distribution,
The issue is how to accurately capture it. This is realized by matching the spectral bandwidth half width of the used spectroscope with the measurement wavelength sampling interval. In a conventional dispersive element drive type monochromator, for example, in a prism monochromator, the dispersion curve and the wavelength scale match, so the machine width was measured at equal intervals. At this time, although the magnitude of the linear dispersion is considerably different between the short wavelength portion and the long wavelength portion, the difference in the dispersion between the adjacent measurement wavelength positions is not significantly changed. Further, in the dispersion element driving type diffraction grating monochromator, the dispersion curve and the wavelength scale are independent by introducing a sine bar mechanism. However, the dispersion of a diffraction grating monochromator is closer to a straight line than that of a prism, and it is difficult to mechanically correct the slit width according to the change in dispersion during spectroscopic measurement. Have been performing spectroscopic measurements.

先に述べた分散素子駆動型モノクロメータでは測定時
間がかかるため、近年、分光分散光学系と受光器アレイ
を組み合せ、測定対象物からの光スペクトルを短時間に
測定する分光測定器が使用されるようになったが、測定
サンプリング間隔に相当する受光素子の機械的間隔と、
分散とが独立しているため、受光器アレイの面上での分
散の非直線性が大きく、各アレイの重心波長の設定精度
すなわち波長目盛りの精度が重要となる。
Since the above-mentioned dispersive element driving type monochromator takes a long time for measurement, recently, a spectroscopic measuring instrument for measuring an optical spectrum from an object to be measured in a short time is used by combining a spectral dispersive optical system and a photodetector array. However, the mechanical interval of the light receiving element corresponding to the measurement sampling interval,
Since the dispersion is independent, the nonlinearity of the dispersion on the surface of the photodetector array is large, and the setting accuracy of the centroid wavelength of each array, that is, the accuracy of the wavelength scale is important.

一般に、分光測定装置は、光学系のアライメントのわ
ずかなずれが、光学系の設計常数から求めた線分散の値
にずれを生じるため、波長目盛り理論波長からずれ、波
長校正が必要となる。これまでこの種の装置では、測定
波長範囲の中心付近の一波長のみ輝線などで校正し、各
アレイの間隔を等間隔とみなして各アレイの重心波長を
設定しているが、測定波長サンプリング間隔がずれるこ
とになり、測色などの用途には測定誤差が大きかった。
また、放電ランプからの複数の波長の輝線を分光測定装
置に導いてそれぞれの波長位置で校正する場合、放電ラ
ンプからの、波長校正に使用する以外の放射や、受光器
アレイの出力のゆらぎなどを、校正に使用しようとする
波長の輝線と誤認する場合があった。
In general, in a spectroscopic measurement device, a slight deviation in the alignment of the optical system causes a deviation in the value of the linear dispersion obtained from the design constant of the optical system. Therefore, the deviation from the theoretical wavelength graduation wavelength requires wavelength calibration. Until now, with this type of device, only one wavelength near the center of the measurement wavelength range has been calibrated with a bright line, etc., and the center of gravity wavelength of each array has been set by regarding the intervals of each array as equal intervals. The measurement error was large for applications such as color measurement.
In addition, when the emission lines of multiple wavelengths from the discharge lamp are guided to the spectroscopic measurement device and calibrated at each wavelength position, radiation from the discharge lamp other than that used for wavelength calibration, fluctuations in the output of the receiver array, etc. Was sometimes mistaken as an emission line of a wavelength to be used for calibration.

一例として凹面回折格子とフォトダイオードアレイを
組み合わせたものについて示す。
As an example, a combination of a concave diffraction grating and a photodiode array is shown.

凹面回折格子は、平面回折格子とコリメータ・ミラ
ー、フォーカシング・ミラーを一体化した機能を持ち、
凹面回折格子の入射スリットを、凹面回折格子の曲率半
径を直径とする円(ローランド円)上に設けると、その
分光分散像はローランド円上に結像する。このため凹面
回折格子を使った分光測光器は光学系をシンプルに構成
できるうえ、線分散の変化を比較的小さくすることが可
能である。この種のマルチチャンネル分光測定器を測光
測色に使用する場合、各受光素子の分光応答度の重心波
長と分散特性の関係、および各受光素子の分光応答度の
波長帯域特性と各受光素子の間隔(波長サンプリング間
隔)が測定精度に影響を与える。
The concave diffraction grating has the function of integrating a plane diffraction grating with a collimator mirror and a focusing mirror,
When the entrance slit of the concave diffraction grating is provided on a circle (Roland circle) whose diameter is the radius of curvature of the concave diffraction grating, the spectral dispersion image is formed on the Roland circle. For this reason, the spectrophotometer using the concave diffraction grating can simplify the optical system and can relatively reduce the change in the line dispersion. When using this kind of multi-channel spectrophotometer for photometric colorimetry, the relationship between the centroid wavelength of the spectral responsivity of each light receiving element and the dispersion characteristics, and the wavelength band characteristic of the spectral responsivity of each light receiving element and each light receiving element The interval (wavelength sampling interval) affects the measurement accuracy.

刻線密度300本/mm、ブレーズ波長500nm、焦点距離f
=200mmの凹面回折格子とシリコンフォトダイオードア
レイ(512素子)によって構成したマルチチャンネル分
光測定器について示す。第2図にその光学系を示す。入
射光は、ローランド円上の入射スリットから回折格子の
中心法線に対して11.8゜で入射させる。これによって得
られる回折光を凹面回折格子の正常分散域で検出するた
めに、回折格子の中心法線と回折光のなす角βを−4.8
゜から+2゜までとし、この間に検出領域を設定する。
このとき分光分散像は、ローランド円上で波長400nmか
ら800nmのものが得られる。中心法線上での線分散は0.0
600(mm/nm)であり、β=−4.8゜のときの線分散は0.0
608(mm/nm)であるから、検出領域内での線分散の変化
は、波長400nmから800nmまでの間で1.3%以内となる。
このとき、シリコンフォトダイオードアレイの中心が凹
面回折格子の中心法線上にあり、かつローランド円上に
位置するようにすると、この位置での線分散の値と素子
の空間的間隔(54μm)から、シリコンフォトダイオー
ドアレイの中心付近の各素子の波長間隔は、0.9nmとな
る。この各素子の波長間隔が、フォトダイオードアレイ
の中心から、両端に行くにしたがって、どのように変化
するかを解析的に求めると次のようになる。フォトダイ
オードアレイがローランド円に接する場合、ローランド
円内に0.5mm入った位置にある場合、およびローランド
円の外側に0.5mm出た位置にある場合について、各素子
の波長間隔を一定(0.9nm)とした場合に対する波長の
ずれを第4図に示す。図から明らかなように、フォトダ
イオードアレイがローランド円に接している場合でも、
各素子の重心波長は、等波長間隔には並んでおらず、短
波長側や長波長側でのずれが大きくなる。特にフォトダ
イオードアレイがローランド円の円周上から外にはずれ
ると、この傾向は顕著になる。したがって、この種のマ
ルチチャンネル分光測定器では、フォトダイオードアレ
イの各素子の重心波長をそれぞれ求める必要がある。
Engraved line density 300 lines / mm, blaze wavelength 500 nm, focal length f
A multi-channel spectrophotometer composed of a concave diffraction grating of = 200 mm and a silicon photodiode array (512 elements) is shown. FIG. 2 shows the optical system. Incident light is made incident from the entrance slit on the Rowland circle at 11.8 ° with respect to the center normal of the diffraction grating. In order to detect the diffracted light obtained by this in the normal dispersion region of the concave diffraction grating, the angle β between the center normal of the diffraction grating and the diffracted light is set to −4.8.
From + ° to + 2 °, and set the detection area between them.
At this time, a spectral dispersion image having a wavelength of 400 nm to 800 nm is obtained on the Rowland circle. The line variance on the center normal is 0.0
600 (mm / nm), the linear dispersion is 0.0 when β = -4.8 °.
Since it is 608 (mm / nm), the change in the line dispersion within the detection region is 1.3% or less in the wavelength range of 400 nm to 800 nm.
At this time, if the center of the silicon photodiode array is located on the center normal of the concave diffraction grating and located on the Rowland circle, from the value of the line dispersion at this position and the spatial interval (54 μm) of the element, The wavelength interval of each element near the center of the silicon photodiode array is 0.9 nm. Analytical determination of how the wavelength interval of each element changes from the center of the photodiode array to both ends is as follows. The wavelength spacing of each element is constant (0.9 nm) when the photodiode array is in contact with the Rowland circle, 0.5 mm inside the Rowland circle, and 0.5 mm outside the Rowland circle. The wavelength shift with respect to the above case is shown in FIG. As is clear from the figure, even when the photodiode array is in contact with the Rowland circle,
The center-of-gravity wavelengths of the elements are not arranged at equal wavelength intervals, and the deviation on the short wavelength side or the long wavelength side becomes large. This tendency becomes remarkable especially when the photodiode array deviates from the circumference of the Rowland circle. Therefore, in this type of multi-channel spectrophotometer, it is necessary to obtain the center-of-gravity wavelength of each element of the photodiode array.

発明が解決しようとする課題 上記に述べたように、一般に、分光測定装置は、光学
系のアライメントのわずかなずれが、光学系の設計常数
から求めた線分散の値にずれを生じるため、波長目盛り
理論波長からずれ、波長校正が必要となる。とくに分光
分散光学系と受光素子アレイを組み合せ、測定対象物か
らの光スペクトルを短時間に測定する分光測定器では、
受光素子アレイの面上での分散の非直線性が大きく、波
長目盛りの誤差がスペクトル帯域半値幅と測定波長サン
プリング間隔の不整合を生じ、光源のエネルギー量や光
色、演色性を評価したり、物体色の測定に分光測定を使
用する場合、誤差を生ずる問題があった。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention As described above, in general, the spectroscopic measurement device has a slight deviation in the alignment of the optical system, which causes a deviation in the value of the linear dispersion obtained from the design constant of the optical system. Deviation from the theoretical scale wavelength requires wavelength calibration. In particular, in a spectroscopic measurement device that combines a spectral dispersion optical system and a light receiving element array to measure the optical spectrum from the measurement object in a short time,
The nonlinearity of the dispersion on the surface of the light receiving element array is large, and the error of the wavelength scale causes the mismatch between the half bandwidth of the spectrum band and the sampling interval of the measurement wavelength, and the energy amount, light color, and color rendering of the light source can be evaluated. However, there is a problem that an error occurs when the spectroscopic measurement is used to measure the object color.

課題を解決するための手段 本発明は上記課題を解決するため、測定対象物もしく
は特定の波長の複数の輝線を出力する波長校正用輝線放
射源からの光を分光分散する分光分散手段と、前記分光
分散手段からの光を電気信号に変換する受光器アレイ
と、前記分光分散する手段によって決まる線分散から、
それぞれの輝線に対して最大の光電出力が得られること
が予想される前記受光器アレイの素子の理論的位置に相
当するアドレスを求める手段と、その近傍の素子で実際
に輝線に対する光電出力が最大の素子のアドレスを求め
る手段と、その光電出力が最大の素子を中心として、そ
の前後で、入射した輝線の分散像が前記分光分散手段に
よって前記受光器アレイに投影される際の像の機械的な
幅を含み、かつそれ以上の範囲に入る素子に対してその
光電出力を、素子のアドレスを重み係数として積分する
手段と、特定輝線に対応するアレイの出力を重み係数1
で同様に積分した光電出力の値で除して、それぞれの輝
線の波長に対応する前記受光器アレイの素子のアドレス
を求める手段とを具備し、複数本の校正用輝線波長と、
それに対応する前記受光器アレイの実際のアドレスか
ら、波長とアドレスの回帰曲線を求め、前記受光器アレ
イのすべての素子に対して、それぞれの重心波長を求め
て装置の波長目盛りを校正する機能を有する構成となっ
ている。
Means for Solving the Problems The present invention, in order to solve the above problems, a spectral dispersion means for spectrally dispersing light from a wavelength calibration bright line radiation source that outputs a plurality of bright lines of a measurement object or a specific wavelength, and From a photodetector array that converts the light from the spectral dispersion means into an electric signal, and a line dispersion determined by the spectral dispersion means,
A means for obtaining an address corresponding to the theoretical position of the element of the photodetector array in which the maximum photoelectric output is expected to be obtained for each bright line, and the photoelectric output for the bright line is the maximum in the neighboring elements. And a mechanical image of an image when the dispersed image of the incident bright lines is projected by the spectral dispersion unit before and after the device having the maximum photoelectric output as a center. Means that integrates the photoelectric output of an element that includes a certain width and that is in a range beyond that with the address of the element as a weighting factor, and an output of the array corresponding to a specific bright line with a weighting factor of 1
In the same manner, by dividing by the value of the integrated photoelectric output, a means for determining the address of the element of the photodetector array corresponding to the wavelength of each bright line, a plurality of calibration bright line wavelength,
The function of calibrating the wavelength scale of the device by obtaining the regression curve of the wavelength and the address from the corresponding actual address of the photodetector array and determining the respective centroid wavelengths for all the elements of the photodetector array. It is configured to have.

作用 本発明は上記構成により、輝線放射源から得られる特
定の波長の複数の輝線を分光測定装置に導き、あらかじ
め分光測定装置の線分散から、それぞれの輝線に対して
最大の光電出力が得られる受光器アレイの素子の理論的
位置に相当するアドレスを求める。そのアドレスの近傍
の素子で輝線に対する光電出力が最大の素子を求め、そ
の素子を中心としてその前後で、入射した輝線の分散像
が前記分光分散手段によって前記受光器アレイに投影さ
れる際の像の機械的な幅を含み、かつそれ以上の範囲に
入る素子に対してその光電出力を、素子のアドレスを重
み係数として積分を行い、特定輝線に対応するアレイの
出力を重み係数1で同様に積分した光電出力の値で除し
て、それぞれの輝線の波長に対応する受光器アレイの素
子のアドレスを求める。輝線波長と、それに対応する受
光器アレイのアドレスの回帰曲線から、受光器アレイの
各素子の重心波長を求める。
Action The present invention, by the above configuration, guides a plurality of bright lines of a specific wavelength obtained from the bright line radiation source to the spectroscopic measurement device, and from the line dispersion of the spectroscopic measurement device in advance, the maximum photoelectric output is obtained for each bright line. An address corresponding to the theoretical position of the element of the optical receiver array is obtained. The element when the photoelectric output to the bright line is the maximum in the element near that address, and the dispersed image of the incident bright line before and after that element is projected on the photodetector array by the spectral dispersion means. The photoelectric output is integrated with respect to an element which includes the mechanical width of the element and which exceeds the range, using the address of the element as a weighting coefficient, and the output of the array corresponding to a specific bright line is similarly weighted with a weighting coefficient of 1. Dividing by the integrated photoelectric output value, the address of the element of the photodetector array corresponding to the wavelength of each bright line is obtained. The centroid wavelength of each element of the photodetector array is obtained from the regression line of the bright line wavelength and the address of the photodetector array corresponding thereto.

このようにして、分光分散光学系と受光素子アレイを
組み合せ、測定対象物からの光スペクトルを短時間に測
定する分光測定器などにおいて、受光器アレイの面上で
の分散の非直線性が大きい場合でも、複数の波長の輝線
放射を使って、各素子のアドレスと波長との回帰曲線を
求め、各アレイの重心波長を設定することにより、測光
測色精度が向上する。特に、各輝線による波長校正にお
いて、分光測定装置の迷光やノイズ、校正に使用する輝
線以外のランプの放射などによる、輝線の誤認が防止で
き、波長校正の精度が向上する。
In this way, in a spectrophotometer that combines a spectral dispersion optical system and a light-receiving element array to measure an optical spectrum from a measurement object in a short time, the non-linearity of dispersion on the surface of the light-receiving array is large. Even in such a case, the photometric colorimetric accuracy is improved by obtaining the regression curve of the address of each element and the wavelength by using the emission lines of a plurality of wavelengths and setting the centroid wavelength of each array. In particular, in the wavelength calibration with each bright line, it is possible to prevent the false recognition of the bright line due to stray light or noise of the spectroscopic measurement device, the emission of the lamp other than the bright line used for the calibration, and the accuracy of the wavelength calibration is improved.

実施例 本発明の第一の実施例を図面を使って説明する。第2
図に、刻線密度300本/mm、ブレーズ波長500nm、焦点距
離f=200mmの凹面回折格子1とシリコンホトダイオー
ドアレイ(512素子)2によって構成したマルチチャン
ネル分光測定器について示す。
First Embodiment A first embodiment of the present invention will be described with reference to the drawings. Second
The figure shows a multi-channel spectrophotometer composed of a concave diffraction grating 1 having a line density of 300 lines / mm, a blaze wavelength of 500 nm, and a focal length f = 200 mm and a silicon photodiode array (512 elements) 2.

入射光は、ローランド円3上の入射スリット4から平
面ミラー5を介して回折格子の中心法線に対して11.8゜
で入射させる。これによって得られる回折光を凹面回折
格子の正常分散域で検出するために、回折格子の中心法
線と回折光のなす角βを−4.8゜から+2゜までとし、
この間に検出領域を設定する。このとき分光分散像は、
ローランド円上で波長400nmから800nmのものが得られ
る。中心法線上での線分散は0.0600(mm/nm)であり、
β=−4.8゜のときの線分散は0.0608(mm/nm)であるか
ら、検出領域内での線分散の変化は、波長400nmから800
nmまでの間で1.3%以内となる。このとき、シリコンホ
トダイオードアレイの中心が凹面回折格子の中心法線上
にあり、かつローランド円上に位置するようにすると、
この位置での線分散の値と素子の空間的間隔(54μm)
から、シリコンホトダイオードアレイの中心付近の各素
子の波長間隔は、0.9nmとなる。
Incident light is made incident from the entrance slit 4 on the Rowland circle 3 through the plane mirror 5 at 11.8 ° with respect to the center normal of the diffraction grating. In order to detect the diffracted light obtained by this in the normal dispersion area of the concave diffraction grating, the angle β between the center normal of the diffraction grating and the diffracted light is set from -4.8 ° to + 2 °,
The detection area is set in the meantime. At this time, the spectral dispersion image is
A wavelength of 400 nm to 800 nm is obtained on the Roland circle. The line dispersion on the center normal is 0.0600 (mm / nm),
Since the linear dispersion at β = -4.8 ° is 0.0608 (mm / nm), the change in the linear dispersion within the detection area is from 400 nm to 800 nm.
Within 1.3% up to nm. At this time, if the center of the silicon photodiode array is located on the center normal of the concave diffraction grating and located on the Rowland circle,
The value of the line dispersion at this position and the spatial spacing of the elements (54 μm)
Therefore, the wavelength interval of each element near the center of the silicon photodiode array is 0.9 nm.

波長校正用輝線として低圧水銀ランプの波長404.66n
m、435.84nm、546.07nm、578.01nmの4本の水銀輝線
と、ネオンランプの波長614.91nm、639.48nm、703.24nm
の輝線を使用する。
The wavelength of the low-pressure mercury lamp is 404.66n as an emission line for wavelength calibration.
m, 435.84nm, 546.07nm, 578.01nm 4 mercury emission lines and neon lamp wavelengths 614.91nm, 639.48nm, 703.24nm
Use the bright line.

第3図に波長校正手段の概略図を示す。入射スリット
機械幅は、50μmのものを使用する。これによって測定
波長帯域の中央で一素子の波長帯域半値幅は、0.9nmと
なり、測定波長間隔とほぼ等しくなる。したがって、測
光測色誤差が小さくなる。
FIG. 3 shows a schematic diagram of the wavelength calibration means. The machine width of the entrance slit is 50 μm. As a result, the half-value width of the wavelength band of one element is 0.9 nm at the center of the measurement wavelength band, which is almost equal to the measurement wavelength interval. Therefore, the photometric and colorimetric error is reduced.

このとき、たとえば波長546.07nmの水銀輝線の分散光
に対するシリコンホトダイオードアレイ7の出力は第1
図のようになる。まず、理論アドレス算出手段9で光学
系の定数から線分散を求め、波長546.07nmの水銀輝線に
対する素子のアドレスを算出する。このときアドレス20
0付近で最大となる。次に、実際の波長546.07nmの水銀
輝線に対する出力を持つ素子の中で最大値の出力を持つ
素子のアドレスを得るために、最大値のアドレス検出手
段10で素子アドレスが190〜210の素子の出力を調べる。
At this time, for example, the output of the silicon photodiode array 7 for the dispersed light of the mercury emission line having the wavelength of 546.07 nm is the first
It looks like the figure. First, the theoretical address calculation means 9 finds the linear dispersion from the constants of the optical system, and calculates the address of the element for the mercury emission line of the wavelength of 546.07 nm. Address 20 at this time
The maximum is around 0. Next, in order to obtain the address of the element having the maximum output among the elements having the output to the mercury emission line of the actual wavelength 546.07 nm, the element address of the element address 190 to 210 of the element address of the maximum value detecting means 10 is obtained. Examine the output.

重心波長算出手段11で各アドレスの重心波長を求め
る。いま素子のアドレスがx=xmのときその素子の出力
が最大値P(xm)であるとする。素子の感度波長帯域半
値幅がほぼ0.9nmであり、帯域のすそを考えるとこの幅
は、素子2つ分の機械幅に相当する。分散のひずみも考
慮して素子アドレスxmに対して−3から+3の範囲で次
式を使って、波長546.07nmに対する中心アドレスAdを求
める。
The centroid wavelength calculating means 11 finds the centroid wavelength of each address. Now, when the address of the element is x = x m , the output of the element is assumed to be the maximum value P (x m ). The half-value width of the sensitivity wavelength band of the element is about 0.9 nm, and considering the skirt of the band, this width corresponds to the mechanical width of two elements. The center address Ad for the wavelength of 546.07 nm is obtained by using the following formula in the range of -3 to +3 with respect to the element address x m in consideration of the distortion of dispersion.

A=−3*P(xm−3)−2*P(xm−2) −1*P(xm−1)+P(xm) +P(xm+1)+2*P(xm+2)+3*P(xm
3) B=P(xm−3)+P(xm−2)+P(xm−1) +P(xm)+P(xm+1) +P(xm+2)+P(xm+3) Ad=A/B 他の6つの輝線に対しても、同様に中心アドレスを求
め、波長とアドレスの回帰曲線を求め、512個の受光素
子のそれぞれの重心波長を算出する。これにより、分光
測定装置の波長校正が実現できる。
A = -3 * P (x m -3) -2 * P (x m -2) -1 * P (x m -1) + P (x m) + P (x m +1) + 2 * P (x m +2 ) + 3 * P (x m +
3) B = P (x m -3) + P (x m -2) + P (x m -1) + P (x m ) + P (x m +1) + P (x m +2) + P (x m +3) Ad = Similarly, for the six bright lines other than A / B, the center address is obtained, the regression curve of the wavelength and the address is obtained, and the centroid wavelength of each of the 512 light receiving elements is calculated. Thereby, wavelength calibration of the spectroscopic measurement device can be realized.

発明の効果 以上のように、本発明の構成によって、分光分散光学
系と受光器アレイを組み合せ、測定対象物からの光スペ
クトルを短時間に測定する分光測定器などにおいて、受
光器アレイの面上での分散の非直線性が大きい場合で
も、複数の波長の輝線放射を使って、各素子のアドレス
と波長との回帰曲線を求め、各アレイの重心波長を設定
することにより、測光測色精度が向上する。
EFFECTS OF THE INVENTION As described above, according to the configuration of the present invention, in a spectroscopic measurement device or the like that combines a spectral dispersion optical system and a photodetector array to measure an optical spectrum from a measurement object in a short time, the Even if the dispersion nonlinearity is large, the emission curve of multiple wavelengths is used to find the regression curve between the address of each element and the wavelength, and the centroid wavelength of each array is set to determine the photometric accuracy. Is improved.

特に、各輝線による波長校正において、分光測定装置
の迷光やノイズ、校正に使用する輝線以外のランプの放
射などによる、輝線の誤認が防止でき、波長校正の精度
が向上する。
In particular, in the wavelength calibration with each bright line, it is possible to prevent the false recognition of the bright line due to stray light or noise of the spectroscopic measurement device, the emission of the lamp other than the bright line used for the calibration, and the accuracy of the wavelength calibration is improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は波長546.07nmの水銀輝線に対する受光器アレイ
の出力特性図、第2図は本発明の一実施例のマルチチャ
ンネル分光測定装置の光学系を示す図、第3図は波長校
正手段の概略構成図、第4図は受光器アレイの各受光素
子の重心波長の等間隔波長目盛りからのずれを示す図で
ある。 1……凹面回折格子、2……シリコンホトダイオードア
レイ、3……ローランド円、4……入射スリット、平面
ミラー、6……分散光、7……シリコンフォトダイオー
ドアレイ、8……電荷転送デバイス、9……理論アドレ
ス算出手段、10……最大値アドレス算出手段、11……重
心波長算出手段。
FIG. 1 is an output characteristic diagram of a photodetector array with respect to a mercury emission line of a wavelength of 546.07 nm, FIG. 2 is a diagram showing an optical system of a multi-channel spectroscopic measurement apparatus of one embodiment of the present invention, and FIG. 3 is a wavelength calibration means. FIG. 4 is a schematic configuration diagram showing the deviation of the center-of-gravity wavelength of each light-receiving element of the light-receiving array from the equally-spaced wavelength scale. 1 ... Concave diffraction grating, 2 ... Silicon photodiode array, 3 ... Roland circle, 4 ... Injection slit, plane mirror, 6 ... Dispersed light, 7 ... Silicon photodiode array, 8 ... Charge transfer device, 9 ... Theoretical address calculating means, 10 ... Maximum value address calculating means, 11 ... Centroid wavelength calculating means.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】測定対象物もしくは特定の波長の複数の輝
線を出力する波長校正用輝線放射源からの光を分光分散
する分光分散手段と、 前記分光分散手段からの光を電気信号に変換する受光器
アレイと、 前記分光分散手段によって決まる線分散から、それぞれ
の輝線に対して最大の光電出力が得られることが予想さ
れる前記受光器アレイの素子の理論的位置に相当するア
ドレスを求める手段と、 その近傍の素子で実際に輝線に対する光電出力が最大の
素子のアドレスを求める手段と、 その光電出力が最大の素子を中心として、その前後で、
入射した輝線の分散像が前記分光分散手段によって前記
受光器アレイに投影される際の像の機械的な幅を含み、
かつそれ以上の範囲に入る素子に対してその光電出力
を、素子のアドレスを重み係数として積分する手段と、 特定輝線に対応するアレイの出力を重み係数1で同様に
積分した光電出力の値で除して、それぞれの輝線の波長
に対応する前記受光器アレイの素子のアドレスを求める
手段とを具備し、 複数本の校正用輝線波長と、それに対応する前記受光器
アレイの実際のアドレスから、波長とアドレスの回帰曲
線を求め、前記受光器アレイのすべての素子に対して、
それぞれの重心波長を求めて装置の波長目盛りを校正す
る機能を有することを特徴とする波長校正機能付分光測
定装置。
1. A spectral dispersion unit that spectrally disperses light from a wavelength calibration emission line emission source that outputs a measurement target or a plurality of emission lines of specific wavelengths, and converts the light from the spectral dispersion unit into an electrical signal. A means for obtaining an address corresponding to a theoretical position of an element of the photodetector array, which is expected to obtain the maximum photoelectric output for each bright line, from the photodetector array and the line dispersion determined by the spectral dispersion means. And a means for obtaining the address of the element having the maximum photoelectric output for the bright line in the neighboring elements, and the element having the maximum photoelectric output as the center, before and after that.
The dispersed image of the incident bright lines includes the mechanical width of the image when projected onto the photodetector array by the spectral dispersion means,
In addition, the photoelectric output of an element falling within the range more than that is integrated by means of integrating the output of the array corresponding to the specific bright line with the weight coefficient of 1 and the photoelectric output value obtained by similarly integrating the photoelectric output with the address of the element. And a means for determining the address of the element of the photodetector array corresponding to the wavelength of each emission line, from a plurality of calibration emission line wavelengths, and the actual address of the photodetector array corresponding thereto, Obtain the regression curve of wavelength and address, for all elements of the photodetector array,
A spectroscopic measurement device with a wavelength calibration function, which has a function of calibrating the wavelength scale of the device by obtaining each centroid wavelength.
【請求項2】入射スリット波長幅と受光器アレイの素子
波長間隔を等しく設定したことを特徴とする請求項1記
載の波長校正機能付分光測定装置。
2. The spectroscopic measurement device with wavelength calibration function according to claim 1, wherein the wavelength width of the incident slit and the element wavelength interval of the photodetector array are set to be equal.
JP2227058A 1990-06-22 1990-08-28 Spectrometer with wavelength calibration function Expired - Fee Related JP2689707B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2227058A JP2689707B2 (en) 1990-08-28 1990-08-28 Spectrometer with wavelength calibration function
DE1991615575 DE69115575T2 (en) 1990-06-22 1991-06-24 Spectral measurement method
EP91110401A EP0463600B1 (en) 1990-06-22 1991-06-24 Method of spectral measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2227058A JP2689707B2 (en) 1990-08-28 1990-08-28 Spectrometer with wavelength calibration function

Publications (2)

Publication Number Publication Date
JPH04106430A JPH04106430A (en) 1992-04-08
JP2689707B2 true JP2689707B2 (en) 1997-12-10

Family

ID=16854872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2227058A Expired - Fee Related JP2689707B2 (en) 1990-06-22 1990-08-28 Spectrometer with wavelength calibration function

Country Status (1)

Country Link
JP (1) JP2689707B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009281792A (en) * 2008-05-20 2009-12-03 Dai Ichi High Frequency Co Ltd Fbg light spectrum analyzer
US8564771B2 (en) 2009-12-01 2013-10-22 Canon Kabushiki Kaisha Calibration apparatus and calibration method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0674823A (en) * 1992-08-27 1994-03-18 Kubota Corp Wave length calibration method for spectroscopic analyzer
JP2005043153A (en) 2003-07-25 2005-02-17 Minolta Co Ltd Calibration system for spectral luminance meter
JP5556362B2 (en) * 2010-05-20 2014-07-23 コニカミノルタ株式会社 Spectral characteristic measuring apparatus and calibration method thereof
JP2013246018A (en) * 2012-05-25 2013-12-09 Sumitomo Electric Ind Ltd Spectroscopic imaging device adjustment method and spectroscopic imaging system
JP2014013185A (en) * 2012-07-04 2014-01-23 Sumitomo Electric Ind Ltd Spectral imaging device adjustment method and spectral imaging system
US11231321B2 (en) * 2017-08-22 2022-01-25 Konica Minolta, Inc. Wavelength shift correction system and wavelength shift correction method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5548624A (en) * 1978-10-04 1980-04-07 Hitachi Ltd Wavelength calibration mechanism
JPS63295935A (en) * 1987-05-28 1988-12-02 Otsuka Denshi Kk Spectrophotometry

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009281792A (en) * 2008-05-20 2009-12-03 Dai Ichi High Frequency Co Ltd Fbg light spectrum analyzer
US8564771B2 (en) 2009-12-01 2013-10-22 Canon Kabushiki Kaisha Calibration apparatus and calibration method

Also Published As

Publication number Publication date
JPH04106430A (en) 1992-04-08

Similar Documents

Publication Publication Date Title
US7978324B2 (en) Multi-channel array spectrometer and method for using the same
US6862092B1 (en) Spectrometer
US5128549A (en) Stray radiation compensation
EP1108200A1 (en) Compact spectrometer device
Brown Ultraviolet, visible, near-infrared spectrophotometers
JP2689707B2 (en) Spectrometer with wavelength calibration function
EP0520463B1 (en) A high-resolution spectroscopy system
US5973780A (en) Echelle spectroscope
US4936684A (en) Spectrometer with photodetector array detecting uniform bandwidth intervals
US3936190A (en) Fluorescence spectrophotometer for absorption spectrum analysis
Plyler et al. Precise Measurement of Wavelengths in Infrared Spectra
JPS61292043A (en) Photodetecting probe for spectocolorimeter
US20120105847A1 (en) Spectrometric measurement system and method for compensating for veiling glare
JPS6038644B2 (en) spectrophotometer
JP2511902B2 (en) Spectrophotometer
JPH0341326A (en) Spectrometry
KR101054017B1 (en) Calibration method of the spectrometer
WO2023193287A1 (en) Dual-optical-path spectrometer, color measurement apparatus, and calibration method
EP0463600A2 (en) Method of spectral measurement
JPS63250534A (en) Spectrophotometric device
Chen et al. Spectrophotometer Design Using Single-Grating, Single-Sensor, Double-Beam Spectroscope
JPS63120230A (en) Spectrophotometer
JPH04252924A (en) Spectrometry
JPS63273023A (en) Spectrophotometer
JPS63218828A (en) Colorimetric apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees