Nothing Special   »   [go: up one dir, main page]

JPS6311501A - Reforming device - Google Patents

Reforming device

Info

Publication number
JPS6311501A
JPS6311501A JP61156680A JP15668086A JPS6311501A JP S6311501 A JPS6311501 A JP S6311501A JP 61156680 A JP61156680 A JP 61156680A JP 15668086 A JP15668086 A JP 15668086A JP S6311501 A JPS6311501 A JP S6311501A
Authority
JP
Japan
Prior art keywords
combustion gas
burner
furnace
reforming
reforming reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61156680A
Other languages
Japanese (ja)
Inventor
Toshio Nagai
永井 寿夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP61156680A priority Critical patent/JPS6311501A/en
Publication of JPS6311501A publication Critical patent/JPS6311501A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To uniformize the temp. distribution in a circumferential direction throughout a reforming reactor while enhancing the heat-exchange efficiency between the reforming reactor and the combustion gas by providing a guide vane at the bottom of a reforming furnace for the gaseous fuel of a fuel cell. CONSTITUTION:A burner 2 is provided at the top of a cylindrical furnace casing 1 in the reformer, and an inner tube 3 is furnished to surround the peripheral region of the burner 2 and to form a burner combustion chamber 4. The reforming reactor 8 communicating with the burner combustion chamber 4 is provided in an ascending gas passage 6 formed between the inner tube 3 and the outer tube 1b of the furnace casing 1. Besides, the guide vane 11 for imparting a spiral flow (B) in the direction of the inner periphery of the furnace to the combustion gas flowing to the ascending combustion gas passage 6 side through the vane is furnished in the vicinity of the bottom in the furnace casing.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野】[Technical field to which the invention pertains]

この発明は燃料電池発電プラントに組み込んで使用する
燃料ガス改1を装置を対象とした改質装置の構成に関す
る。
The present invention relates to the configuration of a fuel gas reformer 1 which is incorporated into a fuel cell power generation plant.

【従来技術とその問題点】[Prior art and its problems]

メタノール等を改質原料として燃料電池への燃料ガスを
供給するには、メタノール等の原料をガス化した上でさ
らに水素リッチなガスに改質する必要があり、このため
に燃料電池発電プラントには改質装置が組み込まれてい
る。 ここで従来におけるメタノール改M装置の一般構造を第
5図、第6図に示す0図において1はその頂部中心にバ
ーナ2を装備した円筒形の炉体であり、該炉体1の内部
には前記バーナ2の周域を包囲して容器の底板1a近く
まで伸びる内筒3が設けてあり、この内筒3を仕切り隔
壁としてその内周側にはバーナ2の燃焼室4が、外周側
には炉体lの外筒1bとの間にその終端が燃焼ガス排出
管5に通じる燃料ガス上昇通路6が画成されている。 また前記燃焼ガス上昇通路6の内部には改質触媒7を充
填した円筒形構造の改質反応器8が配備されており、か
つその下端には改質原料の供給管9が、上端には改質ガ
スの出口管10が接続配管されている、なおこの改質反
応器は周上に並ぶ複数本の改質反応管で構成される場合
もある。 かかる構成でバーナ2に供給した燃料を燃焼することに
より高温の燃焼ガスは点線矢印へのようにバーナ燃焼室
4内を下降して炉体1の底板近くに達したところで流れ
の向きを反転して燃焼ガス上昇通路6内を上昇し、この
過程で改質反応器8との間で熱交換を行った後にガス排
出管5を通して系外に排気される。一方、炉内に配備の
改質反応88へ体質原料供給管9を通してメタノール等
の改質原料を供給することにより、原料は炉内の配管を
流れる過程で気化した上で改質反応器8に入り、該改質
反応器内を上昇して流れる過程で水蒸気の存在下で改質
触媒と接触的に反応して水素リッチなガスに改質され、
しかる後に出口管10を通して排出される。なお周知の
ように前記の改質反応は吸熱反応であり、この反応の進
行に必要な熱量は前記した炉内を流れる燃焼ガスと改質
反応器との熱交換によって付与される。 また当該改質装!を燃料電池発電プラントに組み込んで
使用する場合には、バーナ2への供給燃料として通常は
燃料電池より排出される燃料ガスのオフガスが使用され
、ここで得られた改質ガスが燃料ガスとして燃料電池へ
供給される。 ところで上記のように改Ir装置を燃料電池発電プラン
トに組み込んで使用する場合には、発電プラントの総合
効率を高めるためにも改質効率は勿論のこと改質装置に
おける熱エネルギー交換効率を向上させることが極めて
重要な課題である。 かかる点に対し、従来より熱交換効率の向上策として改
質反応器にフィンを取付けてその伝熱面積の増加さそる
方式、改質反応器の周囲にバッフルを設けることにより
燃焼ガス流を乱して改質反応器との間の熱伝達特性を改
善する方式等が知られている。しかしてこれらの手段で
は実際には改質装置の製作上での寸法誤差、歪等に起因
して炉内での燃焼ガス流が偏流することから改質反応器
の全域5特に周方向での均一な温度分布が得られず、発
明者の行った実機試験からも温度の高い部分と低い部分
との間には100℃以上の温度差が生しることが見られ
た。しかもこのように改質反応器に温度分布の不均一が
生じると、改質反応の進行も不均一となって高い改質効
率が得られないのみならず、改質触媒が部分的に過負荷
となってその寿命が大幅に低下するようになる。 また前記した温度分布のバラツキを無くす改善策として
、前記した図示の燃焼ガス上昇通路内に螺旋状の通風ガ
イドを設置してここを流れる燃焼ガスを周方向に旋回さ
せることにより、改質反応器の周方向の温度分布の均一
化を図るようにしたものが提案されているが、かかる方
式では構造が複雑化して改1を装置の製作費が大幅に嵩
むことになるし、かつ通風ガイドが邪魔となって改質反
応器の保守点検が困難となる等の難点がある。
In order to supply fuel gas to a fuel cell using methanol or the like as a reforming raw material, it is necessary to gasify the raw material such as methanol and then further reform it into a hydrogen-rich gas. is equipped with a reformer. Here, the general structure of a conventional methanol reforming device is shown in FIGS. 5 and 6. In FIG. is provided with an inner cylinder 3 that surrounds the circumferential area of the burner 2 and extends to near the bottom plate 1a of the container.With this inner cylinder 3 as a partition wall, the combustion chamber 4 of the burner 2 is located on the inner peripheral side, and the combustion chamber 4 of the burner 2 is located on the outer peripheral side. A fuel gas ascending passage 6 whose terminal end communicates with the combustion gas discharge pipe 5 is defined between the outer cylinder 1b of the furnace body 1 and the outer cylinder 1b of the furnace body 1. Further, a reforming reactor 8 having a cylindrical structure filled with a reforming catalyst 7 is disposed inside the combustion gas rising passage 6, and a reforming raw material supply pipe 9 is provided at the lower end of the reactor 8, and a reforming raw material supply pipe 9 is provided at the upper end of the reforming reactor 8. The reforming reactor, to which the reformed gas outlet pipe 10 is connected, may be composed of a plurality of reforming reaction tubes lined up on the circumference. By combusting the fuel supplied to the burner 2 in this configuration, the high-temperature combustion gas descends in the burner combustion chamber 4 in the direction of the dotted arrow, and when it reaches near the bottom plate of the furnace body 1, the flow direction is reversed. The combustion gas rises in the combustion gas rising passage 6, and after exchanging heat with the reforming reactor 8 during this process, it is exhausted to the outside of the system through the gas exhaust pipe 5. On the other hand, by supplying reforming raw materials such as methanol to the reforming reaction 88 installed in the furnace through the constitutional raw material supply pipe 9, the raw materials are vaporized in the process of flowing through the pipes in the furnace and then sent to the reforming reactor 8. In the process of flowing upward in the reforming reactor, it catalytically reacts with the reforming catalyst in the presence of water vapor and is reformed into a hydrogen-rich gas,
It is then discharged through the outlet pipe 10. As is well known, the reforming reaction is an endothermic reaction, and the amount of heat required for the reaction to proceed is provided by heat exchange between the combustion gas flowing in the furnace and the reforming reactor. Also the said modification! When used in a fuel cell power generation plant, the off-gas of the fuel gas discharged from the fuel cell is normally used as the fuel supplied to the burner 2, and the reformed gas obtained here is used as the fuel gas. Supplied to the battery. By the way, when a reformed Ir device is incorporated into a fuel cell power generation plant as described above, in order to increase the overall efficiency of the power generation plant, it is necessary to improve not only the reforming efficiency but also the thermal energy exchange efficiency in the reformer. This is an extremely important issue. To address this problem, conventional methods to improve heat exchange efficiency include attaching fins to the reforming reactor to increase its heat transfer area, and installing baffles around the reforming reactor to disrupt the flow of combustion gas. There are known methods for improving the heat transfer characteristics between the reforming reactor and the reforming reactor. However, with these methods, in reality, the combustion gas flow in the furnace becomes uneven due to dimensional errors, distortions, etc. in the manufacturing of the reformer. A uniform temperature distribution could not be obtained, and actual tests conducted by the inventors showed that there was a temperature difference of 100° C. or more between high-temperature areas and low-temperature areas. Moreover, if the temperature distribution becomes uneven in the reforming reactor in this way, the progress of the reforming reaction will not only become uneven, making it impossible to obtain high reforming efficiency, but also cause the reforming catalyst to be partially overloaded. As a result, its lifespan will be significantly reduced. In addition, as an improvement measure to eliminate the above-mentioned variation in temperature distribution, a spiral ventilation guide is installed in the combustion gas rising passage shown above, and the combustion gas flowing therein is swirled in the circumferential direction. A method has been proposed in which the temperature distribution in the circumferential direction is made uniform, but such a method complicates the structure and significantly increases the manufacturing cost of the device. There are drawbacks such as the obstruction that makes maintenance and inspection of the reforming reactor difficult.

【発明の目的】[Purpose of the invention]

この発明は上記の点にかんがみなされたものであり、前
記した従来方式の難点を解消し、炉内に僅かな部材を追
加設置しただけの簡易な構造で炉内に配置した改質反応
器と燃焼ガスとの間の熱交換率を高めつつ、併せて改質
反応器全体での周方向の温度分布の均一化が図れるよう
にした改1tvt置の構成を提供することを目的とする
This invention was made in consideration of the above points, and it solves the difficulties of the conventional method described above, and provides a reforming reactor and a reforming reactor placed inside the furnace with a simple structure that requires only a few additional members installed inside the furnace. It is an object of the present invention to provide a configuration of a reformer 1 tvt position that can increase the heat exchange rate with the combustion gas and at the same time make the temperature distribution in the circumferential direction uniform throughout the reforming reactor.

【発明の要点】[Key points of the invention]

上記目的を達成するために、この発明は炉体内の底部付
近に接部を通って前記燃焼ガス上昇通路側へ流れる燃焼
ガスに炉内周方向への旋回流を付与するガイドベーンを
配備して改質反応器の配備されている燃焼ガス上昇通路
内に通流する燃焼ガス流を旋回流とすることにより、燃
焼ガスと改質反応器との間の熱交換効率を高めつつ、そ
の周方向の温度分布のばらつきを無すようにしたもので
ある。
In order to achieve the above object, the present invention provides a guide vane near the bottom of the furnace body that imparts a swirling flow in the direction of the inner circumference of the furnace to the combustion gas flowing toward the combustion gas rising passage through the contact part. By making the combustion gas flow flowing through the combustion gas rising passage where the reforming reactor is installed into a swirling flow, the heat exchange efficiency between the combustion gas and the reforming reactor is increased, and the heat exchange efficiency is increased in the circumferential direction. This is to eliminate variations in temperature distribution.

【発明の実施例】[Embodiments of the invention]

第1図、第2図、および第3図、第4図はそれぞれこの
発明の異なる実施例の構成を示すものであり、第5図1
第6図に対応する同一部材には同じ符号が付しである。 各実施例とも改′11r装置の基本構造は第5図、第6
図のものと同一であり、ここで第1図、第2図の実施例
では炉体lの炉内底部の中央には符号11で示すガイド
ベーンが配備されている、このガイドベーン11は第2
図に明示されているように同じ向きに湾曲した複数枚の
羽根12を放射状に組合せた構造として成る。なおガイ
ドベーン11は図示構造に限定されるものではなく各種
形式のものが採用できる。 一方、かかるガイドベーン11を設置したことにより、
バーナ2で燃焼した燃焼ガスは燃焼室4を流下した後に
その底部付近から方向を反転して燃焼ガス1井通路6へ
移行する過程でガイドベーン11により旋回流が付与さ
れ、ガイドベーン11を通過した下流側では燃焼ガスは
旋回流となって点線矢印Bのように内筒2と炉体1の外
筒1bとの間の燃焼ガス上昇通路6内を周方向に旋回し
ながら上昇し、かつこの通風過程で改質反応器8を周面
を洗流して熱交換を行うようになる。これにより第5図
、第6図の従来構成のように燃焼ガスが殆ど直線的に通
路6内を上昇する場合と比べて、燃焼ガスと改質反応器
8との間の熱交換率が高まり、しかも燃焼ガスが周方向
に流れるので改質反応器8はその全周域が平均的に加熱
されてその周方向の温度分布の均一化が図れるようにな
る。この点について発明者が炉体lの外径250mm、
内筒2の径寸法150mmの改質装置に付いて実機試験
を行って屑ぺた処では、改質反応器8の全周域に付いて
の温度分布差は最高で約20℃内に収まることが確認さ
れている。なお改質反応器8の内部では原料供給側の前
半域、つまりガイドベーン11に近い下側部分でメタノ
ール分解の吸熱反応が行われるので、特に前記した燃焼
ガスの旋回流が改質反応の進行に有効に働くようになる
。 次に第3図、第4図の実施例は前記実施例をさらに改良
したものであり、ガイドベーン11は炉体1の底47i
1aの中央部に炉内側に向けて凸となるように形成した
円錐状の錐面部1cの上に設置されている。かかる構成
により、バーナ燃焼室4内を下降し来る燃焼ガスは前記
錐面部1cの錐面に沿って流れながら方向を転換するの
で燃焼ガス流の圧力損失を軽減し、かつガイドベーン1
1と共同してより効果的に燃焼ガスに旋回流を付与でき
るようになる。
1, 2, 3, and 4 respectively show the configurations of different embodiments of the present invention, and FIG.
Identical members corresponding to FIG. 6 are given the same reference numerals. The basic structure of the modified '11r device in each embodiment is shown in Figures 5 and 6.
In the embodiment shown in FIGS. 1 and 2, a guide vane designated by reference numeral 11 is provided at the center of the bottom of the furnace body l. 2
As clearly shown in the figure, it has a structure in which a plurality of blades 12 curved in the same direction are combined radially. Note that the guide vane 11 is not limited to the illustrated structure, and various types can be adopted. On the other hand, by installing such a guide vane 11,
After the combustion gas burned in the burner 2 flows down the combustion chamber 4, the direction is reversed from near the bottom of the combustion chamber 4, and in the process of moving to the combustion gas 1 well passage 6, a swirling flow is imparted by the guide vane 11, and the flow passes through the guide vane 11. On the downstream side, the combustion gas becomes a swirling flow and rises while swirling in the circumferential direction in the combustion gas rising passage 6 between the inner cylinder 2 and the outer cylinder 1b of the furnace body 1, as shown by the dotted arrow B, and During this ventilation process, the peripheral surface of the reforming reactor 8 is washed to perform heat exchange. This increases the heat exchange rate between the combustion gas and the reforming reactor 8 compared to the case where the combustion gas rises almost linearly in the passage 6 as in the conventional configuration shown in FIGS. 5 and 6. Moreover, since the combustion gas flows in the circumferential direction, the entire circumferential area of the reforming reactor 8 is heated evenly, and the temperature distribution in the circumferential direction can be made uniform. Regarding this point, the inventor has determined that the outer diameter of the furnace body l is 250 mm,
An actual machine test was conducted on a reformer with an inner cylinder 2 diameter of 150 mm, and it was found that the difference in temperature distribution around the entire circumference of the reforming reactor 8 was within about 20°C at most. has been confirmed. Inside the reforming reactor 8, the endothermic reaction of methanol decomposition takes place in the first half of the raw material supply side, that is, in the lower part near the guide vanes 11, so the swirling flow of the combustion gas mentioned above is particularly effective for the progress of the reforming reaction. It comes to work effectively. Next, the embodiment shown in FIGS. 3 and 4 is a further improvement of the above embodiment, in which the guide vane 11 is located at the bottom 47i of the furnace body
It is installed on a conical conical surface part 1c formed in the center of 1a so as to be convex toward the inside of the furnace. With this configuration, the combustion gas descending within the burner combustion chamber 4 changes direction while flowing along the conical surface of the conical surface portion 1c, reducing the pressure loss of the combustion gas flow, and the guide vane 1
In conjunction with 1, swirling flow can be more effectively imparted to the combustion gas.

【発明の効果】【Effect of the invention】

以上述べたようにこの発明によれば、炉体内の底部付近
に核部を通って前記燃焼ガス上昇通路側へ流れる燃焼ガ
スに炉内周方向への旋回流を付与するガイドベーンを配
備して構成したことにより、改質反応器と燃焼ガス流と
の間の熱交換効率を高めつつ、しかも周方向での温度分
布の均一化が図れるようになる。またこの結果として改
質反応器内の全域で改質反応が均一に進行するようにな
り、改質触媒の一部へ極端な負荷が加わることも無くな
り、改質触媒の長寿命化が図れる。さらに加えて当該改
質装置を燃料電池発電プラントに組み込んで使用する場
合にはその高い改質効率、省エネルギー効果により発電
プラントの総合効率向上にも大いに寄与できる等の利点
が得られる。
As described above, according to the present invention, a guide vane is provided near the bottom of the furnace body for imparting a swirling flow in the direction of the inner circumference of the furnace to the combustion gas flowing through the core and toward the combustion gas rising passage. With this configuration, it is possible to improve the heat exchange efficiency between the reforming reactor and the combustion gas flow, and to make the temperature distribution uniform in the circumferential direction. Furthermore, as a result, the reforming reaction proceeds uniformly throughout the entire area within the reforming reactor, eliminating the need to place an extreme load on a portion of the reforming catalyst, thereby extending the life of the reforming catalyst. In addition, when the reformer is incorporated into a fuel cell power generation plant, there are advantages such as its high reforming efficiency and energy saving effect, which can greatly contribute to improving the overall efficiency of the power generation plant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、および第3図、第4図はそれぞれこの
発明の異なる実施例による改質装置の構成を示す縦断面
図および横断面図、第5図、第6図は従来における改質
装置の構成を示す縦断面図および横断面図である。各図
において、l:炉体、la:底板、lb:外筒、lc:
錐面部、2:バーナ、3:内筒、4:バーナ燃焼室、6
:燃焼ガス上昇通路、7:改質触媒、8:改質反応器、
9:改質原料供給管、10:改質ガス出口管、11ニガ
イドベーン、A、B:燃焼ガス流。 第1図 第2図 第3図 第4図
1, 2, 3, and 4 are longitudinal and transverse sectional views showing the structure of a reformer according to different embodiments of the present invention, respectively, and FIGS. 5 and 6 are views of a conventional reformer. FIG. 1 is a vertical cross-sectional view and a cross-sectional view showing the configuration of a reformer. In each figure, l: furnace body, la: bottom plate, lb: outer cylinder, lc:
Conical surface part, 2: Burner, 3: Inner cylinder, 4: Burner combustion chamber, 6
: Combustion gas rising passage, 7: Reforming catalyst, 8: Reforming reactor,
9: Reformed raw material supply pipe, 10: Reformed gas outlet pipe, 11 guide vane, A, B: combustion gas flow. Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 1)頂部にバーナを装備した筒状の炉体に対し、炉内に
前記バーナの周域を包囲してバーナ燃焼室を画成する内
筒を設け、かつ該内筒と炉体の外筒との間に前記バーナ
燃焼室と連通して画成された燃焼ガス上昇通路内に改質
反応器を配備して成る改質装置において、炉体内の底部
付近に該部を通って前記燃焼ガス上昇通路側へ流れる燃
焼ガスに炉内周方向への旋回流を付与するガイドベーン
を配備したことを特徴とする改質装置。 2)特許請求の範囲第1項記載の改質装置において、ガ
イドベーンが炉体の底板中心部に形成された炉内に向け
て凸となる錐面部の上に設置されていることを特徴とす
る改質装置。
[Claims] 1) For a cylindrical furnace body equipped with a burner at the top, an inner cylinder is provided in the furnace to surround the peripheral area of the burner and define a burner combustion chamber, and the inner cylinder In the reformer, the reforming reactor is disposed in a combustion gas rising passage defined between the burner combustion chamber and the outer cylinder of the furnace body, and the reforming reactor is disposed in the combustion gas rising passage defined between the burner combustion chamber and the outer cylinder of the furnace body. A reforming device characterized in that a guide vane is provided for imparting a swirling flow toward the inner circumferential direction of the furnace to the combustion gas flowing through the passage toward the combustion gas rising passage. 2) The reformer according to claim 1, characterized in that the guide vane is installed on a conical surface part formed at the center of the bottom plate of the furnace body and convex toward the inside of the furnace. reformer.
JP61156680A 1986-07-03 1986-07-03 Reforming device Pending JPS6311501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61156680A JPS6311501A (en) 1986-07-03 1986-07-03 Reforming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61156680A JPS6311501A (en) 1986-07-03 1986-07-03 Reforming device

Publications (1)

Publication Number Publication Date
JPS6311501A true JPS6311501A (en) 1988-01-19

Family

ID=15632975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61156680A Pending JPS6311501A (en) 1986-07-03 1986-07-03 Reforming device

Country Status (1)

Country Link
JP (1) JPS6311501A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980063334A (en) * 1996-06-19 1998-10-07 볼레터우 Apparatus with fuel cell and operation method thereof
WO2005073126A1 (en) * 2004-01-30 2005-08-11 Idemitsu Kosan Co., Ltd. Reformer
WO2006109972A1 (en) * 2005-04-11 2006-10-19 Sk Energy Co., Ltd. Cylindrical steam reformer having integrated heat exchanger

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980063334A (en) * 1996-06-19 1998-10-07 볼레터우 Apparatus with fuel cell and operation method thereof
WO2005073126A1 (en) * 2004-01-30 2005-08-11 Idemitsu Kosan Co., Ltd. Reformer
JPWO2005073126A1 (en) * 2004-01-30 2007-09-06 出光興産株式会社 Reformer
JP4714023B2 (en) * 2004-01-30 2011-06-29 出光興産株式会社 Reformer
US8038960B2 (en) 2004-01-30 2011-10-18 Idemitsu Kosan Co., Ltd. Reformer
KR101121315B1 (en) 2004-01-30 2012-03-23 이데미쓰 고산 가부시키가이샤 Reformer
WO2006109972A1 (en) * 2005-04-11 2006-10-19 Sk Energy Co., Ltd. Cylindrical steam reformer having integrated heat exchanger

Similar Documents

Publication Publication Date Title
SU1075947A3 (en) Apparatus for conducting endothermic reactions
TW200531339A (en) Reformer
JP6189391B2 (en) Fuel processor
CN107069065B (en) Reformer for producing hydrogen by reforming natural gas
JP3921477B2 (en) Single tube cylindrical reformer and its operating method
JPS61106401A (en) Reforming apparatus
KR970704252A (en) Fuel cell power plant furnace
CN115849302B (en) Hydrogen production apparatus and method
JPS6311501A (en) Reforming device
JP2001342002A (en) Fuel reformer
US20070028522A1 (en) Fuel reformer
WO2023221070A1 (en) Methanol hydrogen production apparatus with self-removal of co and method for using same
JP3306430B2 (en) Reformer
CN210656144U (en) Tail gas heating type reformer for producing hydrogen from methanol
JP2601707B2 (en) Catalytic reactor
KR20120022191A (en) Steam reformer
JPH0679664B2 (en) Fuel reformer
JP3842352B2 (en) Fuel reformer
JPH08287937A (en) Solid electrolyte fuel cell module
CN216630767U (en) Hydrogen recycling device for hydrogenation reaction
JPH0647442B2 (en) Fuel reformer
JPS59102804A (en) Device for modifying fuel
KR100741651B1 (en) Fuel reformer
JPH08208203A (en) Fuel reformer
JPS61111135A (en) Reformer apparatus