JPH08287937A - Solid electrolyte fuel cell module - Google Patents
Solid electrolyte fuel cell moduleInfo
- Publication number
- JPH08287937A JPH08287937A JP7088028A JP8802895A JPH08287937A JP H08287937 A JPH08287937 A JP H08287937A JP 7088028 A JP7088028 A JP 7088028A JP 8802895 A JP8802895 A JP 8802895A JP H08287937 A JPH08287937 A JP H08287937A
- Authority
- JP
- Japan
- Prior art keywords
- fuel
- power generation
- chamber
- stack
- air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/241—Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
- H01M8/2425—High-temperature cells with solid electrolytes
- H01M8/243—Grouping of unit cells of tubular or cylindrical configuration
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0612—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
- H01M8/0625—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2465—Details of groupings of fuel cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2465—Details of groupings of fuel cells
- H01M8/247—Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、供給された炭化水素燃
料の固体電解質燃料電池の発電に支障を生じない燃料ガ
スへの改質を、燃料供給室で行うようにした固体電解質
燃料電池モジュールに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrolyte fuel cell module for reforming a supplied hydrocarbon fuel into a fuel gas which does not hinder the power generation of a solid electrolyte fuel cell in a fuel supply chamber. Regarding
【0002】[0002]
【従来の技術】メタンを主成分とする天然ガス等の炭化
水素燃料と水蒸気を直接供給して、高温の固体電解質燃
料電池の燃料極であるニッケル電極で、メタンの水蒸気
改質反応を生じさせ、また、固体電解質燃料電池で発生
する熱の一部をこの水蒸気改質反応の吸熱反応熱として
利用するようにした技術を内部改質技術という。2. Description of the Related Art A hydrocarbon fuel such as natural gas containing methane as a main component and steam are directly supplied to cause a steam reforming reaction of methane at a nickel electrode which is a fuel electrode of a high temperature solid oxide fuel cell. Further, a technique in which a part of the heat generated in the solid oxide fuel cell is utilized as the endothermic reaction heat of this steam reforming reaction is called an internal reforming technique.
【0003】しかし、この内部改質技術は、固体電解質
燃料電池では、作動温度が800℃から1000℃と高
く、水蒸気と天然ガス中のC(炭素)のモル比であるS
/Cが3以上でも、燃料極でカーボンの発生が見られ、
固体電解質燃料電池に適用するには不具合が生じる。こ
のため、従来の固体電解質燃料電池システムでは、固体
電解質燃料電池モジュールへ供給する前に、改質装置を
設け、天然ガスを部分的に水蒸気改質反応をおこさせ、
燃料ガスにした後、固体電解質燃料電池モジュールに供
給するようにして、不具合を解消している。However, this internal reforming technique has a high operating temperature of 800 ° C. to 1000 ° C. in a solid electrolyte fuel cell, and S, which is the molar ratio of C (carbon) in water vapor and natural gas.
Even if / C is 3 or more, generation of carbon is seen at the fuel electrode,
There is a problem when applied to a solid oxide fuel cell. Therefore, in the conventional solid oxide fuel cell system, a reforming device is provided before the solid oxide fuel cell module is supplied to the solid oxide fuel cell module to cause a partial steam reforming reaction of natural gas,
After making the fuel gas, it is supplied to the solid electrolyte fuel cell module to solve the problem.
【0004】図2は、このような、従来の固体電解質燃
料電池モジュールの断面を示す図である。図において、
外周が断熱材9で被包された容器12の内部には、発電
室1が、その上部を下部管板11で区画され、形成され
ている。この発電室1には、電解質を介装して内側に燃
料極、外側に空気極を配置した固体電解質燃料電池を複
数直列に接続してなり、下端を閉鎖した円筒型にされた
固体電解質燃料電池スタック2(以下単にスタックとい
う)が多数鉛直状態に配置されている。FIG. 2 is a view showing a cross section of such a conventional solid electrolyte fuel cell module. In the figure,
Inside the container 12 whose outer periphery is covered with the heat insulating material 9, the power generation chamber 1 is formed by partitioning the upper part thereof with the lower tube sheet 11. In the power generation chamber 1, a plurality of solid electrolyte fuel cells in which a fuel electrode is arranged inside and an air electrode is arranged outside through an electrolyte, are connected in series, and a cylindrical solid electrolyte fuel having a closed lower end is formed. A large number of battery stacks 2 (hereinafter simply referred to as stacks) are arranged in a vertical state.
【0005】また、容器12内の発電室1の上方には、
下部管板11および下部管板11と間隔を設けて、その
上方に設けられた上部管板10で区画された燃料排出室
5が、さらに、その上方の容器12内の上端に、上部管
板10で下方が区画された燃料供給室3が、それぞれ画
成されている。さらに、スタック2の円筒型の軸心部に
は燃料供給管4が設置され、その上端は、燃料供給室3
に連通するとともに、下端は下端が閉鎖されたスタック
2の下端部に連通されている。また、図示しない輻射変
換体等により区画された容器12内部の発電室1の下方
には、輻射変換体と間隔を設けて空気熱交換器6が設け
られている。Further, above the power generation chamber 1 in the container 12,
The lower tube sheet 11 and the lower tube sheet 11 are spaced apart from each other, and the fuel discharge chamber 5 defined by the upper tube sheet 10 provided above the lower tube sheet 11 is further provided at the upper end of the container 12 above the upper tube sheet. Each of the fuel supply chambers 3 is divided into lower parts by 10, and is defined. Further, a fuel supply pipe 4 is installed at the cylindrical axis of the stack 2, and the upper end of the fuel supply pipe 4 is located at the fuel supply chamber 3
And the lower end is in communication with the lower end of the stack 2 whose lower end is closed. Further, an air heat exchanger 6 is provided below the power generation chamber 1 inside the container 12 partitioned by a radiant converter (not shown) and at a distance from the radiant converter.
【0006】また、燃料供給室3には、外部から燃料ガ
スSFを供給するための燃料導入管13が連結されてお
り、この燃料導入管13の途中には、天然ガスNGの部
分的な改質反応するための改質装置07が設けられてい
る。すなわち、外部から燃料導入管13で供給された天
然ガスNGと水蒸気STは、改質装置07に入り、ここ
で天然ガスNGの主成分である、メタンの一部が、天然
ガスNGとともに、改質装置07に移送された水蒸気S
Tと反応し、水素と一酸化炭素の燃料ガスSFに分解さ
れ改質される。この燃料ガスSFは、さらに、燃料導入
管13を通って燃料供給室3に供給される。Further, a fuel introduction pipe 13 for supplying the fuel gas SF from the outside is connected to the fuel supply chamber 3, and a partial modification of natural gas NG is provided in the middle of the fuel introduction pipe 13. A reformer 07 for quality reaction is provided. That is, the natural gas NG and the steam ST supplied from the outside through the fuel introduction pipe 13 enter the reforming device 07, where a part of methane, which is the main component of the natural gas NG, is modified together with the natural gas NG. Steam S transferred to the quality device 07
It reacts with T and is decomposed and reformed into a fuel gas SF of hydrogen and carbon monoxide. The fuel gas SF is further supplied to the fuel supply chamber 3 through the fuel introduction pipe 13.
【0007】燃料供給室3に供給された燃料ガスSF
は、燃料供給室3から燃料供給管4内を通ってスタック
2の下端部に供給される。下端が閉鎖されたスタック2
の下端に供給された燃料ガスSFは、スタック2の軸心
部に設置された燃料供給管4の外周面上と、スタック2
の内周面の間を上昇するとき、スタック2の内側に設け
た燃料極における発電反応に使用された後、排燃料EF
となって、スタック2の上端を開口させた下部管板10
を通過して、燃料排出室5に集められ、燃料排出室5に
設けた燃料排出管14によって容器12内から排気され
る。Fuel gas SF supplied to the fuel supply chamber 3
Is supplied from the fuel supply chamber 3 to the lower end of the stack 2 through the fuel supply pipe 4. Stack 2 with closed bottom
The fuel gas SF supplied to the lower end of the stack 2 is on the outer peripheral surface of the fuel supply pipe 4 installed at the axial center of the stack 2 and the stack 2
When it rises between the inner peripheral surfaces of the exhaust fuel EF after being used for power generation reaction in the fuel electrode provided inside the stack 2.
Therefore, the lower tube sheet 10 with the upper end of the stack 2 opened
And is collected in the fuel discharge chamber 5 and exhausted from the inside of the container 12 by the fuel discharge pipe 14 provided in the fuel discharge chamber 5.
【0008】また、燃料ガスSFとともに、スタック2
の発電に使用される供給空気SAは、空気熱交換器6に
連結されている空気導入管15によって、外部から空気
熱交換器6に供給される。空気熱交換器6には、発電室
1内で加熱された排空気EAを容器12外へ排出するた
め、発電室1内に垂設された空気排出管8の下端が連結
されている。空気導入管15で空気熱交換器6に供給さ
れた供給空気SAは、同様に空気排出管8で供給された
排空気EAとの間で再生熱交換を行い予熱される。空気
熱交換器6で予熱された供給空気SAは、発電室1の下
部を区画する多孔体の素材で形成された輻射変換体の下
方に供給される。輻射変換体は、スタック2から放射さ
れる熱により高温となった発電室1からの熱を受熱し、
高温となっており、その内部を通過する予熱された供給
空気SAを、さらに加熱する。Further, the stack 2 together with the fuel gas SF
The supply air SA used for power generation is supplied to the air heat exchanger 6 from the outside by the air introduction pipe 15 connected to the air heat exchanger 6. The air heat exchanger 6 is connected to the lower end of an air discharge pipe 8 vertically installed in the power generation chamber 1 in order to discharge the exhaust air EA heated in the power generation chamber 1 to the outside of the container 12. The supply air SA supplied to the air heat exchanger 6 through the air introduction pipe 15 is preheated by performing regenerative heat exchange with the exhaust air EA similarly supplied through the air discharge pipe 8. The supply air SA preheated by the air heat exchanger 6 is supplied below the radiation conversion body formed of a porous material that defines the lower portion of the power generation chamber 1. The radiant converter receives the heat from the power generation chamber 1 which has become high temperature due to the heat radiated from the stack 2,
The preheated supply air SA, which has a high temperature and passes through it, is further heated.
【0009】このように、発電室1内の発熱を利用し
て、輻射変換体内で、空気熱交換器6で予熱された供給
空気SAを、さらに加熱することで、発電室1内部での
空気の温度上昇幅を抑え、発電室1内部の温度差を小さ
くすることができる。輻射変換体を通過して発電室1内
に供給された供給空気SAは、発電室1内に鉛直状態に
配設されている、スタック2の外周面に沿って上昇する
とき、スタック2の外側に設けた空気極における発電反
応に使用されるとともに、発電室1内の冷却を行う。ま
た、発電室1内での発電等に使用され、900〜100
0℃に加熱された排空気EFは、前述の空気排出管8に
集められ、前述したように、空気熱交換器6に導入さ
れ、供給空気SAの予熱に使用された後、空気排出管1
6によって容器12外へ排気される。In this way, by utilizing the heat generated in the power generation chamber 1 to further heat the supply air SA preheated in the air heat exchanger 6 in the radiation converter, the air in the power generation chamber 1 can be heated. It is possible to suppress the temperature rise width and reduce the temperature difference inside the power generation chamber 1. The supply air SA, which has passed through the radiation converter and is supplied into the power generation chamber 1, rises along the outer peripheral surface of the stack 2, which is vertically arranged in the power generation chamber 1, and outside the stack 2. It is used for power generation reaction in the air electrode provided in the above, and cools the inside of the power generation chamber 1. Moreover, it is used for power generation etc. in the power generation room 1, and 900-100
The exhaust air EF heated to 0 ° C. is collected in the air exhaust pipe 8 described above, introduced into the air heat exchanger 6 and used to preheat the supply air SA as described above, and then the air exhaust pipe 1
It is exhausted to the outside of the container 12 by 6.
【0010】このように、発電室1内は、スタック2に
おける発電のために、900〜1000℃の高温に保つ
必要があり、前述したように、発電室1を内部に収容す
る容器12の外周を被包する断熱材9により保温され
て、高温を保持するようにしている。また、発電室1の
上部を区画する下部管板11は、発電室1内に鉛直状態
に配置されているスタック2を支持すると同時に、燃料
排出室5内の排燃料EFと発電室1内の供給空気SA、
又は排空気EAとが混合燃焼するのを防止している。さ
らに、下部管板11とともに、燃料排出室5を区画し、
容器12の上端に設置される燃料供給室3の下部を区画
する上部管板10は、スタック2の軸心部に垂下させた
燃料供給管4を支持するとともに、燃料供給室3と燃料
排出室5との隔壁となって燃料ガスSFと排燃料EFと
の混合を防止している。As described above, the inside of the power generation chamber 1 must be maintained at a high temperature of 900 to 1000 ° C. for power generation in the stack 2, and as described above, the outer periphery of the container 12 that houses the power generation chamber 1 therein. It is kept warm by the heat insulating material 9 which encloses it, so that the high temperature is kept. Further, the lower tube sheet 11 that divides the upper portion of the power generation chamber 1 supports the stack 2 that is vertically arranged in the power generation chamber 1, and at the same time, the exhaust fuel EF in the fuel discharge chamber 5 and the inside of the power generation chamber 1 Supply air SA,
Alternatively, the mixed combustion with the exhaust air EA is prevented. Further, the fuel discharge chamber 5 is partitioned together with the lower tube sheet 11,
The upper tube sheet 10 that defines the lower portion of the fuel supply chamber 3 installed at the upper end of the container 12 supports the fuel supply pipe 4 that hangs down from the axial center of the stack 2, and also supports the fuel supply chamber 3 and the fuel discharge chamber. 5 and the partition wall 5 prevent the fuel gas SF and the exhaust fuel EF from being mixed.
【0011】しかしながら、このような、従来の固体電
解質燃料電池モジュールに使用する燃料ガスを得るため
に、天然ガスの水蒸気改質反応に使用する改質装置03
では、固体電解質燃料電池モジュールと別体の装置を必
要とするほか、次のような不具合がある。 (1)水蒸気改質反応が吸熱反応であり、発電室1から
の排燃料EAや燃料ガスSFの一部を燃焼するなどして
改質装置03を加熱する必要があり、システムの効率が
低下する。 (2)発電室1の温度は、900〜1000℃であり、
スタック2および燃料供給管4を支持する、下部および
上部管板11、10の温度が高温となるため、厚肉化や
高級材料の使用が必要である。 (3)高温の、下部および上部管板10、11部から容
器12外への放熱が多くなり、発電室1から回収できる
熱量が低下し、システムの効率が低下する。However, in order to obtain the fuel gas used in such a conventional solid electrolyte fuel cell module, the reformer 03 used in the steam reforming reaction of natural gas 03.
However, in addition to requiring a device separate from the solid electrolyte fuel cell module, there are the following problems. (1) The steam reforming reaction is an endothermic reaction, and it is necessary to heat the reforming device 03 by burning a part of the exhausted fuel EA or the fuel gas SF from the power generation chamber 1, which lowers the efficiency of the system. To do. (2) The temperature of the power generation chamber 1 is 900 to 1000 ° C.,
Since the temperatures of the lower and upper tube plates 11 and 10 supporting the stack 2 and the fuel supply pipe 4 become high, it is necessary to increase the thickness and use a high-grade material. (3) High temperature heat radiation from the lower and upper tube sheets 10 and 11 to the outside of the container 12 increases, the amount of heat that can be recovered from the power generation chamber 1 decreases, and the system efficiency decreases.
【0012】[0012]
【発明が解決しようとする課題】本発明は、上述した従
来の固体電解質燃料電池モジュールの不具合を解消する
ため、別体の改質装置の設置を不要にできるとともに、
水蒸気改質反応に必要な加熱に、燃料や排燃料による燃
焼ガスを供給する必要がなく、また、下部および上部管
板の過熱を防止でき軽量化、低コスト化できるとともに
外部への放熱を少くして熱効率を向上できる固体電解質
燃料電池モジュールを提供することを課題とする。SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the conventional solid oxide fuel cell module, and thus it is not necessary to install a separate reformer.
There is no need to supply combustion gas from fuel or exhausted fuel to the heating required for the steam reforming reaction, and it is possible to prevent overheating of the lower and upper tube sheets, reduce weight and cost, and reduce heat radiation to the outside. It is an object of the present invention to provide a solid oxide fuel cell module capable of improving thermal efficiency.
【0013】[0013]
【課題を解決するための手段】本発明は、上述の従来の
固体電解質燃料電池モジュールの不具合を解消するた
め、容器内部の発電室の上部に設置された燃料供給室内
に、外部から燃料供給室に供給された炭化水素燃料を、
水蒸気と反応させて水素と一酸化炭素の燃料ガスに改質
する水蒸気改質触媒を充填した。SUMMARY OF THE INVENTION In order to solve the problems of the above-mentioned conventional solid oxide fuel cell module, the present invention provides a fuel supply chamber installed in an upper part of a power generation chamber inside a container, from the outside of the fuel supply chamber. The hydrocarbon fuel supplied to
A steam reforming catalyst that reacts with steam to reform into hydrogen and carbon monoxide fuel gas was filled.
【0014】[0014]
【作用】本発明の固体電解質燃料電池モジュールでは、
上述の手段により、燃料供給室内で、水蒸気改質反応が
起き、供給された炭化水素燃料が水蒸気と反応し、一部
水素と一酸化炭素に変化した燃料ガスに改質される。こ
のときの反応は、吸熱反応であり、反応熱は、燃料排出
室に排気される排燃料による加熱、および燃料排出室を
経て燃料供給室に放熱される発電室からの加熱で賄われ
る。In the solid electrolyte fuel cell module of the present invention,
By the means described above, a steam reforming reaction occurs in the fuel supply chamber, the supplied hydrocarbon fuel reacts with steam, and is reformed into a fuel gas partially converted into hydrogen and carbon monoxide. The reaction at this time is an endothermic reaction, and the reaction heat is covered by heating by the exhaust fuel exhausted to the fuel discharge chamber and heating by the power generation chamber radiated to the fuel supply chamber through the fuel discharge chamber.
【0015】これにより、水蒸気改質反応を行わせるた
めの改質装置の設置が不要になるとともに、改質装置の
加熱に必要であった、発電室から容器の外に設けられた
改質装置へ移送され燃焼させる排燃料の供給、又は燃料
の使用が不要となり、システムとしての効率を向上でき
る。As a result, it is not necessary to install a reforming device for carrying out the steam reforming reaction, and the reforming device, which was necessary for heating the reforming device, was provided outside the vessel from the power generation chamber. It is not necessary to supply exhausted fuel that is transferred to and burned, or to use the fuel, so that the efficiency of the system can be improved.
【0016】また、燃料供給室内での水蒸気改質反応に
よる吸熱により、発電室からの放熱により加熱される上
部管板、および下部管板が冷却され、高温化が防止でき
る。これにより、これらの管板の厚肉化、若しくは高級
材料の使用が不要となり、軽量化、および低コスト化が
達成できる。また、これらの管板の高温化を防止するこ
とにより、これらの部分から、断熱材を通って容器の外
へ放出される熱量を少くでき、発電室で発生する熱量の
回収を多くでき、システムのほかの熱源として使用でき
るようになり、これにより、熱効率が改善されシステム
効率を向上できる。Further, the heat absorption by the steam reforming reaction in the fuel supply chamber cools the upper tube plate and the lower tube plate which are heated by the heat radiation from the power generation chamber, so that the temperature rise can be prevented. As a result, it becomes unnecessary to increase the wall thickness of these tube sheets or to use high-grade materials, and it is possible to achieve weight reduction and cost reduction. In addition, by preventing these tube plates from becoming hot, the amount of heat released from these parts through the heat insulating material to the outside of the container can be reduced, and the amount of heat generated in the power generation chamber can be recovered more. Can be used as another heat source, which can improve thermal efficiency and increase system efficiency.
【0017】[0017]
【実施例】以下、本発明の固体電解質燃料電池モジュー
ルの実施例を、図面にもとづき説明する。図1は、本発
明の固体電解質燃料電池モジュールの一実施例を示す側
断面図である。なお、図2で示した部材と同一部材は、
同一符番を行い説明は省略した。Embodiments of the solid oxide fuel cell module of the present invention will be described below with reference to the drawings. FIG. 1 is a side sectional view showing an embodiment of the solid oxide fuel cell module of the present invention. The same members as those shown in FIG. 2 are
The same reference numerals are given and the description is omitted.
【0018】図において、発電室1には、内側に燃料
極、外側に空気極を配置した固体電解質燃料電池を、複
数直列に接続してなる円筒型のスタック2が鉛直状態で
配置されている。なお、スタック2の下端は閉鎖され発
電室1とは遮断されている。外部からの天然ガスNGと
水蒸気STは、燃料導入管13を通じて発電室1の上部
に設置された燃料供給室3に供給される。燃料供給室3
の内部には、水蒸気改質触媒100が充填されており、
ここで、供給された天然ガスNGの主成分であるメタン
の一部が水蒸気と反応し、水素と一酸化炭素の燃料ガス
SFに分解され、改質される。In the figure, in a power generation chamber 1, a cylindrical stack 2 in which a plurality of solid electrolyte fuel cells having a fuel electrode inside and an air electrode outside are connected in series is arranged in a vertical state. . The lower end of the stack 2 is closed and disconnected from the power generation chamber 1. The natural gas NG and the steam ST from the outside are supplied to the fuel supply chamber 3 installed above the power generation chamber 1 through the fuel introduction pipe 13. Fuel supply chamber 3
The inside of is filled with the steam reforming catalyst 100,
Here, a part of methane, which is the main component of the supplied natural gas NG, reacts with water vapor, and is decomposed into hydrogen and carbon monoxide fuel gas SF for reforming.
【0019】燃料供給管4は、円筒型のスタック2内部
軸心部に設置され、上端を燃料供給室3に開口させてい
る。燃料供給室3の通過時、改質された燃料ガスSF
は、燃料供給室3から燃料供給管4内を通ってスタック
2の下端部に供給され、スタック2の内周面と燃料供給
管4の外周面を上昇するとき、スタック2内周面に配設
された燃料極と発電反応し、発電に使用された後、スタ
ック2の上端が開口した燃料排出室5に集められ、燃料
排出室5上端に連結された燃料排出管14により外部へ
排気される。The fuel supply pipe 4 is installed at the axial center of the cylindrical stack 2 and has its upper end opened to the fuel supply chamber 3. Reformed fuel gas SF when passing through the fuel supply chamber 3.
Is supplied to the lower end of the stack 2 from the fuel supply chamber 3 through the fuel supply pipe 4, and is distributed to the inner peripheral surface of the stack 2 when the inner peripheral surface of the stack 2 and the outer peripheral surface of the fuel supply pipe 4 rise. After power generation reaction with the installed fuel electrode and use for power generation, the stack 2 is collected in the open fuel discharge chamber 5 and exhausted to the outside by the fuel discharge pipe 14 connected to the upper end of the fuel discharge chamber 5. It
【0020】供給空気SAは、発電室1の下部に設けら
れた空気熱交換器6により、空気排出管8で発電室1か
ら導入された排空気EAとの間で、再生熱交換を行い、
予熱された後、発電室1の下方を区画する輻射変換体を
通過して、さらに、加熱されて、発電室1に供給され
る。そして、発電室1内を上昇するとき、スタック2の
外側に設けられた空気極と発電反応し、発電を行う。こ
の発電反応により、900〜1000℃に加熱された排
空気EAは、空気排出管8に集められ、空気熱交換器6
に送られ、前述の通り、供給空気SAと熱交換をした
後、空気排出管16で外部へ排気される。The supply air SA exchanges heat with the exhaust air EA introduced from the power generation chamber 1 through the air exhaust pipe 8 by the air heat exchanger 6 provided in the lower portion of the power generation chamber 1,
After being preheated, it passes through a radiant converter that defines the lower part of the power generation chamber 1, is further heated, and is supplied to the power generation chamber 1. Then, when the inside of the power generation chamber 1 is raised, power generation reaction is performed with an air electrode provided outside the stack 2 to generate power. Due to this power generation reaction, the exhaust air EA heated to 900 to 1000 ° C. is collected in the air exhaust pipe 8 and the air heat exchanger 6
As described above, after heat exchange with the supply air SA, the air is exhausted to the outside through the air exhaust pipe 16.
【0021】発電室内は900〜1000℃の高温に保
つ必要があり、発電室1全体は、断熱材9により保温さ
れる。なお、下部管板11は、固体電解質燃料電池スタ
ック2を支持すると同時に、排燃料EFと発電室1内の
供給空気SA、若しくは排空気EAが混合燃焼するのを
防止している。また、上部管板10は、燃料供給管4を
支持すると共に、燃料供給室3と燃料排出室5との隔壁
となっている。It is necessary to keep the inside of the power generation chamber at a high temperature of 900 to 1000 ° C., and the entire power generation chamber 1 is kept warm by the heat insulating material 9. The lower tube sheet 11 supports the solid electrolyte fuel cell stack 2 and at the same time prevents the exhaust fuel EF and the supply air SA or the exhaust air EA in the power generation chamber 1 from being mixed and burned. The upper tube sheet 10 supports the fuel supply pipe 4 and serves as a partition wall between the fuel supply chamber 3 and the fuel discharge chamber 5.
【0022】このような構成の固体電解質燃料電池モジ
ュールにおいて、天然ガスNGと水蒸気STが供給され
る燃料供給室3内での水蒸気改質反応に伴う吸熱は、発
電室1から下部管板11を介して、上部管板10および
燃料供給室3へ放射される輻射熱、および発電反応によ
り加熱された排燃料EAの保有する熱により賄われる。In the solid oxide fuel cell module having such a structure, the heat absorption due to the steam reforming reaction in the fuel supply chamber 3 to which the natural gas NG and the steam ST are supplied is transferred from the power generation chamber 1 to the lower tube sheet 11. It is covered by the radiant heat radiated to the upper tube sheet 10 and the fuel supply chamber 3 and the heat of the exhaust fuel EA heated by the power generation reaction.
【0023】[0023]
【発明の効果】以上述べたように、本発明の固体電解質
燃料電池モジュールによれば、特許請求の範囲に示す構
成により、次の効果が得られる。As described above, according to the solid oxide fuel cell module of the present invention, the following effects can be obtained with the configuration shown in the claims.
【0024】(1)高温の固体電解質燃料電池モジュー
ルの発電室上部の燃料供給室内に、水蒸気改質触媒が設
置されているため、メタンを主成分とする天然ガス等の
炭化水素燃料を、固体電解質燃料電池の燃料ガスに改質
するために別体で設置される改質装置の設置が不要とな
る。また、高温の発電室から上部への損失熱を利用して
水蒸気改質反応をおこすことが可能で、改質用の燃料や
排燃料の燃焼ガスによる加熱が不要となり、システムの
熱効率を向上できる。(1) Since the steam reforming catalyst is installed in the fuel supply chamber above the power generation chamber of the high temperature solid oxide fuel cell module, hydrocarbon fuel such as natural gas containing methane as a main component is solidified. There is no need to install a reformer installed separately to reform the fuel gas of the electrolyte fuel cell. Also, the steam reforming reaction can be carried out by utilizing the heat loss from the high temperature power generation chamber to the upper part, and the heating of the reforming fuel and the exhaust fuel by the combustion gas is not required, and the thermal efficiency of the system can be improved. .
【0025】(2)水蒸気改質反応の吸熱を利用して、
下部および上部管板を冷却することで、これらの管板の
過熱を防止できる。この管板の温度が低下により、高温
時において、管板の強度を維持するのに必要であった、
肉厚が低減でき、あるいは材料の低級化を図ることがで
きる。(2) Utilizing the endotherm of the steam reforming reaction,
Cooling the lower and upper tubesheets can prevent these tubesheets from overheating. Due to the lower temperature of this tube sheet, it was necessary to maintain the strength of the tube sheet at high temperature,
The wall thickness can be reduced or the material can be made low-grade.
【0026】(3)管板の温度が低下するため、管板部
から外部へ排出される熱量が少くなり、発電室で発生す
る熱をシステムで必要とする他の機器に、効果的に使用
でき、システムの熱効率を向上させることもできる。(3) Since the temperature of the tube sheet lowers, the amount of heat discharged from the tube sheet portion to the outside is small, and the heat generated in the power generation chamber can be effectively used for other equipment required by the system. It is also possible to improve the thermal efficiency of the system.
【図1】本発明の固体電解質燃料電池モジュールの一実
施例を示す側断面図、FIG. 1 is a side sectional view showing an embodiment of a solid oxide fuel cell module of the present invention,
【図2】従来の固体電解質燃料電池モジュールの一例を
示す側断面図である。FIG. 2 is a side sectional view showing an example of a conventional solid oxide fuel cell module.
1 発電室 2 (固体電解質燃料電池)スタック 3 燃料供給室 4 燃料供給管 5 燃料排出室 6 空気熱交換器 8 空気排出管 9 断熱材 10 上部管板 11 下部管板 12 容器 13 燃料導入管 14 燃料排出管 15 空気導入管 16 空気排出管 100 水蒸気改質触媒 07 改質装置 SA 供給空気 EA 排空気 SF 燃料ガス EF 排燃料 NG 天然ガス ST 水蒸気 1 Power Generation Chamber 2 (Solid Electrolyte Fuel Cell) Stack 3 Fuel Supply Chamber 4 Fuel Supply Pipe 5 Fuel Discharge Chamber 6 Air Heat Exchanger 8 Air Discharge Pipe 9 Heat Insulation Material 10 Upper Tube Sheet 11 Lower Tube Sheet 12 Container 13 Fuel Inlet Tube 14 Fuel exhaust pipe 15 Air inlet pipe 16 Air exhaust pipe 100 Steam reforming catalyst 07 Reforming device SA Supply air EA Exhaust air SF Fuel gas EF Exhaust fuel NG Natural gas ST Steam
───────────────────────────────────────────────────── フロントページの続き (72)発明者 永田 勝己 長崎市飽の浦町1番1号 三菱重工業株式 会社長崎造船所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsumi Nagata 1-1, Atsunouramachi, Nagasaki City Mitsubishi Heavy Industries Ltd. Nagasaki Shipyard Co., Ltd.
Claims (1)
た発電室、前記発電室に垂設され電解質を介して内側に
燃料極、外側に空気極を配置した固体電解質燃料電池を
複数個直列に接続し、下端が閉鎖した円筒状にされたス
タック、前記容器内の前記発電室上方に画成された燃料
供給室、前記発電室と前記燃料供給室の間に区画され、
前記スタックの上端を開口させた燃料排出室、一端を前
記燃料供給室に開口させ他端を前記スタックの下端内部
に開口させて、前記スタックの内部に挿通された燃料供
給管、および前記容器内の前記発電室下方に設置され、
前記発電室に供給する供給空気を予熱する空気熱交換器
を具える固体電解質燃料電池モジュールにおいて、外部
から供給された炭化水素燃料を水蒸気と反応させて水素
と一酸化炭素に改質する水蒸気改質触媒を前記燃料供給
室内に充填したことを特徴とする固体電解質燃料電池モ
ジュール。1. A solid electrolyte fuel cell in which a power generation chamber defined inside a container surrounded by a heat insulating material, a fuel electrode disposed vertically in the power generation chamber through an electrolyte, an inner fuel electrode, and an outer air electrode are disposed. A plurality of cylindrical stacks connected in series and closed at the lower end, a fuel supply chamber defined in the container above the power generation chamber, and partitioned between the power generation chamber and the fuel supply chamber,
A fuel discharge chamber having an upper end of the stack opened, a fuel supply pipe having one end opened to the fuel supply chamber and the other end opened to a lower end of the stack, and a fuel supply pipe inserted into the stack, and the inside of the container. Installed below the power generation room
In a solid electrolyte fuel cell module comprising an air heat exchanger for preheating supply air supplied to the power generation chamber, a steam reformer for reacting hydrocarbon fuel supplied from the outside with steam to reform hydrogen and carbon monoxide A solid electrolyte fuel cell module, wherein a solid catalyst is filled in the fuel supply chamber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7088028A JPH08287937A (en) | 1995-04-13 | 1995-04-13 | Solid electrolyte fuel cell module |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7088028A JPH08287937A (en) | 1995-04-13 | 1995-04-13 | Solid electrolyte fuel cell module |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08287937A true JPH08287937A (en) | 1996-11-01 |
Family
ID=13931376
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7088028A Pending JPH08287937A (en) | 1995-04-13 | 1995-04-13 | Solid electrolyte fuel cell module |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08287937A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004071450A (en) * | 2002-08-08 | 2004-03-04 | Daikin Ind Ltd | Fuel cell power generation system |
JP2005158530A (en) * | 2003-11-26 | 2005-06-16 | Kyocera Corp | Fuel cell assembly |
JP2007191386A (en) * | 2005-12-22 | 2007-08-02 | Kyocera Corp | Reforming apparatus |
JP2008159467A (en) * | 2006-12-25 | 2008-07-10 | Kyocera Corp | Fuel cell device |
JP2011175853A (en) * | 2010-02-24 | 2011-09-08 | Kyocera Corp | Fuel battery module |
JP2012148972A (en) * | 2005-12-22 | 2012-08-09 | Kyocera Corp | Reforming apparatus |
-
1995
- 1995-04-13 JP JP7088028A patent/JPH08287937A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004071450A (en) * | 2002-08-08 | 2004-03-04 | Daikin Ind Ltd | Fuel cell power generation system |
JP2005158530A (en) * | 2003-11-26 | 2005-06-16 | Kyocera Corp | Fuel cell assembly |
JP2007191386A (en) * | 2005-12-22 | 2007-08-02 | Kyocera Corp | Reforming apparatus |
JP2012148972A (en) * | 2005-12-22 | 2012-08-09 | Kyocera Corp | Reforming apparatus |
JP2008159467A (en) * | 2006-12-25 | 2008-07-10 | Kyocera Corp | Fuel cell device |
JP2011175853A (en) * | 2010-02-24 | 2011-09-08 | Kyocera Corp | Fuel battery module |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2098424C (en) | Fuel reforming method and apparatus for power generation system using fuel cells | |
JP4736299B2 (en) | Metamorphic equipment | |
JP3706611B2 (en) | Hydrogen generator for fuel cell | |
KR100677016B1 (en) | Cylindrical steam reforming unit | |
US4374184A (en) | Fuel cell generator and method of operating same | |
US20070184310A1 (en) | Molten Carbonate Fuel Cell Provided with Indirect Internal Steam Reformer | |
EP0242200A1 (en) | Fuel cell generators | |
MX2008011770A (en) | Internal combustion exchanger reactor for endothermic reaction in fixed bed. | |
AU1667992A (en) | Modular isothermal reactor | |
JP2002124289A (en) | Solid electrolyte fuel cell system | |
JP2003327405A (en) | Fuel reforming apparatus and method of starting same | |
EP2858158B1 (en) | Fuel cell system | |
JP2007026744A (en) | Solid electrolyte fuel cell assembly | |
JPH08287937A (en) | Solid electrolyte fuel cell module | |
JP3364069B2 (en) | Solid oxide fuel cell module | |
JP4326078B2 (en) | Solid oxide fuel cell module | |
US9102535B2 (en) | Flameless steam reformer | |
JP2001089104A (en) | Methanol reformer | |
JP3611065B2 (en) | Integrated fuel cell power generator | |
CN115465837A (en) | Tube type reactor for steam reforming reaction of hydrocarbon | |
CN1332876C (en) | Reformer unit for fuel cells for reforming hydrocarbon feed gases into hydrogen-containing fuel gases | |
JPH06325783A (en) | Internal reforming type fused carbonate type fuel cell system | |
JP3258518B2 (en) | Solid electrolyte fuel cell module | |
JP2601707B2 (en) | Catalytic reactor | |
JPH0679664B2 (en) | Fuel reformer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20020108 |