JPS63109142A - Ferrous sintered alloy combining heat resistance with wear resistance - Google Patents
Ferrous sintered alloy combining heat resistance with wear resistanceInfo
- Publication number
- JPS63109142A JPS63109142A JP25361686A JP25361686A JPS63109142A JP S63109142 A JPS63109142 A JP S63109142A JP 25361686 A JP25361686 A JP 25361686A JP 25361686 A JP25361686 A JP 25361686A JP S63109142 A JPS63109142 A JP S63109142A
- Authority
- JP
- Japan
- Prior art keywords
- total
- wear
- wear resistance
- rare earth
- sintered alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 48
- 239000000956 alloy Substances 0.000 title claims abstract description 48
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 title abstract 3
- 229910052742 iron Inorganic materials 0.000 claims abstract description 18
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 14
- 229910052796 boron Inorganic materials 0.000 claims abstract description 13
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 13
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 12
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 12
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 11
- 229910052715 tantalum Inorganic materials 0.000 claims abstract description 10
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 10
- 229910052706 scandium Inorganic materials 0.000 claims abstract description 9
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 8
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 8
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 8
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 7
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 7
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 7
- 239000012535 impurity Substances 0.000 claims abstract description 6
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 34
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 24
- 229910052739 hydrogen Inorganic materials 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 15
- 239000000203 mixture Substances 0.000 abstract description 8
- 229910052735 hafnium Inorganic materials 0.000 abstract description 7
- 239000000843 powder Substances 0.000 description 33
- 230000000694 effects Effects 0.000 description 21
- 239000011159 matrix material Substances 0.000 description 15
- 150000001247 metal acetylides Chemical class 0.000 description 13
- 230000013011 mating Effects 0.000 description 12
- 230000007423 decrease Effects 0.000 description 10
- 238000002485 combustion reaction Methods 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- 238000005245 sintering Methods 0.000 description 6
- 239000002245 particle Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 238000000137 annealing Methods 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 229910052684 Cerium Inorganic materials 0.000 description 2
- 229910052693 Europium Inorganic materials 0.000 description 2
- 229910001200 Ferrotitanium Inorganic materials 0.000 description 2
- 229910017116 Fe—Mo Inorganic materials 0.000 description 2
- 229910052688 Gadolinium Inorganic materials 0.000 description 2
- 229910052779 Neodymium Inorganic materials 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910052772 Samarium Inorganic materials 0.000 description 2
- 229910052769 Ytterbium Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 238000005496 tempering Methods 0.000 description 2
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 2
- 229910000521 B alloy Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910017060 Fe Cr Inorganic materials 0.000 description 1
- 229910002544 Fe-Cr Inorganic materials 0.000 description 1
- 229910001021 Ferroalloy Inorganic materials 0.000 description 1
- 229910017112 Fe—C Inorganic materials 0.000 description 1
- 229910001096 P alloy Inorganic materials 0.000 description 1
- 235000010575 Pueraria lobata Nutrition 0.000 description 1
- 241000219781 Pueraria montana var. lobata Species 0.000 description 1
- 229910018540 Si C Inorganic materials 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- UPHIPHFJVNKLMR-UHFFFAOYSA-N chromium iron Chemical compound [Cr].[Fe] UPHIPHFJVNKLMR-UHFFFAOYSA-N 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的]
(産業上の利用分野)
本発明は、耐熱性および高温での#摩耗性が要求される
部品の素材として利用され、例えば内燃機関のバルブシ
ート、バルブフェース等に使用した場合に優れた#熱性
、高温耐摩耗性を示すと共に相手材料への攻撃性が小さ
く良好ななじみ性を発揮する鉄基焼結合金に関するもの
である。Detailed Description of the Invention [Objective of the Invention] (Industrial Field of Application) The present invention can be used as a material for parts that require heat resistance and wear resistance at high temperatures, such as valve seats of internal combustion engines, The present invention relates to an iron-based sintered alloy that exhibits excellent thermal properties and high-temperature wear resistance when used for valve faces, etc., and exhibits less aggressiveness to mating materials and good conformability.
(従来の技術)
近年、内燃機関に対する高速化および高出力化などの要
求に伴って内燃機関の動弁系部材の摩耗が問題となりつ
つあり、特にバルブシートはエンジンの高温燃焼化もあ
って摺動特性および耐久性に対する要求はきわめて厳し
いものとなっている。(Prior Art) In recent years, with the demand for higher speeds and higher outputs for internal combustion engines, wear of valve train members of internal combustion engines has become a problem. In particular, valve seats are becoming more susceptible to sliding due to higher combustion temperatures in engines. Requirements regarding dynamic properties and durability have become extremely strict.
一般に、バルブシートは高温にさらされるうえに、高速
でたたかれるためにすぐれた耐熱性、#摩耗性、#ピッ
チング性を兼ね備えかつバルブ材とのなじみ性をも合わ
せて持つことが要求される。In general, valve seats are exposed to high temperatures and struck at high speeds, so they are required to have excellent heat resistance, wear resistance, pitting resistance, and compatibility with valve materials. .
本発明者らは前記の事実にかんがみて特願昭61〜54
150号においてマトリクス組織中に微細な炭化物と硼
化物および/または炭硼化物が均一に分散している内燃
機関の摺動部材用耐摩耗性鉄基焼結合金の発明を出願し
た。この特願昭61〜54150号の発明による鉄基焼
結合金は、所定の組織を得るために1重量%で、Moお
よびWのいずれか1種または2種;5〜20%、Cr;
2〜10%、Si;0.1〜0.9%、M n ; 0
、7%以下、P、0.05%以下、C;0.1〜0.
8%、B;0.5〜2.0%、残部Feおよび不純物か
らなることを特徴としてい葛。In view of the above facts, the inventors of the present invention have applied for
In No. 150, the present invention was filed for an invention of a wear-resistant iron-based sintered alloy for sliding members of internal combustion engines, in which fine carbides, borides, and/or carborides are uniformly dispersed in a matrix structure. The iron-based sintered alloy according to the invention of Japanese Patent Application No. 61-54150 contains 1% by weight, one or both of Mo and W; 5-20% Cr;
2-10%, Si; 0.1-0.9%, Mn; 0
, 7% or less, P, 0.05% or less, C; 0.1 to 0.
Kudzu is characterized by having 8% B, 0.5 to 2.0%, and the balance consisting of Fe and impurities.
(発明が解決しようとする問題点)
しかしながら、特願昭61〜54150号の発明による
鉄基焼結合金では、バルブシートの使用温度を最高45
0℃程度と想定していることから、一般的な自動車用内
燃機関に使用する場合は全く問題なく著しく優れた特性
を示すが、ディーゼルエンジンのターボチャージャー化
やガソリンエンジンの希薄燃焼化などに伴う高温燃焼の
環境においては、#熱性および耐摩耗性においていまだ
改善の余地があった。(Problems to be Solved by the Invention) However, in the iron-based sintered alloy according to the invention of Japanese Patent Application No. 61-54150, the operating temperature of the valve seat is up to 45
Since it is assumed to be at around 0°C, it exhibits excellent characteristics without any problems when used in general automobile internal combustion engines, but with the shift to turbocharging in diesel engines and lean burn in gasoline engines, etc. In a high-temperature combustion environment, there was still room for improvement in thermal properties and wear resistance.
本発明者らは種々の実験、研究を行った結果、先の発明
に対してCの含有量を0.5〜2.0重量%に増加し、
MoおよびWの含有量を7〜25%に増加し、希土類元
素のうちから選ばれる1種以上を合計で0.1〜5重量
%および/または希土類元素の酸化物のうちから選ばれ
る1種以上を合計で0.3〜7重量%含有させることに
よって、500℃を越える高温においても高い耐摩耗性
となじみ性を示す耐熱耐摩耗性材料が得られることを見
出し、バルブシート等の材料として好特性を示すことを
確認して本発明を完成した。As a result of various experiments and research, the present inventors increased the C content to 0.5 to 2.0% by weight compared to the previous invention,
The content of Mo and W is increased to 7 to 25%, a total of 0.1 to 5% by weight of one or more selected from rare earth elements, and/or one selected from oxides of rare earth elements. It was discovered that by containing the above in a total of 0.3 to 7% by weight, a heat-resistant and wear-resistant material that exhibits high wear resistance and conformability even at high temperatures exceeding 500°C can be obtained. The present invention was completed after confirming that it exhibits good characteristics.
[発明の構成]
(問題点を解決するための手段)
本発明者らの第一発明による耐熱耐摩耗性鉄基焼結合金
は、重量%で、MoおよびWのいずれか1種または2種
、7〜25%、Cr;2〜10%、Si;0.1〜0.
9%、M n ; 0 、7%以下、P、0.05%以
下、C,0,5〜2.0%、B、0.5〜2.0%、S
cおよびYを含む希土類元素のうちから選ばれる1種以
上の合計;0.1〜5%および/またはScおよびYを
含む希土類元素の酸化物のうちから選ばれる1種以上の
合計;0.3〜7%、残部Feおよび不純物からなるこ
とを特徴としている。[Structure of the Invention] (Means for Solving the Problems) The heat-resistant and wear-resistant iron-based sintered alloy according to the first invention of the present inventors contains one or two of Mo and W in weight%. , 7-25%, Cr; 2-10%, Si; 0.1-0.
9%, Mn; 0, 7% or less, P, 0.05% or less, C, 0.5-2.0%, B, 0.5-2.0%, S
A total of one or more types selected from rare earth elements containing c and Y; 0.1 to 5% and/or a total of one or more types selected from rare earth element oxides containing Sc and Y; 0. It is characterized in that it consists of 3 to 7%, the balance Fe and impurities.
また、本発明者等の第二発明による耐摩耗性鉄基焼結合
金は、上記の組成に加えて、V、Nb。In addition to the above composition, the wear-resistant iron-based sintered alloy according to the second invention of the present inventors contains V and Nb.
Ta、Ti、Zr、Hf、Go、N1(7)うちから選
ばれる1種以上の合計;20%以下を含むことを特徴と
している。It is characterized by containing a total of 20% or less of one or more selected from Ta, Ti, Zr, Hf, Go, and N1 (7).
木発明者等は、上記の組成をもつ2つの発明にかかる耐
摩耗性鉄基焼結合金において、とくにマトリクス組織中
に微細でかつ十分な量の炭化物と微細な硼化物および/
または炭硼化物が均一に分散しており、かつマトリクス
に上記希土類元素が拡散している材料が優れた耐熱性と
共に良好な耐摩耗性を示し、とりわけたとえば内燃機関
のバルブシートおよびバルブフェース等に使用した場合
に潰れた#熱性と共に耐摩耗性を発揮するという知見を
得た。In the wear-resistant iron-based sintered alloys according to the two inventions having the above-mentioned compositions, the inventors of the present invention have found that, in particular, the matrix structure contains fine and sufficient amounts of carbides, fine borides, and/or fine borides.
Alternatively, materials in which carborides are uniformly dispersed and the above-mentioned rare earth elements are diffused in the matrix exhibit excellent heat resistance and good wear resistance, and are particularly useful for, for example, valve seats and valve faces of internal combustion engines. It was found that when used, it exhibits excellent heat resistance and wear resistance.
本発明は上記の知見に基づいてなされたものであり、以
下に成分組成(重量%)を上記の通りに限定した理由を
説明する。The present invention has been made based on the above findings, and the reason why the component composition (weight %) is limited as described above will be explained below.
MoおよびW;
MoおよびWは成分中のFeやCrとともにCやBと結
合して複炭化物や複硼化物あるいは復炭硼化物を形成し
て耐摩耗性を与え、一部はマトリラス中に固溶してマト
リクスを強化すると共に耐熱性をも向上させる。そして
特にMoの酸化被膜は自己潤滑性もあり、含有させる効
果は大きいが、7%未満では所望の効果が得られずに耐
摩耗性不足となり、25%を超えて含有させてもより一
層の改善効果は認められず、経済的でないことから、そ
の含有量を1種または2種の合計で7〜25%と定めた
。Mo and W: Mo and W combine with C and B together with Fe and Cr in the components to form double carbides, complex borides, or double carbides, providing wear resistance, and some of them are solidified in the matrilas. Melts to strengthen the matrix and also improves heat resistance. In particular, the oxide film of Mo has self-lubricating properties, and its inclusion has a great effect, but if it is less than 7%, the desired effect cannot be obtained and the wear resistance is insufficient, and if it is contained in an amount exceeding 25%, it becomes even more effective. Since no improvement effect was observed and it was not economical, the content was determined to be 7 to 25% in total of one or two types.
Cr;
CrはM o 、 W等とともに複炭化物や複硼化物を
形成して耐摩耗性を向上させると同時に、マトリクス中
に固溶して焼入性を増大し、さらには焼戻し硬化能を高
める効果を有するとともに基地の耐食性を高める効果も
ある。しかし、2%未満ではその効果が認められず、1
0%を超えて含有させてもより一層の改善効果がないば
かりでなく、機械的強度が低下して相手材への攻撃性が
増大してしまうことから、その含有量を2〜lO%と定
めた。Cr; Cr forms double carbides and complex borides together with Mo, W, etc. to improve wear resistance, and at the same time, dissolves solidly in the matrix to increase hardenability and further improves temper hardening ability. It has the effect of increasing the corrosion resistance of the base. However, the effect is not observed at less than 2%, and 1
If the content exceeds 0%, not only will there be no further improvement effect, but the mechanical strength will decrease and the aggressiveness to the mating material will increase, so the content should be set at 2 to 10%. Established.
Si;
Siは0.1%未満の添加量では脱酸効果が少なく、粉
末中の酸素含有量が多くなって焼結性が低下するととも
に、M2C系の粗大な板状の炭化物が析出しやすくなり
相手部材とのなじみ性が低下する。一方、添加量が0.
9%を超えても脱酸効果の向上もなく、粉末が丸くなっ
てしまい成形性が低下するだけであることから、その含
有量を0.1〜0.9%と定めた。Si: If Si is added in an amount less than 0.1%, the deoxidizing effect is small, the oxygen content in the powder increases, sinterability decreases, and M2C-based coarse plate-shaped carbides are likely to precipitate. Therefore, the compatibility with the mating member decreases. On the other hand, the amount added is 0.
If the content exceeds 9%, there is no improvement in the deoxidizing effect, and the powder becomes round and the moldability is reduced, so the content was set at 0.1 to 0.9%.
Mn;
Mnは前述したSiと同じように脱酸効果があり、添加
することにより粉末中の酸素含有量を下げて焼結性を向
上させるが、0.7%を超えると粉末の形状が丸くなっ
て粉末の成形性が低下することにより成形体エツジ部の
欠は等が生じやすくなることから、添加するとしてもそ
の含有量を0.7%以下と定めた。Mn: Like the aforementioned Si, Mn has a deoxidizing effect, and adding it lowers the oxygen content in the powder and improves sinterability, but if it exceeds 0.7%, the shape of the powder becomes round. As a result, the moldability of the powder decreases, making it more likely to cause cracks on the edges of the compact, so the content, if added at all, was set at 0.7% or less.
P;
Pは耐摩耗性焼結合金の場合において焼結促進元素とし
て一般に0.2〜0.8%程度添加する手法が広く用い
られているが、本発明による焼結合金の場合はPの添加
量が0.05%を超えたときに複硼化物あるいは復炭硼
化物が粗大化して相手材とのなじみ性が低下するととも
に、粒界に複硼化物あるいは復炭硼化物がネットワーク
状に析出して強度が低下してしまうことにより、特に高
面圧がかかった場合の耐ピツチング特性も低下してしま
うことから、その含有量を0.05%以下と定めた。P; In the case of wear-resistant sintered alloys, P is generally added as a sintering accelerating element in an amount of about 0.2 to 0.8%, but in the case of the sintered alloys of the present invention, P is When the amount added exceeds 0.05%, the complex boride or the carbide boride becomes coarse and the compatibility with the mating material decreases, and the complex boride or the carbide boride forms a network at the grain boundaries. The content is set at 0.05% or less because the precipitation reduces the strength, which also reduces the pitting resistance, especially when high surface pressure is applied.
C;
Cはその一部がMo、W、Cr、Vなどの炭化物形成元
素と結合して複炭化物を形成して耐摩耗性を向上させ、
残りはマトリクスに固溶して硬さと強度を与え、高温で
の組織の安定性を付与するが、0.5%未満ではその効
果が認められず、2.0%を超えると複炭化物の析出量
増加と粗大化が起り、相手材とのなじみ性が低下するこ
とから、その含有量を0.5〜2.0%と定めた。C: A part of C combines with carbide-forming elements such as Mo, W, Cr, and V to form double carbides to improve wear resistance,
The remainder dissolves in the matrix, giving hardness and strength, and stability to the structure at high temperatures; however, if it is less than 0.5%, this effect is not observed, and if it exceeds 2.0%, double carbides precipitate. The content is set at 0.5 to 2.0% because the amount increases and coarsening occurs, and the compatibility with the mating material decreases.
このCの添加方法としは、真空焼鈍を施したFe−Mo
−W−Cr −(V) −3i −(Mn)−(Co
)−(希土類)−C系アトマイズ合金粉末の形で添加す
る必要がある。これはCを単独にグラファイト粉末の形
で添加すると、後述するB源として添加するFe−Bあ
るいはFe−Cr−Bと結びついて焼結時に粗大な炭硼
化物を粒界に沿ってネットワーク状に析出させ、相手材
への攻撃性を増大してしまうのに対して、真空焼鈍を施
したFe−Mo −W−Cr −(V) −S i −
(Mn)−(Co)−(希土類)−C系アトマイズ合金
粉末の形で添加した場合は、アトマイズ後の真空焼鈍時
にCは大部分がM o 、 W 、 Cr 。The method of adding C is as follows: vacuum annealed Fe-Mo
-W-Cr-(V)-3i-(Mn)-(Co
)-(Rare Earth)-C-based atomized alloy powder must be added. This is because when C is added alone in the form of graphite powder, it combines with Fe-B or Fe-Cr-B added as a B source, which will be described later, and forms a network of coarse carborides along grain boundaries during sintering. Fe-Mo-W-Cr-(V)-S i- subjected to vacuum annealing
When added in the form of (Mn)-(Co)-(rare earth)-C-based atomized alloy powder, most of the C becomes Mo, W, and Cr during vacuum annealing after atomization.
V、Fe等と結びついて微細な複炭化物としてアトマイ
ズ合金粉末中に析出することから、Fe−BやFe−C
r−Bを添加しても焼結時に粒界あるいは粒界に近い部
分の複炭化物がFe−BやFe−Cr−Bと結びついて
もとの複炭化物よりは若干大きな復炭硼化物となるだけ
で、粒内の微細な複炭化物は焼結後のそのまま残り、F
e−BやFe−Cr−Bとアトマイズ合金粉末中のMo
およびWなどとの間の分解・析出により生じた微細な複
硼化物とともに均一に分散した本発明による焼結合金特
有の組織が得られるためである。Fe-B and Fe-C combine with V, Fe, etc. and precipitate in the atomized alloy powder as fine double carbides.
Even if r-B is added, during sintering, the double carbide at the grain boundary or near the grain boundary will combine with Fe-B or Fe-Cr-B to form a double carbide that is slightly larger than the original double carbide. However, the fine double carbides within the grains remain as they are after sintering, and the F
Mo in e-B, Fe-Cr-B and atomized alloy powder
This is because a unique structure of the sintered alloy according to the present invention is obtained, which is uniformly dispersed together with fine complex borides generated by decomposition and precipitation between the sintered alloy and W.
B;
Bは成分中のM o 、 W 、 (r、 F 6とと
もに複硼化物を形成して#摩耗性と酎なじみ性を与える
とともに、一部はマトリクス中に固溶して焼入性を改善
する。また、上記複硼化物の一部はCとも結びついて複
硼化物を形成して耐摩耗性を向上させる。B; B forms a complex boride together with Mo, W, (r, and F6 in the components) to provide wear resistance and compatibility, and a portion is dissolved in the matrix to improve hardenability. Further, a part of the complex boride is also combined with C to form a complex boride, thereby improving wear resistance.
このようにBは微細な複硼化物あるいは復炭硼化物を形
成して本発明焼結合金の耐摩耗性と耐なじみ性を向上さ
せるのに必須の主要成分であるが、0.5%未満の添加
ではその効果が認められず、一方2.0%を超えても一
層の改善効果が認められずかえって複硼化物の粗大化が
起り、相手材とのなじみ性が低下することから、その含
有量を0.5〜2.0%と定めた。As described above, B is a major component essential for forming fine complex borides or carbonized borides to improve the wear resistance and conformability resistance of the sintered alloy of the present invention, but B is less than 0.5%. No effect was observed with the addition of more than 2.0%, while no further improvement was observed with the addition of more than 2.0%, which instead resulted in coarsening of the complex boride and reduced compatibility with the mating material. The content was determined to be 0.5 to 2.0%.
本発明による焼結合金のB添加量としては上述したよう
に0.5〜2.0%とする必要があるが、特に優れた特
性を示すのはB添加量がM o +W添加量との間で、
[Mo+W含有量(原子量)] / [B含有量 (原
子量)]=0.8〜1.5の関係を満たしている時であ
る。これは上記原子比が1.5を超える場合は、複硼化
物の生成量が少なく本発明合金の特徴であるなじみ性が
低下してしまい、また前記原子比が0.8未満では複硼
化物が粗大化するとともにネットワーク状に粒界に析出
してしまい、相手材とのなじみ性が低下すると同時に自
分自身の耐ピツチング性が低下してしまうためである。As mentioned above, the amount of B added in the sintered alloy according to the present invention needs to be 0.5 to 2.0%, but particularly excellent properties are shown when the amount of B added is equal to the amount of M o + W added. Between,
This is when the relationship of [Mo+W content (atomic weight)]/[B content (atomic weight)]=0.8 to 1.5 is satisfied. This is because when the above atomic ratio exceeds 1.5, the amount of complex boride produced is small and the compatibility, which is a characteristic of the alloy of the present invention, is reduced, and when the above atomic ratio is less than 0.8, complex boride is formed. This is because the particles become coarser and precipitate at the grain boundaries in the form of a network, resulting in a decrease in compatibility with the mating material and at the same time a decrease in pitting resistance of itself.
このBの添加方法としてはFe−BあるいはFe−Cr
−B系合金粉末の形で添加することが好ましい。The method of adding B is Fe-B or Fe-Cr.
It is preferable to add it in the form of -B alloy powder.
ScおよびYを含む希土類元素および/またはこれらの
酸化物
L&、Ce、Nd、Sm、Eu、Gd、Yb。Rare earth elements and/or oxides thereof including Sc and Y, Ce, Nd, Sm, Eu, Gd, Yb.
Y、Sc等の希土類元素は温度の上昇に伴って表面に濃
化し、Fe、Cr等と共に耐熱性の良い酸化被膜を形成
する。さらに、焼結時の結晶粒の粗大化を防止する効果
および炭化物の粗大化を防止する作用もあり、これらの
効果が相まって高温での耐摩耗性向上に寄与する。しか
し、希土類元素の合計量が0.1%未満では所望の効果
が得られず、5%を超えて含有させてもより一層の効果
は認められず、経済的でないことから、その含有量を1
種以上の合計で0.1〜5%とした。これらの希土類元
素はF e−Mo −W−Cr −(V) −3i −
(Mn) (Co)−希土類−〇系アトマイズ合金
の形でマトリクス粉中に含有させても良いし、単独ある
いはフェロアロイの形で別添加しても良い、また、2種
以上を別添加する場合はミツシュメタルの形で添加して
も良い。Rare earth elements such as Y and Sc concentrate on the surface as the temperature rises, and together with Fe, Cr, etc., form an oxide film with good heat resistance. Furthermore, it has the effect of preventing the coarsening of crystal grains and the coarsening of carbides during sintering, and these effects together contribute to improved wear resistance at high temperatures. However, if the total amount of rare earth elements is less than 0.1%, the desired effect cannot be obtained, and even if it is contained in more than 5%, no further effect is observed, and it is not economical, so the content is 1
The total content of all species and above was set at 0.1 to 5%. These rare earth elements are Fe-Mo-W-Cr-(V)-3i-
(Mn) (Co)-Rare earth--It may be contained in the matrix powder in the form of an atomized alloy, or it may be added separately or separately in the form of a ferroalloy, or when two or more types are added separately. may be added in the form of Mitsushmetal.
さらには、上記希土類元素は酸化物として添加しても良
く、その場合において同様の効果を得るためには、酸化
物の1種以上の合計で0.3%以上必要であるが、7%
を超えて含有してもより一層の効果は認められない、ま
た、場合によってはより一層の高温耐摩耗性が必要なと
きには希土類元素と希土類元素の酸化物とを同時に添加
しても良い。Furthermore, the above-mentioned rare earth elements may be added as oxides, and in that case, in order to obtain the same effect, the total amount of one or more oxides is required to be 0.3% or more, but 7%
Even if the content exceeds 100%, no further effect will be observed, and in some cases, when even higher high-temperature wear resistance is required, the rare earth element and the oxide of the rare earth element may be added at the same time.
V、Nb、Ta、Ti、Zr、Hf、Co、NiV 、
N b 、 T a 、 T i 、
2: r 、 Hf 、 Co 。V, Nb, Ta, Ti, Zr, Hf, Co, NiV,
N b , T a , T i ,
2: r, Hf, Co.
Niはいずれも合金の強靭性を増大させるのに有効な元
素である。Ni is an element effective in increasing the toughness of the alloy.
これらのうち、V、Nb、TaはFeやCrとともにC
と化合してきわめて硬い複炭化物を作るとともに、Mo
,Wの一部と置換した形の複炭化物や複硼化物を形成し
て耐摩耗性を与え、一部はマトリクス中に固溶して出該
マトリクスを強化するとともに、焼戻し硬化能を高める
作用がある。Among these, V, Nb, and Ta are combined with Fe and Cr.
It combines with Mo to form an extremely hard double carbide.
, forming double carbides and complex borides in the form of partial substitution of W to provide wear resistance, and some of them are solid dissolved in the matrix to strengthen the matrix and increase tempering hardenability. There is.
また、これらV、Nb、Taは焼結時の結晶粒の粗大化
を防止するとともに炭化物の粗大化を防止する効果もあ
る。これらの効果はV、Nb、Taの1種以上の合計が
0.5%未満の場合ではあまり認められず、耐摩耗性や
強度の低下をきたし、反対に8%を超えて添加してもよ
り一層の改善効果は認められず、経済的でないことから
、添加するとしてもその含有量を0.5〜8%とするの
が良い。Further, these V, Nb, and Ta have the effect of preventing coarsening of crystal grains during sintering and also preventing coarsening of carbides. These effects are not so noticeable when the total content of one or more of V, Nb, and Ta is less than 0.5%, resulting in a decrease in wear resistance and strength. Since no further improvement effect is observed and it is not economical, even if it is added, it is preferable to limit its content to 0.5 to 8%.
また、Ti 、Zr 、Hf 、Coは硼化物形成元素
であり、これらの1種以上を必要に応じて12%以下の
範囲で添加しても良い、そして、特にCoはMo、Wな
どの一部と置換して複硼化物を形成するだけでなく、マ
トリクス中に固溶して高温での硬さを向上させるため、
ターボチャージャーを装着したエンジンのバルブシート
等に使用する場合は添加することが望ましい。Furthermore, Ti, Zr, Hf, and Co are boride-forming elements, and one or more of these may be added in an amount of 12% or less as necessary.In particular, Co is a boride-forming element, and Co is a boride-forming element. In addition to forming a complex boride by substituting with
It is desirable to add it when used for valve seats of engines equipped with turbochargers.
さらに、マトリクスがオーステナイト化しない範囲でN
iを添加しても良い、これはNiを添加するとマトリク
スの靭性が向上するだけでなく、耐食性も向上するため
であり、ディーゼルエンジンのバルブシートのように高
温腐食摩耗が厳しい部品への適用には特に効果がある。Furthermore, N as long as the matrix does not become austenitized
It is also possible to add Ni because adding Ni not only improves the toughness of the matrix but also improves the corrosion resistance, and it is suitable for application to parts that are subject to severe high-temperature corrosion wear such as diesel engine valve seats. is particularly effective.
しかし、Niの添加量が多くなってマトリクスがオース
テナイト化してしまった場合には、硬さが低下するだけ
でなく、相手材との凝着性が大きくなってしまうため、
添加するとしてもオーステナイト化しない範囲で添加す
るのが良い。However, if the amount of Ni added increases and the matrix becomes austenite, not only will the hardness decrease, but also the adhesion with the mating material will increase.
Even if it is added, it is preferable to add it within a range that does not cause austenitization.
しかし、V、Nb、Ta、Ti 、Zr、Hf 。However, V, Nb, Ta, Ti, Zr, Hf.
Co、Niの添加量が多すぎるとかえって強靭性や耐摩
耗性が低下したりするので、これらの合計で20%以下
とするのが望ましい。If the amounts of Co and Ni added are too large, the toughness and wear resistance may deteriorate, so it is desirable that the total amount of these is 20% or less.
(実施例)
以下、本発明による耐熱耐摩耗性鉄基焼結合金の実施例
を比較例と対比しながら説明する。(Example) Hereinafter, examples of the heat-resistant and wear-resistant iron-based sintered alloy according to the present invention will be described in comparison with comparative examples.
〈実施例1〜10.比較例1〜7〉
原料粉末として真空焼鈍を施した粒度−100メッシ、
のFe−Cr−Mo−W−Si −C−希土類・希土類
酸化物系アトマイズ合金粉末(必要に応じV、Nb、T
a、Coも添加)、−325メツシユのF e −M
o粉末あるいは純Mo粉末。<Examples 1 to 10. Comparative Examples 1 to 7> Particle size -100 mesh subjected to vacuum annealing as raw material powder,
Fe-Cr-Mo-W-Si-C-rare earth/rare earth oxide-based atomized alloy powder (V, Nb, T
a, Co also added), -325 mesh F e -M
o powder or pure Mo powder.
−325メツシユのFe−W粉末あるいは純W粉末、−
250メッシ、のFe−8合金粉末(B:20%含有)
、−250メツシユ(7)Fe 2652合金粉末、
−250メツシユのフェロチタン。-325 mesh Fe-W powder or pure W powder, -
250 mesh Fe-8 alloy powder (B: 20% content)
, -250 mesh (7) Fe 2652 alloy powder,
-250 mesh ferrotitanium.
フェロジルコニウム、フェロハフニウム喜合金粉末、−
325メツシュのカーボニルNi粉末等を第1表に示す
最終成分組成となるように適宜配合し、潤滑剤としてス
テアリン酸亜鉛を加えて混合し、この混合粉末を6to
nf/cm2の圧力で加圧して圧粉体に成形し、ついで
前記各圧粉体を真空中で1150〜1260℃の温度に
て60分保持して焼結した後、焼入れ焼戻し処理を行っ
て本発明合金1〜10および比較合金1〜7を製造した
。Ferrozirconium, ferrohafnium alloy powder, -
325 mesh carbonyl Ni powder, etc. were appropriately blended so as to have the final component composition shown in Table 1, and zinc stearate was added as a lubricant and mixed, and this mixed powder was mixed with 6 to
The powder bodies are formed by pressing at a pressure of nf/cm2, and then each of the green bodies is held in a vacuum at a temperature of 1150 to 1260°C for 60 minutes to sinter, and then subjected to quenching and tempering treatment. Inventive alloys 1-10 and comparative alloys 1-7 were produced.
〈実施例11〜17.比較例8〜12〉原料粉末として
真空焼鈍を施した粒度−100メッシュノFe−Cr−
Mo −W−Si −C系アトマイズ合金粉末(必要に
応じV、Nb、Ta。<Examples 11 to 17. Comparative Examples 8 to 12> Particle size -100 mesh Fe-Cr- subjected to vacuum annealing as raw material powder
Mo-W-Si-C atomized alloy powder (V, Nb, Ta as necessary).
COも添加)、−250メツシユのLa、Ce。CO also added), -250 mesh La, Ce.
Nd、Sm、Eu、Gd、Yb、Y、Scの粉末または
これらのミツシュメタルあるいはこれらの酸化物の粉末
、−325メツシユのF e −M o粉末あるいは純
Mo粉末、−325メツシュのF e −”wV粉末あ
るいは純W粉末、−250メツシュのFe−8合金粉末
(B、20%含有)。Powders of Nd, Sm, Eu, Gd, Yb, Y, Sc, metals or oxides thereof, -325 mesh Fe-Mo powder or pure Mo powder, -325 mesh Fe-” wV powder or pure W powder, -250 mesh Fe-8 alloy powder (B, 20% content).
−250メツシユのFe−26%P合金粉末。-250 mesh Fe-26%P alloy powder.
−250メツシユのフェロチタン、フェロジルコニウム
、フェロハフニウム各合金粉末、 −325メツシユの
カーボニルNi粉末等を第1表に示す最終成分組成とな
るように適宜配合し、潤滑剤としてステアリン酸亜鉛を
加えて混合し、以下、前記の実施例1〜10および比較
例1〜7と同様の条件で成形、焼結および熱処理を行っ
て本発明合金11〜17.比較合金8〜12を製造した
。-250 mesh ferrotitanium, ferrozirconium, ferrohafnium alloy powders, -325 mesh carbonyl Ni powder, etc. were appropriately blended to give the final composition shown in Table 1, and zinc stearate was added as a lubricant. The alloys 11 to 17 of the present invention were mixed and then molded, sintered and heat treated under the same conditions as in Examples 1 to 10 and Comparative Examples 1 to 7. Comparative alloys 8-12 were produced.
く評価例〉
ついで、上記本発明合金1〜17および比較合金1〜1
2をバルブシート形状に加工し、実機を模したバルブ・
バルブシート試験機を用いて摩耗試験を行った。この試
験機は自動温度調整を行いながらプロパンガスの燃焼に
よってバルブおよびバルブシートを加熱し、偏心カムの
駆動によってバルブを開閉してバルブとバルブシートの
たたき摩耗状況を再現するものである。そして、この場
合の試験条件は第2表に示す通りである。Evaluation example> Next, the above-mentioned present invention alloys 1 to 17 and comparative alloys 1 to 1
2 into a valve seat shape to create a valve that imitates the actual machine.
A wear test was conducted using a valve seat tester. This testing machine automatically adjusts the temperature, heats the valve and valve seat by burning propane gas, and opens and closes the valve by driving an eccentric cam to reproduce the wear and tear of the valve and valve seat. The test conditions in this case are as shown in Table 2.
第2表
次イで、上記の試験後にバルブシートおよびバルブの摩
耗深さを測定した。これらの測定結果を第1表に合せて
示した。In Table 2, the wear depth of the valve seat and valve was measured after the above test. These measurement results are also shown in Table 1.
第1表より明らかなように、試験は高温で行なわれ、摩
Jt条件が苛酷なため、比較合金1〜12で示したよう
に、成分組成の範囲が本発明からはずれた合金で製造さ
れたバルブシートではバルブシートおよび相手バルブの
摩耗力仁大きく、また一部ではバルブシートにピッチン
グが発生しており、満足のできる良好な特性を示してい
ない。As is clear from Table 1, the test was conducted at high temperatures and the grinding Jt conditions were severe, so alloys with compositions outside the range of the present invention, as shown in Comparative Alloys 1 to 12, were manufactured. Regarding the valve seat, the wear force of the valve seat and the mating valve is large, and pitching has occurred in some valve seats, and the valve seat does not exhibit satisfactory characteristics.
これに対して本発明合金で製造したバルブシートではバ
ルブシートおよび相手バルブの摩耗が小さく、バルブシ
ートにはピッチングが全く発生しておらず、優れた特性
を示している。On the other hand, the valve seat manufactured from the alloy of the present invention shows excellent characteristics, with little wear on the valve seat and the mating valve, and no pitting at all in the valve seat.
[発明の効果]
上述のように、本発明者等の第一発明による鉄基焼結合
金は、重量%で、MoおよびWのいずれか1種または2
種;7〜25%、Cr;2〜10%、Si;0.1〜0
.9%、Mn;0.7%以下、P;0.05%以下、C
;O,S〜2.0%、B、0.5〜2.0%、Scおよ
びYを含む希土類元素のうちから選ばれる1種以上の合
計;0.1〜5%および/またはScおよびYを含む希
土類元素の酸化物のうちから選ばれる1種以上の合計;
0.3〜7%、残部Feおよび不純物からなる組成を有
するものであり、第二発明による鉄基焼結合金は、上記
の成分に加えて、■。[Effects of the Invention] As described above, the iron-based sintered alloy according to the first invention of the present inventors contains one or two of Mo and W in weight%.
Seed; 7-25%, Cr; 2-10%, Si; 0.1-0
.. 9%, Mn; 0.7% or less, P; 0.05% or less, C
; Total of one or more rare earth elements including O, S ~ 2.0%, B, 0.5 ~ 2.0%, Sc and Y; 0.1 ~ 5% and/or Sc and A total of one or more types selected from oxides of rare earth elements containing Y;
0.3 to 7%, the balance being Fe and impurities, and the iron-based sintered alloy according to the second invention has, in addition to the above components, (1).
Nb、Ta、Ti、Zr、Hf、Co、Niのうちから
選ばれる1種以上の合計;20%以下を含有するもので
あるから、いずれの発明による合金においてもマトリク
ス中に硬質粒子として微細な複炭化物と複硼化物および
/または復炭硼化物とが均一に分散し、かつマトリ久ス
中に希土類元素および/または希土類元素の酸化物が十
分に分散している。%l織とすることができ、耐熱性お
よび耐摩耗性ならびに相手材とのなじみ性に著しく優れ
た合金である。したがって2本発明合金を例えばかなり
高温になる内燃機関のバルブシート等の素材に使用した
場合に、希土類等に起因する耐熱性の酸化膜および前記
硬質粒子によってすぐれた耐熱耐摩耗性を示し、さらに
は複硼化物および/または復炭硼化物の優れたなじみ性
により相手部材の摩耗をも改善させることができるなど
、工業上極めて有益な特性を有するものである。Since the total content of one or more types selected from Nb, Ta, Ti, Zr, Hf, Co, and Ni is 20% or less, the alloys according to any of the inventions do not contain microscopic hard particles in the matrix. The complex carbide, complex boride, and/or double carbide boride are uniformly dispersed, and the rare earth element and/or rare earth element oxide is sufficiently dispersed in the matrix. %l weave, and is an alloy with extremely excellent heat resistance, abrasion resistance, and compatibility with mating materials. Therefore, when the alloy of the present invention is used, for example, as a material for a valve seat of an internal combustion engine that is exposed to considerably high temperatures, it exhibits excellent heat and wear resistance due to the heat-resistant oxide film caused by rare earth elements and the hard particles, and further It has extremely useful industrial properties, such as being able to improve the wear of mating parts due to the excellent compatibility of the complex boride and/or the carbonated boride.
Claims (2)
種;7〜25%、Cr;2〜10%、Si;0.1〜0
.9%、Mn;0.7%以下、P;0.05%以下、C
;0.5〜2.0%、B;0.5〜2.0%、Scおよ
びYを含む希土類元素のうちから選ばれる1種以上の合
計;0.1〜5%および/またはScおよびYを含む希
土類元素の酸化物のうちから選ばれる1種以上の合計;
0.3〜7%、残部Feおよび不純物からなることを特
徴とする耐熱耐摩耗性鉄基焼結合金。(1) Any one or two of Mo and W in weight%
Seed; 7-25%, Cr; 2-10%, Si; 0.1-0
.. 9%, Mn; 0.7% or less, P; 0.05% or less, C
; 0.5-2.0%, B; 0.5-2.0%, a total of one or more kinds selected from rare earth elements including Sc and Y; 0.1-5% and/or Sc and A total of one or more types selected from oxides of rare earth elements containing Y;
A heat-resistant and wear-resistant iron-based sintered alloy characterized by comprising 0.3 to 7%, the balance being Fe and impurities.
種;7〜25%、Cr;2〜10%、Si;0.1〜0
.9%、Mn;0.7%以下、P;0.05%以下、C
;0.5〜2.0%、B;0.5〜2.0%、Scおよ
びYを含む希土類元素のうちから選ばれる1種以上の合
計;0.1〜5%および/またはScおよびYを含む希
土類元素の酸化物のうちから選ばれる1種以上の合計;
0.3〜7%、およびV、Nb、Ta、Ti、Zr、H
f、Co、Niのうちから選ばれる1種以上の合計;2
0%以下、残部Feおよび不純物からなることを特徴と
する耐熱耐摩耗性鉄基焼結合金。(2) Any one or two of Mo and W in weight%
Seed; 7-25%, Cr; 2-10%, Si; 0.1-0
.. 9%, Mn; 0.7% or less, P; 0.05% or less, C
; 0.5-2.0%, B; 0.5-2.0%, a total of one or more kinds selected from rare earth elements including Sc and Y; 0.1-5% and/or Sc and A total of one or more types selected from oxides of rare earth elements containing Y;
0.3-7%, and V, Nb, Ta, Ti, Zr, H
Total of one or more selected from f, Co, and Ni; 2
A heat-resistant and wear-resistant iron-based sintered alloy characterized by comprising 0% or less, the balance being Fe and impurities.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25361686A JPH0753900B2 (en) | 1986-10-27 | 1986-10-27 | Heat and wear resistant iron-based sintered alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25361686A JPH0753900B2 (en) | 1986-10-27 | 1986-10-27 | Heat and wear resistant iron-based sintered alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63109142A true JPS63109142A (en) | 1988-05-13 |
JPH0753900B2 JPH0753900B2 (en) | 1995-06-07 |
Family
ID=17253839
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25361686A Expired - Lifetime JPH0753900B2 (en) | 1986-10-27 | 1986-10-27 | Heat and wear resistant iron-based sintered alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0753900B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH028350A (en) * | 1988-06-28 | 1990-01-11 | Nissan Motor Co Ltd | Heat-resistant and wear-resistant ferrous sintered alloy |
US6248292B1 (en) | 1998-02-25 | 2001-06-19 | Toyota Jidosha Kabushiki Kaisha | Overlay welding alloy and engine valve overlayed therewith |
JP2011190526A (en) * | 2010-02-19 | 2011-09-29 | Toyota Motor Corp | Hard particle for blending in sintered alloy, wear-resistant iron-based sintered alloy, and valve seat |
JP2012503742A (en) * | 2008-09-25 | 2012-02-09 | ボーグワーナー インコーポレーテッド | Sub-assembly for bypass control in turbocharger and its turbine casing |
CN107083514A (en) * | 2017-04-12 | 2017-08-22 | 芜湖扬展新材料科技服务有限公司 | A kind of steel alloy |
JP2019143176A (en) * | 2018-02-16 | 2019-08-29 | 大同特殊鋼株式会社 | Hard particle powder for sintered bodies |
-
1986
- 1986-10-27 JP JP25361686A patent/JPH0753900B2/en not_active Expired - Lifetime
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH028350A (en) * | 1988-06-28 | 1990-01-11 | Nissan Motor Co Ltd | Heat-resistant and wear-resistant ferrous sintered alloy |
US6248292B1 (en) | 1998-02-25 | 2001-06-19 | Toyota Jidosha Kabushiki Kaisha | Overlay welding alloy and engine valve overlayed therewith |
JP2012503742A (en) * | 2008-09-25 | 2012-02-09 | ボーグワーナー インコーポレーテッド | Sub-assembly for bypass control in turbocharger and its turbine casing |
JP2011190526A (en) * | 2010-02-19 | 2011-09-29 | Toyota Motor Corp | Hard particle for blending in sintered alloy, wear-resistant iron-based sintered alloy, and valve seat |
CN107083514A (en) * | 2017-04-12 | 2017-08-22 | 芜湖扬展新材料科技服务有限公司 | A kind of steel alloy |
JP2019143176A (en) * | 2018-02-16 | 2019-08-29 | 大同特殊鋼株式会社 | Hard particle powder for sintered bodies |
Also Published As
Publication number | Publication date |
---|---|
JPH0753900B2 (en) | 1995-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2777373B2 (en) | Heat- and wear-resistant iron-based sintered alloy | |
JP4948636B2 (en) | Hard particles for blending sintered alloys, wear-resistant iron-based sintered alloys, and valve seats | |
US5031878A (en) | Valve seat made of sintered iron base alloy having high wear resistance | |
JP2957180B2 (en) | Wear-resistant iron-based sintered alloy and method for producing the same | |
JP3520093B2 (en) | Secondary hardening type high temperature wear resistant sintered alloy | |
JP3596751B2 (en) | Hard particle for blending sintered alloy, wear-resistant iron-based sintered alloy, method for producing wear-resistant iron-based sintered alloy, and valve seat | |
JP2773747B2 (en) | Valve seat made of Fe-based sintered alloy | |
JP2015178650A (en) | Iron-based sinter alloy valve sheet | |
JP3784926B2 (en) | Ferrous sintered alloy for valve seat | |
JP3763782B2 (en) | Method for producing wear-resistant iron-based sintered alloy material for valve seat | |
JPS63109142A (en) | Ferrous sintered alloy combining heat resistance with wear resistance | |
JP7150406B2 (en) | Heat-resistant sintered alloy material | |
JPS63297542A (en) | Heat resistant wear resistant iron based sintered alloy | |
JPS63290249A (en) | Ferrous sintered alloy combining heat resistance with wear resistance | |
JPH0517839A (en) | Bearing alloy for high temperature use and its production | |
JPS58224154A (en) | Sintered fe alloy for valve seat of internal combustion engine | |
JPH0561346B2 (en) | ||
JP3440008B2 (en) | Sintered member | |
JPS63203754A (en) | Sintered iron alloy having wear resistance at high temperature | |
JP2643739B2 (en) | Two-layer valve seat made of iron-based sintered alloy for internal combustion engine | |
JP3264092B2 (en) | Wear-resistant iron-based sintered alloy and method for producing the same | |
JP2643742B2 (en) | Two-layer valve seat made of lead impregnated iron-based sintered alloy for internal combustion engines | |
JP2643741B2 (en) | Two-layer valve seat made of lead impregnated iron-based sintered alloy for internal combustion engines | |
JPH0633185A (en) | Production of sintered alloy for valve seat excellent in wear resistance | |
JPH0533299B2 (en) |