JP2006274359A - Alloy powder for forming hard phase and ferrous powder mixture using the same - Google Patents
Alloy powder for forming hard phase and ferrous powder mixture using the same Download PDFInfo
- Publication number
- JP2006274359A JP2006274359A JP2005095636A JP2005095636A JP2006274359A JP 2006274359 A JP2006274359 A JP 2006274359A JP 2005095636 A JP2005095636 A JP 2005095636A JP 2005095636 A JP2005095636 A JP 2005095636A JP 2006274359 A JP2006274359 A JP 2006274359A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- alloy
- wear
- hard phase
- iron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000843 powder Substances 0.000 title claims abstract description 159
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 145
- 239000000956 alloy Substances 0.000 title claims abstract description 145
- 239000000203 mixture Substances 0.000 title claims abstract description 19
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 title 1
- 239000012535 impurity Substances 0.000 claims abstract description 10
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 59
- 229910052742 iron Inorganic materials 0.000 claims description 25
- 229910000640 Fe alloy Inorganic materials 0.000 claims description 24
- 239000011812 mixed powder Substances 0.000 claims description 21
- 239000011159 matrix material Substances 0.000 claims description 17
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 13
- 229910052582 BN Inorganic materials 0.000 claims 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims 1
- 229910052797 bismuth Inorganic materials 0.000 claims 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims 1
- 229910000416 bismuth oxide Inorganic materials 0.000 claims 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 claims 1
- 229910001634 calcium fluoride Inorganic materials 0.000 claims 1
- 239000011651 chromium Substances 0.000 claims 1
- DBULDCSVZCUQIR-UHFFFAOYSA-N chromium(3+);trisulfide Chemical compound [S-2].[S-2].[S-2].[Cr+3].[Cr+3] DBULDCSVZCUQIR-UHFFFAOYSA-N 0.000 claims 1
- TYIXMATWDRGMPF-UHFFFAOYSA-N dibismuth;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Bi+3].[Bi+3] TYIXMATWDRGMPF-UHFFFAOYSA-N 0.000 claims 1
- 239000010439 graphite Substances 0.000 claims 1
- 229910002804 graphite Inorganic materials 0.000 claims 1
- 229910052500 inorganic mineral Inorganic materials 0.000 claims 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 claims 1
- 239000011707 mineral Substances 0.000 claims 1
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 claims 1
- 229910052982 molybdenum disulfide Inorganic materials 0.000 claims 1
- CADICXFYUNYKGD-UHFFFAOYSA-N sulfanylidenemanganese Chemical compound [Mn]=S CADICXFYUNYKGD-UHFFFAOYSA-N 0.000 claims 1
- FKHIFSZMMVMEQY-UHFFFAOYSA-N talc Chemical compound [Mg+2].[O-][Si]([O-])=O FKHIFSZMMVMEQY-UHFFFAOYSA-N 0.000 claims 1
- 238000005245 sintering Methods 0.000 abstract description 21
- 239000000463 material Substances 0.000 abstract description 13
- 230000001747 exhibiting effect Effects 0.000 abstract description 2
- 229910052750 molybdenum Inorganic materials 0.000 abstract description 2
- 229910021332 silicide Inorganic materials 0.000 description 28
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 28
- 229910052751 metal Inorganic materials 0.000 description 20
- 239000002184 metal Substances 0.000 description 20
- 230000000694 effects Effects 0.000 description 17
- 229910001563 bainite Inorganic materials 0.000 description 13
- 239000002245 particle Substances 0.000 description 12
- 239000002994 raw material Substances 0.000 description 11
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 10
- 229910000734 martensite Inorganic materials 0.000 description 9
- 239000002244 precipitate Substances 0.000 description 9
- 230000007423 decrease Effects 0.000 description 8
- 229910001566 austenite Inorganic materials 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 238000005299 abrasion Methods 0.000 description 5
- 229910021529 ammonia Inorganic materials 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 230000001771 impaired effect Effects 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 229910017305 Mo—Si Inorganic materials 0.000 description 3
- 229910000990 Ni alloy Inorganic materials 0.000 description 3
- 230000013011 mating Effects 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 229910017116 Fe—Mo Inorganic materials 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000016571 aggressive behavior Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910019819 Cr—Si Inorganic materials 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910001567 cementite Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910001562 pearlite Inorganic materials 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
本発明は、自動車エンジンのバルブシート材に用いられる耐摩耗性焼結部材の硬質相形成に好適な硬質相形成用合金粉末、および耐摩耗性焼結部材に好適な原料粉末となる鉄系混合粉末に関する。 The present invention relates to an alloy powder for forming a hard phase suitable for forming a hard phase of a wear-resistant sintered member used for a valve seat material of an automobile engine, and an iron-based mixture that becomes a raw material powder suitable for an abrasion-resistant sintered member. Relates to powder.
近年、自動車エンジンは高性能化により作動条件が一段と厳しくなっており、エンジンに用いられるバルブシートにおいても、従来に増して厳しい使用環境条件に耐えることが必要となってきている。このような厳しい環境で使用される場合には、耐摩耗性がよいことに併せ、へたり現象を生じないような高い強度が要求される。 In recent years, the operating conditions of automobile engines have become more severe due to higher performance, and the valve seats used in engines are also required to withstand more severe use environment conditions than ever before. When used in such a harsh environment, high wear resistance is required and high strength that does not cause a sag phenomenon is required.
このようなバルブシート用焼結合金としては、硬質相としてCo−Mo−Si系硬質相を使用するものが多数提案、実施されている(例えば特許文献1〜4)。この硬質相はCo−Mo−Si系合金粉末を原料粉末に与えて焼結することにより基地中に形成され、Mo珪化物を主体とする硬質粒子がCo基合金基地中に群状に析出する析出物分散型の硬質相である。このCo−Mo−Si系硬質相は、バルブシートの耐摩耗性を高めるとともに、Mo珪化物が自己潤滑性を有することから相手部材への攻撃性も低いという利点を有し、各種合金基地へ適用されている。 As such a sintered alloy for valve seats, many have been proposed and implemented using a Co—Mo—Si hard phase as a hard phase (for example, Patent Documents 1 to 4). This hard phase is formed in the matrix by applying Co-Mo-Si alloy powder to the raw material powder and sintering, and hard particles mainly composed of Mo silicide precipitate in groups in the Co-based alloy matrix. This is a precipitate-dispersed hard phase. This Co-Mo-Si hard phase has the advantage that it enhances the wear resistance of the valve seat and also has a low aggression against the mating member because the Mo silicide has a self-lubricating property. Has been applied.
上記の硬質相は、Co基合金でMo量が40質量%以下のものであるが、この硬質相を含む焼結合金は相当の高温耐摩耗性、高強度を有するものである。しかしながら、近年においては、さらに、高温耐摩耗性、高強度を有する焼結合金が望まれている。そこで、これらの改良発明として、質量比で、Si:1.0〜12%、Mo:20〜50%、Mn:0.5〜5.0%、および残部がFe、Ni、Coのうち少なくとも1種と不可避的不純物よりなる耐摩耗性硬質相形成用合金粉末が開示されている(特許文献5参照)。 The hard phase is a Co-based alloy having a Mo content of 40% by mass or less, and a sintered alloy containing this hard phase has a considerable high temperature wear resistance and high strength. However, in recent years, a sintered alloy having high temperature wear resistance and high strength has been desired. Therefore, as these improved inventions, by mass ratio, Si: 1.0 to 12%, Mo: 20 to 50%, Mn: 0.5 to 5.0%, and the balance is at least of Fe, Ni, Co An alloy powder for forming a wear-resistant hard phase composed of one kind and inevitable impurities is disclosed (see Patent Document 5).
このように、時代の要請にしたがい、より耐摩耗性に優れたバルブシート材として好適な焼結合金が提案されてきた。しかしながら、近年、より一層のエンジンの高出力化等によりバルブシート材のより一層の耐摩耗性の要求が望まれている。また、一方で低コスト化の要求から安価であることも望まれており、価格性能比の高い材料の開発が急務となっている。 Thus, in accordance with the demands of the times, a sintered alloy suitable as a valve seat material having more excellent wear resistance has been proposed. However, in recent years, there has been a demand for higher wear resistance of valve seat materials due to higher engine output and the like. On the other hand, it is also desired to be inexpensive due to the demand for cost reduction, and there is an urgent need to develop materials with a high price-performance ratio.
本発明はこのような事情を背景としてなされたものであって、より一層の耐摩耗性を有するとともに、価格性能比の高いバルブシート材用の硬質相形成粉末を提供することを目的としている。 The present invention has been made against the background of the above circumstances, and an object of the present invention is to provide a hard phase forming powder for a valve seat material having higher wear resistance and a high price-performance ratio.
本発明者らは、近年の高出力化エンジンの下でのバルブシートとバルブとの間の摩耗状態を解析したところ、硬質粒子以外の基地部分が基点となって塑性流動、凝着が発生することが摩耗の原因であることを突き止めた。そこで、その対策として、Moの含有量を多くしてMo珪化物量を増大させ、摩耗の基点を減少させることができるとの知見を得た。また、Moの含有量を多くして一体化したMo珪化物を析出させることで、硬質粒子のピン止め効果を増大させることができるとの知見も得た。本発明者らは、これらの知見により、塑性流動、凝着の発生を最小限に止められることができることから、耐摩耗性を大幅に改善できるとの結論に達した。 The present inventors analyzed the wear state between a valve seat and a valve under a high-power engine in recent years, and plastic flow and adhesion occur based on a base portion other than hard particles. Was found to be the cause of wear. Therefore, as a countermeasure, the inventors have found that the Mo content can be increased to increase the Mo silicide amount and reduce the wear base point. Moreover, the knowledge that the pinning effect of hard particles can be increased by increasing the Mo content and precipitating an integrated Mo silicide was also obtained. Based on these findings, the present inventors have reached the conclusion that the wear resistance can be greatly improved since the occurrence of plastic flow and adhesion can be minimized.
具体的には、上記特許文献5に記載された基地より残部として安価なFeを採用するとともにMnを排除することで、粉末の硬さを高めることなくMo量を増すことにより、析出するMo珪化物を多くすると同時に一体化させて析出させることが本発明の骨子である。また、Si量についても必要なMo珪化物を生成する必要量に止めて最適化を行うことで、粉末の硬さを低減し、Mo添加量の増大を可能とすることも重要である。本発明は、このような知見に基づいて完成されたものである。 Specifically, by adopting inexpensive Fe as the balance from the base described in the above-mentioned Patent Document 5 and eliminating Mn, increasing the amount of Mo without increasing the hardness of the powder, the precipitated Mo silicide It is the gist of the present invention to increase the number of objects and to deposit them together at the same time. It is also important to reduce the hardness of the powder and increase the amount of added Mo by optimizing the amount of Si to the necessary amount to produce the necessary Mo silicide. The present invention has been completed based on such findings.
よって、本発明は上記対策に基づきなされたもので、本発明に係る硬質相形成用合金粉末は、全体組成が、質量比で、Mo:48〜60%、Cr:3〜12%、Si:1〜5%であり、残部がFeおよび不可避的不純物であることを特徴としている。 Therefore, this invention was made | formed based on the said countermeasure, and as for the alloy powder for hard phase formation concerning this invention, the whole composition is a mass ratio, Mo: 48-60%, Cr: 3-12%, Si: 1 to 5%, and the balance is Fe and inevitable impurities.
また、本発明に係る耐摩耗性焼結合金用の鉄系混合粉末は、鉄合金基地用粉末に、上記の硬質相形成用合金粉末を質量比で5〜40%添加してなることを特徴としている。 The iron-based mixed powder for wear-resistant sintered alloy according to the present invention is obtained by adding 5 to 40% by mass of the above-mentioned hard phase forming alloy powder to an iron alloy base powder. It is said.
本発明によれば、硬質粒子の分散量を従来技術に比して増加することにより、摩耗の基点を減少させることができ、また、硬質粒子を一体化して析出させて硬質粒子のピン止め効果も増大させることができるため、塑性流動、凝着の発生を最小限に止められることができる。このため、硬質粒子の耐摩耗性を一層向上させて、優れた高温耐摩耗性を発揮するとともに、安価であり、価格性能比の高い耐摩耗性焼結合金を提供することができる。 According to the present invention, by increasing the amount of hard particles dispersed as compared with the prior art, the base point of wear can be reduced, and the hard particles can be integrated and precipitated to effect the pinning effect of the hard particles. Therefore, the occurrence of plastic flow and adhesion can be minimized. For this reason, it is possible to further improve the wear resistance of the hard particles, exhibit excellent high-temperature wear resistance, and provide a wear-resistant sintered alloy that is inexpensive and has a high price-performance ratio.
以下、本発明の硬質相形成用合金粉末およびそれを用いた鉄系混合粉末について、図面を参照しながら数値限定の根拠とともに説明する。
(1)硬質相形成用合金粉末
本発明の硬質相形成用合金粉末は、安価なFeを基材とし、焼結時に基地へ拡散して硬質粒子の固着性の向上に寄与する効果を有する。以下に、硬質相形成用合金粉末の各成分組成の数値限定の根拠について説明する。
Hereinafter, the alloy powder for forming a hard phase according to the present invention and the iron-based mixed powder using the same will be described with reference to the drawings and numerical basis.
(1) Alloy powder for forming a hard phase The alloy powder for forming a hard phase of the present invention has an effect of using inexpensive Fe as a base material, diffusing to a base during sintering, and contributing to improvement of hard particle adhesion. The grounds for limiting the numerical values of each component composition of the hard phase forming alloy powder will be described below.
Mo:Moは主にSiと結合して、耐摩耗性、潤滑性に優れたMo珪化物を形成し、焼結合金の耐摩耗性の向上に寄与する。また、一部はCrも取り込みMo−Cr−Si合金により形成されるMo珪化物析出型の硬質粒子となる。Mo含有量が48質量%未満の場合にはMo珪化物が一体化して析出せず、従来のような粒状のMo珪合物がCo基硬質相中に分散する形態となり、耐摩耗性が従来程度に止まる。逆にMo含有量が60質量%を超えると、Mnを排除した分および後述するSiの減量分、Mo増量の効果がより大きくなり、粉末の硬さが高くなって成形時の圧縮性を損ねる。また、形成される硬質相が脆くなるため、衝撃によって一部が欠けてしまい、研摩粉の作用によって耐摩耗性が逆に低下する。よって、Mo含有量は48〜60質量%とした。 Mo: Mo is mainly bonded to Si to form Mo silicide excellent in wear resistance and lubricity, and contributes to improvement in wear resistance of the sintered alloy. In addition, some of them also take in Cr and become Mo silicide precipitation type hard particles formed of a Mo—Cr—Si alloy. When the Mo content is less than 48% by mass, the Mo silicide is not integrated and deposited, and the conventional granular Mo silicide is dispersed in the Co-based hard phase, so that the wear resistance is conventional. It stops to the extent. On the contrary, if the Mo content exceeds 60% by mass, the effect of increasing the amount of Mo and the amount of reduction of Si, which will be described later, is increased, the hardness of the powder is increased, and the compressibility during molding is impaired. . Moreover, since the hard phase to be formed becomes brittle, part of the hard phase is lost due to impact, and the wear resistance is reduced by the action of the abrasive powder. Therefore, the Mo content is set to 48 to 60% by mass.
Cr:Crは、硬質相のFe合金基地の強化に寄与する。また、基地へ拡散して、基地の耐摩耗性向上にも寄与する。Cr含有量が3質量%に満たないとこれらの効果が乏しい。逆に、Cr含有量が12質量%を超えると、粉末の酸素量が多くなって粉末表面に酸化被膜が形成されて焼結の進行を阻害するとともに、酸化被膜により粉末が硬くなるため圧縮性の低下が生じる。このため、焼結合金の強度が低下し、耐摩耗性の低下を招くことから、Cr含有量の上限値は12質量%とした。以上により、Cr含有量は3〜12質量%とした。 Cr: Cr contributes to strengthening of the Fe alloy base of the hard phase. It also diffuses to the base and contributes to the improvement of the wear resistance of the base. If the Cr content is less than 3% by mass, these effects are poor. Conversely, if the Cr content exceeds 12% by mass, the amount of oxygen in the powder increases and an oxide film is formed on the powder surface to inhibit the progress of the sintering, and the oxide film hardens the powder so that it is compressible. Decrease. For this reason, since the intensity | strength of a sintered alloy falls and causes a fall of abrasion resistance, the upper limit of Cr content was 12 mass%. As described above, the Cr content was set to 3 to 12% by mass.
Si:Siは主にMoと反応して、耐摩耗性、潤滑性に優れたMo珪化物を形成し、焼結合金の耐摩耗性の向上に寄与する。Si含有量が1質量%未満の場合には、十分なMo珪化物が得られないため、十分な耐摩耗性向上効果が得られない。一方、Si含有量が過大であると、Moと反応しないで基地に拡散するSiが増える。Siは基地を硬くするが、同時に脆くもする。このため、ある程度のSiの基地への拡散は、硬質相の基地への固着の点で有効である。しかしながら、過大なSiの拡散は、基地の耐摩耗性を低下させ、相手攻撃性を増加させることとなるので、好ましくない。ここで、Moと反応しないSi量を低減すれば、その分粉末の硬さを増加させずに適切なMo量を与えることができる。よって、Mo量と反応しないで基地に拡散するSiが増え始める5質量%をSi含有量の上限とした。以上により、Si含有量は1〜5質量%とした。 Si: Si mainly reacts with Mo to form Mo silicide excellent in wear resistance and lubricity, and contributes to improvement in wear resistance of the sintered alloy. When the Si content is less than 1% by mass, a sufficient Mo silicide cannot be obtained, so that a sufficient wear resistance improving effect cannot be obtained. On the other hand, if the Si content is excessive, Si that diffuses to the base without reacting with Mo increases. Si hardens the base but also makes it brittle. For this reason, a certain amount of Si diffusion to the base is effective in terms of fixing the hard phase to the base. However, excessive diffusion of Si is not preferable because it reduces the wear resistance of the base and increases the opponent's aggressiveness. Here, if the amount of Si that does not react with Mo is reduced, an appropriate amount of Mo can be provided without increasing the hardness of the powder. Therefore, the upper limit of the Si content is set to 5 mass% where Si diffused to the base without reacting with the Mo amount starts to increase. As described above, the Si content is set to 1 to 5% by mass.
(2)鉄系混合粉末
本発明の鉄系混合粉末は、鉄合金基地用粉末に、上記の硬質相形成用合金粉末を質量比で5〜40%添加したものである。ここで、硬質相形成用粉末の添加量は多いほど耐摩耗性が良好となる。しかしながら、鉄系混合粉末全体に対して添加量が5質量%未満では耐摩耗性向上の効果が乏しい。また逆に、添加量が40質量%を超えると、混合粉末の圧縮性が低くなって焼結後の密度や強度が低くなり、耐摩耗性も低下する。よって、硬質相形成用合金粉末の添加量は、鉄系混合粉末全体に対して5〜40質量%とした。
(2) Iron-based mixed powder The iron-based mixed powder of the present invention is obtained by adding 5 to 40% by mass ratio of the above-mentioned hard phase forming alloy powder to an iron alloy base powder. Here, the greater the amount of hard phase forming powder added, the better the wear resistance. However, if the added amount is less than 5% by mass with respect to the entire iron-based mixed powder, the effect of improving the wear resistance is poor. On the other hand, when the addition amount exceeds 40% by mass, the compressibility of the mixed powder is lowered, the density and strength after sintering are lowered, and the wear resistance is also lowered. Therefore, the addition amount of the hard phase forming alloy powder is set to 5 to 40% by mass with respect to the entire iron-based mixed powder.
上記の鉄系混合粉末を所定の形状に圧粉成形した圧粉体を、非酸化性雰囲気中にて1000〜1200℃で焼結することで、鉄合金基地中に、組成が、質量比で、Mo:48〜60%、Cr:3〜12%、Si:1〜5%であり、残部がFeおよび不可避的不純物からなる、Mo珪化物を主とする析出物が一体化して析出したFe基硬質相が質量比で5〜40%分散した耐摩耗性焼結合金が得られる。この耐摩耗性焼結合金では、図1に示すように、Fe合金基地中に主としてMo珪化物よりなる硬質粒子が一体となって析出する硬質相が、基地組織中に分散する金属組織となる。この硬質相は、硬質で、かつ相手材であるバルブとの親和性が低いMo珪化物により耐摩耗性を一層向上させるとともに、Mo珪化物よりなる硬質粒子が一体となって析出していることから、金属接触が発生する環境下であっても、基地のピン止め効果により基地の塑性流動や凝着による摩耗を防止する。また、硬質相の母材として安価なFeを用いることから、硬質相形成粉末自体が安価であり、価格性能比の高い耐摩耗性焼結合金とすることができる。 By sintering the green compact obtained by compacting the iron-based mixed powder into a predetermined shape at 1000 to 1200 ° C. in a non-oxidizing atmosphere, the composition is in mass ratio in the iron alloy matrix. , Mo: 48 to 60%, Cr: 3 to 12%, Si: 1 to 5%, the balance consisting of Fe and inevitable impurities, and a precipitate mainly composed of Mo silicide and precipitated A wear-resistant sintered alloy in which the base hard phase is dispersed by 5 to 40% by mass is obtained. In this wear-resistant sintered alloy, as shown in FIG. 1, the hard phase in which hard particles mainly composed of Mo silicide are integrally deposited in the Fe alloy matrix becomes a metal structure dispersed in the matrix structure. . This hard phase is hard and has a low affinity with the counterpart valve, Mo silicide, and further improves wear resistance, and hard particles made of Mo silicide are deposited together. Therefore, even in an environment where metal contact occurs, the base pinning effect prevents wear due to plastic flow and adhesion of the base. Further, since inexpensive Fe is used as the base material for the hard phase, the hard phase forming powder itself is inexpensive, and a wear-resistant sintered alloy having a high price-performance ratio can be obtained.
これに対し、図2は、従来の耐摩耗性焼結合金を示す模式図である。この耐摩耗性焼結合金では、基地中に、主としてMo珪化物よりなる硬質相を核としてその周囲をCoが拡散してなる拡散相(白色相)が取り囲む硬質相が分散している。この硬質相は、硬質ではあるが、Mo珪化物よりなる硬質粒子が一体となって析出していないことから、基地のピン止め効果が弱く、基地の塑性流動や凝着による摩耗を十分に防止することができない。また、高価なCoを母材として使用しているため、耐摩耗性焼結合金自体が高価なものとなる On the other hand, FIG. 2 is a schematic diagram showing a conventional wear-resistant sintered alloy. In this wear-resistant sintered alloy, a hard phase surrounded by a diffusion phase (white phase) in which Co is diffused around a hard phase mainly made of Mo silicide is dispersed in the matrix. This hard phase is hard, but hard particles made of Mo silicide are not deposited together, so the pinning effect of the base is weak, and wear due to plastic flow and adhesion of the base is sufficiently prevented Can not do it. Further, since expensive Co is used as a base material, the wear-resistant sintered alloy itself is expensive.
図1に示す金属組織を得るための推奨される焼結温度は、1000〜1200℃である。焼結温度が1000℃未満では焼結が不十分となり満足できる耐摩耗性を得ることができない。逆に焼結温度が1200℃を超えると硬質相が溶融、消失し、またMo珪化物が一体化して析出するに必要な各成分が基地へ拡散流出し、Mo珪化物が粒状となって析出することとなる。 The recommended sintering temperature for obtaining the metal structure shown in FIG. 1 is 1000 to 1200 ° C. If the sintering temperature is less than 1000 ° C., the sintering is insufficient and satisfactory wear resistance cannot be obtained. Conversely, when the sintering temperature exceeds 1200 ° C., the hard phase melts and disappears, and each component necessary for the Mo silicide to be integrated and precipitated diffuses and flows out to the base, and the Mo silicide precipitates in a granular form. Will be.
鉄合金基地用粉末の組成およびこれにより得られる金属組織については、特に問われず、上記特許文献1〜3等のFe合金基地を用いることができる。すなわち、これらの従来技術で使用されたCo基硬質相を本願発明のFe基硬質相で置き換えるだけで耐摩耗性を向上させることができる。 The composition of the iron alloy base powder and the metal structure obtained thereby are not particularly limited, and Fe alloy bases such as those in Patent Documents 1 to 3 can be used. That is, the wear resistance can be improved by simply replacing the Co-based hard phase used in these conventional techniques with the Fe-based hard phase of the present invention.
以下は、推奨される耐摩耗性焼結合金を得るための、鉄合金基地用粉末の一例であり、鉄合金基地用粉末の構成とともに、これにより得られる金属組織について説明する。 The following is an example of an iron alloy base powder for obtaining a recommended wear-resistant sintered alloy. The structure of the iron alloy base powder and the metal structure obtained thereby will be described.
本発明において、推奨される鉄合金基地用粉末は、質量比で、Mo:1.5〜5.0%、および残部がFeおよび不可避不純物からなる組成の鉄基合金粉末に、0.3〜1.2%の黒鉛粉末を添加した鉄合金基地用粉末である。 In the present invention, the recommended iron alloy base powder has a mass ratio of Mo: 1.5 to 5.0%, and iron-based alloy powder having a composition consisting of Fe and inevitable impurities, and 0.3 to This is a powder for an iron alloy base to which 1.2% of graphite powder is added.
Moは鋼中に固溶して与えると、CCT線図上のベイナイト領域を拡張し、恒温処理のような特殊な冷却工程を採らずとも焼結後の冷却速度で基地組織をベイナイトとする作用を有する。ベイナイトはマルテンサイトに次いで硬くかつ強度の高い組織で、マルテンサイトほどは硬くないため相手部材の攻撃性が低く、かつ、自己の耐摩耗性を確保するために好適な組織である。このMoの効果を基地全体で均一に及ぼすため基地を形成する基地形成粉末は、Fe−Mo合金粉末の形態で付与することが効果的である。ただし、合金粉末中のMo量が1.5質量%を下回ると基地のベイナイト化の効果が乏しく、強度の低いパーライトが生成されやすくなる。一方、5.0質量%を超えて与えると、合金粉末が硬くなりすぎて合金粉末の圧縮性を損なうこととなり、この結果、基地の強度および耐摩耗性が低下することとなる。 When Mo is given as a solid solution in steel, the bainite region on the CCT diagram is expanded and the base structure is made bainite at the cooling rate after sintering without taking a special cooling step such as isothermal treatment. Have Bainite is a structure that is hard and strong next to martensite, and is not as hard as martensite. Therefore, the aggressiveness of the mating member is low, and it is a suitable structure for ensuring its own wear resistance. In order to uniformly exert the effect of Mo throughout the entire base, it is effective to apply the base forming powder forming the base in the form of Fe-Mo alloy powder. However, when the amount of Mo in the alloy powder is less than 1.5% by mass, the effect of bainite formation on the base is poor, and low-strength pearlite is likely to be generated. On the other hand, if it exceeds 5.0% by mass, the alloy powder becomes too hard and the compressibility of the alloy powder is impaired. As a result, the strength and wear resistance of the matrix are lowered.
Cは鋼中でFeと化合して基地組織中にベイナイトを形成するために添加される。このCは、合金粉末に固溶して与えると粉末が硬くなり、圧縮性を損なうため、黒鉛粉末の形態で添加する。添加する黒鉛粉末の量が0.3質量%に満たないと、基地の一部に強度の極めて低いフェライトが生成するようになる。一方、1.2質量%を超えて与えると、Fe基地に過飽和に固溶されたCが、硬質かつ脆いセメンタイトとして析出するようになり、強度および耐摩耗性が低下することとなる。 C is added to combine with Fe in the steel to form bainite in the matrix structure. This C is added in the form of graphite powder because the powder becomes hard when it is given as a solid solution in the alloy powder and the compressibility is impaired. If the amount of graphite powder to be added is less than 0.3% by mass, ferrite with extremely low strength is generated in a part of the matrix. On the other hand, if it exceeds 1.2 mass%, C dissolved in supersaturation on the Fe base will be precipitated as hard and brittle cementite, and the strength and wear resistance will be reduced.
このような構成の鉄合金基地用粉末を用いた場合、耐摩耗性焼結合金の全体組成は、質量比で、Mo:3.81〜26.99%、Si:0.05〜2.0%、Cr:0.15〜4.8%、C:0.3〜1.2%、および残部がFeおよび不可避不純物となり、焼結後に得られる耐摩耗性焼結合金の金属組織は、図3に示すように、ベイナイト基地中に、Fe合金基地にMo珪化物が一体となって析出した硬質相が分散するものとなる。 When the iron alloy base powder having such a configuration is used, the overall composition of the wear-resistant sintered alloy is, by mass ratio, Mo: 3.81 to 2699%, Si: 0.05 to 2.0. %, Cr: 0.15 to 4.8%, C: 0.3 to 1.2%, and the balance becomes Fe and inevitable impurities, and the metal structure of the wear-resistant sintered alloy obtained after sintering is shown in FIG. As shown in FIG. 3, the hard phase in which the Mo silicide is integrally deposited on the Fe alloy base is dispersed in the bainite base.
上記の鉄基合金粉末に、さらに、Ni:3質量%以下を含ませてもよい。上記の鉄基合金粉末(Fe−Mo合金粉末)にNiを含有させることで、基地組織の焼き入れ性が向上して、焼結後に得られるベイナイト組織が下部ベイナイト組織となって、強度および耐摩耗性が向上する。ただし、Niの含有量が3質量%を超えると、鉄基合金粉末が硬くなって圧縮性を損なうこととなる。 The iron-base alloy powder may further contain Ni: 3% by mass or less. By including Ni in the iron-based alloy powder (Fe—Mo alloy powder), the hardenability of the base structure is improved, and the bainite structure obtained after sintering becomes the lower bainite structure, thereby improving strength and resistance. Abrasion is improved. However, if the Ni content exceeds 3% by mass, the iron-based alloy powder becomes hard and the compressibility is impaired.
この構成の鉄合金基地用粉末を用いた場合、耐摩耗性焼結合金の全体組成は、質量比で、Mo:3.81〜26.99%、Si:0.05〜2.0%、Cr:0.15〜4.8%、Ni:2.84質量%以下、C:0.3〜1.2%、および残部がFeおよび不可避不純物となり、焼結後に得られる耐摩耗性焼結合金の金属組織は、上記構成と同様、ベイナイト基地中に、Fe合金基地にMo珪化物が一体となって析出した硬質相が分散するもの(図3)となるが、ベイナイト部分の硬さはより高く、より耐摩耗性の高いものとなる。 When the iron alloy base powder having this configuration is used, the overall composition of the wear-resistant sintered alloy is, by mass ratio, Mo: 3.81 to 2699%, Si: 0.05 to 2.0%, Cr: 0.15 to 4.8%, Ni: 2.84% by mass or less, C: 0.3 to 1.2%, and the balance becomes Fe and inevitable impurities, and wear-resistant sintered obtained after sintering The gold metal structure is the same as the above structure, in which the hard phase in which the Mo silicide is integrally deposited on the Fe alloy base is dispersed in the bainite base (FIG. 3). Higher and more wear resistant.
また、上記の鉄合金基地用粉末(鉄基合金粉末と黒鉛粉末の混合粉末)に、さらに、13質量%以下のNi粉末を添加してもよい。この場合、単味粉末の形態で添加したNi粉末よりNiが焼結時に基地に拡散して基地の焼き入れ性を向上させ、その拡散部の金属組織を硬いマルテンサイトとして基地の耐摩耗性を向上させることができる。また、元のNi粉末の部分はNi濃度が高く、その部分は軟質なオーステナイトとして残留して、耐摩耗性焼結合金のなじみ性を向上させるとともに、硬いマルテンサイトの相手攻撃性を緩和する作用を有する。このような作用を有するNiの単味粉末を上記の鉄合金基地用粉末に添加していくと、その添加量が増加するにしたがい、ベイナイト基地中のマルテンサイトの量が割合が増加するとともに、オーステナイトの量が増加して、耐摩耗性焼結合金の基地硬さが増加して耐摩耗性が向上する。また、Ni粉末の添加量がおよそ10質量%程度でマルテンサイト量が最大となって、耐摩耗性焼結合金の基地硬さが最大となり、自己の耐摩耗性は最大となる。さらにNiの添加量を増加させるとオーステナイト量が増加して、マルテンサイト量は減少に転じることとなって、耐摩耗性焼結合金の基地硬さは低下することとなるが、なじみ性向上や相手攻撃性低下の効果が大きくなる。ただし、Ni粉末の添加量が13質量%を超えると、軟質なオーステナイトが増加しすぎる結果、却って耐摩耗性が低下することとなる。Ni粉末の添加はこれらの作用を有することから、13質量%以下のNi粉末を上記の鉄合金基地用粉末に添加することで、耐摩耗性焼結合金の自己の耐摩耗性、相手攻撃性、なじみ性を要求される特性に応じて調整することができる。 Moreover, you may add 13 mass% or less Ni powder to the said iron alloy base powder (mixed powder of an iron base alloy powder and graphite powder). In this case, Ni diffuses from the Ni powder added in the form of a simple powder to the matrix during sintering to improve the hardenability of the matrix, and the metal structure of the diffusion part is hard martensite to improve the abrasion resistance of the matrix. Can be improved. Also, the original Ni powder portion has a high Ni concentration, and the portion remains as soft austenite, improving the conformability of the wear-resistant sintered alloy and reducing the counter attack of hard martensite. Have When Ni plain powder having such an action is added to the above iron alloy base powder, the amount of martensite in the bainite base increases as the addition amount increases, As the amount of austenite increases, the base hardness of the wear-resistant sintered alloy increases and the wear resistance improves. Further, when the amount of Ni powder added is about 10% by mass, the amount of martensite is maximized, the base hardness of the wear resistant sintered alloy is maximized, and the self wear resistance is maximized. Furthermore, when the amount of Ni added is increased, the amount of austenite increases and the amount of martensite starts to decrease, and the base hardness of the wear-resistant sintered alloy decreases. The effect of lowering the opponent's aggression is increased. However, if the amount of Ni powder exceeds 13% by mass, soft austenite increases excessively, resulting in a decrease in wear resistance. Since the addition of Ni powder has these functions, the addition of Ni powder of 13% by mass or less to the above-mentioned iron alloy base powder makes it possible to wear the wear-resistant sintered alloy with its own wear resistance and opponent attack. The conformability can be adjusted according to the required characteristics.
このような構成の鉄合金基地用粉末を用いた場合、耐摩耗性焼結合金の全体組成は、質量比で、Mo:3.81〜26.99%、Si:0.05〜2.0%、Cr:0.15〜4.8%、Ni:15.45質量%以下、C:0.3〜1.2%、および残部がFeおよび不可避不純物となり、焼結後に得られる耐摩耗性焼結合金の金属組織は、図4に示すように、ベイナイトとマルテンサイトとオーステナイトとの混合組織を呈する基地中に、Fe合金基地にMo珪化物が一体となって析出した硬質相が分散するものとなる。 When the iron alloy base powder having such a configuration is used, the overall composition of the wear-resistant sintered alloy is, by mass ratio, Mo: 3.81 to 2699%, Si: 0.05 to 2.0. %, Cr: 0.15-4.8%, Ni: 15.45% by mass or less, C: 0.3-1.2%, and the balance becomes Fe and inevitable impurities, and wear resistance obtained after sintering As shown in FIG. 4, in the sintered alloy, the hard phase in which the Mo silicide is integrally deposited on the Fe alloy matrix is dispersed in the matrix exhibiting a mixed structure of bainite, martensite, and austenite. It will be a thing.
[硬質相形成用合金粉末の組成の影響]
基地成形用合金粉末として上記文献2に開示されたFe−6.5Co−1.5Mo−Ni合金粉末を用意し、表1に示す組成の硬質相形成用合金粉末を25質量%と、黒鉛粉末1.1質量%と成形潤滑剤(ステアリン酸亜鉛0.8質量%)とを添加、混合し、混合粉末を成形圧力650MPaでφ30×φ20×h10のリングに成形した。次に、これら成形体を、アンモニア分解ガス雰囲気中で1180℃で60分間焼結し、試料01〜16を作製した。以上の試料について、簡易摩耗試験を行った結果を表1に併記する。
[Influence of composition of alloy powder for forming hard phase]
The Fe-6.5Co-1.5Mo-Ni alloy powder disclosed in the above-mentioned document 2 is prepared as the base forming alloy powder, and 25% by mass of the hard phase forming alloy powder having the composition shown in Table 1, graphite powder 1.1% by mass and a molding lubricant (0.8% by mass of zinc stearate) were added and mixed, and the mixed powder was molded into a ring of φ30 × φ20 × h10 at a molding pressure of 650 MPa. Next, these compacts were sintered in an ammonia decomposition gas atmosphere at 1180 ° C. for 60 minutes to prepare samples 01 to 16. Table 1 also shows the results of simple wear tests on the above samples.
なお、簡易摩耗試験は、高温下で叩きと摺動の入力がかかる状態で行った。具体的には、上記リング状試験片を、内径面に45°のテーパ面を有するバルブシート形状に加工し、焼結合金をアルミ合金製ハウジングに圧入嵌合した。そして、SUH−36素材で作製した外形面に一部45°のテーパ面を有する円盤形状の相手材(バルブ)を、モータ駆動による偏心カムの回転によって上下ピストン運動させることにより、焼結合金と相手材とのテーパ面同士を繰り返し衝突させた。すなわち、バルブの動作は、モータ駆動によって回転する偏心カムによってバルブシートから離れる開放動作と、バルブスプリングによるバルブシートへの着座動作とを繰り返し、上下ピストン運動が実現される。なお、この試験では、相手材をバーナーで加熱して焼結合金が250℃となるように温度設定し、簡易摩耗試験叩き回数を2800回/分、繰り返し時間を15時間とした。このようにして試験後のバルブシートの摩耗量およびバルブの摩耗量を測定して評価を行った。 Note that the simple wear test was performed in a state in which tapping and sliding input were applied at a high temperature. Specifically, the ring-shaped test piece was processed into a valve seat shape having a 45 ° tapered surface on the inner diameter surface, and the sintered alloy was press-fitted into an aluminum alloy housing. Then, a disk-shaped counterpart material (valve) partially having a 45 ° taper surface on the outer surface made of the SUH-36 material is moved up and down by a motor-driven eccentric cam, thereby moving the sintered alloy and The taper surfaces with the mating material were repeatedly collided. That is, the operation of the valve repeats the opening operation of separating from the valve seat by the eccentric cam rotated by the motor drive and the seating operation on the valve seat by the valve spring, thereby realizing the vertical piston motion. In this test, the counterpart material was heated with a burner, and the temperature was set so that the sintered alloy became 250 ° C., the number of hits of the simple wear test was 2800 times / minute, and the repetition time was 15 hours. Thus, the wear amount of the valve seat and the wear amount of the valve after the test were measured and evaluated.
(摩耗量と硬質相形成用合金粉末中のMo量との関係)
硬質相形成用合金粉末中のMo量が48〜60質量%の範囲である焼結合金(試料番号02〜05)は、バルブシートおよびバルブの摩耗量が安定して低くなっており、良好な耐摩耗性を示すことが判る。一方、Mo量が48〜60質量%の範囲を逸脱している焼結合金(試料番号01,06)は、特にバルブシートの摩耗量が顕著に高くなっており、バルブの摩耗量も比較的高い。したがって、硬質相形成用合金粉末中のMo量が48〜60質量%の範囲であれば、優れた耐摩耗性が実現されることが確認された。
(Relation between wear amount and Mo amount in hard phase forming alloy powder)
The sintered alloy (sample number 02 to 05) in which the Mo amount in the hard phase forming alloy powder is in the range of 48 to 60% by mass has a low and stable wear amount of the valve seat and the valve. It can be seen that it exhibits wear resistance. On the other hand, the sintered alloy (sample No. 01, 06) in which the Mo amount deviates from the range of 48 to 60% by mass has a particularly high valve seat wear amount, and the valve wear amount is relatively high. high. Accordingly, it was confirmed that excellent wear resistance was achieved when the Mo content in the alloy powder for forming the hard phase was in the range of 48 to 60% by mass.
(摩耗量と硬質相形成用合金粉末中のCr量との関係)
硬質相形成用合金粉末中のCr量が3〜12質量%の範囲である焼結合金(試料番号03,08〜10)は、バルブシートおよびバルブの摩耗量が安定して低くなっており、良好な耐摩耗性を示すことが判る。一方、Cr量が3〜12質量%の範囲を逸脱している焼結合金(試料番号07,11)は、特にバルブシートの摩耗量が顕著に高くなっている。したがって、硬質相形成用合金粉末中のCr量が3〜12質量%の範囲であれば、優れた耐摩耗性が実現されることが確認された。
(Relationship between wear amount and Cr amount in hard phase forming alloy powder)
In the sintered alloy (sample number 03,08-10) in which the Cr amount in the hard phase forming alloy powder is in the range of 3 to 12% by mass, the wear amount of the valve seat and the valve is stably low. It can be seen that it exhibits good wear resistance. On the other hand, in the sintered alloy (sample numbers 07 and 11) in which the Cr amount deviates from the range of 3 to 12% by mass, the wear amount of the valve seat is particularly high. Therefore, it was confirmed that excellent wear resistance was achieved when the Cr content in the hard phase forming alloy powder was in the range of 3 to 12 mass%.
(摩耗量と硬質相形成用合金粉末中のSi量との関係)
硬質相形成用合金粉末中のSi量が1〜5質量%の範囲である焼結合金(試料番号03,13,14)は、バルブシートおよびバルブの摩耗量が安定して低くなっており、良好な耐摩耗性を示すことが判る。一方、Si量が1〜5質量%の範囲を逸脱している焼結合金(試料番号12,15)は、特にバルブシートの摩耗量が顕著に高くなっている。したがって、硬質相形成用合金粉末中のSi量が1〜5質量%の範囲であれば、優れた耐摩耗性が実現されることが確認された。
(Relation between wear amount and Si amount in hard phase forming alloy powder)
In the sintered alloy (sample numbers 03, 13, and 14) in which the Si amount in the hard phase forming alloy powder is in the range of 1 to 5% by mass, the wear amount of the valve seat and the valve is stably low. It can be seen that it exhibits good wear resistance. On the other hand, in the sintered alloy (sample numbers 12 and 15) in which the Si amount deviates from the range of 1 to 5% by mass, the wear amount of the valve seat is particularly high. Accordingly, it was confirmed that excellent wear resistance was achieved when the Si content in the hard phase forming alloy powder was in the range of 1 to 5 mass%.
(本発明の硬質相と従来硬質相との比較)
上記の本発明の硬質相形成用合金粉末を用いた試料(試料番号02〜05,08〜10,13,14)および従来のCo基硬質相形成用合金粉末の試料(試料番号16)の金属組織を観察したところ、本発明の硬質相形成用合金粉末を用いた試料では、図1に示したように、Mo珪化物を主とする析出物が一体化して析出していることが確認された。一方、従来のCo基硬質相形成用合金粉末の試料では、図2に示したような、Mo珪化物を主とする析出物が、一体ではなく、群状に析出していることが確認された。
(Comparison between the hard phase of the present invention and the conventional hard phase)
Metals of samples (sample numbers 02 to 05, 08 to 10, 13, 14) using the above-described hard phase forming alloy powders of the present invention and samples of conventional Co-based hard phase forming alloy powders (sample number 16) As a result of observation of the structure, in the sample using the hard phase forming alloy powder of the present invention, as shown in FIG. 1, it was confirmed that precipitates mainly composed of Mo silicide were integrated and precipitated. It was. On the other hand, in the sample of the conventional alloy powder for forming a Co-based hard phase, it was confirmed that precipitates mainly composed of Mo silicide as shown in FIG. It was.
表1において、従来のCo基硬質相形成用合金粉末の試料と、上記の成分組成が本発明範囲内の硬質相形成用合金粉末の試料とを比較すると、本発明範囲の硬質相形成用合金粉末を用いた試料は、いずれの場合も従来のCo基硬質相形成用合金粉末を用いた場合よりも、バルブシート摩耗量、バルブ摩耗量が低減でき、合計摩耗量が低減されていることが判る。特に、バルブ摩耗量は顕著に低減されており、これは、金属組織観察において確認されたように、潤滑性を有するMo珪化物が一体化して析出しているからである。 In Table 1, when comparing a sample of the conventional Co-based hard phase forming alloy powder and a sample of the hard phase forming alloy powder having the above component composition within the range of the present invention, the hard phase forming alloy within the range of the present invention In any case, the powder samples can reduce the valve seat wear amount and the valve wear amount, and the total wear amount can be reduced as compared with the case where the conventional Co-based hard phase forming alloy powder is used. I understand. In particular, the amount of wear of the valve is significantly reduced, as confirmed by observation of the metal structure, Mo silicide having lubricity is integrally deposited.
[硬質相形成用合金粉末の添加量の影響]
基地成形用合金粉末として上記文献2に開示されたFe−6.5Co−1.5Mo−Ni合金粉末を用意するとともに、実施例1の試料03で用いた硬質相形成用合金粉末を用意し、硬質相形成用合金粉末の添加量を表2に示す量に設定して、実施例1と同じ条件でφ30×φ20×h10のリングに成形した。次に、これら成形体を、アンモニア分解ガス雰囲気中で1180℃で60分間焼結し、試料17〜23を作製した。以上の試料について、簡易摩耗試験を行った結果を表2に併記する。
[Effect of addition amount of hard phase forming alloy powder]
While preparing the Fe-6.5Co-1.5Mo-Ni alloy powder disclosed in Document 2 above as the base forming alloy powder, preparing the hard phase forming alloy powder used in Sample 03 of Example 1, The addition amount of the alloy powder for forming the hard phase was set to the amount shown in Table 2, and molded into a ring of φ30 × φ20 × h10 under the same conditions as in Example 1. Next, these compacts were sintered in an ammonia decomposition gas atmosphere at 1180 ° C. for 60 minutes to prepare Samples 17 to 23. Table 2 shows the results of simple wear tests on the above samples.
(摩耗量と硬質相形成用合金粉末の添加量との関係)
混合粉末全体の質量に対する硬質相形成用合金粉末の添加量が5〜40質量%の範囲である焼結合金(試料番号03,18〜22)は、バルブシートおよびバルブの摩耗量が安定して低くなっており、良好な耐摩耗性を示すことが判る。一方、硬質相形成用合金粉末の添加量が5〜40質量%の範囲を逸脱している焼結合金(試料番号17,23)は、特にバルブシートの摩耗量が顕著に高くなっている。したがって、混合粉末全体の質量に対する硬質相形成用合金粉末の添加量が5〜40質量%の範囲であれば、優れた耐摩耗性が実現されることが確認された。なお、本発明の焼結合金(試料番号03,18〜22)はいずれも、従来例の焼結合金(試料番号16)に比して、バルブシートおよびバルブの双方について、摩耗量が少ないという良好な結果が得られている。
(Relationship between amount of wear and amount of hard phase forming alloy powder added)
Sintered alloys (sample numbers 03, 18-22) in which the addition amount of the alloy powder for forming the hard phase with respect to the total mass of the mixed powder is in the range of 5 to 40% by mass have stable valve seat and valve wear. It can be seen that it is low and exhibits good wear resistance. On the other hand, in the sintered alloy (sample numbers 17 and 23) in which the addition amount of the alloy powder for forming the hard phase is out of the range of 5 to 40% by mass, the wear amount of the valve seat is particularly high. Therefore, it was confirmed that if the addition amount of the alloy powder for forming the hard phase with respect to the total mass of the mixed powder is in the range of 5 to 40% by mass, excellent wear resistance is realized. In addition, all the sintered alloys of the present invention (sample numbers 03 and 18 to 22) have less wear on both the valve seat and the valve than the conventional sintered alloy (sample number 16). Good results have been obtained.
[焼結温度の影響]
基地成形用合金粉末として上記文献2に開示されたFe−6.5Co−1.5Mo−Ni合金粉末を用意するとともに、実施例1の試料03で用いた硬質相形成用合金粉末を用意し、実施例1と同じ条件でφ30×φ20×h10のリングに成形した。次に、これら成形体を、焼結温度を表3に示す温度をそれぞれ設定して、アンモニア分解ガス雰囲気中で60分間焼結し、試料24〜28を作製した。以上の試料について、簡易摩耗試験を行った結果を表3に併記する。
[Influence of sintering temperature]
While preparing the Fe-6.5Co-1.5Mo-Ni alloy powder disclosed in Document 2 above as the base forming alloy powder, preparing the hard phase forming alloy powder used in Sample 03 of Example 1, A ring of φ30 × φ20 × h10 was molded under the same conditions as in Example 1. Next, these compacts were sintered at the temperatures shown in Table 3 for 60 minutes in an ammonia-decomposing gas atmosphere to prepare samples 24-28. The results of conducting a simple wear test on the above samples are also shown in Table 3.
(摩耗量と焼結温度との関係)
焼結温度が1000〜1200℃の範囲である焼結合金(試料番号3,25〜27)は、バルブシートおよびバルブの摩耗量が安定して低くなっており、良好な耐摩耗性を示すことが判る。一方、焼結温度が1000〜1200℃の範囲を逸脱している焼結合金(試料番号24,28)は、特にバルブシートの摩耗量が顕著に高くなっている。したがって、焼結温度が1000〜1200℃の範囲であれば、優れた耐摩耗性が実現されることが確認された。なお、本発明の焼結合金(試料番号03,25〜27)はいずれも、従来例の焼結合金(試料番号16)に比して、バルブシートとバルブとの合計摩耗量について、良好な結果が得られている。
(Relation between wear amount and sintering temperature)
Sintered alloys with a sintering temperature in the range of 1000 to 1200 ° C. (sample numbers 3, 25 to 27) have a stable and low wear amount of the valve seat and valve, and exhibit good wear resistance. I understand. On the other hand, the sintered alloy (sample numbers 24 and 28) whose sintering temperature deviates from the range of 1000 to 1200 ° C. has a particularly high amount of wear of the valve seat. Therefore, it was confirmed that if the sintering temperature is in the range of 1000 to 1200 ° C., excellent wear resistance is realized. Note that the sintered alloy of the present invention (sample numbers 03, 25 to 27) is better in terms of the total wear amount of the valve seat and the valve than the sintered alloy of the conventional example (sample number 16). The result is obtained.
[硬質相の影響]
基地形成用合金粉末として、特許文献1に開示のFe−3Cr−0.3Mo−0.3V合金粉末と、Fe−6.5Co−1.5Mo−1.5Ni合金粉末とを単独で用意するか、またはこれらの合金粉末を1:1の割合で混合した混合粉末を用意した。また、硬質相形成用合金粉末として、本発明のFe−50Mo−10Cr−3Si合金と、従来のCo−3Cr−0.3Mo−0.3V合金とをそれぞれ用意した。そして、硬質相形用成合金粉末25質量%と黒鉛粉末1.1質量%を表4に示す割合の基地形成用粉末に添加して実施例1と同じ条件でφ30×φ20×h10のリングに成形した。次に、これら成形体を、アンモニア分解ガス雰囲気中で1180℃にて60分間焼結し、試料03,16,29〜32を作製した。以上の試料について、簡易摩耗試験を行った結果を表4に併記する。
[Influence of hard phase]
Whether the Fe-3Cr-0.3Mo-0.3V alloy powder disclosed in Patent Document 1 and the Fe-6.5Co-1.5Mo-1.5Ni alloy powder are prepared alone as the base forming alloy powder Alternatively, a mixed powder prepared by mixing these alloy powders at a ratio of 1: 1 was prepared. Moreover, the Fe-50Mo-10Cr-3Si alloy of this invention and the conventional Co-3Cr-0.3Mo-0.3V alloy were prepared as the alloy powder for hard phase formation, respectively. Then, 25% by mass of the hard-phase-forming alloy powder and 1.1% by mass of the graphite powder are added to the base-forming powder in the proportions shown in Table 4, and formed into a ring of φ30 × φ20 × h10 under the same conditions as in Example 1. did. Next, these compacts were sintered in an ammonia decomposition gas atmosphere at 1180 ° C. for 60 minutes to prepare Samples 03, 16, and 29 to 32. The results of conducting a simple wear test on the above samples are also shown in Table 4.
(摩耗量と硬質相との関係)
いずれの基地形成用合金粉末を使用した場合であっても、本発明の硬質相形用成合金粉末を使用した場合(試料番号03,29,30)は、従来の硬質相形成用合金粉末を使用した場合(試料番号16,31,32)よりも、バルブシートおよびバルブの摩耗量が安定して低くなっており、良好な耐摩耗性を示すことが判る。したがって、本発明の硬質相形成用合金粉末を使用すれば、優れた耐摩耗性が実現されることが確認された。
(Relationship between wear amount and hard phase)
Whichever base forming alloy powder is used, when the hard phase forming alloy powder of the present invention is used (sample numbers 03, 29, 30), the conventional hard phase forming alloy powder is used. It can be seen that the wear amount of the valve seat and the valve is stably lower than that in the case of (Sample Nos. 16, 31, 32), and the wear resistance is good. Therefore, it was confirmed that if the alloy powder for forming a hard phase of the present invention is used, excellent wear resistance is realized.
[基地形成用合金粉末の組成の影響]
基地用粉末として表5に示す組成のものを用意するとともに、実施例1の試料03で用いた硬質相形成用合金粉末を25質量%と、表5に示す量の黒鉛粉末を添加して実施例1と同じ条件でφ30×φ20×h10のリングに成形した。次に、これら成形体を、アンモニア分解ガス雰囲気中で1180℃にて60分間焼結し、試料33〜49を作製した。以上の試料について、簡易摩耗試験を行った結果を表5に併記する。
[Influence of composition of alloy powder for base formation]
The base powder having the composition shown in Table 5 was prepared, and 25% by mass of the hard phase forming alloy powder used in Sample 03 of Example 1 and the amount of graphite powder shown in Table 5 were added. A ring of φ30 × φ20 × h10 was molded under the same conditions as in Example 1. Next, these compacts were sintered in an ammonia decomposition gas atmosphere at 1180 ° C. for 60 minutes to prepare Samples 33 to 49. The results of simple wear tests on the above samples are also shown in Table 5.
(摩耗量と基地形成用合金粉末中のMo量との関係)
基地形成用合金粉末中のMo量が1.5〜5.0質量%の範囲である焼結合金(試料番号34〜37)は、バルブシートおよびバルブの摩耗量が安定して低くなっており、良好な耐摩耗性を示すことが判る。一方、Mo量が1.5〜5.0質量%の範囲を逸脱している焼結合金(試料番号33,38)は、特にバルブシートの摩耗量が顕著に高くなっており、バルブの摩耗量も比較的高い。したがって、硬質相形成用合金粉末中のMo量が1.5〜5.0質量%の範囲であれば、優れた耐摩耗性が実現されることが確認された。
(Relationship between the amount of wear and the amount of Mo in the base-forming alloy powder)
In the sintered alloy (sample numbers 34 to 37) in which the Mo amount in the base forming alloy powder is in the range of 1.5 to 5.0% by mass, the wear amount of the valve seat and the valve is stably low. It can be seen that it exhibits good wear resistance. On the other hand, in the sintered alloy (sample numbers 33 and 38) in which the Mo amount deviates from the range of 1.5 to 5.0 mass%, the wear amount of the valve seat is particularly high, and the wear of the valve The amount is also relatively high. Therefore, it was confirmed that if the amount of Mo in the hard phase forming alloy powder is in the range of 1.5 to 5.0 mass%, excellent wear resistance is realized.
(摩耗量と基地形成用合金粉末中のNi量との関係)
基地形成用合金粉末中のMo量が3.5質量%の焼結合金(試料番号36)と、基地形成合金粉末中にMo:3.5質量%と表5に記載の割合のNiを与えた焼結合金(試料番号45〜49)を比較することで、基地形成合金粉末にNiを固溶させて与えた場合の影響が確認できる。これらの焼結合金より、Moを3.5質量%含有する基地形成用合金粉末中のNiを与えることで耐摩耗性が向上し、Ni含有量が増加するにつれてさらに耐摩耗性が向上していることが判る。ただし、この効果はNi含有量が2質量%をピークとし、Ni含有量が3質量%では未添加のものとほぼ同等の耐摩耗性となって、これよりさらにNi含有量が増加すると、耐摩耗性が却って低下して摩耗量が増大することが判る。したがって、Moを含有する基地形成用合金粉末にNiを含有することでさらに耐摩耗性を向上できるが、3質量%を超える添加は却って耐摩耗性を低下させるため、添加量上限は3質量%とする必要があることが確認された。
(Relationship between wear amount and Ni amount in base forming alloy powder)
A sintered alloy (Sample No. 36) having Mo content of 3.5% by mass in the base-forming alloy powder, and Mo: 3.5% by mass and Ni in the ratio shown in Table 5 were given in the base-forming alloy powder. By comparing the sintered alloys (sample numbers 45 to 49), it is possible to confirm the influence when Ni is dissolved in the base forming alloy powder. From these sintered alloys, wear resistance is improved by giving Ni in the base-forming alloy powder containing 3.5% by mass of Mo, and the wear resistance is further improved as the Ni content increases. I know that. However, this effect has a peak Ni content of 2% by mass. When the Ni content is 3% by mass, the wear resistance is almost the same as that with no addition, and when the Ni content further increases, It can be seen that the wear rate decreases and the wear amount increases. Therefore, the wear resistance can be further improved by including Ni in the base-forming alloy powder containing Mo, but addition exceeding 3% by mass decreases the wear resistance, so the upper limit of the addition amount is 3% by mass. It was confirmed that it was necessary.
(金属組織観察結果)
上記の本発明の成分組成の範囲の基地形成用合金粉末を用いた焼結合金(試料番号34〜37,45〜48)の金属組織を観察したところ、図3に示すような、Mo珪化物を主体とする析出物が一体となって析出する硬質相が、ベイナイト基地組織中に分散する金属組織を呈していることが確認された。
(Metal structure observation results)
Observation of the metal structure of the sintered alloy (sample numbers 34 to 37, 45 to 48) using the base-forming alloy powder in the component composition range of the present invention described above, Mo silicide as shown in FIG. It was confirmed that the hard phase in which precipitates mainly composed of selenium precipitate together has a metal structure dispersed in the bainite matrix structure.
[原料粉末の組成の影響]
基地形成用合金粉末として実施例5の試料36で用いたものを用意し、硬質相形成用合金粉末として実施例1の試料03で用いたものを25質量%添加するとともに、さらに表6に示す割合で黒鉛粉末とNi粉末を添加、混合した原料粉末を、実施例1と同じ条件でφ30×φ20×h10のリングに成形した。次に、これら成形体を、アンモニア分解ガス雰囲気中で1180℃にて60分間焼結し、試料50〜60を作製した。以上の試料について、簡易摩耗試験を行った結果を表6に併記する。
[Influence of composition of raw material powder]
The base-forming alloy powder used in Sample 36 of Example 5 was prepared, and 25% by mass of the hard-phase forming alloy powder used in Sample 03 of Example 1 was added. A raw material powder obtained by adding and mixing graphite powder and Ni powder in a proportion was molded into a ring of φ30 × φ20 × h10 under the same conditions as in Example 1. Next, these compacts were sintered in an ammonia decomposition gas atmosphere at 1180 ° C. for 60 minutes to prepare samples 50 to 60. The results of conducting a simple wear test on the above samples are also shown in Table 6.
(摩耗量と黒鉛粉末添加量との関係)
原料粉末中の黒鉛粉末の添加量が0.3〜1.2質量%の範囲である焼結合金(試料番号36,51〜54)は、バルブシートおよびバルブの摩耗量が安定して低くなっており、良好な耐摩耗性を示すことが判る。一方、黒鉛粉末の添加量が0.3〜1.2質量%の範囲を逸脱している焼結合金(試料番号50,55)は、特にバルブシートの摩耗量が顕著に高くなっており、バルブの摩耗量も比較的高い。したがって、原料粉末への黒鉛粉末の添加量が0.3〜1.2質量%の範囲であれば、優れた耐摩耗性が実現されることが確認された。
(Relationship between the amount of wear and the amount of graphite powder added)
In the sintered alloy (sample numbers 36 and 51 to 54) in which the amount of the graphite powder in the raw material powder is in the range of 0.3 to 1.2% by mass, the wear amount of the valve seat and the valve is stably reduced. It can be seen that it exhibits good wear resistance. On the other hand, the sintered alloy (sample numbers 50 and 55) in which the addition amount of the graphite powder deviates from the range of 0.3 to 1.2% by mass has a particularly high wear amount of the valve seat, Valve wear is also relatively high. Therefore, it was confirmed that excellent wear resistance was achieved when the amount of graphite powder added to the raw material powder was in the range of 0.3 to 1.2 mass%.
(摩耗量とNi粉末添加量との関係)
原料粉末中にNi粉末を含有しない焼結合金(試料番号36)と、原料粉末に表6に示す割合のNi粉末を添加した焼結合金(試料番号56〜60)を比較することで、原料粉末にNi粉末を添加した場合の影響が確認できる。これらの焼結合金より、原料粉末中にNiを与えることで耐摩耗性が向上し、Ni含有量が増加するにつれてさらに耐摩耗性が向上していることが判る。ただし、この効果はNi粉末の添加量が10質量%をピークとし、Ni粉末の添加量が13質量%では未添加のものとほぼ同等の耐摩耗性となって、これよりさらにNi粉末の添加量が増加すると、耐摩耗性が却って低下して摩耗量が増大することが判る。したがって、原料粉末にNi粉末を添加することでさらに耐摩耗性を向上できるが、13質量%を超えるNi粉末の添加は却って耐摩耗性を低下させるため、添加量上限は13質量%とする必要があることが確認された。
(Relationship between wear amount and Ni powder addition amount)
By comparing the sintered alloy containing no Ni powder in the raw material powder (sample number 36) and the sintered alloy (sample number 56-60) obtained by adding Ni powder in the ratio shown in Table 6 to the raw material powder, The effect of adding Ni powder to the powder can be confirmed. From these sintered alloys, it can be seen that the wear resistance is improved by adding Ni to the raw material powder, and the wear resistance is further improved as the Ni content increases. However, this effect peaked at 10% by mass of Ni powder added, and when the added amount of Ni powder was 13% by mass, the wear resistance was almost the same as that of the unadded one. It can be seen that as the amount increases, the wear resistance decreases and the amount of wear increases. Therefore, the wear resistance can be further improved by adding Ni powder to the raw material powder. However, the addition of Ni powder exceeding 13% by mass decreases the wear resistance, so the upper limit of the addition amount needs to be 13% by mass. It was confirmed that there is.
(金属組織観察結果)
上記のNi添加量が13質量%以下の原料粉末を用いた焼結合金(試料番号56〜59)の金属組織を観察したところ、図4に示すような、Mo珪化物を主体とする析出物が一体となって析出する硬質相が、ベイナイトとオーステナイトとマルテンサイトとの混合組織を呈する基地組織中に分散する金属組織を呈していることが確認された。
(Metal structure observation results)
When the metal structure of the sintered alloy (sample numbers 56 to 59) using the raw material powder having the Ni addition amount of 13% by mass or less was observed, a precipitate mainly composed of Mo silicide as shown in FIG. It was confirmed that the hard phase in which the precipitates are integrally formed exhibits a metal structure that is dispersed in a matrix structure that exhibits a mixed structure of bainite, austenite, and martensite.
本発明の焼結合金は、耐摩耗性を向上させたことにより、自動車エンジンの高性能化により作動条件が近年一段と厳しくなっているバルブシートに適用することができる。 The sintered alloy of the present invention can be applied to valve seats whose operating conditions have become more severe in recent years due to higher performance of automobile engines due to improved wear resistance.
Claims (6)
The iron alloy base powder is further selected from among lead powder, molybdenum disulfide powder, manganese sulfide powder, boron nitride powder, magnesium metasilicate mineral powder, bismuth powder, bismuth oxide powder, chromium sulfide powder, calcium fluoride powder. The iron-based mixed powder for wear-resistant sintered members according to any one of claims 3 to 5, wherein at least one kind is contained in a mass ratio of 2% or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005095636A JP2006274359A (en) | 2005-03-29 | 2005-03-29 | Alloy powder for forming hard phase and ferrous powder mixture using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005095636A JP2006274359A (en) | 2005-03-29 | 2005-03-29 | Alloy powder for forming hard phase and ferrous powder mixture using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006274359A true JP2006274359A (en) | 2006-10-12 |
Family
ID=37209392
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005095636A Pending JP2006274359A (en) | 2005-03-29 | 2005-03-29 | Alloy powder for forming hard phase and ferrous powder mixture using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006274359A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2021065552A1 (en) * | 2019-10-03 | 2021-04-08 | ||
CN115704076A (en) * | 2021-07-20 | 2023-02-17 | 大同特殊钢株式会社 | Hard particle powder for sintered body |
-
2005
- 2005-03-29 JP JP2005095636A patent/JP2006274359A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2021065552A1 (en) * | 2019-10-03 | 2021-04-08 | ||
WO2021065552A1 (en) * | 2019-10-03 | 2021-04-08 | 住友電工焼結合金株式会社 | Sintered member and method for producing sintered member |
JP7275465B2 (en) | 2019-10-03 | 2023-05-18 | 住友電工焼結合金株式会社 | Sintered material |
CN115704076A (en) * | 2021-07-20 | 2023-02-17 | 大同特殊钢株式会社 | Hard particle powder for sintered body |
US11846009B2 (en) | 2021-07-20 | 2023-12-19 | Daido Steel Co., Ltd. | Hard particle powder for sintered body |
CN115704076B (en) * | 2021-07-20 | 2024-03-12 | 大同特殊钢株式会社 | Hard particle powder for sintered body |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4368245B2 (en) | Hard particle dispersion type iron-based sintered alloy | |
KR100608216B1 (en) | Alloy powder for forming hard phase, sintered alloy having an abrasion resistance using the same and method for manufacturing thereof | |
JP4948636B2 (en) | Hard particles for blending sintered alloys, wear-resistant iron-based sintered alloys, and valve seats | |
KR100796117B1 (en) | Sintered valve seat and method of manufacturing the same | |
JP4466957B2 (en) | Wear-resistant sintered member and manufacturing method thereof | |
JP4467013B2 (en) | Sintered valve seat manufacturing method | |
JP4693170B2 (en) | Wear-resistant sintered alloy and method for producing the same | |
JP4179550B2 (en) | Wear-resistant sintered alloy and method for producing the same | |
US10619229B2 (en) | Manufacturing method of wear-resistant iron-based sintered alloy and wear-resistant iron-based sintered alloy | |
JP2004307950A (en) | Iron-based sintered alloy, valve seat ring, raw material powder for producing iron-based sintered alloy and method of producing iron-based sintered alloy | |
KR20030014137A (en) | A sintered member having an abrasion resistance and a method for producing the same | |
JP2002285293A (en) | Valve seat material for high load engine and production method therefor | |
JP4455390B2 (en) | Wear-resistant sintered alloy and method for producing the same | |
JP6077499B2 (en) | Sintered alloy molded body, wear-resistant iron-based sintered alloy, and method for producing the same | |
JP2006274359A (en) | Alloy powder for forming hard phase and ferrous powder mixture using the same | |
JP4020857B2 (en) | Alloy powder for forming hard phase, iron-based mixed powder using the same, method for producing wear-resistant sintered alloy, and wear-resistant sintered alloy | |
JP5253132B2 (en) | Wear-resistant sintered alloy and method for producing the same | |
JPH09256120A (en) | Powder metallurgy material excellent in wear resistance | |
JP2010013697A (en) | Alloy powder for forming hard phase | |
JP4716366B2 (en) | Sintered valve seat manufacturing method | |
JP2010144235A (en) | Wear-resistant sintered alloy and method for producing the same | |
JP5358131B2 (en) | Wear-resistant sintered alloy and method for producing the same | |
JP2001214245A (en) | Ferrous sintered alloy and producing method thererfor | |
JP2010144237A (en) | Wear-resistant sintered alloy and method for producing the same | |
JP5253131B2 (en) | Wear-resistant sintered alloy and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070920 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090915 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091027 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100302 |