Nothing Special   »   [go: up one dir, main page]

JPS6283444A - Heat and wear resistant aluminum alloy - Google Patents

Heat and wear resistant aluminum alloy

Info

Publication number
JPS6283444A
JPS6283444A JP22216385A JP22216385A JPS6283444A JP S6283444 A JPS6283444 A JP S6283444A JP 22216385 A JP22216385 A JP 22216385A JP 22216385 A JP22216385 A JP 22216385A JP S6283444 A JPS6283444 A JP S6283444A
Authority
JP
Japan
Prior art keywords
weight
alloy
resistant
heat
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22216385A
Other languages
Japanese (ja)
Inventor
Yusuke Kotani
雄介 小谷
Atsushi Kuroishi
黒石 農士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ALUM FUNMATSU YAKIN GIJUTSU KENKYU KUMIAI
Original Assignee
ALUM FUNMATSU YAKIN GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ALUM FUNMATSU YAKIN GIJUTSU KENKYU KUMIAI filed Critical ALUM FUNMATSU YAKIN GIJUTSU KENKYU KUMIAI
Priority to JP22216385A priority Critical patent/JPS6283444A/en
Publication of JPS6283444A publication Critical patent/JPS6283444A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

PURPOSE:To provide superior heat and wear resistances to an Al alloy contg. Si, Fe and Ni by properly regulating the ratio between Fe and Ni as transition elements in the alloy and adding a specified amount each of Cu and/or Mg. CONSTITUTION:The ratio between Fe and Ni in an Al alloy consisting of 5-40wt% Si, 2-15wt% Fe+Ni and the balance Al with inevitable impurities is regulated to 1:4-4:1, and 0.1-8wt% each of Cu and/or Mg is added to the alloy. The resulting Al alloy has high tensile strength at high temp., superior shock and wear resistances.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はAQ−8t−Fe−Ni系耐熱耐摩耗性アルミ
ニウム合金の強度の改善に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to improving the strength of AQ-8t-Fe-Ni heat-resistant and wear-resistant aluminum alloys.

従来の技術及び発明が解決しようとする問題点近年、自
動車用エンジンおよび航空機等の材料は省エネルギー・
高性能化の必要から小型軽量化、高出力化が図られ、そ
れに伴ってピストン等に使用される材料は従来よりも高
荷重・高温度の厳しい条件下での使用に耐えることが要
求されている。
Problems to be solved by conventional techniques and inventions In recent years, materials for automobile engines and aircraft have become energy-saving and
The need for higher performance has led to smaller size, lighter weight, and higher output, and along with this, the materials used for pistons, etc. are required to withstand use under harsher conditions of higher loads and higher temperatures than before. There is.

耐熱性、耐摩耗性を必要とする自動車ピストンを例にと
れば、従来のピストン用アルミ合金はAC8A、 AC
8BといったAQ−8i系の鋳造材が用いられている。
Taking an automobile piston as an example, which requires heat resistance and wear resistance, conventional aluminum alloys for pistons are AC8A, AC
AQ-8i cast material such as 8B is used.

しかし鋳造法でさらに耐摩耗性、耐熱性を改善する為に
多量のSiやFe、Ni等を添加すると、元素の偏析や
初品の粗大化等により強度、伸び、靭性等の特性が著し
く低下し、要求特性を十分に満足することができない。
However, when large amounts of Si, Fe, Ni, etc. are added to further improve wear resistance and heat resistance in the casting method, properties such as strength, elongation, and toughness deteriorate significantly due to element segregation and coarsening of the initial product. However, the required characteristics cannot be fully satisfied.

近年急冷高Si含有アルミニウム合金粉末を出発原料と
して用い熱間押出法等によって無気孔の均一微細結晶粒
の耐熱、耐摩耗アルミニウム合金材料の開発が開始され
ている。
In recent years, development of heat-resistant and wear-resistant aluminum alloy materials with pore-free, uniform, fine crystal grains has begun using quenched high-Si-containing aluminum alloy powder as a starting material and hot extrusion methods.

このようにして作られた合金は、急冷凝固の効果による
固溶限の拡大によって多量のSiやFe及びNi等の元
素を固溶しているにもかかわらず、鋳造材にみられるよ
うな粗大な析出物や偏析物はほとんと生じない。
Although the alloy made in this way contains a large amount of elements such as Si, Fe, and Ni as a solid solution due to the expansion of the solid solubility limit due to the effect of rapid solidification, it does not have the coarse grains seen in cast materials. Almost no precipitates or segregated substances occur.

しかしなから、急冷粉末を用いる場合には緻密化のため
の成形時の加熱による粒成長等の問題もあり、おのずと
製造方法に限界がある。例えば、急冷粉末冶金法によっ
て製造した耐熱耐摩合金で主としての20〜30重量%
のSiと2〜IO重量%のFe、またはNi等の遷移元
素を含むアルミニウム合金は急冷凝固粉末を熱間押出す
ることにより製造するが、こうして得られたアルミニウ
ム合金では耐熱耐摩耗性は改善されるが伸び、靭性が著
しく低下する。この原因は熱間押出中に生じる初品析出
物や金属間化合物である。この低い伸びと低い靭性のた
め、急冷粉末冶金法によって製造した高合金化アルミニ
ウム合金の用途は限られてしまう。
However, when rapidly solidified powder is used, there are problems such as grain growth due to heating during molding for densification, which naturally limits the manufacturing method. For example, in heat-resistant and wear-resistant alloys manufactured by quenched powder metallurgy, the main amount is 20 to 30% by weight.
Aluminum alloys containing transition elements such as Si and 2 to IO weight percent of Fe or Ni are produced by hot extruding rapidly solidified powder, but the aluminum alloys obtained in this way have improved heat and wear resistance. The material elongates and the toughness significantly decreases. The cause of this is initial product precipitates and intermetallic compounds generated during hot extrusion. This low elongation and low toughness limit the applications of highly alloyed aluminum alloys produced by quenched powder metallurgy.

問題点を解決するための手段 本発明はAQ + s + +及びFeまたはNi元素
からなる高合金化アルミニウム合金の靭性及び伸びを改
善するためになされたものであり、合金中に含まれるF
e、Niの遷移元素を適度の割合で含有せしめることに
より、従来のAQ−8i−FeまたはAQ−3t−Ni
等主として3元素よりなる高合金化耐熱耐摩耗性アルミ
ニウム合金の靭性を向上させ、同時に室温または高温で
の強度を改善することを目的とするものである。
Means for Solving the Problems The present invention was made in order to improve the toughness and elongation of a highly alloyed aluminum alloy consisting of AQ + s + + and Fe or Ni elements.
By containing the transition elements e and Ni in an appropriate proportion, conventional AQ-8i-Fe or AQ-3t-Ni
The purpose of this invention is to improve the toughness of a highly alloyed heat-resistant and wear-resistant aluminum alloy mainly composed of three elements, and at the same time to improve its strength at room temperature or high temperature.

本発明のアルミニウム合金の添加元素であるSiは耐摩
耗性の改善に効果的である。AQ中にSjを多量に添加
すると凝固時に初晶Si粒子として析出し、合金の耐摩
耗性が向上する。初品Si粉粒子大きさ及び量は、合金
の凝固速度、si添加量に大きく依存し、凝固速度が速
いとSi初晶粒子は小さくなるがSi量が多くなるに従
い粗大となる。この限界として、40重量%とする。S
i量がこれ以上になると初品Si粉粒子粗大となりこの
為合金強度が著しく低下する。又5重量%以下となると
耐摩耗性の改善効果が非常に小さく、耐摩耗性材料とし
て利用し難い。
Si, which is an additive element in the aluminum alloy of the present invention, is effective in improving wear resistance. When a large amount of Sj is added to AQ, it precipitates as primary Si particles during solidification, improving the wear resistance of the alloy. The size and amount of the initial Si powder particles largely depend on the solidification rate of the alloy and the amount of Si added; the faster the solidification rate, the smaller the Si primary crystal particles, but as the amount of Si increases, the larger the Si primary crystal particles become. This limit is set at 40% by weight. S
If the amount of i exceeds this range, the initial Si powder particles will become coarse, resulting in a significant decrease in alloy strength. Moreover, if it is less than 5% by weight, the effect of improving wear resistance is very small, making it difficult to use it as a wear-resistant material.

Fe及びNiはアルミ合金の耐熱性を改善するがその効
果はFeの方が大きい。しかしNNIに比へ伸び及び靭
性は低い。このAl2−8i−Fe及びAQ−8i−N
i合金のFe及びNiの一部をNi及びFeにより置き
かえることにより元の合金に比べ良好な特性を有する合
金が得られる。すなわち、AQ−8i−Fe−Ni合金
はAQ−8i−Fe合金に比べ耐熱性はやや低下するも
のの伸びが改善され、AQ−8i””Ni合金に比べて
は伸びがやや低下するものの耐熱性が向上する。特に注
目すべきは靭性に関してAl2−8i−Fen Ajl
Si−Niのどちらよりも高くなることである。この理
由は次のように考えられる。
Fe and Ni improve the heat resistance of aluminum alloys, but the effect of Fe is greater. However, the elongation and toughness are lower than that of NNI. This Al2-8i-Fe and AQ-8i-N
By replacing some of the Fe and Ni in the i alloy with Ni and Fe, an alloy with better properties than the original alloy is obtained. In other words, the AQ-8i-Fe-Ni alloy has slightly lower heat resistance than the AQ-8i-Fe alloy, but has improved elongation, and has improved heat resistance, although the elongation has slightly lower than the AQ-8i""Ni alloy. will improve. Of particular note is the toughness of Al2-8i-Fen Ajl.
It is higher than either Si-Ni. The reason for this is thought to be as follows.

Fe、NiともにAQへの固溶限は0.04重量%と非
常に小さいが急冷凝固することにより固溶限は拡大され
最高固溶範囲はFeで4〜12重量%、Niで3〜15
重量%であることが知られている。AQ中に添加された
FeまたはNiのうち急冷により拡大された固溶限を越
える過飽和分は化合物等の析出物として析出し、これは
合金の靭性を著しく低下する。しかし、Feの一部をN
iで、またNiの一部をFeで置きかえてやることによ
り各元素の過飽和度を小さくすることができ析出物は微
細で均一なものとなる。この為靭性は太き(改善される
と考えられる。ここではFe、Niのみについて示して
いるが、他の元素との組み合わせについても同様の考え
方が適用できるため元素置き換えによる靭性の改善効果
が期待できる。このAQ−8i−Fe−Ni合金がAQ
 −81−Ni合金とほぼ同じ靭性値を示すFe:Ni
比の範囲が1:4〜4:1である。
The solid solubility limit in AQ for both Fe and Ni is very small at 0.04% by weight, but the solid solubility limit is expanded by rapid solidification, and the maximum solid solubility range is 4 to 12% by weight for Fe and 3 to 15% for Ni.
It is known that % by weight. The supersaturated portion of Fe or Ni added to AQ that exceeds the solid solubility limit expanded by rapid cooling precipitates as precipitates such as compounds, which significantly reduces the toughness of the alloy. However, some of the Fe is N
By replacing part of Ni with Fe, the degree of supersaturation of each element can be reduced, and the precipitates can become fine and uniform. For this reason, the toughness is thick (and is thought to be improved). Although only Fe and Ni are shown here, the same idea can be applied to combinations with other elements, so it is expected that the toughness will be improved by element replacement. This AQ-8i-Fe-Ni alloy is AQ
Fe:Ni exhibits almost the same toughness value as -81-Ni alloy
The ratio ranges from 1:4 to 4:1.

最も好ましくはFe:Niが1=1である。Fe+Nj
の量が12重量%以上になると靭性、伸びともに著しく
小さくなるためFenNiの量は12重量%以下とする
。またFenNi量が2重量%以下となると耐熱性の改
善効果がほとんどなくなる為FenNi量は2重量%以
」―とする。
Most preferably, Fe:Ni is 1=1. Fe+Nj
If the amount of FenNi is 12% by weight or more, both toughness and elongation will be significantly reduced, so the amount of FenNi is set to be 12% by weight or less. Furthermore, if the FenNi amount is 2% by weight or less, the effect of improving heat resistance is almost lost, so the FenNi amount is set to be 2% by weight or less.

他のCut Mg+ Zn+ TL Cr、 Zr+ 
Cur Mo、 W。
Other cuts Mg+ Zn+ TL Cr, Zr+
Cur Mo, W.

Ce + からなる群のうちCur Mg+ Znは主
として時効硬化性元素であり約200 ’Cまでの合金
の強度、硬度を改善する。200°C以下の低温におい
ては時効による硬度の向」二により耐摩耗性も著しく改
善される。これらの効果が十分に発揮される為の元素量
は、Cuが0.5〜6.0重量%てあり、Mgが0.1
−8.0重量%であり、Znが0.05〜0.5重量%
である。またT I+ Crl Z rl Cur M
o+ W、Ceは、耐熱性の改善に効果がある。これら
の元素は合金中に安定な金属間化合物を生成することに
より、耐熱性を改善するが、多量に添加すると金属間化
合物の量が増し、合金の伸び靭性を著しくそこなうし、
また少ないと耐熱性改善の効果は十分に発揮されない。
Among the group consisting of Ce + , Cur Mg + Zn is mainly an age hardening element and improves the strength and hardness of the alloy up to about 200'C. At low temperatures of 200°C or less, the hardness increases due to aging, and the wear resistance is also significantly improved. The elemental amounts for these effects to be fully exhibited are 0.5 to 6.0% by weight for Cu and 0.1% for Mg.
-8.0% by weight and Zn is 0.05-0.5% by weight
It is. Also T I+ Crl Z rl Cur M
o+ W and Ce are effective in improving heat resistance. These elements improve heat resistance by forming stable intermetallic compounds in the alloy, but when added in large amounts, the amount of intermetallic compounds increases, significantly impairing the elongation toughness of the alloy.
In addition, if the amount is too small, the effect of improving heat resistance will not be sufficiently exhibited.

上記のようにSin Fen Ni等を多量に含むAI
2合金を従来からの溶解、鋳造法により製造する場合、
凝固速度が遅い(1℃/sec以下)為N Si初品や
金属間化合物が粗大化し、材料強度は著しく低下する。
As mentioned above, AI containing a large amount of Sin Fen Ni etc.
When manufacturing two alloys by conventional melting and casting methods,
Because the solidification rate is slow (1° C./sec or less), the initial N Si material and intermetallic compounds become coarse, and the material strength significantly decreases.

粗大な析出物を押える方法としては急冷凝固法やホット
トップ法があるが、ホットトップ法では元素添加量の限
界が低い。急冷法においては、100℃/sec以上の
凝固速度で急冷すると本発明に示す元素添加量の範囲に
おいては析出物の大きさは最大50μm程度となり、大
きく材料特性を低下させる原因とはならない。
Methods for suppressing coarse precipitates include the rapid solidification method and the hot top method, but the hot top method has a low limit on the amount of elements added. In the quenching method, if the material is quenched at a solidification rate of 100° C./sec or more, the size of the precipitates will be about 50 μm at maximum within the range of the amount of added elements shown in the present invention, and will not cause a significant deterioration of material properties.

このような凝固速度を得るにはアトマイズ法等により合
金を溶湯状態から粉末にすることにより容易に達成でき
る。粉末の成形性または凝固速度の点から考えて、使用
に適する粉末の粒度は40メツシュ以下が適する。これ
らの高合金粉末は粉末粒子自体の硬度が高い為、合金と
するには熱間押出のような強い塑性加工を与えることが
必要である。
Such a solidification rate can be easily achieved by turning the alloy from a molten state into a powder using an atomization method or the like. Considering the moldability or solidification rate of the powder, the particle size of the powder suitable for use is preferably 40 mesh or less. Since these high alloy powders have high hardness as powder particles themselves, it is necessary to apply strong plastic working such as hot extrusion to form an alloy.

実施例 第1表に示す組成の合金粉末をエアーアトマイズ法によ
り製造し、これらの粉末を450°Cの温度にて熱間押
出により押出材とした。得られた材料の特性について第
2表に示す。比較のため同じ方法により製造したAQ−
8t−Fe及びAQ−3i −Ni −Fe合金につい
ても記した。Cu9Mgのような時効元素を含むものに
ついては470℃、2時間の溶体死後水中へ冷却し、そ
の後170°Cにて6時間の時効処理を付した。
EXAMPLES Alloy powders having the composition shown in Table 1 were produced by air atomization, and these powders were hot extruded at a temperature of 450°C to form extruded materials. Table 2 shows the properties of the obtained material. AQ- produced by the same method for comparison
8t-Fe and AQ-3i-Ni-Fe alloys were also described. Those containing aging elements such as Cu9Mg were subjected to solution death at 470°C for 2 hours, cooled in water, and then subjected to aging treatment at 170°C for 6 hours.

表よりわかるようにCu + M gの時効硬化元素を
添加した合金では、室温における引張強さは高く、また
耐摩耗性もCu + M gを入れないAQ−8i−F
e−Ni合金よりも高くなっている。
As can be seen from the table, the alloy to which the age-hardening elements of Cu + Mg are added has a higher tensile strength at room temperature, and its wear resistance is lower than that of AQ-8i-F without Cu + Mg.
It is higher than e-Ni alloy.

Crl Z rl C01Mo等の遷移元素を添加した
ものでは300℃での引張強さが改善されている。
The tensile strength at 300° C. is improved in those to which a transition element such as Crl Z rl C01Mo is added.

これらの合金の応用としては耐熱耐摩耗部品である自動
型等のエンジン部品、フンロッド、ピストン、またはコ
ンプレッサ一部品のベーン等がある。これらの部品に本
発明のアルミニウム合金を使用することにより、さらに
軽量化を行うことが可能でありまたさらに高性能な製品
の開発も可能となるであろう。
Applications of these alloys include heat-resistant and wear-resistant parts such as engine parts such as automatic type parts, fan rods, pistons, and vanes of parts of compressors. By using the aluminum alloy of the present invention in these parts, it will be possible to further reduce the weight and to develop products with even higher performance.

発明の効果 本発明のアルミニウム合金は、上述のように高温に於け
る引張強度が大きく、耐衝撃性、耐摩耗性にすぐれてい
る。
Effects of the Invention As mentioned above, the aluminum alloy of the present invention has high tensile strength at high temperatures and excellent impact resistance and abrasion resistance.

6、補正の対象 2、発明の名称 耐熱1fF1摩耗性アルミニウム合金 3、補正をする者 事件との関係     特 許 出 願 人名   称
    アルミニウム粉末冶金技術研究組合理事長 佐
 伯 修 4、代理人 住  所   大阪市此花区島屋1丁目1番3号住友電
気工業株式会社内 昭和61年1月28日 7、補正の内容 明細書第2頁13行目と14行目の間に次の行を挿入す
る。
6. Subject of amendment 2, Title of invention Heat-resistant 1fF1 Abrasive aluminum alloy 3. Relationship with the case of the person making the amendment Patent application Name: President of the Aluminum Powder Metallurgy Technology Research Association Osamu Saeki 4, Agent address: Osaka Sumitomo Electric Industries, Ltd., 1-1-3 Shimaya, Konohana-ku, Japan, January 28, 1985, 7, the following line is inserted between lines 13 and 14 on page 2 of the statement of contents of the amendment.

「3、発明の詳細な説明」"3. Detailed explanation of the invention"

Claims (4)

【特許請求の範囲】[Claims] (1)Si、Fe、及びNiを含むアルミニウム合金に
おいてSi元素を5.0重量%から40重量%、Fe及
びNi元素を(Fe+Ni)で2から15重量%含み、
かつFeとNiの比がFe:Ni=1:4〜4:1の割
合であり、かつまた0.1から6.0重量%のCuと0
.1から8.0重量%のMgのうちから1種類または2
種類を含み残部が実質的にアルミニウムよりなることを
特徴とする耐熱耐摩耗性アルミニウム合金。
(1) In an aluminum alloy containing Si, Fe, and Ni, the Si element is 5.0% to 40% by weight, and the Fe and Ni elements (Fe + Ni) are 2 to 15% by weight,
and the ratio of Fe and Ni is Fe:Ni = 1:4 to 4:1, and 0.1 to 6.0% by weight of Cu and 0.
.. One or two types of Mg from 1 to 8.0% by weight
1. A heat-resistant and wear-resistant aluminum alloy, characterized in that the remainder is substantially made of aluminum.
(2)Siを5.0重量%から40重量%、Fe及びN
iを(Fe+Ni)で2から15重量%含み、かつFe
とNiの比がFe:Ni=1:4〜4:1の割合であり
、かつまた0.5から6.0重量%のCuと0.1から
8.0重量%のMgと0.05から5.0重量%のZn
と0.05から5.0%のTiと0.05から60重量
%のCrと0.05〜3.0重量%のZrと0.05か
ら5.0重量%のCoと0.05から4.0重量%のM
oと0.05から40重量%のWと0.05から4.0
重量%のCeとからなる群より1種または2種以上含み
、残部が実質的にアルミニウムよりなることを特徴とす
る耐熱耐摩耗性アルミニウム合金。
(2) Si from 5.0% to 40% by weight, Fe and N
i containing 2 to 15% by weight of (Fe+Ni), and Fe
and Ni in a ratio of Fe:Ni=1:4 to 4:1, and also 0.5 to 6.0% by weight of Cu, 0.1 to 8.0% by weight of Mg, and 0.05% by weight. to 5.0% by weight of Zn
and 0.05 to 5.0% Ti, 0.05 to 60 wt% Cr, 0.05 to 3.0 wt% Zr, and 0.05 to 5.0 wt% Co. 4.0% by weight M
o and 0.05 to 40 wt% W and 0.05 to 4.0
1. A heat-resistant and wear-resistant aluminum alloy, characterized in that it contains one or more members from the group consisting of Ce and Ce in an amount of % by weight, and the remainder consists essentially of aluminum.
(3)100℃/sec以上の凝固速度で凝固させて得
たかまたは金属間化合物及び析出物の大きさが50μm
以下であることを特徴とする特許請求の範囲第1項及び
第2項記載の耐熱耐摩耗性アルミニウム合金。
(3) Obtained by solidifying at a solidification rate of 100°C/sec or more, or the size of intermetallic compounds and precipitates is 50 μm
The heat-resistant and wear-resistant aluminum alloy according to claims 1 and 2, characterized in that:
(4)40メッシュ以下の粒度をもつアトマイズ粉末か
または初晶析出物の粒径が50μm以下である粉末を熱
間塑性加工により成形して得られた特許請求の範囲第1
項又は第2項記載の耐熱耐摩耗性アルミニウム合金。
(4) Claim 1 obtained by molding an atomized powder with a particle size of 40 mesh or less or a powder in which the particle size of primary crystal precipitates is 50 μm or less by hot plastic working.
The heat-resistant and wear-resistant aluminum alloy according to item 1 or 2.
JP22216385A 1985-10-04 1985-10-04 Heat and wear resistant aluminum alloy Pending JPS6283444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22216385A JPS6283444A (en) 1985-10-04 1985-10-04 Heat and wear resistant aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22216385A JPS6283444A (en) 1985-10-04 1985-10-04 Heat and wear resistant aluminum alloy

Publications (1)

Publication Number Publication Date
JPS6283444A true JPS6283444A (en) 1987-04-16

Family

ID=16778163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22216385A Pending JPS6283444A (en) 1985-10-04 1985-10-04 Heat and wear resistant aluminum alloy

Country Status (1)

Country Link
JP (1) JPS6283444A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6328841A (en) * 1986-07-21 1988-02-06 Toyo Alum Kk Manufacture of aluminum alloy material and sliding member
JPH03100138A (en) * 1989-09-14 1991-04-25 Kubota Corp High strength and heat resistant al alloy material
WO2005054529A1 (en) * 2003-12-02 2005-06-16 Sumitomo Electric Sintered Alloy, Ltd. Heat-resistant and highly tough aluminum alloy and method for production thereof and engine parts
CN102808119A (en) * 2012-09-07 2012-12-05 重庆大学 Light high-temperature wear-resistant aluminum alloy
CN104384497A (en) * 2014-10-28 2015-03-04 苏州莱特复合材料有限公司 Magnesium-based powder metallurgy composite material and preparation method thereof
CN111621679A (en) * 2020-06-22 2020-09-04 中北大学 Method for preparing heat-resistant cast aluminum alloy by using scrap aluminum

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913041A (en) * 1982-07-12 1984-01-23 Showa Denko Kk Aluminum alloy powder having high resistance to heat and abrasion and high strength and molding of said alloy powder and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913041A (en) * 1982-07-12 1984-01-23 Showa Denko Kk Aluminum alloy powder having high resistance to heat and abrasion and high strength and molding of said alloy powder and its production

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6328841A (en) * 1986-07-21 1988-02-06 Toyo Alum Kk Manufacture of aluminum alloy material and sliding member
JPH03100138A (en) * 1989-09-14 1991-04-25 Kubota Corp High strength and heat resistant al alloy material
WO2005054529A1 (en) * 2003-12-02 2005-06-16 Sumitomo Electric Sintered Alloy, Ltd. Heat-resistant and highly tough aluminum alloy and method for production thereof and engine parts
EP1690953A1 (en) * 2003-12-02 2006-08-16 Sumitomo Electric Sintered Alloy, Ltd. Heat-resistant and highly tough aluminum alloy and method for production thereof and engine parts
EP1690953A4 (en) * 2003-12-02 2008-02-13 Sumitomo Electric Sintered Aly Heat-resistant and highly tough aluminum alloy and method for production thereof and engine parts
CN102808119A (en) * 2012-09-07 2012-12-05 重庆大学 Light high-temperature wear-resistant aluminum alloy
CN104384497A (en) * 2014-10-28 2015-03-04 苏州莱特复合材料有限公司 Magnesium-based powder metallurgy composite material and preparation method thereof
CN104384497B (en) * 2014-10-28 2016-09-21 银川博聚工业产品设计有限公司 A kind of magnesio composite powder metallurgy material and preparation method thereof
CN111621679A (en) * 2020-06-22 2020-09-04 中北大学 Method for preparing heat-resistant cast aluminum alloy by using scrap aluminum

Similar Documents

Publication Publication Date Title
JPH05345945A (en) Aluminum alloy
KR20160021765A (en) Aluminum alloy composition with improved elevated temperature mechanical properties
JP2669525B2 (en) Chromium-containing aluminum alloy produced by rapid solidification route
JPS6283444A (en) Heat and wear resistant aluminum alloy
JPS60208443A (en) Aluminum alloy material
JPS62142741A (en) High-strength aluminum alloy excellent in fatigue-resisting strength
EP0171798A1 (en) High strength material produced by consolidation of rapidly solidified aluminum alloy particulates
JPH0474402B2 (en)
JPH0525575A (en) High temperature aluminum alloy
JP2020169378A (en) Aluminum alloy for compressor slide components and compressor slide component forging
JP3223619B2 (en) High heat and high wear resistant aluminum alloy, high heat and high wear resistant aluminum alloy powder and method for producing the same
JPH055146A (en) Aluminum alloy excellent in wear resistance and thermal conductivity
JPH0270036A (en) Wear-resistant aluminum alloy material
JP2711296B2 (en) Heat resistant aluminum alloy
JP2000345259A (en) CREEP RESISTANT gamma TYPE TITANIUM ALUMINIDE
JPH09263867A (en) Aluminum alloy for casting
JPS6244547A (en) Composite aluminum alloy material
JP2542603B2 (en) Abrasion resistance Al-Si-Mn sintered alloy
JPH0651896B2 (en) Heat and wear resistant aluminum alloy
JP3179095B2 (en) Valve train members for internal combustion engines
JPH0261024A (en) Heat-resistant and wear-resistant aluminum alloy material and its manufacture
JP2729479B2 (en) Manufacturing method of aluminum alloy excellent in high temperature strength
JPS6223952A (en) Al-fe-ni heat-resisting alloy having high toughness and its production
JPH01159345A (en) Heat-resistant and wear-resistant aluminum alloy powder molded body and its manufacture
JPS62149840A (en) High strength, heat and wear resistant al alloy