JPH01159345A - Heat-resistant and wear-resistant aluminum alloy powder molded body and its manufacture - Google Patents
Heat-resistant and wear-resistant aluminum alloy powder molded body and its manufactureInfo
- Publication number
- JPH01159345A JPH01159345A JP62317219A JP31721987A JPH01159345A JP H01159345 A JPH01159345 A JP H01159345A JP 62317219 A JP62317219 A JP 62317219A JP 31721987 A JP31721987 A JP 31721987A JP H01159345 A JPH01159345 A JP H01159345A
- Authority
- JP
- Japan
- Prior art keywords
- resistant
- alloy powder
- wear
- molded body
- aluminum alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000843 powder Substances 0.000 title claims abstract description 24
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 15
- 238000004519 manufacturing process Methods 0.000 title claims description 5
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 19
- 239000000956 alloy Substances 0.000 claims abstract description 19
- 229910000765 intermetallic Inorganic materials 0.000 claims abstract description 11
- 238000001816 cooling Methods 0.000 claims abstract description 10
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 7
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 6
- 229910052684 Cerium Inorganic materials 0.000 claims abstract description 5
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 5
- 238000000748 compression moulding Methods 0.000 claims abstract description 5
- 239000012535 impurity Substances 0.000 claims abstract description 5
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 5
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 5
- 229910052796 boron Inorganic materials 0.000 claims abstract description 4
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 4
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 4
- 239000002245 particle Substances 0.000 claims description 12
- 239000011856 silicon-based particle Substances 0.000 claims description 8
- 238000005520 cutting process Methods 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims 2
- -1 Co Inorganic materials 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 10
- 229910052742 iron Inorganic materials 0.000 abstract description 8
- 229910052710 silicon Inorganic materials 0.000 abstract description 7
- 239000000463 material Substances 0.000 abstract description 6
- 239000013078 crystal Substances 0.000 abstract description 3
- 229910052751 metal Inorganic materials 0.000 abstract description 3
- 239000002184 metal Substances 0.000 abstract description 3
- 230000001105 regulatory effect Effects 0.000 abstract 2
- 238000006243 chemical reaction Methods 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 16
- 150000001875 compounds Chemical class 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 238000005299 abrasion Methods 0.000 description 4
- 238000005266 casting Methods 0.000 description 4
- 238000001192 hot extrusion Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 238000004663 powder metallurgy Methods 0.000 description 3
- 238000007712 rapid solidification Methods 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 238000007872 degassing Methods 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 239000011863 silicon-based powder Substances 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 238000009849 vacuum degassing Methods 0.000 description 2
- 229910001020 Au alloy Inorganic materials 0.000 description 1
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000004512 die casting Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 238000009689 gas atomisation Methods 0.000 description 1
- 239000003353 gold alloy Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は耐熱性および耐PJM、性に優れたアルミニウ
ム合金粉末成形体およびその製造方法に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an aluminum alloy powder compact having excellent heat resistance and PJM resistance, and a method for producing the same.
内燃機関のシリンダーブロック、シリンダーライナー、
ピストン、ロッカーアーム等の材料およびコンプレッサ
ーのバルブ、VTRシリンダーなどの材料においては摺
動部における耐摩耗性、耐熱性および低熱膨張率などの
特性が必要とされている。これらの材料をアルミニウム
合金とすれば軽量化に伴う多くの利点があることからア
ルミ化が注目されている。従来耐摩耗性の良好なアルミ
ニウム合金としては、Ji S 、^C3A、 AC4
A、 AC8A等の鋳物用/1合金や、JIS、 A[
lCI、 A[lC3、Al(:10゜ADC12等の
ダイカスト用Af合金が知られている。Internal combustion engine cylinder blocks, cylinder liners,
Materials for pistons, rocker arms, etc., compressor valves, VTR cylinders, etc. require properties such as wear resistance, heat resistance, and low coefficient of thermal expansion in sliding parts. Aluminum alloys are attracting attention because these materials have many advantages in terms of weight reduction. Conventional aluminum alloys with good wear resistance include Ji S, ^C3A, and AC4.
A, AC8A and other casting/1 alloys, JIS, A[
Af alloys for die casting such as lCI, A[lC3, Al(:10°ADC12) are known.
またこれらの高珪素合金にCu、Mg等を添加したA3
90等の合金もある。しかしこれらの高珪素AE金合金
何れも鋳造用合金であり、耐摩耗性については良好であ
るが、耐熱性、加工性が不充分であった。この耐摩耗性
、耐熱性を改善するために多量のSiやFe、Niなど
を添加すると鋳造法においては元素の偏析や初晶の粗大
化等により強度、伸び、靭性などの特性が低下し要求特
性を充分に満足できないという問題がある。In addition, A3, which is made by adding Cu, Mg, etc. to these high silicon alloys.
90 grade alloy is also available. However, all of these high-silicon AE gold alloys are alloys for casting, and although they have good wear resistance, they have insufficient heat resistance and workability. When large amounts of Si, Fe, Ni, etc. are added to improve this wear resistance and heat resistance, properties such as strength, elongation, and toughness decrease due to element segregation and coarsening of primary crystals in casting methods. There is a problem that the characteristics cannot be fully satisfied.
一方粉末冶金法において製造する多量のSi、Fe、M
nを含むAl合金は、特開昭61−295301号おい
て知られており、これにさらにCu、、Mgを添加した
Affi合金は特開昭59−13041号において、さ
らにNi、Cu、Mgを含むものについては特開昭62
−10237号において知られている。これらは多量の
Si、Feを添加しても偏析や初晶の粗大化が防止でき
る粉末冶金法の特徴を利用して耐摩耗性或いは耐熱性を
向上せしめたものであるが、上記の耐摩耗性および耐熱
性を同時に充分に満足するには至らなかった。On the other hand, a large amount of Si, Fe, M produced by powder metallurgy
An Al alloy containing n is known from JP-A-61-295301, and an Affi alloy in which Cu and Mg are further added is disclosed in JP-A-59-13041, in which Ni, Cu, and Mg are further added. Regarding the contents included, JP-A-62
-10237. These have improved wear resistance or heat resistance by utilizing the characteristics of powder metallurgy, which can prevent segregation and coarsening of primary crystals even when large amounts of Si and Fe are added. It was not possible to fully satisfy both properties and heat resistance.
本発明は上記の問題について検討の結果なされたもので
耐熱性および耐摩耗性に優れたアルミニウム合金粉末成
形体およびその製造方法を開発したものである。The present invention has been made as a result of studies on the above-mentioned problems, and has developed an aluminum alloy powder compact having excellent heat resistance and wear resistance, and a method for manufacturing the same.
〔問題点を解決するための手段および作用〕本発明はS
i 5〜40wt%、F e 3〜20wt%、WO
,5〜7wt%およびMn5Ni、Cr、M0.C0.
V、Ce、Ti、B5Zrの1種または2種以上を0.
2〜10wt%含み、残部がAAと不可避不純物とから
なり、初晶Si粒子の平均粒径が20μ以下であり、か
つFeを含む金属間化合物の平均サイズが2−であるこ
とを特徴とする耐熱耐摩耗性アルミニウム合金粉末成形
体を第1発明とし、S i 5〜40wt%、F e
3〜20wt%、W 0.2〜7 wt%およびMn、
Ni、Cr、M0.C0.V、Ce 、T t SB
% Z rの1種または2種以上を0.2〜lowt%
含み残部がAIlと不可避不純物とからなる合金溶湯を
10”C/sec以上の冷却速度で冷却凝固させて粉末
状、リボン状薄帯、フレーク状、または細線状物を形成
し、これをこのまま、または細片化した後、圧縮成形加
工することを特徴とする耐熱耐摩耗性アルミニウム合金
粉末成形体の製造方法を第2発明とするものである。[Means and effects for solving the problems] The present invention
i 5-40wt%, Fe 3-20wt%, WO
, 5-7 wt% and Mn5Ni, Cr, M0. C0.
One or more of V, Ce, Ti, and B5Zr is added to 0.
2 to 10 wt%, the balance consists of AA and unavoidable impurities, the average particle size of the primary Si particles is 20μ or less, and the average size of the intermetallic compound containing Fe is 2- The first invention is a heat-resistant and wear-resistant aluminum alloy powder compact, Si 5 to 40 wt%, Fe
3-20 wt%, W 0.2-7 wt% and Mn,
Ni, Cr, M0. C0. V, Ce, T t SB
0.2 to lowt% of one or more of %Zr
A molten alloy, the remainder of which is composed of Al and unavoidable impurities, is cooled and solidified at a cooling rate of 10"C/sec or more to form a powder, ribbon-like ribbon, flake, or thin wire-like material, and this is left as it is, Alternatively, the second invention provides a method for producing a heat-resistant and wear-resistant aluminum alloy powder compact, which is characterized in that the powder compact is compressed after being cut into pieces.
すなわち本発明は上記組成のAj2合金溶湯を急速に冷
却凝固させて初晶Si粒子の平均粒径が20μ議以下で
、かつFeを含む金属間化合物の平均サイズが21!1
@以下の合金粉末を作製し、この粉末を圧縮成形して圧
粉体とし、これを熱間押出しにより圧縮成形加工してア
ルミニウム合金粉末成形体を得るものである。That is, the present invention rapidly cools and solidifies a molten Aj2 alloy having the above composition so that the average particle size of primary Si particles is 20μ or less, and the average size of intermetallic compounds containing Fe is 21!1.
The following alloy powder is prepared, this powder is compression-molded to form a compact, and this is compression-molded by hot extrusion to obtain an aluminum alloy powder compact.
しかして本発明の組成範囲を上記のように限定したのは
以下の理由によるものである。However, the reason why the composition range of the present invention is limited as described above is as follows.
先ずSiは急冷凝固中に初晶または共晶Si粒子として
微細に粉末中に分散し、耐摩耗性を向上させる作用があ
る。初晶Si粒子の大きさおよび量は、合金の凝固速度
、Si添加量に依存し、凝固速度が速い程初晶Si粒子
は小さくなるがSi添加量が多くなると粗大となる。し
たがってSiの添加量は40i1t%を限度とした。S
i量がこれを越えると初晶Si粒子が粗大となり、強度
靭性、機械加工性が低下する。また5wt%未満では耐
摩耗性の改善効果が少ない。First, Si is finely dispersed in the powder as primary or eutectic Si particles during rapid solidification, and has the effect of improving wear resistance. The size and amount of the primary Si particles depend on the solidification rate of the alloy and the amount of Si added; the faster the solidification rate is, the smaller the primary Si particles are, but the larger the amount of Si added, the coarser they become. Therefore, the amount of Si added was limited to 40i1t%. S
If the amount of i exceeds this range, the primary Si particles will become coarse and the strength, toughness, and machinability will decrease. Moreover, if it is less than 5 wt%, the effect of improving wear resistance is small.
Feは急冷凝固中にそれを含む化合物として微細に分散
して高温強度を高める作用をなすものであるが3wt%
未満では、その作用が充分でなく、20w t%を越え
るとその作用が飽和するばかりでなく金属間化合物が粗
大となり高温強度が低下する。Fe is finely dispersed as a compound containing it during rapid solidification and has the effect of increasing high temperature strength, and is 3wt%.
If it is less than 20 wt %, the effect will not be sufficient, and if it exceeds 20 wt %, not only will the effect be saturated, but the intermetallic compound will become coarse and the high temperature strength will decrease.
またWはFeを含む金属間化合物を微細化する作用と、
その化合物の熱的安定性を高める作用があり、これらの
作用により高温強度を高めるものであるが、その含有量
が0.2wt%未満では、その効果が充分でなく、7w
t%を越えると作用の度合が飽和する。In addition, W has the effect of refining intermetallic compounds containing Fe,
It has the effect of increasing the thermal stability of the compound, and these effects increase the high-temperature strength, but if the content is less than 0.2 wt%, the effect is not sufficient, and 7w
When the amount exceeds t%, the degree of effect is saturated.
さらにMn%Ni、Cr、M0.C0.V、Ce、Ti
、B、Zrは1種または2種以上を添加することにより
、Feを含む金属間化合物の熱的安定性を高める作用が
ある。この作用によつて高湿強度を高める。この作用は
添加量が0.2wt%より少ない場合は十分でなく、他
方10wt%を越えてもその作用の度合が飽和する。Furthermore, Mn%Ni, Cr, M0. C0. V, Ce, Ti
, B, and Zr have the effect of increasing the thermal stability of the intermetallic compound containing Fe by adding one or more of them. This action increases high-humidity strength. This effect is not sufficient when the amount added is less than 0.2 wt%, and on the other hand, the degree of this effect is saturated even when the amount exceeds 10 wt%.
本発明において初晶Siの平均粒径を20−以下とした
のは、主として初晶Si粉粒子平均粒径が20μを越え
ると強度、靭性および機械加工性が低下するからである
。またFeを含む金属間化合物の平均サイズを2μ以下
としたのは、金属間化合物の平均サイズが2/Imを越
えると高温強度および耐熱性が低下するからである。The reason why the average particle size of the primary Si powder is set to 20 μm or less in the present invention is mainly because if the average particle size of the primary Si powder particles exceeds 20 μm, strength, toughness, and machinability deteriorate. The reason why the average size of the Fe-containing intermetallic compound is set to 2μ or less is that if the average size of the intermetallic compound exceeds 2/Im, the high temperature strength and heat resistance decrease.
そして本発明のアルミニウム合金粉末成形体は、前記組
成のAI!、合金溶湯を102°(:/sec以上の冷
却速度で冷却凝固させて粉末状、リボン状薄帯、フレー
ク状または細線状物を形成し、これをこのまま、または
必要に応じて細片化したものを圧縮成形加工して製造す
るものであるが、上記のA!合金薄湯の冷却速度は早い
程初晶SiおよびFeを含む金属間化合物は微細となり
、102°C/sec以上の冷却速度であれば初晶Si
粉粒子平均粒径が20−以下で、Feを含む金属間化合
物の平均サイズを27111以下とすることができる。The aluminum alloy powder compact of the present invention has the above composition of AI! , the molten alloy is cooled and solidified at a cooling rate of 102° (:/sec or more) to form a powder, ribbon-like ribbon, flake or thin wire-like material, which can be used as it is or cut into pieces as necessary. It is manufactured by compression molding.The faster the cooling rate of the thin alloy A! alloy, the finer the intermetallic compounds containing primary Si and Fe will be. Primary Si
When the powder particle average particle size is 20 or less, the average size of the Fe-containing intermetallic compound can be 27111 or less.
この102°(:/sec以上の冷却速度が得られる急
冷凝固法としては、アトマイズ法、回転円板法、ドラム
スプラット法、急冷ロール法などであり、何れの方法を
用いてもよい。急冷凝固して得られた粉末状、リボン状
薄帯、フレーク状または細線状物は、このまま、または
必要に応じて細片化し、これを例えば冷間予備成形→ア
ルミニウム缶封入→高温真空脱ガス→熱間プレス成形→
外削脱缶→熱間押出のような工程により圧縮成形加工す
る。この際、高温真空脱ガス、熱間プレス、熱間押出な
どの温度は、脱ガスの良好なこと、加工性の良いことな
どの観点がら高い程良いが、温度が高過ぎるとFeを含
む金属間化合物が粗大化し耐熱性が低下するので、これ
らの温度は400°C以下とするのが望ましい。Examples of the rapid solidification method that can obtain a cooling rate of 102° (:/sec) include the atomization method, the rotating disk method, the drum splat method, and the rapid cooling roll method, and any method may be used. The obtained powder, ribbon, flake, or thin wire can be used as is, or if necessary, it can be cut into pieces and processed, for example, by cold preforming → packaging in an aluminum can → high-temperature vacuum degassing → heat treatment. Press molding→
Compression molding is performed through processes such as external decanning and hot extrusion. At this time, the higher the temperature of high-temperature vacuum degassing, hot pressing, hot extrusion, etc., the better from the viewpoints of good degassing and workability, but if the temperature is too high, metals containing Fe Since the intermediate compounds become coarse and the heat resistance decreases, it is desirable that these temperatures be 400°C or less.
なお上記の成形工程によることなく通常のアルミニウム
粉末冶金法を適用することもできる。Note that a normal aluminum powder metallurgy method can also be applied without using the above-mentioned forming process.
以下に本発明の一実施例について説明する。 An embodiment of the present invention will be described below.
第1表に示すNα1〜Nα17の合金組成の試料につい
て合金溶湯から、Arガスアトマイズ法により冷却速度
を103〜104°C/secとして平均粒径7〇−の
粉末を製造した。この合金粉末を用いて冷間予備成形に
より、直径100mmφ、長さ200++mで真密度8
0%の予備成形体とした。これをアルミニウム缶封後3
50℃で高温脱ガスを行ない、続いて350°Cにおい
て真密度まで熱間ブレス成形し、外削脱缶して直径80
aniφ、長さ150mmのビレットとし、引き続いて
350℃の温度で熱間押出しを行ない直径30mmφの
押出棒を作製した。For the samples having the alloy compositions Nα1 to Nα17 shown in Table 1, powders with an average particle size of 70° were produced from the molten alloy by Ar gas atomization at a cooling rate of 103 to 104°C/sec. By cold preforming using this alloy powder, a diameter of 100mmφ, a length of 200++m, and a true density of 8.
0% preform. After sealing this in an aluminum can 3
High-temperature degassing was performed at 50°C, followed by hot press forming at 350°C to true density, and external decanning to obtain a diameter of 80 mm.
A billet having a length of 150 mm was prepared, and then hot extrusion was performed at a temperature of 350° C. to produce an extruded rod having a diameter of 30 mm.
また第1表のNα18〜Nα20の合金については冷却
速度20°(:/seeの金型鋳造を行ない、切削加工
して直径80rmφ、長さ150mmのビレットを作製
し、これを350°Cで押出し30Mφの押出棒とした
。For alloys with Nα18 to Nα20 in Table 1, mold casting was performed at a cooling rate of 20° (:/see), and a billet with a diameter of 80 rmφ and a length of 150 mm was produced by cutting, and this was extruded at 350°C. It was made into an extruded rod of 30Mφ.
これらの押出材について組織観察、室温および250°
C(保持時間100hr )の引張試験、大越式摩耗試
験機による摩耗試験(乾式摩耗速度2.9m/see
、摩耗距離200 m )などの試験を行なって初晶S
i粒子の平均粒径、Feを含む化合物の平均サイズ、室
温および高温強度、比摩耗量などを測定した。これらの
結果を第2表に示した。Structure observation of these extruded materials, room temperature and 250°
Tensile test of C (holding time 100 hr), wear test using Okoshi type abrasion tester (dry wear rate 2.9m/see)
, abrasion distance of 200 m), etc.
The average particle diameter of i particles, the average size of Fe-containing compounds, strength at room temperature and high temperature, specific wear amount, etc. were measured. These results are shown in Table 2.
表から明らかなように本発明のNα1〜k15は、いず
れも初晶Si粒子の平均粒径およびFeを含む化合物の
平均サイズが小さく、室温および高温における引張強さ
が著しく優れ、かつ引張摩耗量が少なく、耐熱、耐摩耗
性に優れている。これに対して比較例Nα16〜N0.
20はいずれも引張り強さ、比摩耗量が劣っていること
が判る。As is clear from the table, Nα1 to k15 of the present invention have a small average particle size of primary Si particles and a small average size of Fe-containing compounds, have extremely excellent tensile strength at room temperature and high temperature, and have a high tensile wear amount. It has excellent heat resistance and abrasion resistance. In contrast, comparative examples Nα16 to N0.
It can be seen that all samples No. 20 are inferior in tensile strength and specific wear amount.
(効果〕
以上に説明したように本発明によると耐熱性および耐摩
耗性に優れたアルミニウム合金粉末成形体が得られるも
ので工業上顕著な効果を有するものである。(Effects) As explained above, according to the present invention, an aluminum alloy powder compact having excellent heat resistance and abrasion resistance can be obtained, which has a significant industrial effect.
Claims (2)
0.5〜7wt%およびMn、Ni、Cr、Mo、Co
、V、Ce、Ti、B、Zrの1種または2種以上を0
.2〜10Wt%含み残部がAlと不可避不純物とから
なり、初晶Si粒子の平均粒径が20μm以下であり、
かつFeを含む金属間化合物の平均サイズが2−以下で
あることを特徴とする耐熱耐摩耗性アルミニウム合金粉
末成形体。(1) Si5 ~ 40wt%, Fe3 ~ 20wt%, W
0.5-7wt% and Mn, Ni, Cr, Mo, Co
, V, Ce, Ti, B, and Zr.
.. 2 to 10 Wt%, the balance consists of Al and unavoidable impurities, and the average particle size of the primary Si particles is 20 μm or less,
A heat-resistant and wear-resistant aluminum alloy powder compact, characterized in that the average size of the Fe-containing intermetallic compound is 2 or less.
.2〜7wt%およびMn、Ni、Cr、Mo、Co、
V、Ce、Ti、B、Zrの1種または2種以上を0.
2〜10wt%含み残部がAlと不可避不純物とからな
る合金溶湯を10^2℃/sec以上の冷却速度で冷却
凝固させて粉末状、リボン状薄帯、フレーク状、または
細線状物を形成し、これをこのまま、または細片化した
後、圧縮成形加工することを特徴とする耐熱耐摩耗性ア
ルミニウム合金粉末成形体の製造方法。(2) Si5-40wt%, Fe3-20wt%, W0
.. 2 to 7 wt% and Mn, Ni, Cr, Mo, Co,
One or more of V, Ce, Ti, B, and Zr are added at 0.
A molten alloy containing 2 to 10 wt% with the balance being Al and unavoidable impurities is cooled and solidified at a cooling rate of 10^2°C/sec or more to form powder, ribbon-like thin strips, flakes, or fine wire-like objects. A method for producing a heat-resistant and wear-resistant aluminum alloy powder compact, which comprises compression molding the compact as it is or after cutting it into pieces.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62317219A JPH01159345A (en) | 1987-12-15 | 1987-12-15 | Heat-resistant and wear-resistant aluminum alloy powder molded body and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62317219A JPH01159345A (en) | 1987-12-15 | 1987-12-15 | Heat-resistant and wear-resistant aluminum alloy powder molded body and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01159345A true JPH01159345A (en) | 1989-06-22 |
Family
ID=18085803
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62317219A Pending JPH01159345A (en) | 1987-12-15 | 1987-12-15 | Heat-resistant and wear-resistant aluminum alloy powder molded body and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01159345A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0508426A2 (en) * | 1991-04-12 | 1992-10-14 | Hitachi, Ltd. | Highly ductile sintered aluminum alloy, method for production thereof and use thereof |
EP0503951B1 (en) * | 1991-03-14 | 1997-05-07 | Tsuyoshi Masumoto | Wear-resistant aluminium alloy and method for working thereof |
JP2012122090A (en) * | 2010-12-07 | 2012-06-28 | Toyota Central R&D Labs Inc | Rolled material, raw material for rolled material and manufacturing method of the same |
JP2015105392A (en) * | 2013-11-28 | 2015-06-08 | 住友電工焼結合金株式会社 | Aluminum alloy and method for manufacturing aluminum alloy |
-
1987
- 1987-12-15 JP JP62317219A patent/JPH01159345A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0503951B1 (en) * | 1991-03-14 | 1997-05-07 | Tsuyoshi Masumoto | Wear-resistant aluminium alloy and method for working thereof |
EP0508426A2 (en) * | 1991-04-12 | 1992-10-14 | Hitachi, Ltd. | Highly ductile sintered aluminum alloy, method for production thereof and use thereof |
US5387272A (en) * | 1991-04-12 | 1995-02-07 | Hitachi, Ltd. | Highly ductile sintered aluminum alloy, method for production thereof and use thereof |
JP2012122090A (en) * | 2010-12-07 | 2012-06-28 | Toyota Central R&D Labs Inc | Rolled material, raw material for rolled material and manufacturing method of the same |
JP2015105392A (en) * | 2013-11-28 | 2015-06-08 | 住友電工焼結合金株式会社 | Aluminum alloy and method for manufacturing aluminum alloy |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5593515A (en) | High strength aluminum-based alloy | |
JP3391636B2 (en) | High wear-resistant aluminum-based composite alloy | |
JPS6210237A (en) | Aluminum alloy for hot forging | |
EP0558957B1 (en) | High-strength, wear-resistant aluminum alloy | |
JPH0551684A (en) | High-strength wear-resistant aluminum alloy and its processing method | |
US4537161A (en) | Inserts for pistons of diesel engines of aluminum-silicon alloys having an improved thermal resistance and machinability | |
JP2017078213A (en) | Aluminum alloy powder for hot forging for slide component, method for producing the same, aluminum alloy forging for slide component, and method for producing the same | |
JP7033481B2 (en) | Aluminum alloy powder and its manufacturing method, aluminum alloy extruded material and its manufacturing method | |
JPS60208443A (en) | Aluminum alloy material | |
JPH0610086A (en) | Abrasion resistant aluminum alloy and processing method thereof | |
JP4764094B2 (en) | Heat-resistant Al-based alloy | |
JPH01319644A (en) | Heat-resistant aluminum alloy material and its manufacture | |
JPH0261023A (en) | Heat-resistant and wear-resistant aluminum alloy material and its manufacture | |
JPH01159345A (en) | Heat-resistant and wear-resistant aluminum alloy powder molded body and its manufacture | |
JPH0261021A (en) | Heat-resistant and wear-resistant aluminum alloy material and its manufacture | |
JPH0270036A (en) | Wear-resistant aluminum alloy material | |
JPS6050137A (en) | Heat- and wear-resistant high-strength aluminum alloy member of hard particle dispersion type and its production | |
JPH0261024A (en) | Heat-resistant and wear-resistant aluminum alloy material and its manufacture | |
JPH01316433A (en) | Heat-resistant aluminum alloy material and its manufacture | |
JPH02225635A (en) | Manufacture of al-si alloy member having low thermal expansion coefficient, excellent wear resistance and high toughness | |
EP0137180B1 (en) | Heat-resisting aluminium alloy | |
JPH01156447A (en) | Aluminum alloy powder compact having resistance to heat and wear and its production | |
JPS6283444A (en) | Heat and wear resistant aluminum alloy | |
JPH0270037A (en) | Wear-resistant aluminum alloy material | |
JPH06228697A (en) | Rapidly solidified al alloy excellent in high temperature property |