JPS6261548B2 - - Google Patents
Info
- Publication number
- JPS6261548B2 JPS6261548B2 JP10994477A JP10994477A JPS6261548B2 JP S6261548 B2 JPS6261548 B2 JP S6261548B2 JP 10994477 A JP10994477 A JP 10994477A JP 10994477 A JP10994477 A JP 10994477A JP S6261548 B2 JPS6261548 B2 JP S6261548B2
- Authority
- JP
- Japan
- Prior art keywords
- amount
- cao
- expansion
- cement
- expandable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000004519 manufacturing process Methods 0.000 claims description 13
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 9
- 239000011707 mineral Substances 0.000 claims description 9
- 238000010298 pulverizing process Methods 0.000 claims description 3
- 239000004568 cement Substances 0.000 description 23
- 239000000203 mixture Substances 0.000 description 17
- 239000011505 plaster Substances 0.000 description 17
- 239000000463 material Substances 0.000 description 13
- 238000002156 mixing Methods 0.000 description 12
- 238000010304 firing Methods 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 239000011398 Portland cement Substances 0.000 description 5
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- 238000010828 elution Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- XFWJKVMFIVXPKK-UHFFFAOYSA-N calcium;oxido(oxo)alumane Chemical compound [Ca+2].[O-][Al]=O.[O-][Al]=O XFWJKVMFIVXPKK-UHFFFAOYSA-N 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 102100033772 Complement C4-A Human genes 0.000 description 1
- 101000710884 Homo sapiens Complement C4-A Proteins 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 239000004102 Synthetic calcium aluminate Substances 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 150000004645 aluminates Chemical class 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011509 cement plaster Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 239000004567 concrete Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- BCAARMUWIRURQS-UHFFFAOYSA-N dicalcium;oxocalcium;silicate Chemical compound [Ca+2].[Ca+2].[Ca]=O.[O-][Si]([O-])([O-])[O-] BCAARMUWIRURQS-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910001653 ettringite Inorganic materials 0.000 description 1
- 239000011405 expansive cement Substances 0.000 description 1
- 239000010881 fly ash Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 235000019361 synthetic calcium aluminate Nutrition 0.000 description 1
- 229910021534 tricalcium silicate Inorganic materials 0.000 description 1
- 235000019976 tricalcium silicate Nutrition 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Curing Cements, Concrete, And Artificial Stone (AREA)
Description
本発明は各種ポルトランドセメントに混入して
収縮補償セメントあるいはケミカルプレストレツ
シングセメントとするために使用される膨張性混
和材とその製造方法に関するものである。
従来、この種の膨張性混和材として、アルミナ
セメントせつこう系、各種合成カルシウムアルミ
ネート鉱物系、f・CaO(遊離石灰)系等種々の
ものが報告されているが、工業的にはそのうちの
3CaO.3Al2O3.CaSO4(以下C4A3と記載する)
を主要鉱物相とするものとf・CaOの膨張性を利
用したものが利用されている。ところが、C4A3
系膨張材の場合、当然のことながら調合原料中
にSO3成分を多量に存在させねばならないため、
製造上次のような問題がある。すなわちクリンカ
ー中のCaSO4(以下Cと記載する。)および
C4A3からのSO3揮散は各々935℃および1250℃
と比較的低温からおこるため、焼成時における
SO3の揮散は不可避であり、その結果として調合
計算どおりの鉱物相を生成させることが非常にむ
づかしい。加えて揮散SO3捕集用脱硫装置の設置
等、膨大な労力と設備投資が必要とされる等膨張
性混和材としての優秀性を有する反面、大きな欠
点を有する。またf・CaO系の場合、公知のもの
はf・CaO―C3S系クリンカー(注:C3Sはトラ
イカルシウムシリケート(3CaOSiO2)の略)あ
るいはf・CaOを焼きだすため、SO3揮散という
問題は避けられ、しかも非常に高い膨張性を有す
るが、養生条件による膨張量の差(湿空養生およ
び水中養生における膨張量の差)が非常に大き
く、極端な場合には湿空養生下で理想的な膨張性
を示した場合でも、水中養生下では膨張しすぎて
亀裂発生をひきおこすという性質を有し、大きな
欠点となつている。そのため最近ではf・CaOの
膨張性を無水せつこうの混入によつてコントロー
ルし、比較的おだやかなものに改良されてきては
いるが、それでもC4A3系膨張材に比較してそ
の差は大きい。また、この種の膨張材ではf・
CaOおよびCの量が膨張量を支配しているため
混入する相手セメント中の鉱物相、特にf・CaO
量によつて極端な膨張差を生ずるので、使用に際
しては相手セメントとの相性に大きな注意をはら
わねばならないという面倒さがあつた。その他に
考案されているC3A、CA、C12A7その他のカルシ
ウムアルミネート系膨張材、あるいはf・CaOを
アルミネート、フエライト、シリケート等で包む
ことによりf・CaOの溶出速度をコントロールし
たと称するf・CaO系膨張材等、種々の考案が提
案されているが、夫々次の様な欠点を有する。
すなわちカルシウムアルミネート相をポルトラ
ンドセメント中にただ単に混入しただけでは高い
膨張性は得られず、SO3が多量に存在することに
よつてはじめて膨張性を呈するが、その膨張量は
f・CaO系にくらべて著しく小さい。また各種鉱
物相でf・CaOを包むことによつて溶出速度をコ
ントロールしたと称するものは、根本的にf・
CaOの溶出速度を押えたことにならず、養生条件
の差(湿空養生および水中養生における膨張量の
差)は極端に大きくなるという欠点がある。
そこで本発明者等は、実験研究の結果、従来膨
張性、凝結問題等の面から実用化が不可能である
と考えられていたf・CaO、C3AおよびCを主
要構成鉱物とし、これら3者の間に膨張量および
養生条件による膨張量差を支配する量的関係があ
きらかとなつたため、その知見に基づき、使用量
が少くて済み、強度低下を来さず、しかも養生条
件の差が少く、且つ製造に際しSO3揮散の心配の
ない膨張性混和材の開発に成功したものである。
すなわち、本発明はf・CaO、C3AおよびC
を一定量的関係において組合わせたものである。
前述のように、従来f・CaO―C系のものが
実用化され、C3A―C系のものが研究報告され
ている。前者は膨張材としての効果はあるが、養
生条件の差が大きく、使用に際しては相当の配慮
を要求される欠点ある。また後者はC3A+
3CaSO4+32H2O→C3A・3CaSO4・32H2Oなる反
応式で代表されるエトリンジヤイト生成時の体積
膨張を利用しているため、本発明で特に重要視し
ているf・CaO存在の必要性を認めず、従つて膨
張力が小さく実用化に至つていない。強いて使用
する場合は、膨張力が小さいため多量用いなけれ
ばならず、しかも多量用いるとコンクリート自体
の強度低下を来すことになる。
ところが本発明のようにf・CaO、C3Aおよび
Cの3者を一定量関係において組合わせると、
前述の欠点を打消しあつて、使い易いもの、つま
り養生条件の差が少く、しかも使用量が少くて済
むものが得られるものであり、第1の発明がそれ
である。
なお、前記C3Aとは3CaO・Al2O3および
3CaO・Al2O3中にNa2O、SiO2、Fe2O3その他の
金属を固溶する3CaO・Al2O3固溶体を指称する
ものである。
第2の発明は第1の発明の膨張性混和材の製造
方法であつて、焼成に際してSO3の揮散なく製造
する方法に関するものである。
第3の発明は、この種の技術分野において日常
問題となる元セメントとの相性の問題を解決する
ための製造方法である。
元来、膨張材をセメントに混合して膨張性セメ
ントとする場合、相手の元セメントとの相性が問
題になる。すなわち元セメント中の膨張性成分で
あるf・CaO、C3A、C等の量によつて膨張性
は大きく異なることから、道路用セメントの如く
C3A量の少ないセメント、C3A量が8%前後、
f・CaOが1%程度という普通ポルトランドセメ
ント、C3A量が12%以上、f・CaOが1%を超え
る白色セメント更には高炉スラグ、フライアツシ
ユ等の混合セメント等、相手セメントの組成と、
その用途によつて相性が良い場合と悪い場合、つ
まり所期の膨張性を有するセメントになる場合
と、ならない場合とがあり、そのため相手セメン
トに応じて厳密には鉱物構成を変化させる必要が
ある。ところが従来の膨張材の製造方法では、仕
上げ時に加える無水せつこうの焼成温度、粉末度
および量だけでしかコントロールすることができ
ず、膨張量と養生条件の差における膨張量差を調
整することがむずかしかつた。
第3の発明はこの問題を合わせて解決するため
になされたものであつて、f・CaO―C3A系クリ
ンカーを焼成する場合、高f・CaO型と高C3A型
の2種類のクリンカーを焼成し、膨張材仕上げ時
に相手セメントの種類と用途によつて混合比率を
変化させて混合粉砕、あるいは2種クリンカーの
混合粉砕物に無水せつこうを混合して目的製品を
得るようにしたものである。
すなわち、この方法によると、相手セメントに
応じた膨張性混和材を一々製造する必要はなく、
仕上段階で2種クリンカーおよびせつこうの配合
割合を変えるか膨張材をツー・パツケージ方式に
することにより用途に合致した膨張性混和材が得
られるもので、現状では需要が比較的少いこの種
製品の製造上工業的に優れた製造方法である。
以下本発明の実施例について述べる。
これから述べる実施例はf・CaOを70%、
C3A20%を含有するクリンカーAとf・CaO20
%、C3A70%を含有するクリンカーBを焼き出し
Cを混合し膨張性組成物を製造する場合の実施
例であつて第1表はクリンカーの焼成温度と構成
鉱物の割合を示すものである。
The present invention relates to an expandable admixture used to mix into various Portland cements to produce shrinkage compensating cement or chemical pre-stretching cement, and a method for producing the same. Conventionally, various types of expandable admixtures have been reported, including alumina cement plaster systems, various synthetic calcium aluminate mineral systems, and f.CaO (free lime) systems.
3CaO.3Al 2 O 3 .CaSO 4 (hereinafter referred to as C 4 A 3 )
The main mineral phase is f.CaO, and the expandability of f.CaO is used. However, C 4 A 3
In the case of a system expansion material, it is natural that a large amount of SO 3 component must be present in the blended raw material, so
There are the following manufacturing problems. That is, CaSO 4 (hereinafter referred to as C) in the clinker and
SO3 volatilization from C4A3 is 935℃ and 1250℃ respectively
This occurs at a relatively low temperature, so the
The volatilization of SO 3 is unavoidable, and as a result, it is extremely difficult to generate a mineral phase as calculated in the formulation. In addition, it requires a huge amount of labor and equipment investment, such as the installation of a desulfurization device to collect volatile SO 3.While it is excellent as an equiexpansive admixture, it has a major drawback. In addition, in the case of f-CaO-based clinkers, known ones are f-CaO-C 3 S-based clinkers (Note: C 3 S is an abbreviation for tricalcium silicate (3CaOSiO 2 )) or SO 3 volatilization to burn out f-CaO. However, the difference in the amount of expansion depending on the curing conditions (difference in the amount of expansion between humid air curing and underwater curing) is very large, and in extreme cases, it is possible to avoid the problem of Even if they exhibit ideal expansion properties, they have the property of expanding too much and causing cracks when cured in water, which is a major drawback. Therefore, in recent years, the expansion properties of f-CaO have been controlled by adding anhydrous gypsum and have been improved to be relatively gentle, but the difference is still small compared to C 4 A 3 -based expansion materials. big. In addition, with this type of expanding material, f.
Since the amount of CaO and C controls the amount of expansion, the mineral phase in the partner cement mixed with it, especially f・CaO
Since extreme differences in expansion occur depending on the amount, it is troublesome that great care must be taken to ensure compatibility with the mating cement during use. The elution rate of f・CaO was controlled by using other calcium aluminate-based expansive materials such as C 3 A, CA, C 12 A 7 , or by wrapping f・CaO with aluminate, ferrite, silicate, etc. Various ideas have been proposed, such as an f-CaO-based expansive material called F.CaO, but each has the following drawbacks. In other words, simply mixing a calcium aluminate phase into Portland cement does not provide high expansivity; it exhibits expansivity only when a large amount of SO 3 is present, but the amount of expansion is greater than that of the f-CaO system. significantly smaller than. Furthermore, the method that purports to control the elution rate by wrapping f.CaO in various mineral phases is fundamentally f.
The disadvantage is that the elution rate of CaO is not suppressed, and the difference in curing conditions (difference in expansion amount between moist air curing and underwater curing) becomes extremely large. Therefore, as a result of experimental research, the present inventors determined that f-CaO, C 3 A, and C, which were previously thought to be impossible to put into practical use due to expansion and coagulation problems, were the main constituent minerals. It has become clear that there is a quantitative relationship between the three that governs the amount of expansion and the difference in expansion amount due to curing conditions.Based on that knowledge, the amount used can be reduced, the strength will not decrease, and the difference in curing conditions can be reduced. We have succeeded in developing an expandable admixture that has a small amount of SO 3 and no need to worry about SO 3 volatilization during production. That is, the present invention provides f・CaO, C 3 A and C
are combined in a certain quantitative relationship. As mentioned above, the f-CaO-C type has been put to practical use, and the C 3 A-C type has been researched and reported. Although the former is effective as an expanding material, it has the disadvantage that there are large differences in curing conditions and requires considerable consideration when used. Also, the latter is C 3 A+
Since the volume expansion during the formation of ettringite represented by the reaction formula 3CaSO 4 +32H 2 O→C 3 A・3CaSO 4・32H 2 O is utilized, the presence of f・CaO, which is particularly important in the present invention, is utilized. The need for this method was not recognized, and therefore the expansion force was small and it has not been put into practical use. If it is used forcibly, a large amount must be used because its expansion force is small, and if a large amount is used, the strength of the concrete itself will decrease. However, when f・CaO, C 3 A, and C are combined in a fixed amount relationship as in the present invention,
The above-mentioned drawbacks can be counteracted and a product that is easy to use, that is, a product that requires little difference in curing conditions and can be used in a small amount, is obtained, and this is the first invention. Note that the above C 3 A refers to 3CaO・Al 2 O 3 and
It refers to a 3CaO.Al 2 O 3 solid solution in which Na 2 O, SiO 2 , Fe 2 O 3 and other metals are dissolved in 3CaO.Al 2 O 3 . The second invention is a method for producing the expandable admixture of the first invention, and relates to a method for producing the expandable admixture without volatilization of SO 3 during firing. The third invention is a manufacturing method for solving the problem of compatibility with the base cement, which is a daily problem in this type of technical field. Originally, when mixing an expansive material with cement to make an expansive cement, compatibility with the other base cement becomes a problem. In other words, the expandability varies greatly depending on the amount of expandable components such as f・CaO, C 3 A, and C in the original cement, so
Cement with a small amount of C 3 A, the amount of C 3 A is around 8%,
The composition of the other cement, such as ordinary Portland cement with f・CaO of about 1%, white cement with C 3 A content of 12% or more and f・CaO of more than 1%, and mixed cement such as blast furnace slag and fly ash,
Depending on the use, the compatibility may be good or bad, that is, the cement may or may not have the desired expandability, so strictly speaking, it is necessary to change the mineral composition depending on the other cement. . However, in the conventional manufacturing method of expanding materials, it is possible to control only the firing temperature, fineness, and amount of anhydrous plaster added during finishing, and it is not possible to adjust the difference in expansion amount due to the difference in expansion amount and curing conditions. It was difficult. The third invention was made to solve this problem at the same time, and when firing f・CaO-C 3 A type clinker, there are two types of clinker: high f・CaO type and high C 3 A type. The desired product is obtained by firing the clinker and then mixing and pulverizing it by changing the mixing ratio depending on the type and purpose of the partner cement when finishing the expanding material, or by mixing anhydrous plaster with the mixed and pulverized mixture of two types of clinker. It is something. In other words, according to this method, there is no need to manufacture expandable admixtures for each cement.
By changing the blending ratio of two types of clinker and plaster at the finishing stage, or by using a two-package system for the expanding material, it is possible to obtain an expansive admixture that matches the application, and there is currently relatively little demand for this type of admixture. This is an industrially superior manufacturing method for manufacturing products. Examples of the present invention will be described below. In the example described below, f・CaO is 70%,
Clinker A and f・CaO20 containing C3A20 %
%, C 3 A containing 70% is baked and mixed with C to produce an expandable composition. Table 1 shows the firing temperature of the clinker and the proportion of constituent minerals. .
【表】
第2表にクリンカーおよび無水せつこうの混合
割合を変化させてクリンカー中のf・CaOとC3A
の量を変化させたものを夫々普通ポルトランドセ
メント中に10%混入した場合の7日材令における
膨張試験結果を示す。
なお、ここでは膨張性クリンカーの粉末度はブ
レーン値で2500cm2/gとし、膨張量測定は水セメ
ント比0.60の標準砂使用1:2モルタルにおける
膨張量を1mあたりのmm数であらわしその伸び率
とした。[Table] Table 2 shows the relationship between f・CaO and C 3 A in the clinker by changing the mixing ratio of clinker and anhydrous plaster.
The results of expansion tests at 7-day age when varying amounts of each were mixed at 10% into ordinary Portland cement are shown. In this case, the fineness of the expandable clinker is 2500 cm 2 /g in Blaine value, and the expansion rate is expressed as the expansion rate in mm per 1 m in a 1:2 mortar using standard sand with a water-cement ratio of 0.60. And so.
【表】
試料No.1〜3は無水せつこうを添加していない
場合であり、膨張量は最大0.53mm/mと極めて小
さい。No.4〜7は膨張性組成物中のf・CaOと
C3Aを同量とし、膨張性組成物中の無水せつこう
を40、50、60%と変化させた場合である。これに
よると3者とも無収縮セメントとしての目標膨張
量である湿空0.8mm/m以上、水中1.0mm/m以上
を満足し、しかも無水せつこうの混入量が増加す
るに従がい、水中と湿空における膨張量差は小さ
くなる。No.8〜12は無水せつこうの混入量を膨張
性組成物中の50、60%と固定し、ABクリンカー
の混入比率を変えf・CaOとC3Aの量を変化させ
た場合であるが、膨張性組成物中のf・CaO量が
増加するに従つて膨張量は増加する。また無水せ
つこう量が多くなる程水中と湿空での膨張量の差
が小さくなる。
第1図はクリンカーA,Bを1:1としf・
CaOとC3A量比を一定とし無水せつこう混入量を
0〜60まで変化させた場合の膨張量変化を図示し
たもので、無水せつこうの混入量が増加するに従
がい膨張量は増加し、混入量30〜50%の間に極大
値を示す。
また水中と湿空の比は混入量30%をこえるに従
がい低下し混入量60%において1.0すなわち水中
と湿空の差がなくなる。なお膨張量・膨張量比は
何れも7日材令の値を示す。
第2図は無水せつこう量を50%と固定し、クリ
ンカーAとBの比率を変化させてf・CaO、C3A
量を変化させた場合の膨張量の変化を示すもので
f・CaO量が増加するにつれ膨張量は増加し、そ
の傾向は水中養生の場合の方が著るしい。すなわ
ち水中と湿空の比はf・CaO量が多くなる程大き
くなることを示す。
なお膨張量および膨張量比は何れも7日材令の
値を示す。
以上の結果より膨張性組成物中に無水せつこう
が存在しない場合、膨張力は小さく無水せつこう
を40%以上混入することによつて膨張力を増大さ
せ、しかも水中と湿空における膨張量の差を小さ
くすることが可能となることがわかる。
また膨張材中のf・CaO量が多くなるに従がい
膨張力は増大することが明らかである。
第3図はf・CaOとC3Aの量が1:1となる調
合原料の焼成温度を変化させて膨張性試験を行な
つた結果であるが、焼成温度1280℃から膨張性は
急激に増加する。なお膨張量は7日材令の値を示
し、膨張性混和材の注入量は10%である。
この図からわかるように焼成温度は1200℃以
上、好ましくは1350℃以上でで焼きだした方が良
い。
第3表は膨張性クリンカーの粉末度および膨張
性組成物の粉末度を変化させた場合の膨張力に対
する影響を示すもので、膨張性クリンカーの粉末
度が大きくなるに従がい膨張力は低下する。また
無水せつこうを混合粉砕した膨張性組成物の場合
も同様に粉末度が増加するに従がい膨張力は低下
する。これは膨張性クリンカーと無水せつこうの
被粉砕性が異なるためで使用するせつこうによつ
ても異なるが膨張性クリンカーのみを粉砕した場
合よりブレーン値で500cm2/g程度高くなる。
以上の結果より、本発明実施に当つてはクリン
カーのブレーンを値2000〜3500cm2/gとし、無水
せつこうを混入するか、あるいは膨張性クリンカ
ーと無水せつこうを混合粉砕してブレーン値2500
cm2/g以上とすることによつて膨張材を製造する
ことが好ましいことがわかる。[Table] Samples Nos. 1 to 3 are the cases in which anhydrous plaster was not added, and the amount of expansion was extremely small at a maximum of 0.53 mm/m. Nos. 4 to 7 are f・CaO in the expandable composition.
This is a case where the amount of C 3 A is the same and the amount of anhydrous plaster in the expandable composition is changed to 40, 50, and 60%. According to this, all three satisfied the target expansion amount for non-shrinkage cement of 0.8 mm/m or more in wet air and 1.0 mm/m or more in water, and as the amount of anhydrous plaster increased, The difference in expansion amount in humid air becomes smaller. Nos. 8 to 12 are cases where the amount of anhydrous plaster mixed in is fixed at 50% or 60% of the expandable composition, and the mixing ratio of AB clinker is changed to vary the amounts of f・CaO and C 3 A. However, as the amount of f·CaO in the expandable composition increases, the amount of expansion increases. Furthermore, the larger the amount of anhydrous plaster, the smaller the difference in the amount of expansion in water and in humid air. Figure 1 shows clinkers A and B in a 1:1 ratio.
This diagram shows the change in the amount of expansion when the amount of anhydrous plaster mixed in is varied from 0 to 60 with the ratio of CaO and C 3 A constant. As the amount of anhydrous plaster added increases, the amount of expansion increases. However, it shows a maximum value between 30% and 50% of the amount of contamination. Furthermore, the ratio of water to wet air decreases as the amount of mixture exceeds 30%, and at 60% of mixing, the ratio becomes 1.0, that is, the difference between water and wet air disappears. In addition, both the expansion amount and the expansion amount ratio show the values at 7-day wood age. Figure 2 shows f・CaO, C 3 A by fixing the amount of anhydrous gypsum at 50% and changing the ratio of clinkers A and B.
This shows the change in the amount of expansion when the amount is changed.As the amount of f・CaO increases, the amount of expansion increases, and this tendency is more remarkable in the case of underwater curing. In other words, the ratio of water to wet air increases as the amount of f・CaO increases. Note that both the expansion amount and the expansion amount ratio indicate values at 7-day wood age. The above results show that when anhydrous gypsum is not present in the expandable composition, the expanding force is small, and by mixing 40% or more of anhydrous gypsum, the expanding force can be increased, and the amount of expansion in water and in wet air is small. It can be seen that it is possible to reduce the difference. It is also clear that the expansion force increases as the amount of f·CaO in the expansion material increases. Figure 3 shows the results of an expansion test by varying the firing temperature of a blended raw material in which the amount of f・CaO and C 3 A was 1:1.The expansion property suddenly decreased from the firing temperature of 1280°C. To increase. Note that the expansion amount is the value after 7 days of material age, and the injection amount of the expandable admixture is 10%. As can be seen from this figure, it is better to start baking at a temperature of 1200°C or higher, preferably 1350°C or higher. Table 3 shows the effect on the expansion force when the fineness of the expandable clinker and the fineness of the expandable composition are changed.As the fineness of the expandable clinker increases, the expansion force decreases. . Similarly, in the case of an expandable composition prepared by mixing and pulverizing anhydrous gypsum, the expansion power decreases as the powderiness increases. This is because the expandable clinker and the anhydrous plaster have different pulverizability, and it also depends on the plaster used, but the Blaine value is about 500 cm 2 /g higher than when only the expandable clinker is crushed. Based on the above results, in carrying out the present invention, the brane value of the clinker is set to 2000 to 3500 cm 2 /g, and anhydrous plaster is mixed in, or the expandable clinker and anhydrous plaster are mixed and ground to a brane value of 2500.
It can be seen that it is preferable to manufacture the expanding material by setting the density to be at least cm 2 /g.
【表】
第4表および第5表は膨張性組成物を混入する
相手セメントが異なつた場合について示したもの
で、耐硫酸塩セメントのようにセメント中にf・
CaO、C3Aがほとんど存在しないようなセメント
の場合は、膨張性組成物の混入量を増加するだけ
でなくC3A量の多い調合とする。一方白色ポルト
ランドセメントの如くf・CaO、C3Aおよびせつ
こう量の多いセメントの場合は、混入量を若干減
らすとともにf・CaOおよびC量の多い調合と
することによつて目標膨張量および水中と湿空に
おける膨張量差を低減することが可能となる。[Table] Tables 4 and 5 show cases where the expandable composition is mixed with different cements, such as sulfate-resistant cement.
In the case of cement in which CaO and C 3 A are hardly present, not only the amount of expandable composition mixed in is increased, but also the amount of C 3 A is increased. On the other hand, in the case of cement with a large amount of f・CaO, C 3 A, and plaster, such as white Portland cement, by slightly reducing the amount of mixture and making a formulation with a large amount of f・CaO and C, it is possible to achieve the target expansion amount and It becomes possible to reduce the difference in the amount of expansion in humid air.
【表】
第5表はf・CaO、C3AおよびCの量を極端
に変化させた時の膨張試験例である。なお膨張性
混和材のブレーン値は2500cm2/gである。[Table] Table 5 shows examples of expansion tests when the amounts of f.CaO, C 3 A and C were drastically changed. The Blaine value of the expandable admixture is 2500 cm 2 /g.
【表】
混入する元セメントによつて膨張性混和材中の
f・CaO、C3AおよびCの量は大巾に変化す
る。[Table] The amounts of f・CaO, C 3 A, and C in the expandable admixture vary widely depending on the source cement mixed.
第1図は本発明実施例における膨張性クリンカ
ーへのせつこう混入量に対する膨張量及び膨張量
比の変化を示すグラフ、第2図は本発明実施例に
おける2種クリンカーの配合割合の変化に対する
膨張量及び膨張量比の変化を示すグラフ、第3図
は本発明実施例におけるクリンカー焼成温度と膨
張性の関係を示すグラフである。
FIG. 1 is a graph showing changes in expansion amount and expansion amount ratio with respect to the amount of plaster mixed into the expandable clinker in an example of the present invention, and FIG. 2 is a graph showing expansion with respect to changes in the mixing ratio of two types of clinker in an example of the present invention. FIG. 3 is a graph showing the relationship between clinker firing temperature and expandability in Examples of the present invention.
Claims (1)
%より成る膨張性混和材。 2 f・CaO、C3Aを主要鉱物とするf・CaO―
C3A系クリンカーを1200℃以上で焼きだし、仕上
げ粉砕段階でCを混合粉砕またはあらかじめ粉
砕したものを混合してf・CaO9〜38%、C3A6〜
52%、C30〜70%より成るf・CaO―C3A―C
系膨張性混和材を得ることを特徴とする膨張性
混和材の製造方法。 3 先ず高f・CaO含有のf・CaO―C3A系クリ
ンカーと高C3A含有のf・CaO―C3Aクリンカー
を製造し、次に両クリンカーとCを混合して
f・CaO9〜38%、C3A6〜52%、C30〜70%よ
り成るf・CaO―C3A―C系膨張性混和材を得
ることを特徴とする膨張性混和材の製造方法。[Claims] 1 f.CaO9-38%, C3 A6-52%, C30-70
Expandable admixture consisting of %. 2 f・CaO, f・CaO whose main mineral is C 3 A
C 3 A type clinker is baked at 1200℃ or above, and in the final pulverization stage, C is mixed or pre-pulverized to produce f・CaO9~38%, C 3 A6~
f・CaO−C 3 A−C consisting of 52% and 30–70% C
A method for producing an expandable admixture, characterized by obtaining an expandable admixture. 3 First, f・CaO−C 3 A clinker containing high f・CaO and f・CaO−C 3 A clinker containing high C 3 A are produced, and then both clinkers and C are mixed to produce f・CaO9~ 1. A method for producing an expandable admixture, characterized by obtaining an f.CaO-C 3 A-C-based expandable admixture consisting of 38% C 3 A, 6-52% C 3 A, and 30-70% C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10994477A JPS5443935A (en) | 1977-09-14 | 1977-09-14 | Expandable additive and method of making same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10994477A JPS5443935A (en) | 1977-09-14 | 1977-09-14 | Expandable additive and method of making same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5443935A JPS5443935A (en) | 1979-04-06 |
JPS6261548B2 true JPS6261548B2 (en) | 1987-12-22 |
Family
ID=14523063
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10994477A Granted JPS5443935A (en) | 1977-09-14 | 1977-09-14 | Expandable additive and method of making same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5443935A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03162017A (en) * | 1989-11-20 | 1991-07-12 | Jiyaruko:Kk | Reception circuit |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4642201B2 (en) * | 2000-09-18 | 2011-03-02 | 電気化学工業株式会社 | Cement admixture and cement composition |
JP7293019B2 (en) * | 2019-07-18 | 2023-06-19 | デンカ株式会社 | EXPANDING COMPOSITION FOR CEMENT, CEMENT COMPOSITION, AND METHOD FOR PRODUCING THE EXPANSION COMPOSITION FOR CEMENT |
JP7257278B2 (en) * | 2019-07-18 | 2023-04-13 | デンカ株式会社 | EXPANSION COMPOSITION FOR CEMENT AND CEMENT COMPOSITION |
-
1977
- 1977-09-14 JP JP10994477A patent/JPS5443935A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03162017A (en) * | 1989-11-20 | 1991-07-12 | Jiyaruko:Kk | Reception circuit |
Also Published As
Publication number | Publication date |
---|---|
JPS5443935A (en) | 1979-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6730162B1 (en) | Hydraulic binder resulting from mixing a sulfate binder and a binder comprising the mineral compound C4A3{overscore (S)} | |
MXPA04010946A (en) | Rapid setting cementitious composition. | |
US4011092A (en) | Stannous sulfate and gypsum mixture as a retarder in grinding portland cement and blended hydraulic cement for improving the quality of the cement, mortar and concrete | |
JP4494743B2 (en) | Method for producing cement composition | |
JPH11322400A (en) | Extremely fast-setting cement composition having low shrink property | |
JPH06100338A (en) | Highly fluid cement | |
JPS6247831B2 (en) | ||
JP3260911B2 (en) | Cement clinker and method for producing the same | |
JPS6261548B2 (en) | ||
US6447597B1 (en) | Hydrated calcium aluminate based expansive admixture | |
JP2001294469A (en) | Ultra rapid hardening, non-shrinkage grout | |
JPH0149657B2 (en) | ||
US4019917A (en) | Early strength cements | |
JPH04305043A (en) | Temperature buffering type rapid hardening composition | |
JPH0297441A (en) | Mixed cement | |
JPH0774086B2 (en) | Hydraulic cement | |
JP6896578B2 (en) | Hydraulic powder composition | |
JP2832862B2 (en) | Rapid cement admixture for cement | |
JPH11130499A (en) | Cement composition for spraying material and spraying method | |
JPH0235699B2 (en) | ||
JPH02302352A (en) | Rapid hardening type self-leveling composition for floor covering material | |
JP2020093940A (en) | Cement admixture, and concrete using the same | |
JP2916486B2 (en) | Hydraulic cement composition | |
JPH1129351A (en) | Wet spraying construction method | |
JP2747294B2 (en) | Admixture for cement mortar and concrete |