Nothing Special   »   [go: up one dir, main page]

JPS6257173B2 - - Google Patents

Info

Publication number
JPS6257173B2
JPS6257173B2 JP15945479A JP15945479A JPS6257173B2 JP S6257173 B2 JPS6257173 B2 JP S6257173B2 JP 15945479 A JP15945479 A JP 15945479A JP 15945479 A JP15945479 A JP 15945479A JP S6257173 B2 JPS6257173 B2 JP S6257173B2
Authority
JP
Japan
Prior art keywords
formula
group
general formula
salts
methyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15945479A
Other languages
Japanese (ja)
Other versions
JPS5681531A (en
Inventor
Kenji Saito
Hiroshi Yamachika
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP15945479A priority Critical patent/JPS5681531A/en
Priority to US06/211,225 priority patent/US4510329A/en
Priority to HU802877A priority patent/HU186373B/en
Priority to EP80107603A priority patent/EP0035060B1/en
Priority to DE8080107603T priority patent/DE3063194D1/en
Priority to DK522380A priority patent/DK151795C/en
Publication of JPS5681531A publication Critical patent/JPS5681531A/en
Publication of JPS6257173B2 publication Critical patent/JPS6257173B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はシクロペンテノロン類の製造方法に関
し、更に詳しくは一般式() [式中、R1は、炭素数6までのアルキル基、
その結合末端に不飽和結合を持たない炭素数6ま
でのアルケニル基、アルキニル基または一般式
The present invention relates to a method for producing cyclopentenolones, and more specifically, the present invention relates to a method for producing cyclopentenolones, and more specifically, [In the formula, R 1 is an alkyl group having up to 6 carbon atoms,
Alkenyl group, alkynyl group or general formula with up to 6 carbon atoms that does not have an unsaturated bond at the end of the bond

【式】で示される基を表わす。こ こにR2は水素原子、メチル基またはハロゲン原
子を表わす。] で示されるシクロペンテノロン類の新しい製造方
法に関する。 上記一般式()で示すシクロペンテノロン類
は、有用な農薬のアルコール成分であり、その合
成法についても種々の方法が知られ、その一部は
実際に工業的に実施されているものもあるが、収
率、操作上の煩雑さ、環境問題等において、必ず
しも充分なものとは言えない。 その中で本発明と同様にフラン化合物を経由す
る合成法としては (R:アリル、n−ブチル、シクロヘキシル、
フエニル、2−チエニル、p−トリル) の径路により4−置換−5−ハイドロキシ−5−
メチル−3−オキソシクロペンテン化合物(3)を
得、次いで、これを中性アルミナで処理すること
によりシクロペンテノロンを得る(R:アリル
基)方法が知られている(G.Piancatelliら、テト
ラヘドロン(Tetrahedron)34巻、2775〜2778、
(1978))。 しかしながら、この方法では同文献2776頁表1
に記載されているようにRがフエニル基、2−チ
エニル基またはp−トリル基を表わす場合、すな
わち芳香族系または複素環系化合物については、
中間体である4−置換−5−ハイドロキシ−5−
メチル−3−オキソシクロペンテン化合物(3)が短
時間でかつ比較的高収率で得られるものの、本発
明の対象化合物のようにRがその結合末端に不飽
和結合を持たない置換基であるフランカルビノー
ル化合物では、反応が進行しにくく、4−置換−
5−ハイドロキシ−5−メチル−3−オキソシク
ロペンテン化合物(3)の収率は極めて低くかつ長時
間を要するものであつて、それゆえ前記一般式
()で示されるシクロペンテノロンの製造法と
しては実用に供し難い。 このような状況の下に、本発明者らは種々検討
した結果、一般式() [式中、R1は前述と同じ意味を有する。] で示されるフランカルビノール化合物から直接、
極めて収率よくかつ工業的操作上も極めて有利に
前記一般式()で示されるシクロペンテノロン
類を製造する方法を見出し、本発明を完成した。 すなわち、本発明の第1は前記一般式()で
示されるフランカルビノール化合物を水溶媒中、
金属塩の存在下に処理し、前記フランカルビノー
ル化合物が消費された後も引続き反応系を保持す
ることを特徴とする前記一般式()で示される
シクロペンテノロン類の製造方法である。 さらにまた本発明の第2は式() で示される5−メチルフルフラールと式() R1MX () [式中、R1は前述と同じ意味を有し、Mは
Mg、ZnまたはAl2/3原子を表わし、Xは塩素原
子、臭素原子またはヨウ素原子を表わす。] で示される有機金属ハロゲン化物とを反応させ
て、前記一般式()で示されるフランカルビノ
ール化合物を得、次いでこれを水溶媒中、金属塩
の存在下に処理し、前記フランカルビノール化合
物が消費された後も引続き反応系を保持すること
を特徴とする前記一般式()で示されるシクロ
ペンテノロン類の製造方法である。 以下に本発明の各工程を順を追つて説明する。
本発明の第1の工程は、一般式() R1X () [式中、R1およびXは前述と同じ意味を有す
る。] で示されるハロゲン化合物に金属を作用させて得
られる前記一般式()で示される有機金属ハロ
ゲン化物と5−メチルフルフラールを反応させて
一般式()で示されるカルビノール化合物を合
成する工程であり、この工程において1−ハロゲ
ン化−2−アルケン誘導体、1−ハロゲン化−2
−アルキル誘導体及び1−ハロゲン化−2−ベン
ジル誘導体の有機金属ハロゲン化物を合成し、5
−メチルフルフラールと反応させる際にはカツプ
リング反応によるウルツツ(Wurtz)タイプの化
合物および転位反応による異性化された副成物の
生成をおさえることが必要であり、具体的にはア
リルハロゲン化物ではマグネシウムを使用しエー
テル溶媒で、低濃度のアリルハロゲン化物をゆつ
くり滴下する。又はプロパルギルハロゲン化物で
は異性化された副成物をおさえるためにアルミニ
ウムと水銀塩を使用する等の注意が必要である。
本工程は具体的には活性化処理をした又はしない
金属片と溶媒を仕込み(金属を、活性化処理をし
ないで用いる場合は少量のヨウ素を加えた後溶媒
を加える。)これに溶媒で希釈したハロゲン化物
を滴下し一般式()で示される有機金属ハロゲ
ン化物を合成した後、これに溶媒で希釈した5−
メチルフルフラールを滴下することにより、又は
仕込量の1/10量のハロゲン化物を溶媒で希釈した
ものを滴下し、一般式()で示される化合物を
合成した後、残りの仕込量の9/10量のハロゲン化
物と5−メチルフルフラールを合したものを溶媒
で希釈したものを滴下することにより行なわれ
る。 本発明の第2の工程は、上記により得られた一
般式()で示されるフランカルビノール化合物
を水溶媒中、金属塩の存在下に処理し、前記フラ
ンカルビノール化合物が消費された後も引続き反
応系を保持することにより一般式()で示され
るシクロペンテノロン類を得ることからなる。 本発明の特徴は、この第2の工程を水溶媒中で
行なうことにある。ここで言う水溶媒とは、水単
独または少量であればトルエン、キシレン、ジイ
ソプロピルエーテル、ベンゼン、アセトン、テト
ラヒドロフラン、ジオキサンなどの有機溶媒を含
んでいてもよく、このような水溶媒中で反応を行
なうことによりはじめて好都合に一般式()で
示されるシクロペンテノロン類が得られることを
見出したものである。すなわち前記公知文献によ
れば、少量の水を含むアセトン溶媒中、塩化亜鉛
の存在下反応させた場合には本発明の目的化合物
であるシクロペンテノロン類は得られず、前記4
−置換−5−ハイドロキシ−5−メチル−3−オ
キソシクロペンテン化合物(3)が得られるのみであ
り、しかも本発明の対象化合物のように、R1
その結合末端に不飽和結合を持たない置換基であ
る場合にはその収率も極めて低い。一方、水溶媒
で行なう本発明方法では意外にも、一般式()
で示されるカルビノール化合物から、反応初期に
は前記4−置換−5−ハイドロキシ−5−メチル
−3−オキソシクロペンテン化合物(3)も生成する
が、原料のカルビノール化合物が消費された後引
続き反応系を保持することにより、極めて高収率
に一般式()で示されるシクロペンテノロン類
を得ることができる。 しかも、本発明によれば、前記公知文献の反応
においては触媒能力を有しないとされている臭化
マグネシウムを用いた場合でも、短時間でかつ高
収率に反応が進行する。 本発明において、一般式()で示される化合
物のR1の具体例としてはメチル基、プロピル
基、ヘキシル基、シクロヘキシル基、アリル基、
4−ペンテニル基、プロパルギル基、ベンジル
基、p−メチル−ベンジル基、p−クロル−ベン
ジル基などが挙げられる。 また、本発明に用いられる金属塩は、マグネシ
ウム塩、マンガン塩、銅塩、コバルト塩または亜
鉛塩であり、例えば塩化マグネシウム、臭化マグ
ネシウム、硫酸マグネシウム、硝酸マグネシウ
ム、塩化マンガン、硝酸マンガン、硫酸銅、酢酸
コバルト、塩化亜鉛等を挙げることができる。か
かる金属塩の使用量は一般式()で示される化
合物に対して0.01〜100倍モル、好ましくは0.1〜
10倍モル、さらに好ましくは0.5〜2倍モルであ
る。 本発明においては反応時のPHは重要であり、反
応初期のPHは3〜7の範囲が好ましく、より好ま
しくは3〜6、さらに好ましくは3.5〜5.8の範囲
である。もちろんこの範囲外の条件を用いてもよ
いが、あまり酸性側によりすぎると副成物が多く
なり、アルカリ側によりすぎると反応速度が著し
く遅くなる。又PHをこの後特に調整することなく
反応終了まで保持しても良いが、反応時間を短縮
するために、一般式()で示される化合物が消
費された時点(この時点以前を反応初期、以後を
反応後期と呼ぶ)でPHを初めの値より高くしてPH
5〜10、より好ましくは6.5〜9さらに好ましく
は6.5〜7.5に保つことが好ましい。 本発明においてPH制御に使用する酸と塩基は公
知のものを広く使用出来、具体的には酸としては
硫酸、塩酸、硝酸等の無機酸、酢酸、p−トルエ
ンスルホン酸等の有機酸、リン酸二水素ナトリウ
ム、亜硫酸水素ナトリウム等の酸性金属塩、酸性
イオン交換樹脂等が例示できる。 又、塩基としては具体的にはナトリウム、カリ
ウム等のアルカリ金属類、カルシウム、バリウム
等のアルカリ土類金属類の水酸化物、炭酸塩、重
炭酸塩、酢酸塩等の塩基性塩、トリエチルアミ
ン、ピリジン等のアミン類、塩基性イオン交換樹
脂等を例示できる。 又これらを使用した酸塩基のバツフアー液を使
用することも出来る。 さらに本発明に使用する水溶媒の量は一般式
()で示される化合物に対して0.5倍〜100倍重
量、好ましくは5倍〜40倍重量使用するのがよ
い。反応温度は通常20℃〜200℃であり好ましく
は80℃〜150℃である。本工程は具体的には金属
塩を溶解した水溶媒に一般式()で示される化
合物を溶解またはけんだくさせ昇温した後、反応
液のPHを3〜7の間に調製しながら反応させ、次
に一般式()で示される化合物が消費された時
点でPHを5〜10に調製し、数時間反応することに
より行なわれる。 以下実施例により本発明を具体的に説明する。 実施例 1 水1500mlを仕込み、100℃に昇温し還流させ
る。 次に5−メチル−2−フリル−アリル−カルビ
ノール48gとMgCl2・6H2O63gを水320mlに溶解
した液を各々2.5時間と3.5時間を要し滴下した。
その時反応液のPHが10%リン酸1カリ水溶液と
1N−水酸化ナトリウム水でPH5.8〜5.5の間にある
ように制御した。 反応開始後1.5時間付近からPHは変化しなくな
つた。MgCl2水溶液の滴下終了後、PH5.5の状態
で4.5時間100℃で還流撹拌した。 次に1N−水酸化ナトリウム水を加えPH6.8まで
上げ、6時間100℃で還流撹拌した。これを40℃
まで冷却し、食塩を640g加えた後トルエン500ml
で4回抽出した。抽出液を無水硫酸マグネシウム
で乾燥後60℃減圧下にトルエンを留去したところ
43.3gの油状物を得た。 次にこれを1.2mmHg、130〜132℃で蒸留して
38.4gの2−アリル−3−メチル−4−ハイドロ
キシ−2−シクロペンテノンを得た。収率:80% 実施例 2 水200mlを仕込み、これにMgCl2・6H2O17gを
溶解し次に5−メチル−2−フリル−アリル−カ
ルビノール13.0gを加える。これを100℃に昇温
し還流させ2N−塩酸水と1N−NaOH水でPH5.0〜
5.2に保つて8時間還流撹拌した。 次に1N−NaOH水でPH7.3に上げ3時間還流撹
拌した。40℃まで冷却後食塩を70g加え、トルエ
ン80mlで4回抽出する。抽出液を無水硫酸マグネ
シウムで乾燥後、60℃減圧下にトルエンを留去し
たところ、11.9gの油状物を得た。 次にこれを1.2mmHg、130〜132℃で蒸留して
10.2gの2−アリル−3−メチル−4−ハイドロ
キシ−2−シクロペンテノンを得た。収率:78% 実施例 3 水100mlを仕込みこれにMgCl2・6H2O6.8gを
溶解し、次に5−メチル−2−フリル−プロパル
ギル−カルビノール5gを加える。これを100℃
に昇温し、還流させ1N−塩酸水と1N−NaOH水
でPH3.8〜4.1に保つて8時間還流撹拌した。次に
1N−NaOH水でPH7.3に上げ3時間還流拌した。
40℃まで冷却後、食塩35gを加え、トルエン50ml
で4回抽出する。抽出液を無水硫酸マグネシウム
で乾燥後60℃減圧下にトルエンを留去したとこ
ろ、4.6gの油状物を得た。次にこれをシリカゲ
ル60gを使用して酢酸エチル−n−ヘキサン(1
容対2容)で展開した。まず高沸点物が流出し
て、次に少量の未反応5−メチル−2−フリル−
プロパルギル−カルビノールが流出し、さらにか
なりのちに目的の2−プロパルギル−3−メチル
−4−ハイドロキシ−2−シクロペンテノンが流
出し、この分画を濃縮して2−プロパルギル−3
−メチル−4−ハイドロキシ−2−シクロペンテ
ノン3.3gを得た。収率66% 実施例 4〜11 下記のフランカルビノール化合物5gを用い、
下記の条件で実施例3と同様の操作を行ない夫々
のシクロペンテノロンを得た。
Represents a group represented by [Formula]. R 2 here represents a hydrogen atom, a methyl group or a halogen atom. ] The present invention relates to a new method for producing cyclopentenolones shown in the following. Cyclopentenolones represented by the general formula () above are alcohol components of useful agricultural chemicals, and various methods are known for their synthesis, some of which are actually used industrially. However, this method is not necessarily satisfactory in terms of yield, operational complexity, environmental problems, etc. Among them, a synthesis method via a furan compound similar to the present invention is (R: allyl, n-butyl, cyclohexyl,
phenyl, 2-thienyl, p-tolyl) via the 4-substituted-5-hydroxy-5-
A method for obtaining cyclopentenolone (R: allyl group) by obtaining a methyl-3-oxocyclopentene compound (3) and then treating it with neutral alumina is known (G. Piancatelli et al., Tetrahedron (Tetrahedron) Volume 34, 2775-2778,
(1978)). However, with this method, Table 1 on page 2776 of the same document
When R represents a phenyl group, 2-thienyl group or p-tolyl group, that is, for an aromatic or heterocyclic compound as described in
Intermediate 4-substituted-5-hydroxy-5-
Although methyl-3-oxocyclopentene compound (3) can be obtained in a short time and in a relatively high yield, furan in which R is a substituent having no unsaturated bond at its bond end, as in the target compound of the present invention, With carbinol compounds, the reaction is difficult to proceed, and 4-substituted-
The yield of 5-hydroxy-5-methyl-3-oxocyclopentene compound (3) is extremely low and takes a long time, therefore, as a method for producing cyclopentenolone represented by the above general formula (), It is difficult to put it into practical use. Under these circumstances, as a result of various studies, the present inventors found the general formula () [In the formula, R 1 has the same meaning as above. ] Directly from the furancarbinol compound shown by
The present invention has been completed by discovering a method for producing cyclopentenolones represented by the general formula (2) in an extremely high yield and very advantageous in terms of industrial operation. That is, the first aspect of the present invention is to prepare a furancarbinol compound represented by the general formula () in an aqueous solvent,
This is a method for producing cyclopentenolones represented by the general formula (), characterized in that the reaction system is maintained in the presence of a metal salt and the reaction system is maintained even after the furancarbinol compound is consumed. Furthermore, the second aspect of the present invention is the formula () 5-methylfurfural represented by the formula () R 1 MX () [wherein R 1 has the same meaning as above, and M is
It represents Mg, Zn or Al2/3 atom, and X represents chlorine atom, bromine atom or iodine atom. ] is reacted with an organometallic halide represented by the formula () to obtain a furan carbinol compound represented by the general formula (), which is then treated in an aqueous solvent in the presence of a metal salt to form the furan carbinol compound. This is a method for producing cyclopentenolones represented by the general formula (), characterized in that the reaction system is maintained even after the cyclopentenolone is consumed. Each step of the present invention will be explained below in order.
The first step of the present invention is a compound of the general formula () R 1 X () [wherein R 1 and X have the same meanings as above. ] A step of reacting an organometallic halide represented by the general formula () obtained by reacting a metal with a halogen compound represented by the formula () and 5-methylfurfural to synthesize a carbinol compound represented by the general formula (). In this step, 1-halogenated-2-alkene derivative, 1-halogenated-2
-Synthesizing organometallic halides of alkyl derivatives and 1-halogenated-2-benzyl derivatives,
- When reacting with methylfurfural, it is necessary to suppress the formation of Wurtz-type compounds due to coupling reactions and isomerized byproducts due to rearrangement reactions. Specifically, in the case of allyl halides, magnesium must be suppressed. A low concentration of allyl halide is slowly added dropwise using an ether solvent. In the case of propargyl halides, care must be taken such as using aluminum and mercury salts to suppress isomerized by-products.
Specifically, this process involves preparing a metal piece with or without activation treatment and a solvent (if the metal is used without activation treatment, add a small amount of iodine and then add the solvent) and dilute it with the solvent. The organic metal halide represented by the general formula () was synthesized by dropping the 5-halide diluted with a solvent.
After synthesizing the compound represented by the general formula () by dropping methylfurfural or dropping 1/10 of the charged amount of halide diluted with a solvent, 9/10 of the remaining charged amount This is carried out by dropping a mixture of a certain amount of a halide and 5-methylfurfural diluted with a solvent. In the second step of the present invention, the furan carbinol compound represented by the general formula () obtained above is treated in an aqueous solvent in the presence of a metal salt, and even after the furan carbinol compound is consumed, By subsequently holding the reaction system, cyclopentenolones represented by the general formula () are obtained. A feature of the present invention is that this second step is carried out in an aqueous solvent. The aqueous solvent mentioned here may include water alone or a small amount of an organic solvent such as toluene, xylene, diisopropyl ether, benzene, acetone, tetrahydrofuran, dioxane, etc., and the reaction is carried out in such an aqueous solvent. It has been discovered that cyclopentenolones represented by the general formula () can be conveniently obtained by this method. That is, according to the above-mentioned known literature, when the reaction is carried out in the presence of zinc chloride in an acetone solvent containing a small amount of water, the cyclopentenolones, which are the target compounds of the present invention, cannot be obtained;
-Substituted-5-hydroxy-5-methyl-3-oxocyclopentene compound (3) is obtained, and in addition, as in the target compound of the present invention, R 1 does not have an unsaturated bond at its bond end. When it is a group, the yield is also extremely low. On the other hand, in the method of the present invention carried out in an aqueous solvent, the general formula ()
The above 4-substituted-5-hydroxy-5-methyl-3-oxocyclopentene compound (3) is also produced from the carbinol compound represented by, but the reaction continues after the raw material carbinol compound is consumed. By maintaining the system, cyclopentenolones represented by the general formula () can be obtained in extremely high yields. Moreover, according to the present invention, even when magnesium bromide, which is said to have no catalytic ability in the reaction described in the above-mentioned known literature, is used, the reaction proceeds in a short time and with a high yield. In the present invention, specific examples of R 1 in the compound represented by the general formula () include a methyl group, a propyl group, a hexyl group, a cyclohexyl group, an allyl group,
Examples include 4-pentenyl group, propargyl group, benzyl group, p-methyl-benzyl group, p-chloro-benzyl group and the like. Further, the metal salts used in the present invention are magnesium salts, manganese salts, copper salts, cobalt salts, or zinc salts, such as magnesium chloride, magnesium bromide, magnesium sulfate, magnesium nitrate, manganese chloride, manganese nitrate, and copper sulfate. , cobalt acetate, zinc chloride, and the like. The amount of such metal salt to be used is 0.01 to 100 times the mole of the compound represented by the general formula (), preferably 0.1 to 100 times the mole.
The amount is 10 times the mole, more preferably 0.5 to 2 times the mole. In the present invention, the pH during the reaction is important, and the pH at the initial stage of the reaction is preferably in the range of 3 to 7, more preferably in the range of 3 to 6, and still more preferably in the range of 3.5 to 5.8. Of course, conditions outside this range may be used, but if the conditions are too acidic, by-products will increase, and if the conditions are too alkaline, the reaction rate will be significantly slowed down. The pH may be maintained until the end of the reaction without any particular adjustment, but in order to shorten the reaction time, the point at which the compound represented by the general formula () is consumed (before this point is defined as the initial stage of the reaction, and thereafter (called the late reaction stage), the pH is raised higher than the initial value.
It is preferable to maintain the ratio between 5 and 10, more preferably between 6.5 and 9, and even more preferably between 6.5 and 7.5. In the present invention, a wide variety of known acids and bases can be used for pH control.Specifically, acids include inorganic acids such as sulfuric acid, hydrochloric acid, and nitric acid, organic acids such as acetic acid and p-toluenesulfonic acid, and phosphorous acids. Examples include acidic metal salts such as sodium dihydrogen acid and sodium hydrogensulfite, and acidic ion exchange resins. Specific examples of the base include hydroxides of alkali metals such as sodium and potassium, alkaline earth metals such as calcium and barium, basic salts such as carbonates, bicarbonates, and acetates, triethylamine, Examples include amines such as pyridine, basic ion exchange resins, and the like. It is also possible to use acid-base buffer solutions using these. Furthermore, the amount of water solvent used in the present invention is preferably 0.5 to 100 times, preferably 5 to 40 times, the weight of the compound represented by the general formula (). The reaction temperature is usually 20°C to 200°C, preferably 80°C to 150°C. Specifically, this step involves dissolving or suspending a compound represented by the general formula () in an aqueous solvent in which a metal salt is dissolved, raising the temperature, and then reacting while adjusting the pH of the reaction solution between 3 and 7. Then, when the compound represented by the general formula () is consumed, the pH is adjusted to 5 to 10, and the reaction is carried out for several hours. The present invention will be specifically explained below using Examples. Example 1 Pour 1500 ml of water, raise the temperature to 100°C and reflux. Next, a solution prepared by dissolving 48 g of 5-methyl-2-furyl-allyl-carbinol and 63 g of MgCl 2 .6H 2 O in 320 ml of water was added dropwise over a period of 2.5 hours and 3.5 hours, respectively.
At that time, the pH of the reaction solution was 10% monopotassium phosphoric acid aqueous solution.
The pH was controlled to be between 5.8 and 5.5 with 1N sodium hydroxide solution. The pH stopped changing around 1.5 hours after the start of the reaction. After the dropwise addition of the MgCl 2 aqueous solution was completed, the mixture was stirred under reflux at 100° C. for 4.5 hours at pH 5.5. Next, 1N aqueous sodium hydroxide was added to raise the pH to 6.8, and the mixture was stirred under reflux at 100°C for 6 hours. This is 40℃
After cooling to 640g of salt, add 500ml of toluene.
Extracted 4 times. After drying the extract over anhydrous magnesium sulfate, toluene was distilled off under reduced pressure at 60°C.
43.3g of oil was obtained. Next, distill this at 1.2mmHg and 130-132℃.
38.4 g of 2-allyl-3-methyl-4-hydroxy-2-cyclopentenone was obtained. Yield: 80% Example 2 Charge 200 ml of water, dissolve 17 g of MgCl 2 .6H 2 O therein, and then add 13.0 g of 5-methyl-2-furyl-allyl-carbinol. This was heated to 100℃, refluxed, and mixed with 2N-hydrochloric acid water and 1N-NaOH water to pH 5.0 ~
The mixture was stirred under reflux for 8 hours while maintaining the temperature at 5.2. Next, the pH was raised to 7.3 with 1N-NaOH water, and the mixture was stirred under reflux for 3 hours. After cooling to 40°C, add 70g of common salt and extract 4 times with 80ml of toluene. After drying the extract over anhydrous magnesium sulfate, toluene was distilled off under reduced pressure at 60°C to obtain 11.9 g of an oily substance. Next, distill this at 1.2mmHg and 130-132℃.
10.2 g of 2-allyl-3-methyl-4-hydroxy-2-cyclopentenone was obtained. Yield: 78% Example 3 100 ml of water is charged and 6.8 g of MgCl 2 .6H 2 O is dissolved therein, and then 5 g of 5-methyl-2-furyl-propargyl-carbinol is added. This at 100℃
The mixture was heated to 100%, refluxed, and kept at pH 3.8 to 4.1 with 1N hydrochloric acid and 1N NaOH, and stirred under reflux for 8 hours. next
The pH was raised to 7.3 with 1N NaOH water, and the mixture was refluxed for 3 hours.
After cooling to 40℃, add 35g of salt and 50ml of toluene.
Extract 4 times. After drying the extract over anhydrous magnesium sulfate, toluene was distilled off at 60° C. under reduced pressure to obtain 4.6 g of an oily substance. Next, using 60 g of silica gel, ethyl acetate-n-hexane (1
It was developed in two volumes. First, high boilers flow out, and then a small amount of unreacted 5-methyl-2-furyl-
Propargyl-carbinol flows out and, much later, the desired 2-propargyl-3-methyl-4-hydroxy-2-cyclopentenone flows out, and this fraction is concentrated to
-Methyl-4-hydroxy-2-cyclopentenone (3.3 g) was obtained. Yield 66% Examples 4 to 11 Using 5 g of the following furancarbinol compound,
The same operation as in Example 3 was carried out under the following conditions to obtain each cyclopentenolone.

【表】【table】

【表】 実施例 12 5−メチル−2−フリル−アリル−カルビノー
ル1gを仕込み、次にMgBr2・6H2O1.9gを40ml
の水に溶解した液を加え、100℃に昇温し還流さ
せ、0.1N NaOH水でPH5.8にした後5.5時間還流撹
拌した。その時のPHは3.6であつた。次に0.1N
NaOH水でPH7.4に上げ1.5時間還流撹拌したとこ
ろPHは5.7であつた。さらに0.1N NaOH水でPH7.0
に上げ1.5時間還流撹拌したところPHは6.2であつ
た。さらに0.1N NaOHでPH6.6に上げ30分還流撹
拌したところPHは6.4であつた。冷却後、食塩12
gを加え、エーテル30mlで4回抽出した。抽出液
を無水硫酸マグネシウムで乾燥後40℃減圧下にエ
ーテルを留去し、得られた残渣をシリカゲル10g
を使用して、酢酸エチル−n−ヘキサン(1容対
2容)で展開し、2−アリル−3−メチル−4−
ハイドロキシ−2−シクロペンテノン0.55gを得
た。 収率:55% 実施例 13 5−メチル−2−フリル−アリル−カルビノー
ル1gを仕込み、次にZnCl20.9gを40mlの水に溶
解した液を加え、100℃に昇温し、還流させ、
0.1N NaOH水数滴を加えPH4.5にしさらに0.1N
NaOH水0.3mlを加えたがPHは4.5のままである。
これを11時間還流撹拌したところPHは4.2となつ
た。冷却後食塩12gを加え、エーテル30mlで4回
抽出した。抽出液を飽和NaHCO3水で洗浄後、無
水硫酸マグネシウムで乾燥後、40℃減圧下にエー
テルを留去し、得られた残渣をシリカゲル10gを
使用して酢酸エチル−n−ヘキサン(1容対2
容)で展開し、2−アリル−3−メチル−4−ハ
イドロキシ−2−シクロペンテノン0.58gを得
た。 収率:58% 実施例 14 けずり状マグネシウム39.3gとエーテル400ml
を仕込み、少量の沃素を加えて、撹拌する。室温
付近で、アリルブロマイド167.8gの中の約10滴
を加え、沃素の淡黄色が消えるまで撹拌した。冷
却後、0〜5℃を保持しながら4時間で残りのア
リルブロマイドを滴下し、30分保温撹拌した。次
に5−メチルフルフラール84.5gをエーテル200
mlに溶解した液を、0〜5℃を保しながら1.5時
間で滴下し、さらに1時間保温撹拌した。これに
20%NH4Cl水500mlを10℃まで氷冷し、10〜20℃
を保ちながら20分で上記金属錯体のエーテル液に
流下した。1時間室温で撹拌後エーテル層を分液
し、水層はエーテル200mlで2回抽出しエーテル
層を合せ、飽和NaHCO3水30mlで洗浄後無水
MgSO4で乾燥し、40℃減圧下に濃縮したところ
124.3gの油状物を得た。 これを4mmHg、60〜61℃で精留し、106.7gの
5−メチル−2−フリル−アリル−カルビノール
を得た。収率:91% 次にこれを用いて実施例1と同様の操作を行な
い2−アリル−3−メチル−4−ハイドロキシ−
2−シクロペンテノンを得た。 5−メチルフルフラールよりの収率72.8% 実施例 15 けずり状マグネシウム7.4gとエーテル40mlを
仕込み、次に少量の沃素を加える。20℃付近で、
アリルクロライド21.4gをエーテル40mlに溶解し
た液を約10滴加えてヨードの淡黄色の消えるまで
撹拌した。冷却後0〜5℃に保ちながら残りのア
リルクロライドのエーテル液を4時間で滴下し、
1時間保温撹拌した。次に5−メチルフルフラー
ル22.0gをエーテル100mlに溶解した液を0〜5
℃に保ちながら2時間で滴下し、1時間保温撹拌
した。これに氷冷下30gのNH4Clを溶解した水溶
液を20分で加え、1時間撹拌した後セライト過
し未反応マグネシウムを除去し、液に食塩100
gを加えてエーテル層を分液した。水層は200ml
のエーテルで3回抽出し、エーテル層を合せ30ml
の飽和NaHCO3水で洗浄後無水Na2SO450gで乾
燥し、次いで40℃減圧下に濃縮し27.9gの油状物
を得た。これを9mmHg、92℃で精留し、21.9g
の5−メチル−2−フリル−アリル−カルビノー
ルを得た。収率72.1% 次にこれを用いて実施例2と同様の操作を行な
い2−アリル−3−メチル−4−ハイドロキシ−
2−シクロペンテノンを得た。5−メチルフルフ
ラールよりの収率56.2% 実施例 16 アルミニウム粉1.54g、HgCl235mg及び少量の
沃素を仕込み150℃で10分加熱し、冷却後、テト
ラヒドロフラン20mlを仕込み、30℃でプロパルギ
ルブロマイド9.6gを4時間を要して滴下し、1
時間保温撹拌した。アセトン−ドライアイスバス
で冷却後−10℃以下を保ちながら5−メチルフル
フラール9.2gを20mlに溶解した液を3時間で滴
下した。次に30℃に昇温して30分保温撹拌後、0
℃に冷却し、10.6gのNH4Clを水40mlに溶解した
液を20分で加え30分撹拌後、30%NaCl水100mlを
加え、エーテル400mlで3回抽出した。エーテル
層を合わせ飽和NaHCO3水60mlで洗浄後無水
MgSO4で乾燥し、50℃減圧下に濃縮して8.8gの
油状物を得た。次に120gのシリカゲルを使用し
て酢酸エチル−n−ヘキサン(2容対5容)で展
開し、8.2gの5−メチル−2−フリル−プロパ
ルギル−カルビノールを得た。収率 65% 次にこれを用いて実施例3と同様の操作を行な
い2−プロパルギル−3−メチル−4−ハイドロ
キシ−2−シクロペンテノンを得た。5−メチル
フルフラールからの収率43% 実施例 17 けずり状マグネシウム7.3gとエーテル30mlを
仕込み少量の沃素を加えて室温で撹拌する。これ
にヨウ化メチル21.3gをエーテル40mlに溶解した
液を約10滴加えて沃素の淡黄色が消えるまで撹拌
した。 次にヨウ化メチル溶液を22℃〜35℃の間で1.5
時間で滴下し室温で1時間撹拌した。次いで5−
メチルフルフラール15.4gをエーテル60mlに溶解
した液を30分で滴下し、1時間室温で撹拌した。
これに飽和NH4Cl水60mlを20分で加え30分撹拌
後、セライト過し、未反応マグネシウムを除去
しエーテル層を分液し、水層はエーテル100mlで
2回抽出し、エーテル層を合せ飽和NaHCO3水20
mlで洗浄後無水MgSO4で乾燥し、40℃減圧下に
溶媒を留去して13.5gの油状物を得た。これを10
mmHg、67〜69℃で精留し11.8gの5−メチル−
2−フリル−メチル−カルビノールを得た。収率
67% 次にこれを用いて実施例4と同様の操作を行な
い2−メチル−3−メチル−4−ハイドロキシ−
2−シクロペンテノンを得た。 5−メチルフルフラールよりの収率42.2% 実施例 18 けずり状マグネシウム2.8gとエーテル12mlを
仕込み少量の沃素を加えて室温で撹拌する。塩化
プロピル8.6gをエーテル20mlに溶解した液を約
10滴加えて沃素の淡黄色が消えるまで撹拌した。
次にこの塩化プロピル溶液を2時間で滴下し、室
温で1時間撹拌した。次いでこれに5−メチルフ
ルフラール10gをエーテル50mlに溶解した液を1
時間で滴下し、1時間室温で撹拌した。さらにこ
れに飽和NH4Cl水50mlを20分で加え30分撹拌後セ
ライト過し未反応マグネシウムを除去後、エー
テル層を分液し、水層はエーテル100mlで2回抽
出し、エーテル層を合せ飽和NaHCO3水20mlで洗
浄後、無水MgSO4で乾燥し40℃減圧下に溶媒を
留去して12.8gの油状物を得た。これをシリカゲ
ル150gを使用して酢酸エチル−n−ヘキサン
(2容対5容)で展開し11.3gの5−メチル−2
−フリル−プロピル−カルビノールを得た。収率
81% 次にこれを用いて実施例5と同様の操作を行な
い2−プロピル−3−メチル−4−ハイドロキシ
−2−シクロペンテノンを得た。 5−メチルフルフラールよりの収率57.5% 実施例 19〜21 下記のハロゲン化合物を用いて実施例18と同様
の操作を行ない一般式()で示される夫々のフ
ランカルビノール化合物を得、次いでこれを用い
て夫々実施例6,7,8と同様の処理を行ない
夫々対応する一般式()で示されるシクロペン
テノロンを得た。
[Table] Example 12 1 g of 5-methyl-2-furyl-allyl-carbinol was charged, and then 1.9 g of MgBr 2 6H 2 O was added to 40 ml.
A solution dissolved in water was added thereto, the temperature was raised to 100°C, the mixture was refluxed, the pH was adjusted to 5.8 with 0.1N NaOH water, and the mixture was stirred under reflux for 5.5 hours. The pH at that time was 3.6. Then 0.1N
When the pH was raised to 7.4 with NaOH water and stirred under reflux for 1.5 hours, the pH was 5.7. Furthermore, PH7.0 with 0.1N NaOH water
The pH was 6.2 after stirring under reflux for 1.5 hours. Further, the pH was raised to 6.6 with 0.1N NaOH, and the mixture was stirred under reflux for 30 minutes, and the pH was 6.4. After cooling, salt 12
g and extracted four times with 30 ml of ether. After drying the extract over anhydrous magnesium sulfate, the ether was distilled off under reduced pressure at 40°C, and the resulting residue was added to 10 g of silica gel.
2-allyl-3-methyl-4-
0.55 g of hydroxy-2-cyclopentenone was obtained. Yield: 55% Example 13 1 g of 5-methyl-2-furyl-allyl-carbinol was charged, then a solution of 0.9 g of ZnCl 2 dissolved in 40 ml of water was added, the temperature was raised to 100°C, and the mixture was refluxed. ,
Add a few drops of 0.1N NaOH water to bring the pH to 4.5, then add 0.1N
I added 0.3ml of NaOH water, but the pH remained at 4.5.
When this was stirred under reflux for 11 hours, the pH became 4.2. After cooling, 12 g of common salt was added, and the mixture was extracted four times with 30 ml of ether. After washing the extract with saturated NaHCO 3 water and drying over anhydrous magnesium sulfate, the ether was distilled off under reduced pressure at 40°C. 2
0.58 g of 2-allyl-3-methyl-4-hydroxy-2-cyclopentenone was obtained. Yield: 58% Example 14 39.3g of magnesium scraps and 400ml of ether
Add a small amount of iodine and stir. At around room temperature, about 10 drops of allyl bromide (167.8 g) were added, and the mixture was stirred until the pale yellow color of iodine disappeared. After cooling, the remaining allyl bromide was added dropwise over 4 hours while maintaining the temperature at 0 to 5°C, and the mixture was stirred for 30 minutes. Next, add 84.5 g of 5-methylfurfural to 200 g of ether.
ml of the solution was added dropwise over 1.5 hours while maintaining the temperature at 0 to 5°C, and the mixture was further stirred for 1 hour while keeping it warm. to this
Cool 500ml of 20% NH 4 Cl water on ice to 10°C, then heat to 10-20°C.
The mixture was poured into the ether solution of the metal complex in 20 minutes while maintaining the temperature. After stirring at room temperature for 1 hour, the ether layer was separated, the aqueous layer was extracted twice with 200 ml of ether, the ether layers were combined, washed with 30 ml of saturated NaHCO 3 water, and then dried.
Dry with MgSO 4 and concentrate under reduced pressure at 40°C.
124.3g of oil was obtained. This was rectified at 4 mmHg and 60-61°C to obtain 106.7 g of 5-methyl-2-furyl-allyl-carbinol. Yield: 91% Next, using this, the same operation as in Example 1 was carried out to obtain 2-allyl-3-methyl-4-hydroxy-
2-cyclopentenone was obtained. Yield 72.8% from 5-methylfurfural Example 15 7.4 g of magnesium scraps and 40 ml of ether are charged, and then a small amount of iodine is added. At around 20℃,
Approximately 10 drops of a solution of 21.4 g of allyl chloride dissolved in 40 ml of ether were added and stirred until the pale yellow color of iodine disappeared. After cooling, the remaining ether solution of allyl chloride was added dropwise over 4 hours while maintaining the temperature at 0 to 5°C.
The mixture was stirred and kept warm for 1 hour. Next, a solution of 22.0 g of 5-methylfurfural dissolved in 100 ml of ether was added to
The mixture was added dropwise over 2 hours while maintaining the temperature at °C, and the mixture was stirred for 1 hour while keeping it warm. To this was added an aqueous solution in which 30 g of NH 4 Cl was dissolved under ice-cooling over 20 minutes, and after stirring for 1 hour, unreacted magnesium was removed through Celite, and 100 g of sodium chloride was added to the solution.
g was added to separate the ether layer. Water layer is 200ml
Extract 3 times with ether and combine the ether layers to 30ml.
After washing with saturated aqueous NaHCO 3 , it was dried over 50 g of anhydrous Na 2 SO 4 , and then concentrated under reduced pressure at 40° C. to obtain 27.9 g of an oil. This was rectified at 9mmHg and 92℃, and 21.9g
5-methyl-2-furyl-allyl-carbinol was obtained. Yield 72.1% Next, using this, the same operation as in Example 2 was carried out to obtain 2-allyl-3-methyl-4-hydroxy-
2-cyclopentenone was obtained. Yield 56.2% from 5-methylfurfural Example 16 1.54 g of aluminum powder, 35 mg of HgCl 2 and a small amount of iodine were charged and heated at 150°C for 10 minutes. After cooling, 20 ml of tetrahydrofuran was charged and 9.6 g of propargyl bromide was prepared at 30°C. was added dropwise over a period of 4 hours, and 1
The mixture was kept warm and stirred for an hour. After cooling in an acetone-dry ice bath, a solution prepared by dissolving 9.2 g of 5-methylfurfural in 20 ml was added dropwise over 3 hours while maintaining the temperature at -10°C or lower. Next, the temperature was raised to 30℃, stirred for 30 minutes, and then heated to 0.
The mixture was cooled to 0.degree. C., and a solution of 10.6 g of NH 4 Cl dissolved in 40 ml of water was added over 20 minutes. After stirring for 30 minutes, 100 ml of 30% NaCl water was added, and the mixture was extracted three times with 400 ml of ether. The ether layers were combined and washed with 60 ml of saturated NaHCO 3 water, then anhydrous.
It was dried over MgSO 4 and concentrated under reduced pressure at 50° C. to give 8.8 g of an oil. 120 g of silica gel was then developed with ethyl acetate-n-hexane (2 volumes to 5 volumes) to yield 8.2 g of 5-methyl-2-furyl-propargyl-carbinol. Yield: 65% Next, using this, the same operation as in Example 3 was carried out to obtain 2-propargyl-3-methyl-4-hydroxy-2-cyclopentenone. Yield from 5-methylfurfural: 43% Example 17 7.3 g of magnesium scraps and 30 ml of ether are charged, a small amount of iodine is added, and the mixture is stirred at room temperature. About 10 drops of a solution of 21.3 g of methyl iodide dissolved in 40 ml of ether were added to this, and the mixture was stirred until the pale yellow color of iodine disappeared. Next, the methyl iodide solution was heated between 22°C and 35°C at 1.5°C.
The mixture was added dropwise over a period of time and stirred at room temperature for 1 hour. Then 5-
A solution of 15.4 g of methylfurfural dissolved in 60 ml of ether was added dropwise over 30 minutes, and the mixture was stirred for 1 hour at room temperature.
Add 60 ml of saturated NH 4 Cl water to this over 20 minutes, stir for 30 minutes, filter through Celite, remove unreacted magnesium, separate the ether layer, extract the aqueous layer twice with 100 ml of ether, and combine the ether layers. Saturated NaHCO 3 water 20
ml, dried over anhydrous MgSO 4 , and the solvent was distilled off under reduced pressure at 40° C. to obtain 13.5 g of oil. This is 10
11.8 g of 5-methyl-
2-furyl-methyl-carbinol was obtained. yield
67% Next, using this, the same operation as in Example 4 was carried out to obtain 2-methyl-3-methyl-4-hydroxy-
2-cyclopentenone was obtained. Yield from 5-methylfurfural: 42.2% Example 18 2.8 g of magnesium chips and 12 ml of ether are charged, a small amount of iodine is added, and the mixture is stirred at room temperature. Approximately 8.6 g of propyl chloride dissolved in 20 ml of ether
10 drops were added and stirred until the pale yellow color of iodine disappeared.
Next, this propyl chloride solution was added dropwise over 2 hours, and the mixture was stirred at room temperature for 1 hour. Next, add 10 g of 5-methylfurfural dissolved in 50 ml of ether to this.
The mixture was added dropwise over a period of time and stirred at room temperature for 1 hour. Further, 50 ml of saturated NH 4 Cl water was added to this over 20 minutes, stirred for 30 minutes, filtered through Celite to remove unreacted magnesium, the ether layer was separated, the aqueous layer was extracted twice with 100 ml of ether, and the ether layers were combined. After washing with 20 ml of saturated NaHCO 3 water, it was dried over anhydrous MgSO 4 and the solvent was distilled off at 40° C. under reduced pressure to obtain 12.8 g of an oil. This was developed using 150 g of silica gel with ethyl acetate-n-hexane (2 volumes to 5 volumes), and 11.3 g of 5-methyl-2
-furyl-propyl-carbinol was obtained. yield
81% Next, using this, the same operation as in Example 5 was carried out to obtain 2-propyl-3-methyl-4-hydroxy-2-cyclopentenone. Yield 57.5% from 5-methylfurfural Examples 19 to 21 Using the following halogen compounds, the same operation as in Example 18 was carried out to obtain each furan carbinol compound represented by the general formula (). The same treatments as in Examples 6, 7, and 8 were carried out using the respective compounds to obtain the corresponding cyclopentenolone represented by the general formula ().

【表】 容
*2 5〓メチルフルフラールからの収率
実施例 22 けずり状マグネシウム5.5gと粉末マグネシウ
ム5.5gとエーテル100mlを仕込み少量の沃素を加
えて還流下撹拌する。p−クロルベンジルクロリ
ド19.3gをエーテル120mlに溶解した液を約10滴
加えて沃素の淡黄色が消えるまで撹拌した。次に
残りのp−クロルベンジルクロリド溶液を5時間
で滴下し、1時間撹拌後5−メチルフルフラール
10gをエーテル50mlに溶解した液を2時間で滴下
し1時間撹拌した。次いでこれに飽和NH4Cl水50
mlを20分で加え30分撹拌後セライト過し未反応
マグネシウムを除去しエーテル層を分液し、水層
はエーテル100mlで2回抽出し、エーテル層を合
せ、飽和NaHCO3液20mlで洗浄後、無水MgSO4
で乾燥し、40℃減圧下に溶媒を留去して25.1gの
油状物を得た。これをシリカゲル300gを使用し
て酢酸エチル−n−ヘキサン(2容対5容)で展
開し21.6gの5−メチル−2−フリル−p−クロ
ルベンジル−カルビノールを得た。収率83% 次にこれを用いて、実施例9と同様の操作を行
ない2−p−クロルベンジル−3−メチル−4−
ハイドロキシ−2−シクロペンテノンを得た。 5−メチルフルフラールよりの収率68.9% 実施例 23〜24 下記のハロゲン化合物を用いて実施例22と同様
の操作を行ない一般式()で示される夫々のフ
ランカルビノール化合物を得、次いでこれを用い
て夫々実施例10,11と同様に処理し、夫々対応す
る一般式()で示されるシクロペンテノロンを
得た。
[Table] Volume *2 5〓Yield from methylfurfural Example 22 5.5 g of magnesium shavings, 5.5 g of powdered magnesium, and 100 ml of ether are charged, a small amount of iodine is added, and the mixture is stirred under reflux. About 10 drops of a solution of 19.3 g of p-chlorobenzyl chloride dissolved in 120 ml of ether were added and stirred until the pale yellow color of iodine disappeared. Next, the remaining p-chlorobenzyl chloride solution was added dropwise over 5 hours, and after stirring for 1 hour, 5-methylfurfural was added.
A solution of 10 g dissolved in 50 ml of ether was added dropwise over 2 hours and stirred for 1 hour. This was then added with 50 mL of saturated NH 4 Cl water.
ml over 20 minutes, stirred for 30 minutes, filtered through Celite to remove unreacted magnesium, separated the ether layer, extracted the aqueous layer twice with 100 ml of ether, combined the ether layers, and washed with 20 ml of saturated NaHCO 3 solution. , anhydrous MgSO4
The solvent was distilled off at 40° C. under reduced pressure to obtain 25.1 g of oil. This was developed using 300 g of silica gel with ethyl acetate-n-hexane (2 volumes to 5 volumes) to obtain 21.6 g of 5-methyl-2-furyl-p-chlorobenzyl-carbinol. Yield 83% Next, using this, the same operation as in Example 9 was carried out to obtain 2-p-chlorobenzyl-3-methyl-4-
Hydroxy-2-cyclopentenone was obtained. Yield 68.9% from 5-methylfurfural Examples 23 to 24 The same operation as in Example 22 was carried out using the following halogen compounds to obtain each furancarbinol compound represented by the general formula (). Each of these compounds was treated in the same manner as in Examples 10 and 11 to obtain the corresponding cyclopentenolone represented by the general formula ().

【表】 容
*2 5〓メチルフルフラールからの収率
実施例 25 水200mlを仕込みMnCl2・4H2O6.18gを溶解
し、これに5−メチル−2−フリル−アリル−カ
ルビノール5gを加えた。 この時のPHは4.8(16℃)であつた。次いで、
これを100℃に昇温し、1N NaOH水と0.2N HCl
水でPHを4.5〜6.0に保ち、25時間還流撹拌した。
40℃まで冷却後1N NaOH水で中和後、食塩を70
g加え、トルエン80mlで4回抽出した。抽出液を
無水硫酸マグネシウムで乾燥後60℃減圧下にトル
エンを留去したところ3.8gの油状物を得た。 次にこれを0.05mmHg、88〜90℃で蒸留して3.0
gの2−アリル−3−メチル−4−ハイドロキシ
−2−シクロペンテノンを得た。 収率61% 実施例 26 水200mlを仕込みMnCl2・4H2O6.5gを溶解
し、これに5−メチル−2−フリル−アリル−カ
ルビノール5gを加えた。次に100℃に昇温し、
1N NaOH水と0.2N HCl水でPHを4.5〜6.0ほ保つ
て8時間還流撹拌した。 次に1N NaOHで反応液のPHを6.5に調製し3時
間還流撹拌した。40℃まで冷却後、食塩を70g加
え、トルエン80mlで4回抽出した。 抽出液を無水硫酸マグネシウムで乾燥後、60℃
減圧下にトルエンを留去したところ3.9gの油状
物質を得た。 次にこれを0.05mmHg、88〜90℃で蒸留して3.1
gの2−アリル−3−メチル−4−ハイドロキシ
−2−シクロペンテノンを得た。 収率62% 実施例 27 水200mlを仕込みCo(CH3COO)2・4H2O3.45g
を溶解し、これに5−メチル−2−フリル−アリ
ルカルビノール5gを加えた。 次にこれを100℃に昇温したところPHは6.2であ
つた。 1N NaOH水と1N HCl水でPHを5.5〜6.0に保つ
て14時間還流撹拌した。40℃まで冷却後食塩を70
g加え、トルエン80mlで4回抽出した。 抽出液を無水硫酸マグネシウムで乾燥後60℃減
圧下にトルエンを留去したところ、3.6gの油状
物を得た。 次にこれを0.05mmHg、88〜90℃で蒸留して2.9
gの2−アリル−3−メチル−4−ハイドロキシ
−2−シクロペンテノンを得た。 収率58%。
[Table] Volume *2 5 Yield example from methylfurfural 25 Pour 200 ml of water and dissolve 6.18 g of MnCl 2 4H 2 O. To this, add 5 g of 5-methyl-2-furyl-allyl-carbinol. Ta. The pH at this time was 4.8 (16°C). Then,
The temperature was raised to 100℃, and 1N NaOH water and 0.2N HCl were added.
The pH was maintained at 4.5 to 6.0 with water, and the mixture was stirred under reflux for 25 hours.
After cooling to 40℃ and neutralizing with 1N NaOH water, add 70% salt.
g and extracted four times with 80 ml of toluene. After drying the extract over anhydrous magnesium sulfate, toluene was distilled off at 60° C. under reduced pressure to obtain 3.8 g of an oily substance. Next, distill this at 0.05mmHg and 88-90℃ to obtain a 3.0
g of 2-allyl-3-methyl-4-hydroxy-2-cyclopentenone was obtained. Yield: 61% Example 26 200 ml of water was charged to dissolve 6.5 g of MnCl 2 .4H 2 O, and 5 g of 5-methyl-2-furyl-allyl-carbinol was added thereto. Next, raise the temperature to 100℃,
The pH was maintained at 4.5 to 6.0 with 1N NaOH water and 0.2N HCl water, and the mixture was stirred under reflux for 8 hours. Next, the pH of the reaction solution was adjusted to 6.5 with 1N NaOH, and the mixture was stirred under reflux for 3 hours. After cooling to 40°C, 70g of common salt was added and extracted four times with 80ml of toluene. After drying the extract over anhydrous magnesium sulfate, heat at 60°C.
Toluene was distilled off under reduced pressure to obtain 3.9 g of an oily substance. Next, distill this at 0.05mmHg and 88-90℃ to obtain 3.1
g of 2-allyl-3-methyl-4-hydroxy-2-cyclopentenone was obtained. Yield 62% Example 27 Add 200 ml of water and add 3.45 g of Co (CH 3 COO) 2.4H 2 O
was dissolved, and 5 g of 5-methyl-2-furyl-allylcarbinol was added thereto. Next, when this was heated to 100°C, the pH was 6.2. The pH was maintained at 5.5 to 6.0 with 1N NaOH water and 1N HCl water, and the mixture was stirred under reflux for 14 hours. After cooling to 40℃, add 70% salt.
g and extracted four times with 80 ml of toluene. After drying the extract over anhydrous magnesium sulfate, toluene was distilled off at 60° C. under reduced pressure to obtain 3.6 g of an oily substance. Next, distill this at 0.05mmHg and 88-90℃ to obtain 2.9
g of 2-allyl-3-methyl-4-hydroxy-2-cyclopentenone was obtained. Yield 58%.

Claims (1)

【特許請求の範囲】 1 一般式 [式中、R1は、炭素数6までのアルキル基、
その結合末端に不飽和結合を持たない炭素数6ま
でのアルケニル基、アルキニル基または一般式
【式】で示される基を表わす。こ こにR2は水素原子、メチル基またはハロゲン原
子を表わす。] で示されるフランカルビノール化合物を水溶媒
中、マグネシウム塩、マンガン塩、銅塩、コバル
ト塩および亜鉛塩からなる群より選ばれる金属塩
の存在下に処理し、前記フランカルビノール化合
物が消費された後も引続き反応系を保持すること
を特徴とする一般式 [式中、R1は前述と同じ意味を有する。] で示されるシクロペンテノロン類の製造方法。 2 処理を20〜200℃で行なう特許請求の範囲第
1項に記載の方法。 3 処理をPH3〜7の範囲で行ない、前記フラン
カルビノール化合物が消費された後、PHを初めの
値より高くしてPH5〜10の範囲で保持する特許請
求の範囲第1項または第2項に記載の方法。 4 処理をPH3〜6の範囲で行ない、後の保持を
PH6.5〜9の範囲で行なう特許請求の範囲第3項
に記載の方法。 5 式 で示される5−メチルフルフラールと一般式 R1MX [式中R1は、炭素数6までのアルキル基、そ
の結合末端に不飽和結合を持たない炭素数6まで
のアルケニル基、アルキニル基または一般式
【式】で示される基を表わす。こ こにR2は水素原子、メチル基またはハロゲン原
子を表わす。MはMg、ZnまたはAl〓原子を表わ
し、Xは塩素原子、臭素原子またはヨウ素原子を
表わす。] で示される有機金属ハロゲン化物とを反応させて
一般式 [式中、R1は前述と同じ意味を有する。] で示されるフランカルビノール化合物を得、次い
でこれを水溶媒中、マグネシウム塩、マンガン
塩、銅塩、コバルト塩および亜鉛塩からなる群よ
り選ばれる金属塩の存在下に処理し、前記フラン
カルビノール化合物が消費された後も引続き反応
系を保持することを特徴とする一般式 [式中、R1は前述と同じ意味を有する。] で示されるシクロペンテノロン類の製造方法。
[Claims] 1. General formula [In the formula, R 1 is an alkyl group having up to 6 carbon atoms,
It represents an alkenyl group, an alkynyl group, or a group represented by the general formula [Formula] having up to 6 carbon atoms, which does not have an unsaturated bond at the bond end. R 2 here represents a hydrogen atom, a methyl group or a halogen atom. ] A furancarbinol compound represented by is treated in an aqueous solvent in the presence of a metal salt selected from the group consisting of magnesium salts, manganese salts, copper salts, cobalt salts and zinc salts, so that the furancarbinol compound is consumed. A general formula characterized by the fact that the reaction system continues to be maintained even after [In the formula, R 1 has the same meaning as above. ] A method for producing a cyclopentenolone. 2. The method according to claim 1, wherein the treatment is carried out at 20 to 200°C. 3. Claim 1 or 2, in which the treatment is carried out at a pH of 3 to 7, and after the furancarbinol compound is consumed, the PH is raised higher than the initial value and maintained at a pH of 5 to 10. The method described in. 4 Process in the pH range of 3 to 6, and then maintain it afterward.
The method according to claim 3, which is carried out at a pH in the range of 6.5 to 9. 5 formula 5-methylfurfural and the general formula R 1 MX [wherein R 1 is an alkyl group with up to 6 carbon atoms, an alkenyl group with up to 6 carbon atoms without an unsaturated bond at the bond end, an alkynyl group, or a general Represents a group represented by the formula [Formula]. R 2 here represents a hydrogen atom, a methyl group or a halogen atom. M represents a Mg, Zn or Al 〓 atom, and X represents a chlorine atom, a bromine atom or an iodine atom. ] by reacting with an organometallic halide represented by the general formula [In the formula, R 1 has the same meaning as above. ] is obtained, and then treated in an aqueous solvent in the presence of a metal salt selected from the group consisting of magnesium salts, manganese salts, copper salts, cobalt salts and zinc salts to obtain the furancarbinol compound represented by A general formula characterized by the fact that the reaction system continues to be maintained even after the nol compound is consumed. [In the formula, R 1 has the same meaning as above. ] A method for producing a cyclopentenolone.
JP15945479A 1979-12-07 1979-12-07 Preparation of cyclopentenolones Granted JPS5681531A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP15945479A JPS5681531A (en) 1979-12-07 1979-12-07 Preparation of cyclopentenolones
US06/211,225 US4510329A (en) 1979-12-07 1980-11-28 Process for preparing cyclopentenolones
HU802877A HU186373B (en) 1979-12-07 1980-12-03 Process for producing cyclopentanone derivatives
EP80107603A EP0035060B1 (en) 1979-12-07 1980-12-04 Process for preparing cyclopentenolones
DE8080107603T DE3063194D1 (en) 1979-12-07 1980-12-04 Process for preparing cyclopentenolones
DK522380A DK151795C (en) 1979-12-07 1980-12-05 PROCEDURE FOR THE PREPARATION OF CYCLOPENTENOLONS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15945479A JPS5681531A (en) 1979-12-07 1979-12-07 Preparation of cyclopentenolones

Publications (2)

Publication Number Publication Date
JPS5681531A JPS5681531A (en) 1981-07-03
JPS6257173B2 true JPS6257173B2 (en) 1987-11-30

Family

ID=15694107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15945479A Granted JPS5681531A (en) 1979-12-07 1979-12-07 Preparation of cyclopentenolones

Country Status (1)

Country Link
JP (1) JPS5681531A (en)

Also Published As

Publication number Publication date
JPS5681531A (en) 1981-07-03

Similar Documents

Publication Publication Date Title
KR20090014468A (en) Process for preparing voriconazole
SU923366A3 (en) Process for producing n,n1-dimethyl-3-(4-bromophenyl)-3-(3-pyridyl)allylamine, or its dihydrochloride, or z-isomer
JPS6257173B2 (en)
JP3407082B2 (en) Method for producing aminomethylpyridine derivative and intermediate thereof
JP4800532B2 (en) Method for producing acylated 1,3-dicarbonyl compounds
JPS60136532A (en) Substituted acetylene ketone
JPS6317837B2 (en)
JP3031279B2 (en) Method for producing 2-alkoxy-6- (trifluoromethyl) pyrimidin-4-ol
JPS6257172B2 (en)
JPH01168675A (en) Production of 1,3-dialkylpyrazole-5-carboxylic acid esters
JP3771334B2 (en) Preparation of 2-methyl-3- (3,4-methylenedioxyphenyl) acrylaldehyde
JP2918899B2 (en) Method for producing cyclic imide derivative
JPS6254417B2 (en)
KR100376280B1 (en) Method for preparing cinnamaldehyde derivatives
JPH0348909B2 (en)
JPH06199798A (en) Preparation of 2,3-pyridine-dicarboxylic acid from 3-(2-imidazolin-2-yl)-picolinic acid
JP3856241B2 (en) NOVEL DERIVATIVES OF 1 (2H) -QUINOLINE CARBOXYLIC ACID, METHOD OF SYNTHESIZING THE SAME AND METHOD OF USING THE SAME FOR SYNTHESIZING COMPOUNDS WITH ANTIBIOTIC AGENT
JP3272340B2 (en) Method for producing 1-[(cyclopent-3-en-1-yl) methyl] -5-ethyl-6- (3,5-dimethylbenzoyl) -2,4-pyrimidinedione
JP4018816B2 (en) Cycloheptenone derivative and method for producing the same, and method for producing cycloheptimidazole derivative using the same
JPS59148770A (en) 2,4-dichloro-5-thiazole carboxaldehyde and manufacture
EP0163506B1 (en) Process for the preparation of a pyridil-propanoic acid
JPH023672A (en) 2,6-diethylaniline derivative and production thereof
JPS6225146B2 (en)
HU186372B (en) Process for producing 3-oxo-cyclopentene derivatives
JPH07215913A (en) Production of 2,4,5-trihalogeno-3-methylbenzoic acid