Nothing Special   »   [go: up one dir, main page]

JPS6250476A - Method for plating nickel-boron alloy - Google Patents

Method for plating nickel-boron alloy

Info

Publication number
JPS6250476A
JPS6250476A JP19026985A JP19026985A JPS6250476A JP S6250476 A JPS6250476 A JP S6250476A JP 19026985 A JP19026985 A JP 19026985A JP 19026985 A JP19026985 A JP 19026985A JP S6250476 A JPS6250476 A JP S6250476A
Authority
JP
Japan
Prior art keywords
plating
nickel
boron alloy
electroless
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19026985A
Other languages
Japanese (ja)
Inventor
Hideyuki Kobayashi
秀行 小林
Shinichi Wakabayashi
信一 若林
Junichi Nakamura
純一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Industries Co Ltd
Original Assignee
Shinko Electric Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Industries Co Ltd filed Critical Shinko Electric Industries Co Ltd
Priority to JP19026985A priority Critical patent/JPS6250476A/en
Publication of JPS6250476A publication Critical patent/JPS6250476A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/562Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of iron or nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemically Coating (AREA)

Abstract

PURPOSE:To form an Ni-B alloy film having superior heat resistance an solderability by carrying out electroplating at a low temp. with a soln. prepd. by using a borohydride compound as a reducing agent in an electroless Ni plating bath having a prescribed composition. CONSTITUTION:A borohydride compound as a reducing agent is added to a soln. contg. an Ni salt and an org. acid such as citric acid, malonic acid or tartaric acid or a salt thereof as a complexing agent to prepare an electroless Ni plating soln. Electroplating is carried out with the plating soln. kept at such a low temp. as about 50 deg.C at which an electroless plating reaction slightly takes place or does not take place at all. By the electroplating, a metallic Ni film is deposited and simultaneously a very small amount of B is deposited. A metallic film formed by this method has heat resistance and solderability comparable to those of an Ni-B alloy film formed by conventional electroless plating. The plating time is shortened.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はニッケル−ホウ素合金めっき方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a nickel-boron alloy plating method.

(従来技術及びその問題点) 従来のニッケル−ホウ素合金めっきは、専ら無電解めっ
きによって行われている。しかしながらこの無電解めっ
きは、1μm程度の膜厚を得るのに10分前後の長時間
のめっき時間を要する。したがって、例えば半導体装置
に用いるリードフレーム等の長尺物に、金、銀等の電解
めっきとニッケル−ホウ素合金の無電解めっきとを含む
めっきを、同一めっきラインで連続的に施すことは、電
解めっきが短時間で済むのに対し、無電解めっきは上記
のように長時間を要するから、この両者の差が大きすぎ
ることおよび、無電解めっき浴が不安定で浴寿命が短い
ことから事実上不可能であった。
(Prior art and its problems) Conventional nickel-boron alloy plating is performed exclusively by electroless plating. However, this electroless plating requires a long plating time of about 10 minutes to obtain a film thickness of about 1 μm. Therefore, it is difficult to continuously apply plating including electrolytic plating of gold, silver, etc. and electroless plating of nickel-boron alloy to a long object such as a lead frame used for a semiconductor device in the same plating line. While plating takes a short time, electroless plating takes a long time as mentioned above, so the difference between the two is too large, and the electroless plating bath is unstable and has a short bath life. It was impossible.

このようなニッケル−ホウ素合金めっきと、金あるいは
銀等の電解めっきとが必要になった背景を、リードフレ
ームについて説明する。
The background why such nickel-boron alloy plating and electrolytic plating of gold, silver, etc. have become necessary will be explained with regard to lead frames.

樹脂封止型半導体装置の組立工程例は次のようになる。An example of an assembly process for a resin-sealed semiconductor device is as follows.

■リードフレームのステージ部、内部リード部に、金あ
るいは銀めっき層を部分電解めっきにより形成する。
■A gold or silver plating layer is formed on the stage part and internal lead part of the lead frame by partial electrolytic plating.

■ステージ部に半導体素子を金−シリコン共晶合金等に
よって固定する。
(2) Fixing the semiconductor element to the stage part using a gold-silicon eutectic alloy or the like.

■半導体素子と内部リード部とのワイヤーボンディング
を行う。
■Perform wire bonding between the semiconductor element and internal leads.

■半導体素子搭載部を含む樹脂封止領域を樹脂モールド
する。
■Mold the resin sealing area including the semiconductor element mounting area with resin.

■外部リード部に、錫あるいははんだめっき、またはは
んだ浸漬処理を施す。
■Apply tin or solder plating, or solder immersion treatment to the external leads.

以上の各工程で■の、外部リード部への、錫あるいはは
んだめっき、またははんだ浸漬処理を行う工程が技術的
に問題となる。
In each of the above steps, the step (2) of subjecting the external lead portion to tin or solder plating or solder immersion treatment poses a technical problem.

すなわち、錫あるいははんだめっきによる、めっき処理
を行う場合にあっては、当然に、前処理液やめっき液に
浸漬されるウェットプロセスを経ることから、湿気によ
り半導体素子の信頼性が低下する問題点がある。
In other words, when performing plating using tin or solder plating, it naturally goes through a wet process in which it is immersed in a pretreatment solution or plating solution, so there is a problem in that the reliability of semiconductor elements decreases due to moisture. There is.

またはんだ浸漬処理を行う場合には、半導体素子固定時
およびワイヤーポンディング時等の熱履歴により、外部
リード部に生じた金属酸化膜を除去する必要があるため
、ハロゲン価の高いフラックスを使用する必要がある。
When performing solder immersion treatment, it is necessary to remove metal oxide films that have formed on the external leads due to heat history during semiconductor element fixing and wire bonding, so use flux with a high halogen value. There is a need.

この際に発生するハロゲンイオンにより、半導体素子の
アルミニウム等による配線回路が損傷するおそれがあり
、やはり半導体素子の信頼性を低下させる問題点がある
The halogen ions generated at this time may damage the wiring circuit made of aluminum or the like of the semiconductor element, which again poses the problem of lowering the reliability of the semiconductor element.

上記の問題点に対処すべく、リードフレームにあらかじ
め、錫またははんだ皮膜を形成してお(方法が提案され
ている。しかし、この方法によるときは、これらの皮膜
が融解しないよう以後の半導体素子固定時、ワイヤーポ
ンディング時および樹脂モールド時における熱履歴が最
高でも200℃以下に抑える。それでもこの熱過程にお
いて錫あるいははんだ皮膜が変色(酸化)し、製品のは
んだ付は性を低下させる問題点がある。
In order to deal with the above problems, a method has been proposed in which a tin or solder film is formed on the lead frame in advance. However, when using this method, subsequent semiconductor elements are The thermal history during fixing, wire bonding, and resin molding is kept to a maximum of 200℃ or less.However, the tin or solder film changes color (oxidation) during this thermal process, reducing the solderability of the product. There is.

発明者は、上記の種々の問題点に鑑み鋭意検討を重ねた
結果、ニッケル−ホウ素合金めっき皮膜が、耐熱性、は
んだ付は性に優れることに着目し、あらかじめ、リード
フレームの少なくとも外部リード部にニッケル−ホウ素
合金めっき皮膜を施しておくことによって、湿気、フラ
ックスさらには組立時の200°C以下という温度制限
等上記の問題点がすべて解消されることを見出した。
As a result of intensive studies in view of the various problems mentioned above, the inventor noticed that the nickel-boron alloy plating film has excellent heat resistance and soldering properties. It has been found that by applying a nickel-boron alloy plating film to the nickel-boron alloy, all of the above-mentioned problems such as moisture, flux, and the temperature limit of 200° C. or less during assembly can be solved.

しかるに従来においては、このニッケル−ホウ素合金め
っきは無電解によるものしか行われておらず、前述の製
造上の問題点が惹起されるに至ったのである。
However, in the past, this nickel-boron alloy plating has only been carried out electrolessly, which has led to the aforementioned manufacturing problems.

(発明の概要) 本発明は前述の製造上の問題点を解消すべくなされたも
のであり、その目的とするところは2、必要な金、銀等
の電解めっきと同一のめっきライン上で、ニッケル−ホ
ウ素合金めっきを行うことのできるニッケル−ホウ素合
金めっき方法を提供するにある。
(Summary of the Invention) The present invention has been made to solve the above-mentioned manufacturing problems, and its objectives are 2. On the same plating line as the necessary electrolytic plating of gold, silver, etc., It is an object of the present invention to provide a nickel-boron alloy plating method capable of performing nickel-boron alloy plating.

しかして、その特徴は、ニッケル塩と錯化剤としてクエ
ン酸、マロン酸、酒石酸等の有機酸またはその塩を含む
溶液に還元剤として水素化ホウ素化合物を添加した無電
解ニッケルめっき液を用い、無電解めっき反応がわずか
に起こるかまたは全く起こらない温度条件下で電解めっ
きを行うところにある。
However, its characteristics are that it uses an electroless nickel plating solution in which a borohydride compound is added as a reducing agent to a solution containing a nickel salt and an organic acid such as citric acid, malonic acid, or tartaric acid or a salt thereof as a complexing agent; Electroless plating involves performing electrolytic plating under temperature conditions where little or no reaction occurs.

(作用) 水素化ホウ素化合物はニッケルイオンの強力な還元剤と
して作用する。通常の無電解めっきにおいては、比較的
高温条件下で水素化ホウ素化合物が触媒活性を有する被
めっき面において自己分解すると同時に、ニッケルイオ
ンを還元し、金属ニッケルとして素材上に析出させる。
(Function) Boron hydride compounds act as strong reducing agents for nickel ions. In normal electroless plating, a boron hydride compound self-decomposes on the plated surface where it has catalytic activity under relatively high temperature conditions, and at the same time, nickel ions are reduced and deposited as metallic nickel on the material.

また、その際に、微量ながら、ホウ素が金属ニッケル中
に取り込まれ、ニッケル−ホウ素合金としてのめつき皮
膜が形成されるのである。このニッケル−ホウ素合金皮
膜は、単なるニッケル皮膜に比して、格段に優れた耐熱
安定性、はんだ付は性を有する。
Further, at this time, boron is incorporated into the metal nickel, albeit in a small amount, and a plating film is formed as a nickel-boron alloy. This nickel-boron alloy film has much better heat resistance stability and solderability than a simple nickel film.

本発明においては、浴温を、無電解めっき反応がわずか
に起こるかまたは全く起こらない温度条件である、50
℃前後の低温条件に設定し、この状態の下に電解めっき
処理を行うのである。すると非電解条件下では金属膜の
析出が起こらないものが、この通電により金属ニッケル
膜の析出が起こり、同時に微量のホウ素が共析すること
が確認された。この場合電流密度がIA/dr!前後の
低電流密度で良好な金属膜の析出が得られた。これは、
通電により、ニッケルの析出が起こると同時にめっき面
の電位が無電解による金属析出反応が同時に進行するレ
ベルにまで到達したためと考えられる。
In the present invention, the bath temperature is set to 50°C, which is a temperature condition where electroless plating reaction occurs slightly or not at all.
The electrolytic plating process is performed under low-temperature conditions, around ℃. As a result, it was confirmed that although no metal film was deposited under non-electrolytic conditions, a metal nickel film was deposited by this energization, and at the same time a trace amount of boron was eutectoid. In this case, the current density is IA/dr! Good metal film deposition was obtained at low current densities before and after. this is,
It is thought that this is because the electrical potential of the plating surface reached a level at which the electroless metal deposition reaction simultaneously proceeded when nickel was deposited due to the application of electricity.

このようにして、得られた金属皮膜は、純粋なニッケル
皮膜ではなく、従来の無電解ニッケル−ホウ素合金めっ
き皮膜に匹敵する優れた耐熱性、はんだ付は性を有する
ことが確認され、無電解めっきの欠点である浴の不安定
さおよび短寿命という問題が解決された。
In this way, it was confirmed that the obtained metal film was not a pure nickel film, but had excellent heat resistance and solderability comparable to conventional electroless nickel-boron alloy plating films, and electroless The problems of bath instability and short life, which are drawbacks of plating, have been solved.

すなわち、従来の単なる無電解めっきによるときと比し
て、浴温を一定の低温にコントロールしさえすれば水素
化ホウ素化合物の自己分解を抑制でき、大部分は通電量
に比例して消費されるだけであるため無電解めっきの場
合に考慮しなければならない浴組成の制御条件等を無視
でき、通常の金、銀めっき浴の場合の金、銀と同様に消
費量に応じて補充をすることができる。これによって、
ニッケル−ホウ素合金めっきを通常の電解めっきライン
に組み込むことを可能とした。
In other words, compared to conventional simple electroless plating, self-decomposition of the boron hydride compound can be suppressed by controlling the bath temperature to a certain low temperature, and most of it is consumed in proportion to the amount of electricity applied. Therefore, the bath composition control conditions that must be considered in the case of electroless plating can be ignored, and it can be replenished according to the amount consumed in the same way as gold and silver in the case of ordinary gold and silver plating baths. I can do it. by this,
This makes it possible to incorporate nickel-boron alloy plating into regular electrolytic plating lines.

水素化ホウ素化合物は、水素化ホウ素カリウムKBI+
、 、水素化ホウ素ナトリウムNaBH(c等のホウ素
化合物、メチルアミンボランCHjN H,B I+、
、エチルアミンボラン(C2H,) NH,BH,、ジ
メチルアミンボラン(C)I、 )、NHBII、 、
ジエチルアミンボラン(C2H,)2NHBH,、)ジ
メチルアミンボラン(CIlJ)。
The borohydride compound is potassium borohydride KBI+
, , boron compounds such as sodium borohydride NaBH (c, methylamine borane CHjN H, B I+,
, ethylamine borane (C2H,) NH,BH,, dimethylamine borane (C) I, ), NHBII, ,
Diethylamineborane (C2H,)2NHBH, )dimethylamineborane (CIIJ).

NBH,、トリエチルアミンボラン(C7H,)、 N
BIIよ、メ等のアミン付加形水素化ホウ素化合物が用
いうる。
NBH,, triethylamine borane (C7H,), N
Amine-adducted borohydride compounds such as BII, Me, etc. can be used.

なお40℃〜60℃程度の低浴温で用いるには、ジメチ
ルアミンボラン(CI+、 )、NHBFI、  が適
当である。
Note that dimethylamine borane (CI+), NHBFI, and the like are suitable for use at a low bath temperature of about 40°C to 60°C.

また、上記メチル基、エチル基以外としては、プロピル
基付加形の水素化ホウ素化合物を用いることもできる。
Moreover, as the methyl group and the ethyl group mentioned above, a propyl group-added borohydride compound can also be used.

なお、発明者は、通常の電解ニッケルめっき浴である、
ワットニッケルめっき浴あるいはスルファミンニッケル
めっき浴に、上記の還元剤たるアミン付加形水素化ホウ
素化合物を添加して、低温かつ通電条件下で、やはりニ
ッケル−ホウ素合金めっき皮膜が得られることを見出し
た。
In addition, the inventor has developed a conventional electrolytic nickel plating bath.
It has been found that a nickel-boron alloy plating film can also be obtained by adding the above-mentioned amine-added borohydride compound as a reducing agent to a Watt nickel plating bath or a sulfamine nickel plating bath under low temperature and electric current conditions.

(実施例) 以下半導体装型用リードフレームに適用した例を示す。(Example) An example of application to a lead frame for semiconductor packaging is shown below.

第1図は樹脂封止型半導体装置に用いるリードフレーム
10を示す。
FIG. 1 shows a lead frame 10 used in a resin-sealed semiconductor device.

図において、12はステージ部であり、金あるいは銀め
っきが施されており、金−シリコン共晶合金等によって
半導体素子が固定される部位である。
In the figure, reference numeral 12 denotes a stage portion, which is plated with gold or silver, and is a portion to which a semiconductor element is fixed using a gold-silicon eutectic alloy or the like.

14は、ステージ部12を囲んで設けられた内部リード
部であり、これの先端には同じく金あるいは銀めっきが
施されており、ステージ部12に搭載された半導体素子
とワイヤーによって接続される。
Reference numeral 14 denotes an internal lead part provided surrounding the stage part 12, the tip of which is similarly plated with gold or silver, and connected to the semiconductor element mounted on the stage part 12 by a wire.

16は内部リード部14に続(外部リード部であり、後
述するように、ニッケル−ホウ素合金めっきが施されて
いる。
Reference numeral 16 is an outer lead portion following the inner lead portion 14, and is plated with a nickel-boron alloy as described later.

18はダムバーであり、樹脂の堰止めをする。18 is a dam bar, which dams the resin.

20は外枠である。20 is an outer frame.

図上破線で示すのは、樹脂モールド領域である。The area indicated by the broken line in the figure is the resin mold area.

第2図乃至第4図に示すものは、めっきの種類およびめ
っきの被着範囲を示す種々の実施例である。
What is shown in FIGS. 2 to 4 are various examples showing the type of plating and the coverage area of the plating.

第2図に示すものは、リードフレーム10の全範囲に亘
り、ニッケルめっき皮膜22が形成され、ステージ部1
2および内部リード部14先端に、銀めっき皮膜(ある
いは金めつき皮膜)24が部分めっきされている。そし
て外部リード部16上に、ニッケルめっき皮膜22の上
にニッケル−ホウ素合金めっき皮膜26が形成されて成
る。
In the case shown in FIG. 2, a nickel plating film 22 is formed over the entire range of the lead frame 10, and the stage portion 1
2 and the tips of the internal lead portions 14 are partially plated with a silver plating film (or gold plating film) 24. A nickel-boron alloy plating film 26 is formed on the nickel plating film 22 on the external lead portion 16.

第3図に示すものは、ステージ部12および内部リード
部14先端に銀めっき皮膜(あるいは金めっき皮膜)2
4が部分めっきされ、また外部リード部16上に、樹脂
モールド範囲(破線)内に若干及ぶように、ニッケル−
ホウ素合金めっき皮膜26が部分めっきされて成る。
The one shown in FIG. 3 has a silver plating film (or gold plating film) 2 on the stage part 12 and internal lead part 14 tips
4 is partially plated, and nickel is applied on the external lead portion 16 slightly extending into the resin mold area (dashed line).
The boron alloy plating film 26 is partially plated.

第4図に示すものは、リードフレーム12全体に亘って
ニッケル−ホウ素合金めっき皮膜26が形成され、さら
にステージ部12および内部リード部14先端に、ニッ
ケル−ホウ素合金めっき皮膜26の上に銀めっき皮膜(
あるいは金めつき皮膜)24が部分めっきされて成る。
In the case shown in FIG. 4, a nickel-boron alloy plating film 26 is formed over the entire lead frame 12, and silver plating is further applied on the nickel-boron alloy plating film 26 at the tips of the stage section 12 and internal lead section 14. Film (
Alternatively, the gold plating film 24 is partially plated.

しかして、ニッケル−ホウ素合金めっき皮膜26は、耐
熱性に優れているから、以後の工程、すなわち、金−シ
リコン共晶合金によるステージ部12」二への半導体素
子の固定の際、および、この半導体素子と内部リード部
14先端とのワイヤーボンディングの際の熱履歴、およ
び樹脂モールド時の熱履歴を経ても、ニッケル−ホウ素
合金めっき皮膜26は極めて安定であり、金属酸化膜が
形成されることはない。
Since the nickel-boron alloy plating film 26 has excellent heat resistance, it can be used in the subsequent steps, that is, when the semiconductor element is fixed to the stage part 12'' by the gold-silicon eutectic alloy, and this The nickel-boron alloy plating film 26 is extremely stable even after the heat history during wire bonding between the semiconductor element and the tip of the internal lead portion 14 and the heat history during resin molding, and a metal oxide film is not formed. There isn't.

したがって、従来におけるはんだ付は前処理としての酸
化膜除去工程は全く不要となりウェットプロセスを経る
ことによる半導体素子の信頼性低下の問題を解消しえた
Therefore, in conventional soldering, the oxide film removal process as a pre-treatment is completely unnecessary, and the problem of lower reliability of semiconductor elements caused by a wet process can be solved.

さらにニッケル−ホウ素合金めっき皮膜26に対するは
んだ漏れ性は極めて良好である。したがって、はんだ付
は前処理のフラックス処理は全く不要というわけにはい
かないが、従来の高ハロゲン価のフラックスに替えて、
低ハロゲン価のフラックスを用いることができ、ハロゲ
ンイオンによる半導体素子への悪影響を極力抑えること
ができる。
Furthermore, the solder leakage to the nickel-boron alloy plating film 26 is extremely good. Therefore, pre-treatment flux treatment is not completely unnecessary for soldering, but instead of using conventional flux with a high halogen value,
A flux with a low halogen value can be used, and the adverse effects of halogen ions on semiconductor elements can be suppressed to the utmost.

実施例1 硫酸ニッケル        30g/lマロン酸ナト
リウム      35 g/βジメチルアミンボラン
     3.4g/J硝酸タリウム        
 0.1g/ffpH6,5 浴温            50℃ 上記のめっき浴により50℃前後の低温条件で、42合
金製のリードフレームの外部リード部に(他の部位はマ
スキングした)、電流密度IA/d rI(でめっきし
た。厚さ0.1μmの耐熱性、はんだ付は性に優れるニ
ッケル−ホウ素合金めっき皮膜が得られた。
Example 1 Nickel sulfate 30 g/l Sodium malonate 35 g/β dimethylamine borane 3.4 g/J thallium nitrate
0.1 g/ff pH 6.5 Bath temperature 50°C Using the above plating bath, a current density IA/d rI was applied to the external lead part of the 42 alloy lead frame (other parts were masked) at a low temperature of around 50°C. A 0.1 μm thick nickel-boron alloy plating film with excellent heat resistance and soldering properties was obtained.

ステージ部、内部リード部には銅ストライクめっきを部
分めっきし、さらにその上に銀めっきを施した。
The stage part and internal lead parts are partially plated with copper strike plating, and then silver plating is applied on top of that.

実施例2 塩化ニッケル        30g/j2クエン酸カ
リウム       60g//塩化アンモニウム  
    30g/jl!ジメチルアミンボラン    
 5.0g/βP1(9 浴温            40°C上記のめっき浴
を用い、ステージ部及び内部リード部をマスキングして
42合金製のリードフレームの外部リード部に電流密度
2A /d mで0.05μmのめっきを施した。これ
に要した時間は約8秒である。その後ステージ部及び内
部リード部に洞ストライクめっきをし、その上に5μm
の銀めっきを施した。これに要した時間は約5秒である
Example 2 Nickel chloride 30g/j2 Potassium citrate 60g//Ammonium chloride
30g/jl! dimethylamine borane
5.0 g/βP1 (9 Bath temperature: 40°C) Using the above plating bath, masking the stage part and internal lead part, apply a current density of 0.05 μm to the external lead part of the 42 alloy lead frame at a current density of 2 A/d m. The time required for this was approximately 8 seconds.After that, the stage part and the internal lead part were plated with grooves, and then a 5 μm thick plating was applied on top of that.
Silver plated. The time required for this was approximately 5 seconds.

実施例3 硫酸ニッケル        20 g/β酒石酸カリ
ウムナトリウム  40g/ffi水素化ホウ素ナトリ
ウム    2g/IPH13 浴温            40℃ 上記のめっき浴により、ステージ部および内部リード部
をマスキングして調合金製のリードフレームの外部リー
ド部に、電流密度2A/dn?で0.1μmのめっきを
施した。
Example 3 Nickel sulfate 20 g/β potassium sodium tartrate 40 g/ffi Sodium borohydride 2 g/IPH13 Bath temperature 40°C Using the above plating bath, the stage part and internal lead part were masked and the outside of the lead frame made of prepared alloy was masked. Current density 2A/dn in the lead part? 0.1 μm plating was applied.

これに要した時間は約15秒である。The time required for this was approximately 15 seconds.

その後ステージ部及び内部リード部に1μmの金めつき
を施した。これに要した時間は約10秒である。
Thereafter, 1 μm gold plating was applied to the stage portion and internal lead portions. The time required for this was approximately 10 seconds.

このようにして水素化ホウ素化合物を添加した無電解ニ
ッケルめっき液を用いて電解めっきを行うことにより、
外部リード部に耐熱性、はんだ付は性の優れたニッケル
−ホウ素合金めっき、ステージ部および内部リード部に
通常の銀または金めっきを施したリードフレームを得た
By performing electrolytic plating using an electroless nickel plating solution containing a boron hydride compound in this way,
A lead frame was obtained in which the external lead part was plated with a nickel-boron alloy that had excellent heat resistance and soldering properties, and the stage part and the internal lead part were plated with ordinary silver or gold.

実施例4 硫酸ニッケル        300  g/l塩化ニ
ッケル        40g/!!ホウ酸     
      40g/lトリメチルアミンボラン   
 0.5g/lチオグリコール酸ナトリウム 10  
ppmPH5,5 浴温            45℃ 上記の従来のワットニッケルめっき浴に水素化ホウ素化
合物としてトリメチルアミンボランを添加しためっき浴
により、ステージ部および内部リード部をマスキングし
て調合金製のリードフレームの外部リード部に電流密度
5.04/d rrrで0.1 μmのめっきを施した
。これに要した時間は約6秒で、耐熱性、はんだ付は性
に優れたニッケル−ホウ素合金めっき皮膜が得られた。
Example 4 Nickel sulfate 300 g/l Nickel chloride 40 g/! ! Boric acid
40g/l trimethylamine borane
0.5g/l sodium thioglycolate 10
ppmPH5,5 Bath temperature 45°C The stage part and internal lead part were masked using a plating bath in which trimethylamine borane was added as a boron hydride compound to the above conventional Watt nickel plating bath, and the external lead part of the lead frame made of prepared alloy was masked. 0.1 μm plating was applied at a current density of 5.04/d rrr. The time required for this was about 6 seconds, and a nickel-boron alloy plating film with excellent heat resistance and solderability was obtained.

ステージ部および内部リード部には銅ストライクめっき
を施し、その上に6μmの銀めっきを施した。これに要
した時間は約6秒である。
Copper strike plating was applied to the stage part and internal lead part, and 6 μm silver plating was applied thereon. The time required for this was approximately 6 seconds.

実施例5 スルファミン酸ニッケル   400  g/l臭化ニ
ッケル         5g/lホウ酸      
       40g71メチルモルホリンボラン  
  5g/lP−ヨードアニリン      1  p
pmPH5,5 浴温            40℃ 上記のスルファミンニッケルめっき浴に水素化ホウ素化
合物としてメチルモルホリンボランを添加しためき浴に
より、ステージ部および内部り−−拓つきを施した。こ
れに要した時間は約8秒で、耐熱性、はんだ付は性に優
れたニッケル−ホウ素合金めっき皮膜が得られた。内部
リード部およびステージ部には1μmの金めつきを施し
た。これに要した時間は約10秒である。
Example 5 Nickel sulfamate 400 g/l Nickel bromide 5 g/l boric acid
40g71 Methylmorpholineborane
5g/lP-iodoaniline 1p
pm PH 5,5 Bath temperature 40° C. The stage portion and the interior were retouched using a plating bath in which methylmorpholine borane was added as a boron hydride compound to the above sulfamine nickel plating bath. The time required for this was about 8 seconds, and a nickel-boron alloy plating film with excellent heat resistance and solderability was obtained. The internal lead portion and the stage portion were plated with 1 μm gold. The time required for this was approximately 10 seconds.

このようにしてワットニッケルめっき浴、スルファミン
ニッケルめっき浴にアミン付加形水素化ホウ素化合物を
添加しためっき浴を用いて電解めっきを行うことにより
、外部リード部に耐熱性、はんだ付は性の優れたニッケ
ル−ホウ素合金めっき皮膜を有するリードフレームを得
ることができた。
In this way, electrolytic plating is performed using a Watt nickel plating bath, a sulfamine nickel plating bath, and a plating bath in which an amine-added boron hydride compound is added. A lead frame having a nickel-boron alloy plating film could be obtained.

実施例4および5に示したように、ワットニッケルめっ
き浴、スルファミンニッケルめっき浴に、前述の無電解
めっき浴に使う還元剤より安定なアミン付加形水素化ホ
ウ素化合物を添加し、通電条件下でめっきを施すことに
より、良好なニッケル−ホウ素合金めっき皮膜が得られ
た。またこのめT;′)き浴は部分めっき法として多用
されているメカ且:カルマスク法にも十分使用可能なこ
とが確認で)j、ステージ部、内部−ド邪に部分銀また
は部分金めっき皮膜、外部リード部に部分ニッケル−ホ
ウ素合金めっき皮膜を有するリードフレーム製造上極め
て有効であることを確認した。
As shown in Examples 4 and 5, an amine-added borohydride compound, which is more stable than the reducing agent used in the electroless plating bath described above, was added to the Watt nickel plating bath and the sulfamine nickel plating bath, and the borohydride compound was added to the Watt nickel plating bath and the sulfamine nickel plating bath. By plating, a good nickel-boron alloy plating film was obtained. In addition, it has been confirmed that this bath is fully usable for the mechanical mask method, which is often used as a partial plating method. It was confirmed that this method is extremely effective in manufacturing lead frames that have a partial nickel-boron alloy plating film on the outer lead portion.

(発明の効果) 以上のように本発明によれば、ニッケル−ホウ素合金め
っきの電解めっきの適用が可能となり、例えば、金、銀
めっき等の他の電解めっきと共にニッケル−ホウ素合金
めっきを施す場合に、ニッケル−ホウ素合金めっきを他
の電解めっきと同一めっきラインに組み込むことができ
、リールドウリール方式等の高速連続めっき処理を可能
とすることができる。
(Effects of the Invention) As described above, according to the present invention, electrolytic plating of nickel-boron alloy plating can be applied, for example, when nickel-boron alloy plating is applied together with other electrolytic plating such as gold or silver plating. In addition, nickel-boron alloy plating can be incorporated into the same plating line as other electrolytic plating, making it possible to perform high-speed continuous plating processing such as a reel-to-reel method.

また無電解めっきによるニッケル−ホウ素合金めっき皮
膜に十分匹敵する、優れた耐熱性、はんだ付は性を有す
るめっき皮膜が得られるばかりか、無電解の場合に比し
て、めっき時間の大幅な短縮化が図れる等積々の著効を
奏する。
In addition, not only can a plating film with excellent heat resistance and solderability fully comparable to nickel-boron alloy plating films obtained by electroless plating be obtained, but the plating time is significantly reduced compared to electroless plating. It has a number of significant effects, including the ability to improve

以上本発明につき好適な実施例を挙げて種々説明したが
、本発明はこの実施例に限定されるものではなく、発明
の精神を逸脱しない範囲内で多くの改変を施し得るのは
もちろんのことである。
Although the present invention has been variously explained above with reference to preferred embodiments, the present invention is not limited to these embodiments, and it goes without saying that many modifications can be made without departing from the spirit of the invention. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はリードフレームの説明図、第2図乃至第4図は
めっきの種類およびその被着範囲を示す種々の実施例を
示す断面説明図である。 10・・・リードフレーム、 12・・・ステージ部、  14・・・内部リード部、
 16・・・外部リード部、  18・・・ダムバー、
 20・・・外tL  22・・・ニッケルめっき皮膜
、  24・・・銀めっき皮膜(金めき皮膜)、 26
・・・ニッケル−ホウ素合金めっき皮膜。
FIG. 1 is an explanatory diagram of a lead frame, and FIGS. 2 to 4 are cross-sectional explanatory diagrams showing various embodiments showing the types of plating and the coverage thereof. 10... Lead frame, 12... Stage part, 14... Internal lead part,
16... External lead part, 18... Dam bar,
20...Outer tL 22...Nickel plating film, 24...Silver plating film (gold plating film), 26
...Nickel-boron alloy plating film.

Claims (1)

【特許請求の範囲】 1、ニッケル塩と錯化剤としてクエン酸、マロン酸、酒
石酸等の有機酸またはその塩を含む溶液に還元剤として
水素化ホウ素化合物を添加した無電解ニッケルめっき液
を用い、無電解めっき反応がわずかに起こるかまたは全
く起こらない温度条件下で電解めっきを行うことを特徴
とするニッケル−ホウ素合金めっき方法。 2、水素化ホウ素化合物がアミン付加形水素化ホウ素化
合物である特許請求の範囲第1項記載のニッケル−ホウ
素合金めっき方法。 3、ワットニッケルめっき浴またはスルファミンニッケ
ルめっき浴にアミン付加形水素化ホウ素化合物を添加し
ためっき液を用い、電解めっきを行うことを特徴とする
ニッケル−ホウ素合金めっき方法。
[Claims] 1. Using an electroless nickel plating solution in which a borohydride compound is added as a reducing agent to a solution containing a nickel salt and an organic acid such as citric acid, malonic acid, or tartaric acid or a salt thereof as a complexing agent. A nickel-boron alloy plating method characterized in that electrolytic plating is carried out under temperature conditions at which little or no electroless plating reaction occurs. 2. The nickel-boron alloy plating method according to claim 1, wherein the borohydride compound is an amine-added borohydride compound. 3. A nickel-boron alloy plating method characterized in that electrolytic plating is performed using a plating solution in which an amine-added borohydride compound is added to a Watt nickel plating bath or a sulfamine nickel plating bath.
JP19026985A 1985-08-29 1985-08-29 Method for plating nickel-boron alloy Pending JPS6250476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19026985A JPS6250476A (en) 1985-08-29 1985-08-29 Method for plating nickel-boron alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19026985A JPS6250476A (en) 1985-08-29 1985-08-29 Method for plating nickel-boron alloy

Publications (1)

Publication Number Publication Date
JPS6250476A true JPS6250476A (en) 1987-03-05

Family

ID=16255338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19026985A Pending JPS6250476A (en) 1985-08-29 1985-08-29 Method for plating nickel-boron alloy

Country Status (1)

Country Link
JP (1) JPS6250476A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0518274A (en) * 1991-07-12 1993-01-26 Kubota Corp Advancing device for warming-up period of escape hole type fuel injection pump of diesel engine
JP2009108337A (en) * 2007-10-26 2009-05-21 Fujifilm Corp Electroless plating method, electroless plating apparatus and electromagnetic interference shield material
CN104152876A (en) * 2014-08-06 2014-11-19 宁波华斯特林电机制造有限公司 Method for forming nickel-boron coating on inner wall of air cylinder sleeve and air cylinder sleeve comprising nickel-boron coating

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57145969A (en) * 1981-03-04 1982-09-09 Agency Of Ind Science & Technol Chemical plating method
JPS58157957A (en) * 1982-03-16 1983-09-20 Suzuki Motor Co Ltd Plating method of nickel
JPS59226170A (en) * 1983-06-07 1984-12-19 Noritoshi Honma Electroless nickel plating solution

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57145969A (en) * 1981-03-04 1982-09-09 Agency Of Ind Science & Technol Chemical plating method
JPS58157957A (en) * 1982-03-16 1983-09-20 Suzuki Motor Co Ltd Plating method of nickel
JPS59226170A (en) * 1983-06-07 1984-12-19 Noritoshi Honma Electroless nickel plating solution

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0518274A (en) * 1991-07-12 1993-01-26 Kubota Corp Advancing device for warming-up period of escape hole type fuel injection pump of diesel engine
JP2009108337A (en) * 2007-10-26 2009-05-21 Fujifilm Corp Electroless plating method, electroless plating apparatus and electromagnetic interference shield material
CN104152876A (en) * 2014-08-06 2014-11-19 宁波华斯特林电机制造有限公司 Method for forming nickel-boron coating on inner wall of air cylinder sleeve and air cylinder sleeve comprising nickel-boron coating

Similar Documents

Publication Publication Date Title
US5235139A (en) Method for fabricating printed circuits
US5910340A (en) Electroless nickel plating solution and method
JPH0160550B2 (en)
JPS6250476A (en) Method for plating nickel-boron alloy
US4474838A (en) Electroless direct deposition of gold on metallized ceramics
JPH01303789A (en) Formation of partial thickening gold film of ceramic wiring substrate
US3506462A (en) Electroless gold plating solutions
JP2000038682A (en) Nickel plating method and semiconductor device
JP2003253454A (en) Method for plating electronic parts, and electronic parts
JP4096671B2 (en) Electronic component plating method and electronic component
JPH0227816B2 (en)
JPS6136596B2 (en)
JPS5858296A (en) Method for plating stainless steel blank with gold
JPS596365A (en) Electroless gold plating method
JPH0553879B2 (en)
JPS62204557A (en) Lead frame
JPH0499360A (en) Manufacture of heatsink for semiconductor device
JP2004332037A (en) Electroless gold plating method
JP4059133B2 (en) Electroless nickel-gold plating method
JPS62204558A (en) Lead frame
JP3206630B2 (en) Method for producing electroless plated copper-based material of tin-lead alloy
JPS6267192A (en) Electrolytic nickel-boron alloy plating bath
JPH0132318B2 (en)
JPH01208493A (en) Production of contact maker
JPH0951054A (en) Board for electronic component and its manufacture