JPS6238540B2 - - Google Patents
Info
- Publication number
- JPS6238540B2 JPS6238540B2 JP57155113A JP15511382A JPS6238540B2 JP S6238540 B2 JPS6238540 B2 JP S6238540B2 JP 57155113 A JP57155113 A JP 57155113A JP 15511382 A JP15511382 A JP 15511382A JP S6238540 B2 JPS6238540 B2 JP S6238540B2
- Authority
- JP
- Japan
- Prior art keywords
- intake port
- valve
- wall surface
- intake
- spiral
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000005192 partition Methods 0.000 claims description 15
- 230000002093 peripheral effect Effects 0.000 claims description 7
- 239000000203 mixture Substances 0.000 description 14
- 238000002485 combustion reaction Methods 0.000 description 7
- 230000006835 compression Effects 0.000 description 6
- 238000007906 compression Methods 0.000 description 6
- 239000000446 fuel Substances 0.000 description 6
- 241000234435 Lilium Species 0.000 description 5
- 238000013459 approach Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000006200 vaporizer Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B31/00—Modifying induction systems for imparting a rotation to the charge in the cylinder
- F02B31/04—Modifying induction systems for imparting a rotation to the charge in the cylinder by means within the induction channel, e.g. deflectors
- F02B31/042—Modifying induction systems for imparting a rotation to the charge in the cylinder by means within the induction channel, e.g. deflectors induction channel having a helical shape around the intake valve axis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Cylinder Crankcases Of Internal Combustion Engines (AREA)
Description
【発明の詳細な説明】 本発明はヘリカル型吸気ポートに関する。[Detailed description of the invention] The present invention relates to a helical intake port.
ヘリカル型吸気ポートは通常吸気弁周りに形成
された渦巻部と、この渦巻部に接線状に接続され
かつほぼまつすぐに延びる入口通路部とにより構
成される。このようなヘリカル型吸気ポートを用
いて吸入空気量の少ない機関低速低負荷運転時に
機関燃焼室内に強力な旋回流を発生せしめようと
すると吸気ポート形状が流れ抵抗の大きな形状に
なつてしまうので吸入空気量の多い機関高速高負
荷運転時に充填効率が低下するという問題を生ず
る。このような問題を解決するためにヘルカル型
吸気ポート入口通路部から分岐されてヘリカル型
吸気ポート渦巻部の渦巻終端部に連通する分岐路
をシリンダヘツド内に形成し、分岐路内に開閉弁
を設けて機関高速高負荷運転時に開閉弁を開弁す
るようにしたヘリカル型吸気ポートが本出願人に
より既に提案されている。このヘリカル型吸気ポ
ートでは機関高速高負荷運転時にヘリカル型吸気
ポート入口通路部内に送り込まれた吸入空気の一
部が分岐路を介してヘリカル型吸気ポート渦巻部
内に送り込まれるために吸入空気の流路断面積が
増大し、斯くして充填効率を向上することができ
る。しかしながらこのヘリカル型吸気ポートでは
分岐路が入口通路部から完全に独立した筒状の通
路として形成されているので分岐路の流れ抵抗が
比較的大きく、しかも分岐路を入口通路部に隣接
して形成しなければならないために入口通路部の
断面積が制限を受けるので十分に満足のいく高い
充填効率を得るのが困難となつている。更に、ヘ
リカル型吸気ポートはそれ自体の形状が複雑であ
り、しかも入口通路部から完全に独立した分岐路
を併設した場合には吸気ポートの全体構造が極め
て複雑となるのでこのような分岐部を具えたヘリ
カル型吸気ポートをシリンダヘツド内に形成する
のはかなり困難である。 A helical intake port typically consists of a spiral formed around the intake valve and an inlet passageway tangentially connected to the spiral and extending generally straight. If you try to use such a helical intake port to generate a strong swirling flow in the combustion chamber of the engine during low-speed, low-load engine operation with a small amount of intake air, the shape of the intake port will have a large flow resistance. A problem arises in that the filling efficiency decreases when the engine is operated at high speed and under high load with a large amount of air. In order to solve this problem, a branch path is formed in the cylinder head that branches from the helical type intake port inlet passage and communicates with the spiral end of the helical type intake port spiral part, and an on-off valve is installed in the branch path. The applicant has already proposed a helical intake port in which an on-off valve is opened during high-speed, high-load engine operation. In this helical type intake port, when the engine is operated at high speed and under high load, a part of the intake air sent into the helical type intake port inlet passage is sent into the helical type intake port spiral part through a branch path, so the intake air flow path is The cross-sectional area can be increased, thus improving the filling efficiency. However, in this helical intake port, the branch passage is formed as a cylindrical passage completely independent from the inlet passage, so the flow resistance of the branch passage is relatively large, and the branch passage is formed adjacent to the inlet passage. This limits the cross-sectional area of the inlet passage, making it difficult to obtain a sufficiently high filling efficiency. Furthermore, the helical intake port itself has a complicated shape, and if a branch passage that is completely independent from the inlet passage is added, the overall structure of the intake port will become extremely complicated. It is quite difficult to form a helical intake port in the cylinder head.
本発明は機関高速高負荷運転時に高い充填効率
を得ることができると共に製造の容易な新規形状
を有するヘリカル型吸気ポートを提供することに
ある。 SUMMARY OF THE INVENTION The present invention provides a helical intake port that is capable of achieving high filling efficiency during high-speed, high-load engine operation and has a novel shape that is easy to manufacture.
以下、添附図面を参照して本発明を詳細に説明
する。 Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
第1図並びに第2図を参照すると、1はシリン
ダブロツク、2はシリンダブロツク1内で往復動
するピストン、3はシリンダブロツク1上に固締
されたシリンダヘツド、4はピストン2とシリン
ダヘツド3間に形成された燃焼室、5は吸気弁、
6はシリンダヘツド3内に形成されたヘリカル型
吸気ポート、7は排気弁、8はシリンダヘツド3
内に形成された排気ポート、9は燃焼室4内に配
置された点火栓、10は吸気弁5のステム5aを
案内するステムガイドを夫々示す。第1図並びに
第2図に示されるように吸気ポート6の上壁面1
1上には下方に突出する隔壁12が一体成形さ
れ、この隔壁12によつて渦巻部Bと、この渦巻
部Bに接続された入口通路部Aからなるヘリカル
型吸気ポート6が形成される。この隔壁12は入
口通路部A内から吸気弁5のステムガイド10の
周囲まで吸入空気流の流れ方向に延びており、第
2図からわかるようにこの隔壁12の根元部の巾
Lは入口通路部Aからステムガイド10に近づく
につれて徐々に広くなる。隔壁12は吸気ポート
6の入口開口6aに最も近い側に位置する先端部
13を有し、更に隔壁12は第2図においてこの
先端部13から反時計回りにステムガイド10ま
で延びる第1側壁面14aと、先端部13から時
計回りにステムガイド10まで延びる第2側壁面
14bとを有する。第1側壁面14aは先端部1
3からステムガイド10の側方を通つて渦巻部B
の側壁面15の近傍まで延びて渦巻部側壁面15
との間に狭窄部16を形成する。次いで第1側壁
面14aは渦巻部側壁面15から徐々に間隔を隔
てるように彎曲しつつステムガイド10まで延び
る。一方、第2側壁面14bは先端部13からス
テムガイド10までほぼまつすぐに延びる。 Referring to FIGS. 1 and 2, 1 is a cylinder block, 2 is a piston that reciprocates within the cylinder block 1, 3 is a cylinder head fixed on the cylinder block 1, and 4 is a piston 2 and a cylinder head 3. A combustion chamber is formed in between, 5 is an intake valve,
6 is a helical intake port formed in the cylinder head 3, 7 is an exhaust valve, and 8 is a cylinder head 3.
Reference numeral 9 indicates an ignition plug disposed within the combustion chamber 4, and reference numeral 10 indicates a stem guide for guiding the stem 5a of the intake valve 5. As shown in FIGS. 1 and 2, the upper wall surface 1 of the intake port 6
A partition wall 12 projecting downward is integrally molded on top of the helical intake port 6, which includes a spiral portion B and an inlet passage portion A connected to the spiral portion B. This partition wall 12 extends in the flow direction of the intake air flow from inside the inlet passage section A to around the stem guide 10 of the intake valve 5, and as can be seen from FIG. It gradually becomes wider as it approaches the stem guide 10 from part A. The bulkhead 12 has a tip 13 located on the side closest to the inlet opening 6a of the intake port 6, and the bulkhead 12 further has a first side wall surface extending counterclockwise from the tip 13 to the stem guide 10 in FIG. 14a, and a second side wall surface 14b extending clockwise from the distal end portion 13 to the stem guide 10. The first side wall surface 14a is the tip portion 1
3 to the spiral part B passing through the side of the stem guide 10.
The spiral portion side wall surface 15 extends to the vicinity of the side wall surface 15 of the spiral portion.
A narrowed portion 16 is formed between the two. Next, the first side wall surface 14a extends to the stem guide 10 while being curved so as to be gradually spaced apart from the spiral portion side wall surface 15. On the other hand, the second side wall surface 14b extends almost straight from the distal end portion 13 to the stem guide 10.
第1図から第9図を参照すると、入口通路部A
の側壁面17,18はほぼ垂直配置され、一方入
口通路部Aの上壁面19は渦巻部Bに向けて徐々
に下降する。入口通路部Aの側壁面17は吸気弁
5の周縁部の接線上をまつすぐに延びて渦巻部B
の側壁面15に接続される。渦巻部Bの側壁面1
5は吸気弁5の周縁部から外方に膨出しており、
従つて入口通路部Aの側壁面17と渦巻部Bの側
壁面15はそれらの接続部において或る角度をな
して接続される。また、入口通路部Aの側壁面1
8は第2図に示すように内方に膨出した凸面状を
なす。一方、入口通路部Aの上壁面19は渦巻部
Bの上壁面20に滑らかに接続され、渦巻部Bの
上壁面20は渦巻部Bと入口通路部Aの接続部か
ら狭窄部16に向けて下降しつつ徐々に巾を挾
め、次いで狭窄部16を通過すると徐々に巾を広
げる。一方、入口通路部Aの底壁面21は第5図
に示すように入口開口6aの近傍においてはその
全体がほぼ水平をなしており、側壁面17に隣接
する底壁面部分21aは第8図に示すように渦巻
部Bに近づくに従つて隆起して傾斜面を形成す
る。この傾斜底壁面部分21aの傾斜角は渦巻部
Bに近づくにつれて徐々に大きくなる。 Referring to FIGS. 1 to 9, the inlet passage section A
The side wall surfaces 17, 18 of are arranged substantially vertically, while the upper wall surface 19 of the inlet passage section A gradually descends towards the spiral section B. The side wall surface 17 of the inlet passage section A extends immediately on a tangent to the peripheral edge of the intake valve 5 to form a spiral section B.
is connected to the side wall surface 15 of. Side wall surface 1 of spiral part B
5 bulges outward from the peripheral edge of the intake valve 5,
Therefore, the side wall surface 17 of the inlet passage section A and the side wall surface 15 of the spiral section B are connected at a certain angle at their connection portion. In addition, the side wall surface 1 of the inlet passage section A
8 has a convex shape that bulges inward as shown in FIG. On the other hand, the upper wall surface 19 of the inlet passage section A is smoothly connected to the upper wall surface 20 of the spiral section B, and the upper wall surface 20 of the spiral section B extends from the connection section between the spiral section B and the entrance passage section A toward the narrowing section 16. It gradually narrows in width while descending, and then gradually widens as it passes through the narrowing part 16. On the other hand, as shown in FIG. 5, the bottom wall surface 21 of the inlet passage A is almost horizontal in its entirety in the vicinity of the inlet opening 6a, and the bottom wall surface portion 21a adjacent to the side wall surface 17 is as shown in FIG. As shown, as it approaches the spiral portion B, it rises to form an inclined surface. The angle of inclination of this inclined bottom wall surface portion 21a gradually increases as it approaches the spiral portion B.
一方、隔壁12の第1側壁面14aはわずかば
り傾斜した下向きの傾斜面からなり、第2側壁面
14bはほぼ垂直をなす。隔壁12の底壁面22
は先端部13からステムガイド10に向うに従つ
て入口通路部6の上壁面11との間隔が次第に大
きくなるように入口通路部Aから渦巻部Bに向け
てわずかばかり彎曲しつつ下降する。隔壁12の
底壁面22上には第4図のハツチングで示す領域
に底壁面22から下方に突出するリブ23が形成
され、このリブ23の底面および底壁面22はわ
ずかばかり彎曲した傾斜面を形成する。 On the other hand, the first side wall surface 14a of the partition wall 12 is a slightly downwardly inclined surface, and the second side wall surface 14b is substantially vertical. Bottom wall surface 22 of partition wall 12
descends from the inlet passage A toward the spiral part B while slightly curving so that the distance from the upper wall surface 11 of the inlet passage 6 gradually increases from the tip 13 toward the stem guide 10. A rib 23 is formed on the bottom wall surface 22 of the partition wall 12 in a region indicated by hatching in FIG. do.
一方、シリンダヘツド3内には渦巻部Bの渦巻
終端部Cと入口通路部Aとを連通する分岐路24
が形成され、この分岐路24の入口部に開閉弁の
役目を果すロータリ弁25が配置される。この分
岐路24は隔壁12によつて入口通路部Aから分
離されており、分岐路24の下側空間全体が入口
通路部Aに連通している。分岐路24の上壁面2
6はほぼ一様な巾を有し、渦巻終端部Cに向けて
徐々に下降して渦巻部Bの上壁面20に滑らかに
接続される。隔壁12の第2側壁面14bに対面
する分岐路24の側壁面27はわずかに傾斜した
下向きの傾斜面からなり、更にこの側壁面27は
ほぼ入口通路部Aの側壁面18の延長上に位置す
る。側壁面27と底壁21との交線、即ち底壁2
1の一方の側縁部は第2図において破線Pで示さ
れるように吸気弁5の周縁部に接するように延び
ており、従つて傾斜側壁面27は吸気弁5の周縁
部の上方空間に突き出ている。第2図から底壁面
21の巾は吸気弁5の径にほぼ等しく、しかも底
壁面21の両側縁は吸気弁5の周縁部の接線上に
位置していることがわかる。 On the other hand, a branch passage 24 is provided in the cylinder head 3 that communicates the spiral end C of the spiral portion B with the inlet passage A.
is formed, and a rotary valve 25 serving as an on-off valve is disposed at the inlet of this branch path 24. This branch passage 24 is separated from the inlet passage part A by the partition wall 12, and the entire lower space of the branch passage 24 communicates with the inlet passage part A. Upper wall surface 2 of branch road 24
6 has a substantially uniform width and gradually descends toward the end C of the spiral and is smoothly connected to the upper wall surface 20 of the spiral B. A side wall surface 27 of the branching passage 24 facing the second side wall surface 14b of the partition wall 12 is a slightly inclined downward slope, and furthermore, this side wall surface 27 is located approximately on an extension of the side wall surface 18 of the inlet passage section A. do. The intersection line between the side wall surface 27 and the bottom wall 21, that is, the bottom wall 2
One side edge of the intake valve 1 extends so as to be in contact with the peripheral edge of the intake valve 5 as shown by the broken line P in FIG. It sticks out. It can be seen from FIG. 2 that the width of the bottom wall surface 21 is approximately equal to the diameter of the intake valve 5, and that both side edges of the bottom wall surface 21 are located on tangents to the peripheral edge of the intake valve 5.
第10図に示されるようにロータリ弁25はロ
ータリ弁ホルダ28と、ロータリ弁ホルダ28内
において回転可能に支持された弁軸29とにより
構成され、このロータリ弁ホルダ28はシリンダ
ヘツド3に穿設されたねじ孔30内に螺着され
る。弁軸29の下端部には薄板状の弁体31が一
体形成され、第1図に示されるようにこの弁体3
1は分岐路24の上壁面26から底壁面21まで
延びる。一方、弁軸29の上端部にはアーム32
が固定される。また、弁軸29の外周面上にはリ
ング溝33が形成され、このリング溝33内には
E字型位置決めリング34が嵌込まれる。更にロ
ータリ弁ホルダ28の上端部にはシール部材35
が嵌着され、このシール部材35によつて弁軸2
9のシール作用が行なわれる。 As shown in FIG. 10, the rotary valve 25 is composed of a rotary valve holder 28 and a valve shaft 29 rotatably supported within the rotary valve holder 28. The screw hole 30 is screwed into the screw hole 30. A thin plate-shaped valve body 31 is integrally formed at the lower end of the valve shaft 29, and as shown in FIG.
1 extends from the top wall surface 26 of the branch path 24 to the bottom wall surface 21. On the other hand, an arm 32 is attached to the upper end of the valve shaft 29.
is fixed. Further, a ring groove 33 is formed on the outer peripheral surface of the valve shaft 29, and an E-shaped positioning ring 34 is fitted into the ring groove 33. Furthermore, a sealing member 35 is provided at the upper end of the rotary valve holder 28.
is fitted, and this sealing member 35 connects the valve shaft 2.
9 sealing action is performed.
第11図を参照すると、ロータリ弁25の上端
部に固着されたアーム32の先端部は負圧ダイア
フラム装置40のダイアフラム41に固着された
制御ロツド42に連結ロツド43を介して連結さ
れる。負圧ダイアフラム装置40はダイアフラム
41によつて大気から隔離された負圧室44を有
し、この負圧室44内にダイアフラム押圧用圧縮
ばね45が挿入される。シリンダヘツド3には1
次側気化器46aと2次側気化器46bからなる
コンパウンド型気化器46を具えた吸気マニホル
ド47が取付けられ、負圧室44は負圧導管48
を介して吸気マニホルド47内に連結される。こ
の負圧導管48内には負圧室44から吸気マニホ
ルド47内に向けてのみ流通可能な逆止弁49が
挿入される。更に、負圧室44は大気導管50並
びに大気開放制御弁51を介して大気に連通す
る。この大気開放制御弁51はダイアフラム52
によつて隔成された負圧室53と大気圧室54と
を有し、更に大気圧室54に隣接して弁室55を
有する。この弁室55は一方では大気導管50を
介して負圧室44内に連通し、他方では弁ポート
56並びにエアフイルタ57を介して大気に連通
する。弁室55内には弁ポート56の開閉制御を
する弁体58が設けられ、この弁体58は弁ロツ
ド59を介してダイアフラム52に連結される。
負圧室53内にはダイアフラム押圧用圧縮ばね6
0が挿入され、更に負圧室53は負圧導管61を
介して1次側気化器46aのベンチユリ部62に
連結される。 Referring to FIG. 11, the tip of the arm 32 fixed to the upper end of the rotary valve 25 is connected via a connecting rod 43 to a control rod 42 fixed to a diaphragm 41 of a negative pressure diaphragm device 40. As shown in FIG. The negative pressure diaphragm device 40 has a negative pressure chamber 44 isolated from the atmosphere by a diaphragm 41, and a compression spring 45 for pressing the diaphragm is inserted into the negative pressure chamber 44. 1 for cylinder head 3
An intake manifold 47 equipped with a compound type carburetor 46 consisting of a next side carburetor 46a and a secondary side carburetor 46b is attached, and the negative pressure chamber 44 is connected to a negative pressure conduit 48.
The intake manifold 47 is connected through the intake manifold 47 . A check valve 49 is inserted into the negative pressure conduit 48 and allows flow only from the negative pressure chamber 44 into the intake manifold 47 . Further, the negative pressure chamber 44 communicates with the atmosphere via an atmosphere conduit 50 and an atmosphere release control valve 51. This atmospheric release control valve 51 has a diaphragm 52
It has a negative pressure chamber 53 and an atmospheric pressure chamber 54 separated by a spacer, and further has a valve chamber 55 adjacent to the atmospheric pressure chamber 54. This valve chamber 55 communicates on the one hand with the negative pressure chamber 44 via an atmospheric conduit 50 and on the other hand with the atmosphere via a valve port 56 and an air filter 57. A valve body 58 for controlling the opening and closing of the valve port 56 is provided within the valve chamber 55, and the valve body 58 is connected to the diaphragm 52 via a valve rod 59.
A compression spring 6 for pressing the diaphragm is provided in the negative pressure chamber 53.
Further, the negative pressure chamber 53 is connected to the bench lily portion 62 of the primary side carburetor 46a via a negative pressure conduit 61.
気化器46は通常用いられる気化器であつて1
次側スロツトル弁63が所定開度以上開弁したと
きに2次側スロツトル弁64が開弁し、1次側ス
ロツトル弁63が全開すれば2次側スロツトル弁
64も全開する。1次側気化器46aのベンチユ
リ部62に発生する負圧は機関シリンダ内に供給
される吸入空気量が増大するほぼ大きくなり、従
つてベンチユリ部62に発生する負圧が所定負圧
よりも大きくなつたときに、即ち機関高速高負荷
運転時に大気開放制御弁51のダイアフラム52
が圧縮ばね60に抗して右方に移動し、その結果
弁体58が弁ポート56を開弁して負圧ダイアフ
ラム装置40の負圧室44を大気に開放する。こ
のときダイアフラム41は圧縮ばね45のばね力
により下方に移動し、その結果ロータリ弁25が
回転せしめられて分岐路24を全開する。一方1
次側スロツトル弁63の開度が小さいときにはベ
ンチユリ部62に発生する負圧が小さなために大
気開放制御弁51のダイアフラム52は圧縮ばね
60のばね力により左方に移動し、弁体58が弁
ポート56を閉鎖する。時にこのように1次側ス
ロツトル弁63の開度が小さいときには吸気マニ
ホルド47内には大きな負圧が発生している。逆
止弁49は吸気マニホルド47内の負圧が負圧ダ
イアフラム装置40の負圧室44内の負圧よりも
大きくなると開弁し、吸気マニホルド47内の負
圧が負圧室44内の負圧よりも小さくなると閉弁
するので大気開放制御弁51が閉弁している限り
負圧室44内の負圧は吸気マニホルド47内に発
生した最大負圧に維持される。負圧室44内に負
圧が加わるとダイアフラム41は圧縮ばね45に
抗して上昇し、その結果ロータリ弁25が回動せ
しめられて分岐路24が閉鎖される。従つて機関
低速低負荷運転時にはロータリ弁25によつて分
岐路24が閉鎖されることになる。なお、高負荷
運転時であつても機関回転数が低い場合、並びに
機関回転数が高くても低負荷運転が行なわれてい
る場合にはベンチユリ部62に発生する負圧が小
さなために大気開放制御弁51は閉鎖され続けて
いる。従つてこのような低速高負荷運転時並びに
高速低負荷運転時には負圧室44内の負圧が前述
の最大負圧に維持されているのでロータリ弁25
によつて分岐路24が閉鎖されている。 The vaporizer 46 is a commonly used vaporizer.
When the downstream throttle valve 63 opens to a predetermined opening degree or more, the secondary throttle valve 64 opens, and when the primary throttle valve 63 fully opens, the secondary throttle valve 64 also fully opens. The negative pressure generated in the bench lily portion 62 of the primary side carburetor 46a increases as the amount of intake air supplied into the engine cylinder increases, and therefore the negative pressure generated in the bench lily portion 62 becomes larger than a predetermined negative pressure. diaphragm 52 of the atmospheric release control valve 51 when the engine is operating at high speed and high load.
moves to the right against the compression spring 60, and as a result, the valve body 58 opens the valve port 56 and opens the negative pressure chamber 44 of the negative pressure diaphragm device 40 to the atmosphere. At this time, the diaphragm 41 is moved downward by the spring force of the compression spring 45, and as a result, the rotary valve 25 is rotated and the branch passage 24 is fully opened. On the other hand 1
When the opening degree of the next throttle valve 63 is small, the negative pressure generated in the bench lily part 62 is small, so the diaphragm 52 of the atmospheric release control valve 51 moves to the left by the spring force of the compression spring 60, and the valve body 58 Close port 56. Sometimes, when the opening degree of the primary throttle valve 63 is small, a large negative pressure is generated within the intake manifold 47. The check valve 49 opens when the negative pressure in the intake manifold 47 becomes larger than the negative pressure in the negative pressure chamber 44 of the negative pressure diaphragm device 40, and the negative pressure in the intake manifold 47 becomes larger than the negative pressure in the negative pressure chamber 44. Since the valve closes when the pressure becomes smaller than the pressure, the negative pressure in the negative pressure chamber 44 is maintained at the maximum negative pressure generated in the intake manifold 47 as long as the atmospheric release control valve 51 is closed. When negative pressure is applied within the negative pressure chamber 44, the diaphragm 41 rises against the compression spring 45, and as a result, the rotary valve 25 is rotated and the branch passage 24 is closed. Therefore, when the engine is operating at low speed and low load, the branch passage 24 is closed by the rotary valve 25. Note that when the engine speed is low even during high-load operation, or when low-load operation is performed even when the engine speed is high, the negative pressure generated in the bench lily portion 62 is small, so that it is not opened to the atmosphere. Control valve 51 remains closed. Therefore, during such low-speed, high-load operation and high-speed, low-load operation, the negative pressure in the negative pressure chamber 44 is maintained at the aforementioned maximum negative pressure, so that the rotary valve 25
Branch road 24 is closed by.
上述したように吸入空気量が少ない機関低速低
負荷運転時にはロータリ弁25が分岐路24を閉
鎖している。このとき、入口通路部A内に送り込
まれた混合気の一部は第1図および第2図におい
て矢印Rで示すように上壁面19,20に沿つて
進み、残りの混合気のうちの一部の混合気は第1
図および第2図において矢印Sで示すようにロー
タリ弁25の手前で入口通路部Aの側壁面17の
方へ向きを変えた後に渦巻部Bの側壁面15に沿
つて進む。前述したように上壁面19,20の巾
は狭窄部16に近づくに従つて次第に挾くなるた
めに上壁面19,20に沿つて流れる混合気の流
路は次第に挾ばまり、斯くして上壁面19,20
に沿う混合気流は次第に増速される。更に、前述
したように隔壁12の第1側壁面14aは渦巻部
Bの側壁面15の近傍まで延びているので上壁面
19,20に沿つて進む混合気流は渦巻部Bの側
壁面15上に押しやられ、次いで第1図および第
2図において矢印Tで示すように側壁面15に沿
つて進むために渦巻部B内には強力な旋回流が発
生せしめられる。次いで混合気は旋回しつつ吸気
弁5とその弁座間に形成される間隙を通つて燃焼
室4内に流入して燃焼室4内に強力な旋回流を発
生せしめる。 As described above, the rotary valve 25 closes the branch passage 24 when the engine is operated at low speed and under low load with a small amount of intake air. At this time, part of the air-fuel mixture sent into the inlet passage A travels along the upper wall surfaces 19 and 20 as shown by arrow R in FIGS. 1 and 2, and part of the remaining air-fuel mixture The mixture of parts is the first
As shown by arrow S in the drawings and FIG. 2, it changes direction toward the side wall surface 17 of the inlet passage section A before the rotary valve 25, and then proceeds along the side wall surface 15 of the spiral section B. As mentioned above, the widths of the upper wall surfaces 19 and 20 gradually become narrower as they approach the narrowed portion 16, so the flow path for the air-fuel mixture flowing along the upper wall surfaces 19 and 20 gradually becomes narrower, and thus the upper Wall surfaces 19, 20
The speed of the air mixture along is gradually increased. Furthermore, as described above, since the first side wall surface 14a of the partition wall 12 extends to the vicinity of the side wall surface 15 of the spiral portion B, the air mixture flowing along the upper wall surfaces 19 and 20 flows onto the side wall surface 15 of the spiral portion B. A strong swirling flow is generated in the spiral portion B because the fluid is pushed away and then proceeds along the side wall surface 15 as shown by the arrow T in FIGS. 1 and 2. Next, the air-fuel mixture swirls and flows into the combustion chamber 4 through the gap formed between the intake valve 5 and its valve seat, generating a strong swirling flow within the combustion chamber 4.
一方、吸入空気量が多い機関高速高負荷運転時
にはロータリ弁25が開弁するので入口通路部A
内に送り込まれた混合気は大別すると3つの流れ
に分流される。即ち、第1の流れは第3図および
第4図において矢印Xで示すように隔壁12の第
1側壁面14aと入口通路部Aの側壁面17間に
流入し、次いで渦巻部Aの上壁面20に沿つて旋
回しつつ流れる混合気流であり、第2の流れは第
3図および第4図において矢印Yで示すように分
岐路24を介して渦巻部B内に流入する混合気流
であり、第3の流れは第3図において矢印Zで示
すように入口通路部Aの底壁面21に沿つて渦巻
部B内に流入する混合気流である。分岐部24の
流れ抵抗は第1側壁面14aと側壁面17間の流
れ抵抗に比べて小さく、従つて第2の混合気流Y
の方が第1の混合気流Xよりも多くなる。更に、
渦巻部B内を旋回しつつ流れる第1混合気流Xの
流れ方向は第3図に示されるように第2混合気流
Yによつて下向きに偏向され、斯くして第1混合
気流の旋回力が弱められることになる。このよう
に流れ抵抗の小さな分岐路24からの混合気流が
増大し、更に第1混合気流の流れ方向が下向きに
偏向されるので高い充填効率が得られることにな
る。また、前述したように隔壁12の底壁面22
は下向きの傾斜面から形成されているので第3の
混合気流はこの傾斜面に案内されて流れ方向が下
向に偏向され、またロータリ弁25下流の分岐路
24の側壁面27は下向きの傾斜面から形成され
ているので第2の混合気流も流れ方向が下向きに
偏向され、斯くして更に高い充填効率を得ること
ができる。 On the other hand, when the engine is operated at high speed and under high load with a large amount of intake air, the rotary valve 25 opens, so the inlet passage A
The air-fuel mixture sent into the tank is divided into three main streams. That is, the first flow flows between the first side wall surface 14a of the partition wall 12 and the side wall surface 17 of the inlet passage section A as shown by the arrow X in FIGS. 3 and 4, and then flows into the upper wall surface of the spiral section A. 20, the second flow is a mixture flow that flows into the swirl portion B via the branch path 24 as shown by the arrow Y in FIGS. 3 and 4, The third flow is a mixed air flow that flows into the swirl section B along the bottom wall surface 21 of the inlet passage section A, as shown by arrow Z in FIG. The flow resistance of the branch portion 24 is smaller than the flow resistance between the first side wall surface 14a and the side wall surface 17, and therefore the second air mixture flow Y
is larger than the first air mixture flow X. Furthermore,
As shown in FIG. 3, the flow direction of the first mixed air flow X flowing while swirling in the swirl portion B is deflected downward by the second mixed air flow Y, thus increasing the swirling force of the first mixed air flow. It will be weakened. In this way, the mixed air flow from the branch passage 24 with low flow resistance is increased, and the flow direction of the first mixed air flow is further deflected downward, so that high filling efficiency can be obtained. Further, as described above, the bottom wall surface 22 of the partition wall 12
is formed from a downwardly inclined surface, the third air mixture flow is guided by this inclined surface and the flow direction is deflected downward, and the side wall surface 27 of the branch passage 24 downstream of the rotary valve 25 is formed with a downwardly inclined surface. Since it is formed from a surface, the flow direction of the second air mixture flow is also deflected downward, thus making it possible to obtain even higher filling efficiency.
充填効率を高めるには吸気ポート6の流れ抵抗
をできるだけ小さくすることが必要であり、吸気
ポート6の流れ抵抗を小さくするには吸気ポート
6をできるだけまつすぐに形成すると共に吸気ポ
ート6の軸線に沿う断面積の変化をできるだけ小
さくすることが必要となる。吸気ポート6をまつ
すぐに形成すれば吸気ポート6の流れ抵抗が小さ
くなることについては説明する必要はないであろ
う。一方、流体力学の理論によれば流れの断面積
が拡大すると速度分布が一様化されるが圧力が高
くなる。従つて吸気ポート6の入口と出口間の圧
力差を一定とすれば流れの断面積を吸気ポート6
内において拡大した場合には流量が減少する、即
ち吸気ポート6の流れ抵抗が増大することにな
る。また、この拡大した断面積を絞れば絞り損失
が生じて流れ抵抗が更に増大する。それ故、吸気
ポート6の流れ抵抗を小さくするには吸気ポート
6の軸線に沿う断面積の変化をできるだけ小さく
することが必要となる。従つて吸気ポート6はま
つすぐに延びた一様断面のいわゆるストレートポ
ートを採用した場合に最も充填効率が高くなる。
本発明によるヘリカル型吸気ポート6では隔壁2
1が突出しているために流れ抵抗が必然的にスト
レートポートよりも大きくなるが本発明によるヘ
リカル型吸気ポート6においてもロータリ弁25
が開弁したときに吸気ポート6の軸線がまつすぐ
となり、吸気ポート6の軸線に沿う断面積変化を
できるだけ小さくすれば流れ抵抗をストレートポ
ートの流れ抵抗に近づけることができる。そこで
本発明によるヘリカル型吸気ポート6においては
第2図からわかるように底壁面21の両側縁が吸
気弁5の周縁部に接するように配置され、ロータ
リ弁25が開弁したときに吸気ポート6の軸線が
吸気弁ステム5aを通るように吸気ポート6が形
成されている。一方、第12図を参照すると吸気
ポート6の各断面a,b,c,d,e,fにおけ
る断面積Sが示される。第12図から渦巻部にお
ける断面eを除いて各断面a,b,c,dにおけ
る断面積が混合気出口スロート部Gの断面fにお
ける断面積にほぼ等しいことがわかる。実験によ
るとこれら断面a,b,c,d,e,fのうちで
断面dで示される入口通路部の下流側端部におけ
る断面積が充填効率、即ち機関出力に最も影響を
与えることが判明している。この実験結果を第1
3図に示す。第13図において縦軸Ps、Tは機
関の最高出力およびトルクを示し、横軸は断面d
における断面積Adと断面fにおける断面積Afと
の比Ad/Afを示す。また、第13図において実
線は高速全負荷運転時における最高出力Psと
Ad/Afとの関係を示し、破線は低速全負荷運転
時におけるトルクTとAd/Afとの関係を示す。
第13図から高い最高出力PsとトルクTを得る
ためにはAd/Afが0.9から1.1の範囲、即ちAdと
Afとをほぼ等しくすることが必要であることが
わかる。このように本発明によればロータリ弁2
5が開弁したときの吸気ポート6の軸線が吸気弁
ステム5aを通つてまつすぐに延びるように吸気
ポート6を形成すると共に吸気ポート6の底壁面
21の両側縁を吸気弁5の周縁部に接するように
形成して吸気ポート6をストレートポートの形状
に近づけるようにしている。その結果、強力な旋
回流を発生させるために吸気ポート6内に隔壁1
2を突出させたとしても高い充填効率を得ること
ができる。 In order to increase the filling efficiency, it is necessary to make the flow resistance of the intake port 6 as small as possible. It is necessary to minimize the change in cross-sectional area along the line. There is no need to explain that the flow resistance of the intake port 6 is reduced if the intake port 6 is formed immediately. On the other hand, according to the theory of fluid mechanics, when the cross-sectional area of the flow increases, the velocity distribution becomes uniform, but the pressure increases. Therefore, if the pressure difference between the inlet and outlet of the intake port 6 is constant, the cross-sectional area of the flow is equal to that of the intake port 6.
If the inside of the intake port 6 is enlarged, the flow rate will decrease, that is, the flow resistance of the intake port 6 will increase. Furthermore, if this expanded cross-sectional area is narrowed, a throttling loss will occur and the flow resistance will further increase. Therefore, in order to reduce the flow resistance of the intake port 6, it is necessary to minimize the change in the cross-sectional area of the intake port 6 along the axis. Therefore, the filling efficiency is highest when the intake port 6 is a so-called straight port with a straight, uniform cross section.
In the helical intake port 6 according to the present invention, the partition wall 2
1 protrudes, the flow resistance is inevitably greater than that of a straight port, but even in the helical type intake port 6 according to the present invention, the rotary valve 25
When the valve is opened, the axis of the intake port 6 becomes straight, and if the cross-sectional area change along the axis of the intake port 6 is made as small as possible, the flow resistance can be made close to that of a straight port. Therefore, in the helical type intake port 6 according to the present invention, as can be seen from FIG. The intake port 6 is formed such that the axis thereof passes through the intake valve stem 5a. On the other hand, referring to FIG. 12, the cross-sectional area S at each cross-section a, b, c, d, e, and f of the intake port 6 is shown. It can be seen from FIG. 12 that the cross-sectional area at each cross-section a, b, c, and d is approximately equal to the cross-sectional area at cross-section f of the air-fuel mixture outlet throat portion G, except for cross-section e at the spiral portion. Experiments have shown that among these cross sections a, b, c, d, e, and f, the cross-sectional area at the downstream end of the inlet passage shown by cross section d has the greatest effect on filling efficiency, that is, engine output. are doing. This experimental result is the first
Shown in Figure 3. In Fig. 13, the vertical axes Ps and T indicate the maximum output and torque of the engine, and the horizontal axis is the cross section d.
The ratio Ad/Af of the cross-sectional area Ad at cross-section f and the cross-sectional area Af at cross-section f is shown. Also, in Fig. 13, the solid line indicates the maximum output Ps during high-speed full-load operation.
The relationship between Ad/Af is shown, and the broken line shows the relationship between torque T and Ad/Af during low speed full load operation.
From Figure 13, in order to obtain high maximum output Ps and torque T, Ad/Af should be in the range of 0.9 to 1.1, that is, Ad and
It can be seen that it is necessary to make Af approximately equal. In this way, according to the present invention, the rotary valve 2
The intake port 6 is formed so that the axis of the intake port 6 when the intake valve 5 is opened extends immediately through the intake valve stem 5a, and both side edges of the bottom wall surface 21 of the intake port 6 are connected to the peripheral edge of the intake valve 5. The intake port 6 is formed so as to be in contact with the straight port so that the intake port 6 has a shape similar to that of a straight port. As a result, there is a partition wall 1 in the intake port 6 to generate a strong swirling flow.
Even if 2 is made to protrude, high filling efficiency can be obtained.
第1図は第2図の−線に沿つてみた本発明
に係る内燃機関の側面断面図、第2図は第1図の
−線に沿つてみた平面断面図、第3図は本発
明によるヘリカル型吸気ポートの形状を図解的に
示す側面図、第4図はヘリカル型吸気ポートの形
状を図解的に示す平面図、第5図は第3図および
第4図の−線に沿つてみた断面図、第6図は
第3図および第4図の−線に沿つてみた断面
図、第7図は第3図および第4図の−線に沿
つてみた断面図、第8図は第3図および第4図の
−線に沿つてみた断面図、第9図は第3図お
よび第4図の−線に沿つてみた断面図、第1
0図はロータリ弁の側面断面図、第11図はロー
タリ弁の駆動制御装置を示す図、第12図は吸気
ポートの各断面における断面積を示す図、第13
図は機関の最高出力とトルクを示す図である。
4……燃焼室、6……ヘリカル型吸気ポート、
12……隔壁、24……分岐路、25……ロータ
リ弁。
FIG. 1 is a side sectional view of an internal combustion engine according to the present invention taken along the line - in FIG. 2, FIG. 2 is a plan sectional view taken along the line - in FIG. 1, and FIG. FIG. 4 is a side view schematically showing the shape of the helical intake port, FIG. 4 is a plan view schematically showing the shape of the helical intake port, and FIG. 5 is a view taken along the - line in FIGS. 3 and 4. 6 is a sectional view taken along the - line in FIGS. 3 and 4, FIG. 7 is a sectional view taken along the - line in FIGS. 3 and 4, and FIG. 8 is a sectional view taken along the - line in FIGS. 3 and 4, FIG. 9 is a sectional view taken along the line - in FIGS. 3 and 4, and FIG.
Figure 0 is a side sectional view of the rotary valve, Figure 11 is a diagram showing the drive control device of the rotary valve, Figure 12 is a diagram showing the cross-sectional area of each cross section of the intake port, and Figure 13 is a diagram showing the cross-sectional area of each cross section of the intake port.
The figure shows the maximum output and torque of the engine. 4... Combustion chamber, 6... Helical intake port,
12... Bulkhead, 24... Branch, 25... Rotary valve.
Claims (1)
に接線状に接続されかつほぼまつすぐに延びる入
口通路部とにより構成されたヘリカル型吸気ポー
トにおいて、吸気ポート上壁面から下方に突出し
かつ吸入空気流の流れ方向に延びる隔壁を吸気ポ
ート内に形成して該隔壁の両側に入口通路部と該
入口通路部から分岐した分岐路とを形成し、該隔
壁の下方に入口通路部と分岐路とを連通する下側
空間を形成すると共に分岐路を渦巻部の渦巻終端
部に連通し、該分岐路内に開閉弁を設けて該開閉
弁により分岐路内を流れる吸入空気流を制御し、
更に上記入口通路部と分岐路に共通の吸気ポート
底壁面の巾を吸気弁の径にほぼ等しくすると共に
該吸気ポート底壁面の両側縁を吸気弁周縁部の接
線方向に延設し、渦巻部の側壁面が吸気弁の周縁
部から外方に膨出しているヘリカル型吸気ポー
ト。1. In a helical intake port configured by a spiral portion formed around the intake valve and an inlet passage connected tangentially to the spiral portion and extending almost straight, the helical intake port projects downward from the upper wall surface of the intake port. A partition wall extending in the flow direction of the intake air flow is formed in the intake port, an inlet passage portion and a branch passage branching from the inlet passage portion are formed on both sides of the partition wall, and an inlet passage portion and a branch passage are formed below the partition wall. A lower space communicating with the branch passage is formed, and a branch passage is communicated with the spiral terminal end of the spiral part, and an on-off valve is provided in the branch passage, and the intake air flow flowing through the branch passage is controlled by the on-off valve. ,
Further, the width of the intake port bottom wall surface common to the inlet passage and the branch path is made approximately equal to the diameter of the intake valve, and both side edges of the intake port bottom wall surface are extended in the tangential direction of the intake valve peripheral edge to form a spiral portion. A helical intake port with a side wall that bulges outward from the periphery of the intake valve.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57155113A JPS5946320A (en) | 1982-09-08 | 1982-09-08 | Helical intake port |
US06/495,595 US4485773A (en) | 1982-09-08 | 1983-05-18 | Helically-shaped intake port of an internal-combustion engine |
AU14665/83A AU542150B2 (en) | 1982-09-08 | 1983-05-18 | Helical intake port |
DE8383104972T DE3375039D1 (en) | 1982-09-08 | 1983-05-19 | A helically-shaped intake port of an internal-combustion engine |
EP83104972A EP0102453B1 (en) | 1982-09-08 | 1983-05-19 | A helically-shaped intake port of an internal-combustion engine |
CA000428477A CA1197741A (en) | 1982-09-08 | 1983-05-19 | Helically-shaped intake port of an internal- combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57155113A JPS5946320A (en) | 1982-09-08 | 1982-09-08 | Helical intake port |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5946320A JPS5946320A (en) | 1984-03-15 |
JPS6238540B2 true JPS6238540B2 (en) | 1987-08-18 |
Family
ID=15598870
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57155113A Granted JPS5946320A (en) | 1982-09-08 | 1982-09-08 | Helical intake port |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5946320A (en) |
-
1982
- 1982-09-08 JP JP57155113A patent/JPS5946320A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5946320A (en) | 1984-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6032009B2 (en) | Helical intake port | |
JPS6238533B2 (en) | ||
JPS6238537B2 (en) | ||
US4481915A (en) | Helically-shaped intake port of an internal combustion engine | |
JPS6238541B2 (en) | ||
JPS6238540B2 (en) | ||
US4485773A (en) | Helically-shaped intake port of an internal-combustion engine | |
JPS6239672B2 (en) | ||
JPS6229624Y2 (en) | ||
JPS6229623Y2 (en) | ||
JPS6231619Y2 (en) | ||
JPS6238535B2 (en) | ||
JPS6238529B2 (en) | ||
US4485774A (en) | Helically-shaped intake port of an internal-combustion engine | |
JPS6236138B2 (en) | ||
JPS6236136B2 (en) | ||
JPS6335166Y2 (en) | ||
JPS6236137B2 (en) | ||
JPS6238534B2 (en) | ||
JPS6239669B2 (en) | ||
JPS6238532B2 (en) | ||
JPS6238530B2 (en) | ||
JPS6021469Y2 (en) | Helical intake port | |
JPS6238531B2 (en) | ||
JPS6238528B2 (en) |