JPS6229624Y2 - - Google Patents
Info
- Publication number
- JPS6229624Y2 JPS6229624Y2 JP15092782U JP15092782U JPS6229624Y2 JP S6229624 Y2 JPS6229624 Y2 JP S6229624Y2 JP 15092782 U JP15092782 U JP 15092782U JP 15092782 U JP15092782 U JP 15092782U JP S6229624 Y2 JPS6229624 Y2 JP S6229624Y2
- Authority
- JP
- Japan
- Prior art keywords
- wall surface
- valve
- branch passage
- passage
- flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000005192 partition Methods 0.000 claims description 17
- 238000002485 combustion reaction Methods 0.000 claims description 16
- 239000000203 mixture Substances 0.000 description 30
- 239000000446 fuel Substances 0.000 description 7
- 230000006835 compression Effects 0.000 description 6
- 238000007906 compression Methods 0.000 description 6
- 241000234435 Lilium Species 0.000 description 5
- 238000007789 sealing Methods 0.000 description 3
- 239000006200 vaporizer Substances 0.000 description 2
- 101100334009 Caenorhabditis elegans rib-2 gene Proteins 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
Landscapes
- Ignition Installations For Internal Combustion Engines (AREA)
Description
【考案の詳細な説明】
本考案はヘリカル型吸気ポートを具えた内燃機
関に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an internal combustion engine with a helical intake port.
ヘリカル型吸気ポートは通常吸気弁周りに形成
された渦巻部と、この渦巻部に接線状に接続され
かつほぼまつすぐに延びる入口通路部とにより構
成される。このようなヘリカル型吸気ポートを用
いて吸入空気量の少ない機関低速低負荷運転時に
機関燃焼室内に強力な旋回流を発生せしめようと
すると吸気ポート形状が流れ抵抗の大きな形状に
なつてしまうので吸入空気量の多い機関高速高負
荷運転時に充填効率が低下するという問題を生ず
る。このような問題を解決するためにヘリカル型
吸気ポート入口通路部から分岐されてヘリカル型
吸気ポート渦巻部の渦巻終端部に連通する分岐路
をシリンダヘツド内に形成し、分岐路内に開閉弁
を設けて機関高速高負荷運転時に開閉弁を開弁す
るようにしたヘリカル型吸気ポートが本出願人に
より既に提案されている。このヘリカル型吸気ポ
ートでは機関高速高負荷運転時にヘリカル型吸気
ポート入口通路部内に送り込まれた吸入空気の一
部が分岐路を介してヘリカル型吸気ポート渦巻部
内に送り込まれるために吸入空気の流路断面積が
増大し、斯くして充填効率を向上することができ
る。しかしながらこのヘリカル型吸気ポートでは
分岐路が入口通路部から完全に独立した筒状の通
路として形成されているので分岐路の流れ抵抗が
比較的大きく、しかも分岐路を入口通路部に隣接
して形成しなければならないために入口通路部の
断面積が制限を受けるので十分に満足のいく高い
充填効率を得るのが困難となつている。更に、ヘ
リカル型吸気ポートはそれ自体の形状が複雑であ
り、しかも入口通路部から完全に独立した分岐路
を併設した場合には吸気ポートの全体構造が極め
て複雑となるのでこのような分岐路を具えたヘリ
カル型吸気ポートをシリンダヘツド内に形成する
のはかなり困難である。 A helical intake port typically consists of a spiral formed around the intake valve and an inlet passageway tangentially connected to the spiral and extending generally straight. If you try to use such a helical intake port to generate a strong swirling flow in the combustion chamber of the engine during low-speed, low-load engine operation with a small amount of intake air, the shape of the intake port will have a large flow resistance. A problem arises in that the filling efficiency decreases when the engine is operated at high speed and under high load with a large amount of air. In order to solve this problem, a branch path is formed in the cylinder head that branches from the helical intake port inlet passage and communicates with the spiral end of the helical intake port spiral section, and an on-off valve is installed in the branch path. The applicant has already proposed a helical intake port in which an on-off valve is opened during high-speed, high-load engine operation. In this helical type intake port, when the engine is operated at high speed and under high load, a part of the intake air sent into the helical type intake port inlet passage is sent into the helical type intake port spiral part through a branch path, so the intake air flow path is The cross-sectional area can be increased, thus improving the filling efficiency. However, in this helical intake port, the branch passage is formed as a cylindrical passage completely independent from the inlet passage, so the flow resistance of the branch passage is relatively large, and the branch passage is formed adjacent to the inlet passage. This limits the cross-sectional area of the inlet passage, making it difficult to obtain a sufficiently high filling efficiency. Furthermore, the helical intake port itself has a complicated shape, and if a branch passage that is completely independent from the inlet passage is added, the overall structure of the intake port will become extremely complicated. It is quite difficult to form a helical intake port in the cylinder head.
本考案は機関高速高負荷運転時に高い充填効率
を得ることができると共に製造の容易な新規形状
を有するヘリカル型吸気ポートを具えた内燃機関
を提供することにある。 SUMMARY OF THE INVENTION An object of the present invention is to provide an internal combustion engine equipped with a helical intake port having a novel shape that can achieve high charging efficiency during high-speed, high-load operation of the engine and is easy to manufacture.
以下、添附図面を参照して本考案を詳細に説明
する。 Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
第1図並びに第2図を参照すると、1はシリン
ダブロツク、2はシリンダブロツク1内で往復動
するピストン、3はシリンダブロツク1上に固締
されたシリンダヘツド、4はピストン2とシリン
ダヘツド3間に形成された燃焼室、5は吸気弁、
6はシリンダヘツド3内に形成されたヘリカル型
吸気ポート、7は排気弁、8はシリンダヘツド3
内に形成された排気ポート、9は燃焼室4内に配
置された点火栓、10は吸気弁5のステム5aを
案内するステムガイドを夫々示し、点火栓9は吸
気ポート6の延長方向に位置するシリンダヘツド
3の傾斜内壁面3a上に配置される。第1図並び
に第2図に示されるように吸気ポート6の上壁面
11上には下方に突出する隔壁12が一体成形さ
れ、この隔壁12によつて渦巻部Bと、この渦巻
部Bに接線状に接続された入口通路部Aからなる
ヘリカル型吸気ポート6が形成される。この隔壁
12は入口通路部A内から吸気弁5のステムガイ
ド10の周囲まで吸入空気流の流れ方向に延びて
おり、第2図からわかるようにこの隔壁12の根
本部の巾Lは入口通路部Aに近い側が最も狭く、
この最狭部からステムガイド10の近傍まではほ
ぼ一様であり、ステムガイド10の周りで最も広
くなる。隔壁12は吸気ポート6の入口開口6a
に最も近い側に位置する先端部13を有し、更に
隔壁12は第2図においてこの先端部13から反
時計回りに延びる第1側壁面14aと、先端部1
3から時計回りに延びる第2側壁面14bとを有
する。第1側壁面14aは先端部13からステム
ガイド10の側方を通つて渦巻部Bの側壁面15
の近傍まで延びて渦巻部側壁面15との間に狭窄
部16を形成する。一方、第2側壁面14bは先
端部13からステムガイド10に向けて始めは第
1側壁面14aとの間隔が増大するように、次い
で第1側壁面14aとの間隔がほぼ一様となるよ
うに延びる。次いでこの第2側壁面14bはステ
ムガイド10の外周に沿つて延びて狭窄部16に
達する。 Referring to FIGS. 1 and 2, 1 is a cylinder block, 2 is a piston that reciprocates within the cylinder block 1, 3 is a cylinder head fixed on the cylinder block 1, and 4 is a piston 2 and a cylinder head 3. A combustion chamber is formed in between, 5 is an intake valve,
6 is a helical intake port formed in the cylinder head 3, 7 is an exhaust valve, and 8 is a cylinder head 3.
9 indicates an ignition plug disposed within the combustion chamber 4; 10 indicates a stem guide for guiding the stem 5a of the intake valve 5; the ignition plug 9 is located in the extending direction of the intake port 6; The cylinder head 3 is disposed on the inclined inner wall surface 3a of the cylinder head 3. As shown in FIGS. 1 and 2, a partition wall 12 projecting downward is integrally formed on the upper wall surface 11 of the intake port 6, and this partition wall 12 forms a spiral portion B and a tangent to the spiral portion B. A helical intake port 6 is formed of inlet passages A connected in a shape. This partition wall 12 extends in the flow direction of the intake air flow from inside the inlet passage section A to around the stem guide 10 of the intake valve 5, and as can be seen from FIG. 2, the width L of the root part of this partition wall 12 is The side closest to part A is the narrowest,
It is almost uniform from this narrowest part to the vicinity of the stem guide 10, and becomes widest around the stem guide 10. The partition wall 12 is the inlet opening 6a of the intake port 6.
The partition wall 12 further includes a first side wall surface 14a extending counterclockwise from the distal end 13 in FIG.
3 and a second side wall surface 14b extending clockwise from the second side wall surface 14b. The first side wall surface 14a passes from the distal end portion 13 to the side of the stem guide 10 to the side wall surface 15 of the spiral portion B.
The constricted portion 16 is formed between the spiral portion side wall surface 15 and the spiral portion side wall surface 15 . On the other hand, the second side wall surface 14b is arranged so that the distance from the first side wall surface 14a increases from the distal end 13 toward the stem guide 10, and then the distance from the first side wall surface 14a becomes almost uniform. Extends to. This second side wall surface 14b then extends along the outer periphery of the stem guide 10 and reaches the narrowed portion 16.
第1図から第9図を参照すると、入口通路部A
の一方の側壁面17はほぼ垂直配置され、他方の
側壁面18はわずかばかり傾斜した下向きの傾斜
面から形成される。一方、入口通路部Aの上壁面
19は渦巻部Bに向けて下降し、渦巻部Bの上壁
面20に滑らかに接続される。渦巻部Bの上壁面
20は渦巻部Bと入口通路部Aの接続部から狭窄
部16に向けて下降しつつ徐々に巾を狭め、次い
で狭窄部16を通過すると徐々に巾を広げる。一
方、入口通路部Aの側壁面17は渦巻部Bの側壁
面15に滑らかに接続され、入口通路部Aの底壁
面21は渦巻部Bに向けて下降する。 Referring to FIGS. 1 to 9, the inlet passage section A
One side wall surface 17 is arranged substantially vertically, and the other side wall surface 18 is formed from a slightly downwardly inclined surface. On the other hand, the upper wall surface 19 of the inlet passage section A descends toward the spiral section B and is smoothly connected to the upper wall surface 20 of the spiral section B. The upper wall surface 20 of the spiral portion B gradually narrows in width while descending from the connecting portion between the spiral portion B and the inlet passage portion A toward the narrowed portion 16, and then gradually widens after passing through the narrowed portion 16. On the other hand, the side wall surface 17 of the inlet passage section A is smoothly connected to the side wall surface 15 of the spiral section B, and the bottom wall surface 21 of the entrance passage section A descends toward the spiral section B.
一方、隔壁12の第1側壁面14aはわずかば
かり傾斜した下向きの傾斜面からなり、第2側壁
面14bはほぼ垂直をなす。隔壁12の底壁面2
2は、隔壁12の先端部13からステムガイド1
0の近傍まで延びる第1底壁面部分22aと、ス
テムガイド10の周りに位置する第2底壁面部分
22bからなる。第1底壁面部分22aは上壁面
19とほぼ平行をなして底壁面21の近くまで延
びる。一方、上壁面19から測つた第2底壁面部
分22bの高さは第1底壁面部分22aの高さよ
りも低く、更に第2底壁面部分22bと上壁面1
9との間隔は狭窄部16に向かつて徐々に小さく
なる。また、第2底壁面部分22b上には第4図
のハツチングで示す領域に下方に突出するリブ2
3が形成され、このリブ23は第1底壁面部分2
2aから狭窄部16まで延びる。第8図に示され
るように第2底壁面部分22bはリブ23に向け
て下降する。 On the other hand, the first side wall surface 14a of the partition wall 12 is a slightly downwardly inclined surface, and the second side wall surface 14b is substantially vertical. Bottom wall surface 2 of partition wall 12
2 is the stem guide 1 from the distal end 13 of the partition wall 12.
It consists of a first bottom wall surface portion 22a extending to the vicinity of 0, and a second bottom wall surface portion 22b located around the stem guide 10. The first bottom wall surface portion 22a is substantially parallel to the top wall surface 19 and extends close to the bottom wall surface 21. On the other hand, the height of the second bottom wall surface portion 22b measured from the top wall surface 19 is lower than the height of the first bottom wall surface portion 22a, and furthermore, the height of the second bottom wall surface portion 22b and the top wall surface 1
9 becomes gradually smaller toward the narrowed portion 16. Further, on the second bottom wall surface portion 22b, there is a rib 2 that projects downward in the area shown by hatching in FIG.
3 is formed, and this rib 23 is formed on the first bottom wall surface portion 2
2a to the narrowing portion 16. As shown in FIG. 8, the second bottom wall surface portion 22b descends toward the rib 23.
一方、シリンダヘツド3内には渦巻部Bの渦巻
終端部Cと入口通路部Aとを連通する分岐路24
が形成され、この分岐路24の入口部にロータリ
弁25が配置される。この分岐路24は隔壁12
によつて入口通路部Aから分離されており、分岐
路24の下側空間全体が入口通路部Aに連通して
いる。分岐路24の上壁面26はほぼ一様な巾を
有し、渦巻終端部Cに向けて下降して渦巻部Bの
上壁面20に滑らかに接続される。なお、第7図
に示されるように底壁面21から測つた分岐路2
4の上壁面26の高さH1は入口通路部Aの上壁
面19の高さH2よりも高くなつている。隔壁1
2の第2側壁面14bに対面する分岐路24の側
壁面27はほぼ垂直をなし、また分岐路24下方
の底壁面部分21aは隆起せしめられて傾斜面を
形成する。この傾斜底壁面部分21aは第1図に
示すように吸気ポート6の入口開口6aの近傍か
ら渦巻部Bまで延びる。一方、第1図、第4図お
よび第8図からわかるように分岐路24の出口近
傍の渦巻部Bの側壁面部分15aはわずかに傾斜
した下向きの傾斜面に形成され、隔壁12の第2
側壁面14bはこの傾斜側壁面部分15aに向け
て張り出している。従つて第2側壁面14bと傾
斜側壁面部分15a間には第2の狭窄部16aが
形成される。 On the other hand, a branch passage 24 is provided in the cylinder head 3 that communicates the spiral end C of the spiral portion B with the inlet passage A.
is formed, and a rotary valve 25 is disposed at the inlet of this branch passage 24. This branch path 24 is connected to the partition wall 12
The branch passageway 24 is separated from the inlet passageway A by , and the entire lower space of the branch passage 24 communicates with the inlet passageway A. The upper wall surface 26 of the branch passage 24 has a substantially uniform width, descends toward the spiral terminal end C, and is smoothly connected to the upper wall surface 20 of the spiral section B. In addition, as shown in FIG. 7, the branch road 2 measured from the bottom wall surface 21
The height H 1 of the upper wall surface 26 of 4 is higher than the height H 2 of the upper wall surface 19 of the inlet passage section A. Bulkhead 1
The side wall surface 27 of the branch passage 24 facing the second side wall surface 14b of the branch passage 24 is substantially vertical, and the bottom wall surface portion 21a below the branch passage 24 is raised to form an inclined surface. This inclined bottom wall surface portion 21a extends from the vicinity of the inlet opening 6a of the intake port 6 to the spiral portion B, as shown in FIG. On the other hand, as can be seen from FIGS. 1, 4, and 8, the side wall surface portion 15a of the spiral portion B near the outlet of the branching path 24 is formed into a slightly downwardly inclined surface, and the second
The side wall surface 14b projects toward this inclined side wall surface portion 15a. Therefore, a second narrowed portion 16a is formed between the second side wall surface 14b and the inclined side wall surface portion 15a.
第2図に示されるように分岐路24は複雑な断
面形状を有するがこの分岐路24は吸気ポート6
の軸線にほぼ平行をなす軸線lに沿つて延びてお
り、第2図からわかるように点火栓9はこの軸線
lに対して隔壁12と反対方向に軸線lから若干
離れて配置されている。この点についてもう少し
詳細に説明すると、第2図に示す断面平面図にお
いて軸線lと吸気弁5の周縁部との交点を0と
し、この交点0と点火栓9の電極とを結ぶ線をm
とすると点火栓9は軸線lと線mとがほぼ15度か
ら20度をなすように配置される。 As shown in FIG. 2, the branch passage 24 has a complicated cross-sectional shape.
As can be seen from FIG. 2, the spark plug 9 is disposed at a distance from the axis l in a direction opposite to the partition wall 12 and at a slight distance from the axis l. To explain this point in more detail, in the cross-sectional plan view shown in FIG.
Then, the spark plug 9 is arranged so that the axis l and the line m make an angle of approximately 15 to 20 degrees.
一方、第9図に示されるようにロータリ弁25
はロータリ弁ホルダ28と、ロータリ弁ホルダ2
8内において回転可能に支持された弁軸29とに
より構成され、このロータリ弁ホルダ28はシリ
ンダヘツド3に穿設されたねじ孔30内に螺着さ
れる。弁軸29の下端部には薄板状の弁体31が
一体形成され、第1図に示されるようにこの弁体
31は分岐路24の上壁面26から底壁面21ま
で延びる。一方、弁軸29の上端部にはアーム3
2が固定される。また、弁軸29の外周面上には
リング溝33が形成され、このリング溝33内に
はE字型位置決めリング34が嵌込まれる。更に
ロータリ弁ホルダ28の上端部にはシール部材3
5が嵌着され、このシール部材35によつて弁軸
29のシール作用が行なわれる。 On the other hand, as shown in FIG.
are rotary valve holder 28 and rotary valve holder 2
The rotary valve holder 28 is constituted by a valve shaft 29 rotatably supported within the cylinder head 3, and the rotary valve holder 28 is screwed into a screw hole 30 formed in the cylinder head 3. A thin plate-like valve body 31 is integrally formed at the lower end of the valve shaft 29, and as shown in FIG. 1, this valve body 31 extends from the top wall surface 26 of the branch passage 24 to the bottom wall surface 21. On the other hand, an arm 3 is attached to the upper end of the valve shaft 29.
2 is fixed. Further, a ring groove 33 is formed on the outer peripheral surface of the valve shaft 29, and an E-shaped positioning ring 34 is fitted into the ring groove 33. Furthermore, a sealing member 3 is provided at the upper end of the rotary valve holder 28.
5 is fitted, and this sealing member 35 performs a sealing action on the valve shaft 29.
第10図を参照すると、ロータリ弁25の上端
部に固着されたアーム32の先端部は負圧ダイア
フラム装置40のダイアフラム41に固着された
制御ロツド42に連結ロツド43を介して連結さ
れる。負圧ダイアフラム装置40はダイアフラム
41によつて大気から隔離された負圧室44を有
し、この負圧室44内にダイアフラム押圧用圧縮
ばね45が挿入される。シリンダヘツド3には1
次側気化器46aと2次側気化器46bからなる
コンパウンド型気化器46を具えた吸気マニホル
ド47が取付けられ、負圧室44は負圧導管48
を介して吸気マニホルド47内に連結される。こ
の負圧導管48内には負圧室44から吸気マニホ
ルド47内に向けてのみ流通可能な逆止弁49が
挿入される。更に、負圧室44は大気導管50並
びに大気開放制御弁51を介して大気に連通す
る。この大気開放制御弁51はダイアフラム52
によつて隔成された負圧室53と大気圧室54と
を有し、更に大気圧室54に隣接して弁室55を
有する。この弁室55は一方では大気導管50を
介して負圧室44内に連通し、他方では弁ポート
56並びにエアフイルタ57を介して大気に連通
する。弁室55内には弁ポート56の開閉制御を
する弁体58が設けられ、この弁体58は弁ロツ
ド59を介してダイアフラム52に連結される。
負圧室53内にはダイアフラム押圧用圧縮ばね6
0が挿入され、更に負圧室53は負圧導管61を
介して1次側気化器46aのベンチユリ部62に
連結される。 Referring to FIG. 10, the tip of the arm 32 fixed to the upper end of the rotary valve 25 is connected via a connecting rod 43 to a control rod 42 fixed to a diaphragm 41 of a negative pressure diaphragm device 40. As shown in FIG. The negative pressure diaphragm device 40 has a negative pressure chamber 44 isolated from the atmosphere by a diaphragm 41, and a compression spring 45 for pressing the diaphragm is inserted into the negative pressure chamber 44. 1 for cylinder head 3
An intake manifold 47 equipped with a compound type carburetor 46 consisting of a next side carburetor 46a and a secondary side carburetor 46b is attached, and the negative pressure chamber 44 is connected to a negative pressure conduit 48.
The intake manifold 47 is connected through the intake manifold 47 . A check valve 49 is inserted into the negative pressure conduit 48 and allows flow only from the negative pressure chamber 44 into the intake manifold 47 . Further, the negative pressure chamber 44 communicates with the atmosphere via an atmosphere conduit 50 and an atmosphere release control valve 51. This atmospheric release control valve 51 has a diaphragm 52
It has a negative pressure chamber 53 and an atmospheric pressure chamber 54 separated by a spacer, and further has a valve chamber 55 adjacent to the atmospheric pressure chamber 54. This valve chamber 55 communicates on the one hand with the negative pressure chamber 44 via an atmospheric conduit 50 and on the other hand with the atmosphere via a valve port 56 and an air filter 57. A valve body 58 for controlling the opening and closing of the valve port 56 is provided within the valve chamber 55, and the valve body 58 is connected to the diaphragm 52 via a valve rod 59.
A compression spring 6 for pressing the diaphragm is provided in the negative pressure chamber 53.
Further, the negative pressure chamber 53 is connected to the bench lily portion 62 of the primary side carburetor 46a via a negative pressure conduit 61.
気化器46は通常用いられる気化器があつて1
次側スロツトル弁63が所定開度以上開弁したと
きに2次側スロツトル弁64が開弁し、1次側ス
ロツトル弁63が全開すれば2次側スロツトル弁
64も全開する。1次側気化器46aのベンチユ
リ部62に発生する負圧は機関シリンダ内に供給
される吸入空気量が増大するほど大きくなり、従
つてベンチユリ部62に発生する負圧が所定負圧
よりも大きくなつたときに、即ち機関高速高負荷
運転時に大気開放制御弁51のダイアフラム52
が圧縮ばね60に抗して右方に移動し、その結果
弁体58が弁ポート56を開弁して負圧ダイアフ
ラム装置40の負圧室44を大気に開放する。こ
のときダイアフラム41は圧縮ばね45のばね力
により下方に移動し、その結果ロータリ弁25が
回転せしめられて分岐路24を全開する。一方1
次側スロツトル弁63の開度が小さいときにはベ
ンチユリ部62に発生する負圧が小さなために大
気開放制御弁51のダイアフラム52は圧縮ばね
60のばね力により左方に移動し、弁体58が弁
ポート56を閉鎖する。更にこのように1次側ス
ロツトル弁63の開度が小さいときには吸気マニ
ホルド47内には大きな負圧が発生している。逆
止弁49は吸気マニホルド47内の負圧が負圧ダ
イアフラム装置40の負圧室44内の負圧よりも
大きくなると開弁し、吸気マニホルド47内の負
圧が負圧室44内の負圧よりも小さくなると閉弁
するので大気開放制御弁51が閉弁している限り
負圧室44内の負圧は吸気マニホルド47内に発
生した最大負圧に維持される。負圧室44内に負
圧が加わるとダイアフラム41は圧縮ばね45に
抗して上昇し、その結果ロータリ弁25が回動せ
しめられて分岐路24が閉鎖される。従つて機関
低速低負荷運転時にはロータリ弁25によつて分
岐路24が閉鎖されることになる。なお、高負荷
運転時であつても機関回転数が低い場合、並びに
機関回転数が高くても低負荷運転が行なわれてい
る場合にはベンチユリ部62に発生する負圧が小
さなために大気開放制御弁51は閉鎖され続けて
いる。従つてこのような低速高負荷運転時並びに
高速低負荷運転時には負圧室44内の負圧が前述
の最大負圧に維持されているのでロータリ弁25
によつて分岐路24が閉鎖されている。 The vaporizer 46 is a commonly used vaporizer.
When the downstream throttle valve 63 opens to a predetermined opening degree or more, the secondary throttle valve 64 opens, and when the primary throttle valve 63 fully opens, the secondary throttle valve 64 also fully opens. The negative pressure generated in the bench lily portion 62 of the primary side carburetor 46a increases as the amount of intake air supplied into the engine cylinder increases, and therefore the negative pressure generated in the bench lily portion 62 becomes larger than a predetermined negative pressure. diaphragm 52 of the atmospheric release control valve 51 when the engine is operating at high speed and high load.
moves to the right against the compression spring 60, and as a result, the valve body 58 opens the valve port 56 and opens the negative pressure chamber 44 of the negative pressure diaphragm device 40 to the atmosphere. At this time, the diaphragm 41 is moved downward by the spring force of the compression spring 45, and as a result, the rotary valve 25 is rotated and the branch passage 24 is fully opened. On the other hand 1
When the opening degree of the next throttle valve 63 is small, the negative pressure generated in the bench lily part 62 is small, so the diaphragm 52 of the atmospheric release control valve 51 moves to the left by the spring force of the compression spring 60, and the valve body 58 Close port 56. Furthermore, when the opening degree of the primary throttle valve 63 is small as described above, a large negative pressure is generated within the intake manifold 47. The check valve 49 opens when the negative pressure in the intake manifold 47 becomes greater than the negative pressure in the negative pressure chamber 44 of the negative pressure diaphragm device 40, and the negative pressure in the intake manifold 47 becomes larger than the negative pressure in the negative pressure chamber 44. Since the valve closes when the pressure becomes smaller than the pressure, the negative pressure in the negative pressure chamber 44 is maintained at the maximum negative pressure generated in the intake manifold 47 as long as the atmospheric release control valve 51 is closed. When negative pressure is applied within the negative pressure chamber 44, the diaphragm 41 rises against the compression spring 45, and as a result, the rotary valve 25 is rotated and the branch passage 24 is closed. Therefore, when the engine is operating at low speed and low load, the branch passage 24 is closed by the rotary valve 25. Note that when the engine speed is low even during high-load operation, or when low-load operation is performed even when the engine speed is high, the negative pressure generated in the bench lily portion 62 is small, so that it is not opened to the atmosphere. Control valve 51 remains closed. Therefore, during such low-speed, high-load operation and high-speed, low-load operation, the negative pressure in the negative pressure chamber 44 is maintained at the aforementioned maximum negative pressure, so that the rotary valve 25
Branch road 24 is closed by.
上述したように吸入空気量が少ない機関低速低
負荷運転時にはロータリ弁25が分岐路24を閉
鎖している。このとき、入口通路部A内に送り込
まれた混合気の一部は第1図および第2図におい
て矢印Rで示すように上壁面19,20に沿つて
進み、残りの混合気のうちの一部の混合気は第1
図および第2図において矢印Sで示すようにロー
タリ弁25の手前で入口通路部Aの側壁面17の
方へ向きを変えた後に渦巻部Bの側壁面15に沿
つて進む。前述したように上壁面19,20の巾
は狭窄部16に近づくに従つて次第に狭くなるた
めに上壁面19,20に沿つて流れる混合気の流
路は次第に狭ばまり、斯くして上壁面19,20
に沿う混合気流は次第に増速される。更に、前述
したように隔壁12の第1側壁面14aは渦巻部
Bの側壁面15の近傍まで延びているので上壁面
19,20に沿つて進む混合気流は渦巻部Bの側
壁面15上に押しやられ、次いで第1図および第
2図において矢印Tで示すように側壁面15に沿
つて進むために渦巻部B内には強力は旋回流が発
生せしめられる。次いで混合気は旋回しつつ吸気
弁5とその弁座間に形成される間隙を通つて燃焼
室4内に流入して燃焼室4内に強力な旋回流を発
生せしめる。その結果、点火栓9の電極周りには
適度な乱れが発生せしめられるので良好な着火が
確保でき、しかも燃焼室4内には強力な旋回流が
発生せしめられているので着火火炎が急速に広が
り、斯くして燃焼速度を速めることができる。 As described above, the rotary valve 25 closes the branch passage 24 when the engine is operated at low speed and under low load with a small amount of intake air. At this time, part of the air-fuel mixture sent into the inlet passage A travels along the upper wall surfaces 19 and 20 as shown by arrow R in FIGS. 1 and 2, and part of the remaining air-fuel mixture The mixture of parts is the first
As shown by arrow S in the drawings and FIG. 2, it changes direction toward the side wall surface 17 of the inlet passage section A before the rotary valve 25, and then proceeds along the side wall surface 15 of the spiral section B. As mentioned above, the widths of the upper wall surfaces 19 and 20 gradually become narrower as they approach the narrowed portion 16, so the flow path for the air-fuel mixture flowing along the upper wall surfaces 19 and 20 gradually narrows, and thus the width of the upper wall surfaces 19,20
The speed of the air mixture along is gradually increased. Furthermore, as described above, since the first side wall surface 14a of the partition wall 12 extends to the vicinity of the side wall surface 15 of the spiral portion B, the air mixture flowing along the upper wall surfaces 19 and 20 flows onto the side wall surface 15 of the spiral portion B. A strong swirling flow is generated in the spiral portion B because the fluid is pushed away and then proceeds along the side wall surface 15 as shown by the arrow T in FIGS. 1 and 2. Next, the air-fuel mixture swirls and flows into the combustion chamber 4 through the gap formed between the intake valve 5 and its valve seat, generating a strong swirling flow within the combustion chamber 4. As a result, appropriate turbulence is generated around the electrode of the spark plug 9, ensuring good ignition, and a strong swirling flow is generated within the combustion chamber 4, so the ignition flame spreads rapidly. , thus increasing the combustion rate.
一方、吸入空気量が多い機関高速高負荷運転時
にはロータリ弁25が開弁するので入口通路部A
内に送り込まれた混合気は大別すると3コの流れ
に分流される。即ち、第1の流れは第3図および
第4図において矢印Xで示すように隔壁12の第
1側壁面14aと入口通路部Aの側壁面17間に
流入し、次いで渦巻部Bの上壁面20に沿つて旋
回しつつ流れる混合気流であり、第2の流れは第
3図および第4図において矢印Yで示すように分
岐路24を介して渦巻部B内に流入する混合気流
であり、第3の流れは第3図において矢印Zで示
すように入口通路部Aの底壁面21に沿つて渦巻
部B内に流入する混合気流である。分岐路24の
流れ抵抗は第1側壁面14aと側壁面17間の流
れ抵抗に比べて小さく、従つて第2の混合気流Y
の方が第1の混合気流Xよりも多くなる。更に、
分岐路24の出口には第2狭窄部16aが形成さ
れているために分岐路24から流入した第2混合
気流は第2狭窄部16aを通過する際に流速を速
められ、次いでこの第2混合気流Yは第3図に示
されるように渦巻部Bの側壁面15に沿つて旋回
する第1混合気流Xの上側に斜めに衝突して第1
混合気流の流れ方向を下向きに偏向せしめる。こ
のように流れ抵抗の小さな分岐路24から多量の
混合気が供給され、更に第1混合気流の流れ方向
が下向きに偏向されるので高い充填効率が得られ
ることになる。一方、上述したように第1混合気
流と第2混合気流が衝突するとマイクロタービユ
レンスが発生し、斯くして互に衝突した混合気は
マイクロタービユレンスを発生しつつ燃焼室4内
に流入する。この衝突した混合気流は第1混合気
流の慣性と第2混合気流の慣性とにより定まる方
向に流れるが上述したように第2混合気流の流速
は第1混合気流よりも速く、しかも第2混合気流
の方が量が多いために衝突した混合気流は第2混
合気流の影響を強く受ける。その結果、この衝突
した混合気流は第2図に示す線mに沿つて進むこ
とになる。一方、第2図に示すようにこの線m上
には点火栓9の電極が配置されているので衝突し
た混合気流はマイクロタービユレンスを発生しつ
つ点火栓9の電極周りに達し、斯くして点火栓9
の周りにはマイクロタービユレンスが発生するこ
とになる。その結果、ロータリ弁25が開弁した
ときにも良好な着火が得られ、着火火炎を急速に
成長させることができるので安定した燃焼を確保
することができる。 On the other hand, when the engine is operated at high speed and under high load with a large amount of intake air, the rotary valve 25 opens, so the inlet passage A
The air-fuel mixture sent into the tank is divided into three main streams. That is, the first flow flows between the first side wall surface 14a of the partition wall 12 and the side wall surface 17 of the inlet passage section A as shown by the arrow X in FIGS. 3 and 4, and then flows into the upper wall surface of the spiral section B. 20, the second flow is a mixture flow that flows into the swirl portion B via the branch path 24 as shown by the arrow Y in FIGS. 3 and 4, The third flow is a mixed air flow that flows into the swirl section B along the bottom wall surface 21 of the inlet passage section A, as shown by arrow Z in FIG. The flow resistance of the branch passage 24 is smaller than the flow resistance between the first side wall surface 14a and the side wall surface 17, and therefore the second air mixture flow Y
is larger than the first air mixture flow X. Furthermore,
Since the second narrowed part 16a is formed at the outlet of the branched passage 24, the second mixed air flow flowing in from the branched passage 24 has a flow velocity increased when passing through the second narrowed part 16a, and then this second mixed air flow is increased. As shown in FIG. 3, the airflow Y collides obliquely with the upper side of the first mixed airflow
The flow direction of the air mixture is deflected downward. In this way, a large amount of air mixture is supplied from the branch passage 24 with low flow resistance, and the flow direction of the first air mixture flow is deflected downward, so that high filling efficiency can be obtained. On the other hand, as described above, when the first mixture flow and the second mixture flow collide, microturbulence occurs, and the mixture that collides with each other flows into the combustion chamber 4 while generating microturbulence. do. This collided air mixture flow flows in a direction determined by the inertia of the first air mixture flow and the inertia of the second air mixture flow, but as described above, the flow velocity of the second air mixture flow is faster than the first air mixture flow, and the second air mixture flow Since the second mixed air flow has a larger amount, the colliding air mixture flow is strongly influenced by the second air mixture flow. As a result, the colliding air mixture flows along line m shown in FIG. On the other hand, as shown in Fig. 2, since the electrode of the spark plug 9 is arranged on this line m, the colliding air mixture flow reaches around the electrode of the spark plug 9 while generating microturbulence, and thus Spark plug 9
Microturbulence will occur around it. As a result, good ignition can be obtained even when the rotary valve 25 is opened, and the ignition flame can be rapidly grown, so that stable combustion can be ensured.
以上述べたように本考案によれば機関低速低負
荷運転時には分岐路を遮断して多量の混合気を渦
巻部の上壁面に沿つて流すことにより強力な旋回
流を燃焼室内に発生せしめることができる。一
方、機関高速高負荷運転時には分岐路を開口する
ことにより多量の混合気が流れ抵抗の小さな分岐
路を介して渦巻部内に送り込まれ、更に旋回する
混合気の流れ方向が分岐路から流入する混合気流
によつて下向きに偏向せしめられるので高い充填
効率を得ることができる。更に、機関の運転状態
に拘わらずに点火栓の電極周りには適度な乱れが
発生せしめられるので常時良好な着火を得ること
ができる。 As described above, according to the present invention, when the engine is operating at low speed and low load, it is possible to generate a strong swirling flow inside the combustion chamber by blocking the branch passage and allowing a large amount of air-fuel mixture to flow along the upper wall surface of the swirl section. can. On the other hand, during engine high-speed, high-load operation, by opening the branch passage, a large amount of air-fuel mixture flows into the volute through the branch passage with low resistance, and the flow direction of the swirling mixture flows into the swirling part from the branch passage. Since it is deflected downward by the airflow, high filling efficiency can be obtained. Furthermore, since appropriate turbulence is generated around the electrode of the spark plug regardless of the operating state of the engine, good ignition can always be obtained.
第1図は第2図の−線に沿つてみた本考案
に係る内燃機関の側面断面図、第2図は第1図の
−線に沿つてみた平面断面図、第3図は本考
案によるヘリカル型吸気ポートの形状を図解的に
示す側面図、第4図はヘリカル型吸気ポートの形
状を図解的に示す平面図、第5図は第3図の−
線に沿つてみた断面図、第6図は第3図の−
線に沿つてみた断面図、第7図は第3図の−
線に沿つてみた断面図、第8図は第3図の−
線に沿つてみた断面図、第9図はロータリ弁の
側面断面図、第10図はロータリ弁の駆動制御装
置を示す図である。
4……燃焼室、6……ヘリカル型吸気ポート、
9……点火栓、12……隔壁、24……分岐路、
25……ロータリ弁。
FIG. 1 is a side sectional view of an internal combustion engine according to the present invention taken along line - in FIG. 2; FIG. 2 is a plan sectional view taken along line - in FIG. 1; FIG. 3 is a side view diagrammatically showing the shape of a helical type intake port according to the present invention; FIG. 4 is a plan view diagrammatically showing the shape of a helical type intake port; and FIG. 5 is a plan view diagrammatically showing the shape of the helical type intake port in FIG.
FIG. 6 is a cross-sectional view taken along the line 1-1 of FIG.
FIG. 7 is a cross-sectional view taken along the line 3-
FIG. 8 is a cross-sectional view taken along the line 3-
FIG. 9 is a cross-sectional view of the rotary valve taken along the line, FIG. 10 is a diagram showing a drive control device for the rotary valve. 4... combustion chamber, 6... helical type intake port,
9: spark plug; 12: bulkhead; 24: branch passage;
25...Rotary valve.
Claims (1)
接線状に接続されかつほぼまつすぐに延びる入口
通路部とにより構成されたヘリカル型吸気ポート
を具えた内燃機関において、吸気ポート上壁面か
ら下方に突出しかつ吸入空気流の流れ方向に延び
る隔壁を吸気ポート内に形成して該隔壁の両側に
入口通路部と該入口通路部から分岐した分岐路と
を形成し、該隔壁の下方に入口通路部と分岐路と
を連通する下側空間を形成すると共に分岐路を渦
巻部の渦巻終端部に連通し、該分岐路内に開閉弁
を設けて該開閉弁により分岐路内を流れる吸入空
気流を制御し、更に分岐路の延長方向に位置する
シリンダヘツド内壁面上に点火栓を配置すると共
に該点火栓を該分岐路の延長軸線に対して上記隔
壁と反対方向に該延長軸線から若干離して配置し
た内燃機関。 In an internal combustion engine equipped with a helical intake port configured by a spiral portion formed around the intake valve and an inlet passage connected tangentially to the spiral portion and extending almost straight, A partition wall protruding downward and extending in the flow direction of the intake air flow is formed in the intake port, an inlet passage portion and a branch passage branching from the inlet passage portion are formed on both sides of the partition wall, and an inlet is formed below the partition wall. A lower space is formed that communicates the passage part and the branch passage, and the branch passage is connected to the spiral terminal end of the spiral part, and an on-off valve is provided in the branch passage, and the intake air flows through the branch passage by the on-off valve. In order to control the flow, an ignition plug is arranged on the inner wall surface of the cylinder head located in the extending direction of the branch passage, and the ignition plug is placed slightly away from the extension axis in a direction opposite to the partition wall with respect to the extension axis of the branch passage. Internal combustion engine located at a distance.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15092782U JPS5956326U (en) | 1982-10-06 | 1982-10-06 | internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15092782U JPS5956326U (en) | 1982-10-06 | 1982-10-06 | internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5956326U JPS5956326U (en) | 1984-04-12 |
JPS6229624Y2 true JPS6229624Y2 (en) | 1987-07-30 |
Family
ID=30334608
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15092782U Granted JPS5956326U (en) | 1982-10-06 | 1982-10-06 | internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5956326U (en) |
-
1982
- 1982-10-06 JP JP15092782U patent/JPS5956326U/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5956326U (en) | 1984-04-12 |