JPS62286508A - Production of hollow yarn separation membrane - Google Patents
Production of hollow yarn separation membraneInfo
- Publication number
- JPS62286508A JPS62286508A JP13051486A JP13051486A JPS62286508A JP S62286508 A JPS62286508 A JP S62286508A JP 13051486 A JP13051486 A JP 13051486A JP 13051486 A JP13051486 A JP 13051486A JP S62286508 A JPS62286508 A JP S62286508A
- Authority
- JP
- Japan
- Prior art keywords
- module
- membrane
- pipe
- separation membrane
- hollow yarn
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 42
- 238000000926 separation method Methods 0.000 title claims abstract description 33
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 239000000126 substance Substances 0.000 claims abstract description 13
- 239000011148 porous material Substances 0.000 claims abstract description 10
- 239000012510 hollow fiber Substances 0.000 claims description 29
- 229920000642 polymer Polymers 0.000 claims description 3
- 238000000034 method Methods 0.000 abstract description 6
- 230000001105 regulatory effect Effects 0.000 abstract description 4
- 238000001035 drying Methods 0.000 abstract description 3
- 238000006116 polymerization reaction Methods 0.000 description 14
- 239000007789 gas Substances 0.000 description 12
- 239000007788 liquid Substances 0.000 description 6
- 239000010409 thin film Substances 0.000 description 6
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- 239000004695 Polyether sulfone Substances 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 229920006393 polyether sulfone Polymers 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- VVJKKWFAADXIJK-UHFFFAOYSA-N Allylamine Chemical compound NCC=C VVJKKWFAADXIJK-UHFFFAOYSA-N 0.000 description 2
- 229920002492 poly(sulfone) Polymers 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical compound C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- UYMKPFRHYYNDTL-UHFFFAOYSA-N ethenamine Chemical compound NC=C UYMKPFRHYYNDTL-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229920000592 inorganic polymer Polymers 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- AEDVWMXHRPMJAD-UHFFFAOYSA-N n,n,1,1,2,2,3,3,4,4,4-undecafluorobutan-1-amine Chemical compound FN(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F AEDVWMXHRPMJAD-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- -1 polytetrafluoroethylene copolymer Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000005373 porous glass Substances 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 231100000241 scar Toxicity 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/08—Hollow fibre membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
- B01D69/125—In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
- B01D69/127—In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction using electrical discharge or plasma-polymerisation
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
【発明の詳細な説明】
3、発明の詳細な説明
(産業上の利用分野)
本発明は、有機物及び/または無機物を混合する液体よ
り、または混合ガス中より特定成分を選択的に分離する
ことに用いる中空糸分離膜の製造方法に関するものであ
る。Detailed Description of the Invention 3. Detailed Description of the Invention (Industrial Application Field) The present invention is directed to selectively separating a specific component from a liquid in which organic and/or inorganic substances are mixed or from a mixed gas. The present invention relates to a method for manufacturing a hollow fiber separation membrane used for.
(従来技術)
液体あるいは気体を分離する膜として、形態が中空糸状
であるものが用いられており、この中空ふ本田い?−1
1Aiモジユールは、単位体積当たりの膜面積が大きい
という特徴がある。(Prior art) A membrane with a hollow fiber shape is used as a membrane to separate liquids or gases. -1
The 1Ai module is characterized by a large membrane area per unit volume.
また、多孔性支持体上に異なる素材からなるち密な薄層
を重ね、これを分離活性層とする複合膜はその分離性能
に優れ、実用化もされている。特に、プラズマ重合法に
よって得られた薄膜は、その厚みが著しく小さく、従っ
て透過速度が大きいこと、また特異な構造を有する膜が
生じることから最近注目を集めている膜製造法のひとつ
である。In addition, composite membranes in which dense thin layers made of different materials are laminated on a porous support and serve as a separation active layer have excellent separation performance and have been put into practical use. In particular, a thin film obtained by plasma polymerization is one of the membrane manufacturing methods that has recently attracted attention because its thickness is extremely small, the permeation rate is high, and the membrane has a unique structure.
中空糸分離膜において、複合膜の形態を有するものが、
特開昭53−86684号等に示されているが、これら
はいずれら中空糸の管外表面に薄い選択分離層を形成さ
せるものであった。この中空糸管外表面に選択分離層を
有する膜では、モジュール作成時の取扱いにおいて、あ
るいは使用時の中空糸同士の接触により膜表面がこすれ
ることにより、分離活性層である薄膜が傷つき、膜性能
が著しく低下する現象が認められた。Among hollow fiber separation membranes, those having the form of a composite membrane are
As shown in Japanese Patent Application Laid-open No. 53-86684, etc., all of these methods form a thin selective separation layer on the outer surface of the hollow fiber. In membranes that have a selective separation layer on the outer surface of the hollow fiber tube, the thin membrane that is the separation active layer may be damaged due to the membrane surface being rubbed during handling during module creation or due to contact between hollow fibers during use, resulting in membrane performance. A phenomenon in which the amount of water was significantly decreased was observed.
本発明者らは中空糸状多孔性支持体のモジュール化後に
中空糸の管内表面にプラズマ重合法を用いて分離層を形
成さ仕ることにより、痕合膜作成時の膜性能がそのまま
長期にわたって維持できることに着目し、−検討を重ね
た結果、本発明に到達した。By forming a separation layer on the inner surface of the hollow fiber tube using a plasma polymerization method after modularizing the hollow fiber-like porous support, the present inventors maintained the membrane performance as it was at the time of creating the scar bonded membrane over a long period of time. As a result of focusing on what can be done and conducting repeated studies, we have arrived at the present invention.
(発明の目的)
本発明の目的は、モジュール成型後の中空糸状多孔性支
持体の内表面に、分離機能を有する薄膜をプラズマ重合
法を用いて形成させることにより、膜性能が高く、かつ
長期安定性を有する液体用あるいは気体用分離膜を得る
ことにある。(Objective of the Invention) The object of the present invention is to form a thin film having a separation function on the inner surface of a hollow fiber porous support after module molding using a plasma polymerization method, thereby achieving high membrane performance and long-term use. The object of the present invention is to obtain a stable separation membrane for liquids or gases.
(発明の構成)
本発明は、多孔性中空糸分離膜モジュールを真空下に保
持し、管内側に重合性物質を気体状で導入し、分離膜モ
ジュールの外側より高周波電波を均一に照射することに
より、当該重合性物質を重合させ、多孔性中空糸の管内
表面に重合物を付着させ、これを分離活性層とすること
を特徴とする中空糸状分離膜の製造方法である。(Structure of the Invention) The present invention maintains a porous hollow fiber separation membrane module under vacuum, introduces a polymerizable substance in gaseous form into the inside of the tube, and uniformly irradiates high-frequency radio waves from the outside of the separation membrane module. This is a method for producing a hollow fiber separation membrane, characterized in that the polymerizable substance is polymerized, the polymer is attached to the inner surface of a porous hollow fiber, and this is used as a separation active layer.
多孔性分離膜としては、ポリスルホン、ポリエーテルス
ルホン、ポリアクリロニトリル、セルロースアセテート
、ポリフッ化ビニリデン等の有機ポリマーあるいは、ガ
ラス多孔質体、セラミック等の無機ポリマーからなる中
空糸を挙げることができ、これらを束ねてモジュール化
しておく。Porous separation membranes include hollow fibers made of organic polymers such as polysulfone, polyethersulfone, polyacrylonitrile, cellulose acetate, and polyvinylidene fluoride, or inorganic polymers such as porous glass and ceramics. Bundle it up and make it into a module.
当該多孔性中空糸の内表面の孔径は、分離活性層として
付着させる重合物の厚みの1/3〜1/lOであること
が望ましい。また、分離対象物が液体の場合と気体の場
合で、かかる孔径の大きさや膜厚みが変化するのが一般
的である。通常、気体分離の場合の方が、孔径が小さい
ことが望ましく、平均孔径1lnm−100nが好まし
い。液体用分離膜としては、平均孔径3nm〜200n
mであることが好ましい。また中空糸の管内側表面が管
外側に比べ孔径が小さくなければならない。この多孔性
支持体の乾燥時における、25℃での空気の透過速度は
、I X 10−’〜I X 10−2m1/cm・s
ec、 cmHgであることがのぞましい。これより小
さい場合には透過速度が低く実用的ではなく、これ以上
では、後にプラズマ重合により形成する薄膜を機械的に
保つことができないので使用できない。また支持体の孔
径分布も重要で、なるべく均一であることが望ましいが
、最大孔径か液体分離用で20nm以下であるのがよい
。The pore diameter of the inner surface of the porous hollow fiber is preferably 1/3 to 1/1O of the thickness of the polymer to be attached as the separation active layer. Furthermore, the pore size and membrane thickness generally vary depending on whether the object to be separated is a liquid or a gas. Usually, in the case of gas separation, it is desirable that the pore diameter is smaller, and the average pore diameter is preferably 1 lnm-100n. For liquid separation membranes, the average pore size is 3 nm to 200 nm.
It is preferable that it is m. Furthermore, the pore diameter of the inner surface of the hollow fiber must be smaller than that of the outer surface of the tube. The air permeation rate at 25°C during drying of this porous support is I X 10-' to I X 10-2 m1/cm・s
Preferably, it is ec, cmHg. If it is smaller than this, the permeation rate is low and it is not practical, and if it is larger than this, the thin film that will be formed later by plasma polymerization cannot be mechanically maintained, so it cannot be used. The pore size distribution of the support is also important, and it is desirable that it be as uniform as possible, but the maximum pore size for liquid separation is preferably 20 nm or less.
かかる多孔性中空糸を常法によってモジュール化する。Such porous hollow fibers are modularized by a conventional method.
モジュール外側のケースに用いられる材質は、後にプラ
ズマ重合をおこなう際、高周波電波の照射の障害になら
ないものであれば何でもよく、例えばポリスルホン、ポ
リテトラフルオロエチレン共重合体、ポリカーボネート
、ポリメタクリル酸メチル、ポリアクリロニトリル、ガ
ラスなどを挙げることができる。The material used for the outer case of the module may be any material as long as it does not interfere with the irradiation of high-frequency radio waves during plasma polymerization later, such as polysulfone, polytetrafluoroethylene copolymer, polycarbonate, polymethyl methacrylate, etc. Examples include polyacrylonitrile and glass.
中空糸モジュールを真空下に保ち、充分に乾燥さけ減圧
下において、気体状物質が発生せず、次に行うプラズマ
重合を妨害しないようにする。乾燥モジュールをプラズ
マ重合装置用真空チャンバー内に装着し、重合処理を行
う。The hollow fiber module is kept under vacuum and thoroughly dried under reduced pressure so that gaseous substances are not generated and do not interfere with the next plasma polymerization. The drying module is installed in a vacuum chamber for plasma polymerization equipment, and polymerization processing is performed.
減圧度としては、10−3〜l0Torrが好ましく、
10−’〜5Torrが特に好ましい。この減圧度を一
定に保ちながら多孔性中空糸状モジュールの管内側に重
合性物質を気体状にして送り込む。The degree of reduced pressure is preferably 10-3 to 10 Torr,
10-' to 5 Torr is particularly preferred. While maintaining the degree of vacuum at a constant level, the polymerizable substance is fed into the tube inside the porous hollow fiber module in a gaseous state.
重合性物質としては、膜モジュールの使用用途によって
任意に選ぶことができる。例えば、逆浸透用分離膜とし
てはビニルアミン、アリルアミン、ビニルピリジンなど
をあげることができ、酸素富化膜としては、フルオロア
ルキルアミン、トリメチルシロキサンなどを選ぶことが
できる。これらの重合性物質を気体状で一定量流しなが
ら、高周波電波を照射し、その出力を適当に調節するこ
とで重合させる。重合性ガスは、一部は膜内を透過する
ものもあるが、そのほとんどが、中空糸の管内を通るの
で、中空糸内壁で重合する。重合が進むと、重合物質は
、管内表面に付着し、ち密な薄膜を形成するので、これ
を分離活性層として用いることができる。薄膜の膜厚み
は、減圧度、重合性ガスの流量、重合時間等によって変
化するので、これらの重合条件を適宜選んで、複合膜を
作製することになるが、ピンホール等の欠陥がなく、膜
強度があれば、薄ければ薄いほど良い。The polymerizable substance can be arbitrarily selected depending on the intended use of the membrane module. For example, the separation membrane for reverse osmosis can be selected from vinylamine, allylamine, vinylpyridine, etc., and the oxygen enrichment membrane can be selected from fluoroalkylamine, trimethylsiloxane, etc. While flowing a fixed amount of these polymerizable substances in gaseous form, high-frequency radio waves are irradiated and the output is appropriately adjusted to cause polymerization. Although some of the polymerizable gas permeates through the membrane, most of it passes through the hollow fiber tubes and is polymerized on the inner wall of the hollow fibers. As the polymerization progresses, the polymerized substance adheres to the inner surface of the tube and forms a dense thin film, which can be used as a separation active layer. The thickness of the thin film changes depending on the degree of reduced pressure, the flow rate of polymerizable gas, the polymerization time, etc., so these polymerization conditions must be selected appropriately to produce a composite film. As long as the film has strength, the thinner the film, the better.
以上のような方法で、多孔性中空糸支持体の内表面上に
、分離機能を有する中空糸複合膜が得みれる。By the method described above, a hollow fiber composite membrane having a separation function can be obtained on the inner surface of the porous hollow fiber support.
(発明の効果)
本発明による中空糸分離膜は、単位体積当たりの透過量
が極めて高く、また分離選択性にも優れるため、種々の
用途の分離膜として使用できる。(Effects of the Invention) The hollow fiber separation membrane according to the present invention has an extremely high permeation amount per unit volume and excellent separation selectivity, so it can be used as a separation membrane for various purposes.
(実施例) 以下に、実施例で、本発明を具体的に説明する。(Example) The present invention will be specifically explained below using Examples.
参考例 ポリエーテルスルホン多孔性中空糸支持体の
製造
ポリエーテルスルホン(20重量部)、ポリエチレング
リコール(’20重量部)、ジメチルスルホキシド(6
0重量部)を均一になるよう混合し、二重管ノズルの外
側から押しだす。同時に内側から、ジメチルスルホキシ
ド/水(+/1)を流す。押しだされた溶液は、50c
m空間を落下したのち、水中に浸漬し、膜表面より凝固
した。さらに、水中に10分間浸漬し、洗浄する。Reference example Production of polyethersulfone porous hollow fiber support Polyethersulfone (20 parts by weight), polyethylene glycol (20 parts by weight), dimethyl sulfoxide (6 parts by weight)
(0 parts by weight) are mixed uniformly and extruded from the outside of the double tube nozzle. At the same time, dimethyl sulfoxide/water (+/1) is allowed to flow from the inside. The extruded solution is 50c
After falling through m space, it was immersed in water and solidified from the membrane surface. Furthermore, it is immersed in water for 10 minutes and washed.
作製した中空糸状の糸を一定長に切断後室温にて乾燥さ
けた。十分に乾燥した中空糸を束ね、通常の方法で両端
を接着剤で固化した。The produced hollow fiber thread was cut into a certain length and then dried at room temperature. The thoroughly dried hollow fibers were bundled and both ends were solidified with adhesive in the usual manner.
実施例
参考例で得た膜モジュールを第1図に示したプラズマ重
合装置内に装着し、モジュールのノズルに重合性気体導
入口を接続する。チャンバー内を真空ポンプで減圧にし
たのち、気体導入管のバルブを開放し、パーフロロブチ
ルアミンを気体状で送る。室内の圧力が一定となるよう
に、自動調圧弁で調圧し、I O−’Torrで保ちな
がらモジュール全体に13.56MHzのラジオ波を印
加した。The membrane module obtained in the reference example was installed in the plasma polymerization apparatus shown in FIG. 1, and the polymerizable gas inlet was connected to the nozzle of the module. After reducing the pressure inside the chamber with a vacuum pump, the valve of the gas introduction tube is opened to send perfluorobutylamine in gaseous form. The pressure in the room was regulated using an automatic pressure regulating valve to be constant, and 13.56 MHz radio waves were applied to the entire module while maintaining it at IO-'Torr.
10分間高周波電圧下でプラズマ放電を行った後、真空
ポンプとの接続バルブを締め、窒素を加えて常圧に戻し
た。After plasma discharge was performed under high frequency voltage for 10 minutes, the valve connected to the vacuum pump was closed, and nitrogen was added to return the pressure to normal pressure.
プラズマ重合後の膜モジュールの気体透過性能は、酸素
ガス及び窒素ガスについてそれぞれ、PN2=7.2X
10−” +11e/Cm”SeC,CmHgPo
、= 2 、Ox l 0−5m/ 7cm2− se
c、 cmHgであった。The gas permeation performance of the membrane module after plasma polymerization is PN2 = 7.2X for oxygen gas and nitrogen gas, respectively.
10-”+11e/Cm”SeC,CmHgPo
, = 2, Ox l 0-5m/7cm2-se
c, cmHg.
また、モジュールを分解し、内の中空糸を取り出し、N
−メチルピロリドンに浸漬したところ、ポリエーテルス
ルホンが溶解し、あとに管状の薄膜が認められた。Also, disassemble the module, take out the hollow fibers inside, and
- When immersed in methylpyrrolidone, the polyether sulfone dissolved and a tubular thin film was observed afterwards.
第1図は本発明を実施するための装置フローの概略図で
ある。
■・・・真空チャンバー 2・・・重合性ガスタン
ク3・・・電極 4・・・膜モジュール
5・・・自動調圧弁 6・・・真空ポンプ7・
・高周波電波発生装置 8・・・重合性ガス導入口特許
出願人 ダイセル化学工業株式会社代 理 人
弁理士 越 場 隆第1図FIG. 1 is a schematic diagram of an apparatus flow for implementing the present invention. ■... Vacuum chamber 2... Polymerizable gas tank 3... Electrode 4... Membrane module 5... Automatic pressure regulating valve 6... Vacuum pump 7.
・High-frequency radio wave generator 8...Polymerizable gas inlet patent applicant Daicel Chemical Industries, Ltd. Agent
Patent Attorney Takashi Koshiba Figure 1
Claims (1)
側に重合性物質を気体状で導入し、分離膜モジュールの
外側より高周波電波を均一に照射することにより当該重
合性物質を重合させ多孔性中空糸の管内表面に重合物を
付着させ、これを分離活性層とすることを特徴とする中
空糸分離膜の製造方法。A porous hollow fiber separation membrane module is held under vacuum, a polymerizable substance is introduced in gaseous form into the inside of the tube, and high-frequency radio waves are uniformly irradiated from the outside of the separation membrane module to polymerize the polymerizable substance and create pores. 1. A method for producing a hollow fiber separation membrane, which comprises adhering a polymer to the inner surface of a hollow fiber and using this as a separation active layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13051486A JPS62286508A (en) | 1986-06-05 | 1986-06-05 | Production of hollow yarn separation membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13051486A JPS62286508A (en) | 1986-06-05 | 1986-06-05 | Production of hollow yarn separation membrane |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62286508A true JPS62286508A (en) | 1987-12-12 |
Family
ID=15036114
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13051486A Pending JPS62286508A (en) | 1986-06-05 | 1986-06-05 | Production of hollow yarn separation membrane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62286508A (en) |
-
1986
- 1986-06-05 JP JP13051486A patent/JPS62286508A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5882282B2 (en) | Atmospheric pressure microwave plasma treated porous membrane | |
EP0513390B1 (en) | Porous hollow fiber membrane of polyethylene and production thereof | |
US5232642A (en) | Process of making porous polypropylene hollow fiber membrane of large pore diameter | |
JPH02169017A (en) | Semi-permeable polymeric membrance | |
US4734112A (en) | Liquid membrane | |
GB2089285A (en) | Hollow fiber membrane for separating gases and process for producing the same | |
EP0186182A2 (en) | Liquid membrane | |
JPS62286508A (en) | Production of hollow yarn separation membrane | |
JP2009183804A (en) | Manufacturing method of hydrophilic fine porous membrane | |
JPH0368428A (en) | Fluid separating module and production thereof | |
JP2000117077A (en) | Semipermeable membrane and its production | |
JPH06169755A (en) | Porous hollow filament membrane for cell culture | |
JPH05103959A (en) | Large-pore-diameter porous polypropylene hollow-fiber membrane, its production and hydrophilic porous polypropylene hollow-fiber membrane | |
JPS61408A (en) | Hollow yarn composite membrane | |
JP2004244501A (en) | Method for producing graft membrane | |
JPH0380047B2 (en) | ||
JP2584011B2 (en) | Degassing method of dissolved gas in liquid | |
Albrecht et al. | Formation of porous bilayer hollow fibre membranes | |
JPS63260938A (en) | Porous membrane having heat resistance imparted thereto and its production | |
JPH06170182A (en) | Hollow fiber membrane module and production thereof | |
JPH03193123A (en) | Manufacture of gas selective separation membrane | |
JP5044960B2 (en) | Separation membrane production method and separation membrane module production method using the separation membrane | |
JPS6186908A (en) | Treatment for making hollow yarn hydrophilic |