Nothing Special   »   [go: up one dir, main page]

JPS6186908A - Treatment for making hollow yarn hydrophilic - Google Patents

Treatment for making hollow yarn hydrophilic

Info

Publication number
JPS6186908A
JPS6186908A JP20558884A JP20558884A JPS6186908A JP S6186908 A JPS6186908 A JP S6186908A JP 20558884 A JP20558884 A JP 20558884A JP 20558884 A JP20558884 A JP 20558884A JP S6186908 A JPS6186908 A JP S6186908A
Authority
JP
Japan
Prior art keywords
hollow fiber
treatment
gas
plasma
hydrophilic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20558884A
Other languages
Japanese (ja)
Inventor
Kenji Kushi
憲治 串
Isao Sasaki
笹木 勲
Hiroshi Takahashi
洋 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP20558884A priority Critical patent/JPS6186908A/en
Publication of JPS6186908A publication Critical patent/JPS6186908A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/009After-treatment of organic or inorganic membranes with wave-energy, particle-radiation or plasma

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PURPOSE:To impart durable hydrophilicity to all of the outer surface, fine pores and inner surface of a hydrophobic microporous hollow yarn membrane by applying low temp. plasma treatment to said membrane by using active gas for forming a hydrophylic group before using inert gas. CONSTITUTION:Low temp. plasma treatment using active gas capable of forming a hydrophilic group is applied to a microporous hollow yarn membrane comprising a hydrophobic polymer. As the active gas, nitrogen-containing gas such as N2, NH3, CH3NH2, NO or NO2, oxygen-containing gas such as O2 or CO2 or sulfur-containing gas such as SO2 or H2S is used under pressure of 10<-4>-1torr. Next, low temp. plasma treatment is performed under pressure of 10<-4>-1torr by using inert gas. A treatment time is pref. about 1-10sec in both treatments.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、微多孔質中空糸膜の耐久性に優れた親木化処
理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for treating a microporous hollow fiber membrane with wood to provide excellent durability.

[従来の技術] 最近、種々の分離プロセスに対して中空糸膜が使用され
つつある。中空糸膜は、平膜に比べ格段に大きな膜面積
をもたせることができるという利・、1人がある。中空
糸膜の開発当初は、セルロース系樹脂やシリコン樹脂等
を材料とした均質中空糸膜か主体であったが、最近では
、ポリオレフィン系の樹脂等を素材とする微多孔質中空
糸膜が、その微多孔質膜の細孔の構造に起因する優れた
分離性能と、その製造が簡易であることから注目されて
いる。
[Prior Art] Recently, hollow fiber membranes have been used for various separation processes. One advantage of hollow fiber membranes is that they can have a much larger membrane area than flat membranes. When hollow fiber membranes were initially developed, homogeneous hollow fiber membranes were mainly made of materials such as cellulose resins and silicone resins, but recently, microporous hollow fiber membranes made of polyolefin resins, etc. The microporous membrane has attracted attention because of its excellent separation performance due to its pore structure and because it is easy to manufacture.

しかしながら、このポリオレフィン系樹脂等を素材とす
る微多孔質中空糸1112を水系の分離プロセスに対し
て使用する際には、中空糸膜の有する微細な細孔内を水
か通過できるようにするために、この中空糸IIQを親
水化処理して使用する必要がある。
However, when using this microporous hollow fiber 1112 made of polyolefin resin or the like for an aqueous separation process, it is necessary to allow water to pass through the fine pores of the hollow fiber membrane. First, it is necessary to use this hollow fiber IIQ after being subjected to a hydrophilic treatment.

従来、このようなポリオレフィン系中空糸膜の親木化処
理は、中空糸+12を5例えばアルコール。
Conventionally, such polyolefin-based hollow fiber membranes have been subjected to parenterization treatment using, for example, alcohol for hollow fiber +12.

界面活性剤等の親木化剤中に浸漬したり、親水性化合物
をコーティングしたりすることによって実施されていた
。これらの親水化処理法は極めて筒易な方法ではあるが
、親水性の持続性には乏しぐ、水中に浸漬されている間
は、中゛全糸1模の微細なM11孔の親木性は保持され
るが、 −jj中空糸膜が乾燥すると、その親木性は即
座に失なわれるという問題点があり、I耐久性に優れた
親水化処理方法の開発か望まれていた。
This was done by immersing it in a wood-loving agent such as a surfactant or coating it with a hydrophilic compound. Although these hydrophilic treatment methods are extremely easy to carry out, they lack long-lasting hydrophilicity, and while immersed in water, the wood-philicity of the fine M11 holes in the entire thread remains However, there is a problem that when the hollow fiber membrane dries, its wood-philicity is immediately lost, and it has been desired to develop a hydrophilic treatment method with excellent durability.

力、従来より独水性、t:1分子物質の表面の親水化処
理方法としては種々の方法が知られている。
Various methods have been known for hydrophilic treatment of the surface of a self-hydrolytic, t:1 molecule substance.

例えば空気中紫外線照射により親水基を形成する方法、
コロナ放電処理による方法、火炎処理による方法、酸化
性薬品処理による方法、酸化性ガス処理による方法、プ
ラズマ処理による方法等を挙げることかできるが、これ
らの方法はいずれも処理直後の親木性は良好なものが得
られるが、時間かたつにつれその親木性が低下していく
ことはよく知られているところである。
For example, a method of forming hydrophilic groups by irradiating ultraviolet rays in the air,
Examples of methods include corona discharge treatment, flame treatment, oxidizing chemical treatment, oxidizing gas treatment, and plasma treatment. It is well known that although good plants can be obtained, their parentness deteriorates over time.

一例を挙げれば、特公昭58−14553号に開示され
たプラズマ処理方法によれば、プラスチック成形品の表
面を酸(ζカスの低温プラズマ処理した後、−醇化炭素
またはアルゴンの低温プラズマで処理する方法が示され
ている。この方法によればプラスチック成形品表【亀の
親水化と、成形品中の11f・fJj剤のブリート抑制
が安定して達成されることか+lJ古されているが、こ
のような方法では名該特1.1の実施例中に記載されて
いるように親木性は井依然と1〜で紅時的に低下してお
り、親水性の長期保存安定性か黄求される微多孔質中空
糸11りの親水化においては不七分である。
For example, according to the plasma treatment method disclosed in Japanese Patent Publication No. 58-14553, the surface of a plastic molded product is treated with low-temperature plasma of acid (ζ scum) and then treated with low-temperature plasma of -carbon or argon. This method has been shown to stably achieve hydrophilization of the surface of the plastic molded product and suppression of bleed of the 11f/fJj agent in the molded product. In such a method, as described in the example in 1.1, the wood-philicity decreases over time, and the long-term storage stability of hydrophilicity decreases with age. There is no difference in making the microporous hollow fibers 11 hydrophilic, which is required.

更に、通常のプラズマ処理法は、フィルム、シート、成
形体には適用できるものの、中空糸のようなフィブリル
が形成された微多孔質膜ではフィブリル破壊がおこり分
離性能の低下が著しいため、微多孔質中空糸膜の親木化
には適用できなかった。
Furthermore, although normal plasma treatment methods can be applied to films, sheets, and molded bodies, microporous membranes with fibrils such as hollow fibers undergo fibril destruction, resulting in a significant drop in separation performance. This method could not be applied to parent wood of hollow fiber membranes.

[発明か解決しようとする問題点] 本発明者らは、微多孔質中空糸1漠の耐久性のある親木
化処理力υ:について鋭意検討した結果、親木ノ、(を
形成する活性ガスの特定条件下に於ける低温プラズマ処
理に引き続く不活性ガスの特定条件ドに於ける低温プラ
ズマ処理の二段処理により。
[Problems to be Solved by the Invention] As a result of intensive study on the durable parent wood-forming processing power υ of microporous hollow fibers, the present inventors found that the activity of forming parent wood, ( By a two-stage treatment of low temperature plasma treatment under specified conditions of gas followed by low temperature plasma treatment under specified conditions of inert gas.

長1す1の耐久親木性を、単に中空糸■りの外表面だけ
でなく、中空糸膜の膜内の極く微細な細孔表面および中
空糸膜の内面までもが親水化されることを見い出し本発
明を完成するに至った。
The long-lasting and hydrophilic property is achieved by making not only the outer surface of the hollow fiber membrane hydrophilic, but also the extremely fine pore surface within the hollow fiber membrane and the inner surface of the hollow fiber membrane. This discovery led to the completion of the present invention.

未発明の1」的は、微多孔質中空糸膜の外表面、11A
内の微細な細孔および内面の全てに対して耐久性のある
親木化を付与する簡易な処理方法を提供することにある
The uninvented target is the outer surface of the microporous hollow fiber membrane, 11A.
The object of the present invention is to provide a simple treatment method that imparts durable wood parentification to all of the fine pores and inner surface of the wood.

[発明の構成] すなわち5本発明の微多孔質中空糸膜の親水化処理方法
は、疎水性高分子からなる微多孔質中空糸膜を、親水基
を形成する活性ガスのカス圧力lO°″〜l toor
の低温プラズマ中で処理し5次いで該中空糸119を不
活性ガスのガス圧力lO′4〜1 toorの低温プラ
ズマ中で処理する工程を有して構成される。
[Structure of the Invention] In other words, the method for hydrophilizing a microporous hollow fiber membrane of the present invention is to treat a microporous hollow fiber membrane made of a hydrophobic polymer under a gas pressure of lO°'' of an active gas that forms hydrophilic groups. ~l toor
5. Then, the hollow fiber 119 is treated in a low-temperature plasma of an inert gas at a gas pressure of lO'4 to 1 toor.

[発明を実施するための最適な態様] 本発明の微多孔質中空糸膜の親水化処理方法に於いては
、まず、微多孔質中空糸膜を親木ノ、(を形成し得る活
性カスの低温プラズマで処理する。
[Optimum Mode for Carrying Out the Invention] In the method for hydrophilizing a microporous hollow fiber membrane of the present invention, first, a microporous hollow fiber membrane is treated with parent wood, an active casing capable of forming ( treated with low-temperature plasma.

1;哀話性カスとしては、窒素、アンモニア、メチルア
ミン、ジメチルアミン、−酸化窒素、二酸化窒素等の含
窒素糸カス;酸素、−酸化炭素等の含酸、[9糸ガス;
 +llxJtMカス、硫化水素等の含窒素糸カス等の
活性ガスが好ましく用いられる。
1; Pathological waste includes nitrogen, ammonia, methylamine, dimethylamine, -nitrogen-containing thread waste such as nitrogen oxide, nitrogen dioxide; oxygen, -acid-containing thread gas such as carbon oxide, [9 thread gas;
Active gases such as +llxJtM dregs, nitrogen-containing thread dregs such as hydrogen sulfide, etc. are preferably used.

この活性カスのプラズマによる処理は、104〜1 t
orrの圧力Fに於いて活性カスの低温プラズマを発生
させ、このプラズマ雰囲気下に中空糸+1Qを放置する
ことにより実施され、これにより中空糸1模表面に親水
基か形成される。活性ガスの圧力としては、プラスチッ
ク成形品表面のクリーニングか1」的ではないので、親
水基が形成されやすい条件、すなわち10−3〜10’
 torrの圧力範囲がより好ましい。
The treatment of this active residue with plasma takes 104 to 1 t.
This is carried out by generating low-temperature plasma of active scum at a pressure F of orr and leaving hollow fiber +1Q in this plasma atmosphere, thereby forming hydrophilic groups on the surface of hollow fiber 1. Since the pressure of the active gas is not suitable for cleaning the surface of the plastic molded product, the pressure of the active gas should be set to conditions that facilitate the formation of hydrophilic groups, i.e., 10-3 to 10'.
A pressure range of torr is more preferred.

活性カスハ:力か1 tartを越える場合は中空糸の
表面に充分な親水)、(か形成されず、逆にガス圧力か
104torr未膚の場合は)、(材の中空糸のフィブ
リル破壊か顕箸になる。
Activated capacitance: If the force exceeds 1 tart, there is sufficient hydrophilicity on the surface of the hollow fiber), (If the force is not formed and, conversely, the gas pressure is not 104 torr), (If the force exceeds 1 tart, the fibrils of the hollow fibers of the material are destroyed or not. Become chopsticks.

活性カスの低温プラズマを発生させるには −し極間に
、例えば13.56 MHz 、 10〜500 W程
度の電力を印加すればよい。処理時間は、印加電圧、プ
ラズマガス濃度、処理対象となる中空糸膜の膜j・ノ、
処理帛、処理中空糸j漠の供給方法等によっても相違す
るが、0.1秒から1分程度処理すれば十分であるが、
処理時間が長くなり過ぎると微多孔質中空糸のフィブリ
ルが切断されたりする。逆に処理時間が短か過ぎる場合
は親木化が充分でなかったりする。好ましい活性ガスの
低温プラズマ処理時間は1秒から10秒の範囲である。
In order to generate a low-temperature plasma of active scum, it is sufficient to apply a power of about 10 to 500 W at, for example, 13.56 MHz between the electrodes. The treatment time depends on the applied voltage, plasma gas concentration, membrane size of the hollow fiber membrane to be treated,
Although it varies depending on the treated fabric, the method of supplying the treated hollow fibers, etc., it is sufficient to process for about 0.1 seconds to 1 minute.
If the treatment time is too long, the fibrils of the microporous hollow fibers may be cut. On the other hand, if the processing time is too short, parent tree formation may not be sufficient. The preferred active gas low temperature plasma treatment time ranges from 1 second to 10 seconds.

もちろん、この活性ガスプラズマ処理に先立ち、処理対
象である中空糸11りの洗浄、乾燥処理等を実施しても
よい。
Of course, prior to this active gas plasma treatment, the hollow fibers 11 to be treated may be subjected to cleaning, drying, etc.

プラズマ処理に際しての中空糸膜の処理装置内の配設の
態様については種々の方法か適宜採用される。例えばプ
ラズマ処理装置内に中空糸11りを適当な5Bをばらけ
た状態で放買して、プラズマ処理を実施してもよいし、
あるいはまた、プラズマ処理装置内に給糸ロールと捲糸
ロールとを配設し、これらロールを回転させつつ、ロー
ル間に直線状に張られた中′仝糸I漠に対して連続的に
プラズマ処理を実施してもよい。
Various methods can be used as appropriate to arrange the hollow fiber membranes in the processing apparatus during plasma processing. For example, the hollow fibers 11 may be placed in a plasma processing apparatus with appropriate 5B dispersed therein, and plasma processing may be carried out.
Alternatively, a yarn feeding roll and a yarn winding roll are disposed in the plasma processing apparatus, and while these rolls are rotated, plasma is continuously applied to the medium yarn stretched linearly between the rolls. Processing may be performed.

この活性カスのプラズマによる処理により、微多孔質中
空糸膜の表面(細孔および中47.=糸内面をも含む)
に活性ノjスプラズマが作用17、該表面に使用17た
活P1カスの種類に応して、水M )、I;、 、  
カルホノ醇ノ、(、アミ7)、シ  スルフォン酸基等
の現本)、I;か生成する。多孔質中空糸)Iジの表面
に形成される親水ノ、(は、多孔質中空糸11Qの用途
に応じて最適なものかあるため その用途にかなった活
性ガス紮使用して親水)、(を生成させるのがよい。
By treating this active residue with plasma, the surface of the microporous hollow fiber membrane (including the pores and inner surface of the fiber)
Activated plasma acts on the surface17, and depending on the type of active P1 residue used on the surface, water M), I;, ,
Calhono sulfonate (, amine 7), cis-sulfonic acid group, etc.), I; is produced. The hydrophilic layer formed on the surface of the porous hollow fiber (11Q) depends on the use of the porous hollow fiber (11Q), so the hydrophilic layer formed on the surface of the porous hollow fiber (11Q) is determined by using an active gas ligature suitable for that purpose. It is better to generate

I−記のようにして親水基を形成する活性ガスによる低
温プラズマ処理を行った後、活性ガスの導入を停止ト1
2、次に不活性ガスを通気して圧力を104〜1Too
r、好ましくは10−’ −10−’ Toorに調整
保持し、先の活性ガスの場合のプラズマ発生方法に準じ
てプラズマを発生させ、プラズマ処理を行う。この際の
プラズマ処理時間も、印加’+17圧等によっても相違
するが、一般的には0.1秒〜1分稈度処理することに
よって十分目的が達成されが、より好ましくは1秒から
10秒の範囲である。
After performing low-temperature plasma treatment using an active gas that forms hydrophilic groups as described in I-1, the introduction of the active gas is stopped.
2. Next, vent inert gas to increase the pressure to 104~1Too.
r, preferably 10-'-10-'Toor, and generate plasma according to the plasma generation method for the active gas described above to perform plasma processing. The plasma treatment time at this time also varies depending on the applied pressure, etc., but generally the purpose is sufficiently achieved by treating the culm for 0.1 seconds to 1 minute, but more preferably 1 second to 10 minutes. It is in the range of seconds.

この第二段階の不活性ガス雰囲気下、特定の処理条件の
プラズマ処理により、フィブリル破壊をおこすことなく
中空糸nりに経時耐久性のある親木性を付′トすること
が始めて可能となった。
In this second step, plasma treatment under specific processing conditions under an inert gas atmosphere makes it possible for the first time to impart wood-philic properties to hollow fibers that are durable over time without causing fibril destruction. Ta.

=Q2に酸十、アンモニア等の活性ガスによるプラズマ
処理によりプラスチック表面が親木化Sれることはよく
知られているが、得られた親木性が経時的に劣化するこ
ともよく認められているところである。親水性の経時劣
化の原因としては、プラスチック表面に形成された親水
基が高分子のミクロ連動によりプラスチック内部に回転
しもぐり込んでしまうからであると一般に理解されてい
る。
= Q2 It is well known that plasma treatment with active gases such as acid and ammonia makes the surface of plastics woody, but it is also well recognized that the woody property obtained deteriorates over time. This is where I am. It is generally understood that the cause of hydrophilic deterioration over time is that hydrophilic groups formed on the plastic surface rotate and sink into the interior of the plastic due to the micro-interlocking of polymers.

ところが第二段階の不活性ガス雰囲気下のプラズマ処理
を、特定のプラズマ処理条件で行なえば、驚くべきこと
には第1段階のプラズマ処理で11?られた親水性が経
時的に劣化しなくなることを見い出した。恐らく特定の
条件下では不活性ガスのプラズマ処理によりプラスチッ
ク表面にうまく架橋か形成され、これがプラスチック表
面に形成yれた親水)、(の回転を防由する機俺を果す
ためと考えられる。
However, if the second stage of plasma processing in an inert gas atmosphere is performed under specific plasma processing conditions, surprisingly, the first stage of plasma processing is 11? It has been found that the hydrophilicity obtained by this method does not deteriorate over time. This is probably because under certain conditions, the plasma treatment with an inert gas successfully forms crosslinks on the plastic surface, which serves as an opportunity to prevent the rotation of the hydrophilic molecules formed on the plastic surface.

したがって、第二段階の不活性ガス雰囲気Fのプラズマ
処理条件は前記した範囲に必ず設定する必要かあり、こ
の条件範囲から外れた条件下の処理によっては本願の1
」的は達成されない。例えば不活性ガスの圧力がl t
orrを越える場合はプラスチック表面を架橋するだけ
のエネルギが得られず、一方10°’ torr未満の
カス圧力では基材の劣化やフィブリル破壊な顕著になる
。処理時間については、 061秒未満の時間ではプラ
スチック表面に架橋の効果が得られず、逆に1分を越え
る処理時間では先に形成されていた親木性基か不活性カ
スプラズマにより除去されたり、微多孔質中空糸のフィ
ブリルが切断されたりする。
Therefore, it is necessary to set the plasma processing conditions of the inert gas atmosphere F in the second stage within the above-mentioned range, and depending on the processing under conditions outside this range,
” target is not achieved. For example, the pressure of inert gas is l t
If it exceeds orr, energy sufficient to crosslink the plastic surface cannot be obtained, while if the gas pressure is less than 10°' torr, deterioration of the base material and fibril destruction will become noticeable. Regarding the treatment time, if the treatment time is less than 0.61 seconds, no crosslinking effect will be obtained on the plastic surface, and conversely, if the treatment time is more than 1 minute, the previously formed wood-philic groups may be removed by the inert gas plasma. , the fibrils of microporous hollow fibers may be cut.

なお、プラズマ処理方法には、1−記の方法以外にも種
々あり、例えば放゛−ト周波数帯としては低周波、マイ
クロ波、直流などを用いることができ。
It should be noted that there are various plasma processing methods other than the method described in 1. For example, low frequency, microwave, direct current, etc. can be used as the radiant frequency band.

プラズマ発生様式もグロー放電のほかコロナ放’Ili
、火花放電、無声放電などを選ぶことができる。また′
電極も外部電極のほか内部゛iト極、コイル型など容量
結合、誘導結合のいずれでもよい。しかし、どのような
方法を採用するにせよ、放電熱により処理対象である微
多孔質中空糸膜の細孔が変形しないような処理条件を選
定する必要がある。
Plasma generation modes include glow discharge and corona discharge.
, spark discharge, silent discharge, etc. Also'
In addition to external electrodes, the electrodes may be internal electrodes, coil types, etc., capacitively coupled or inductively coupled. However, no matter what method is adopted, it is necessary to select treatment conditions such that the pores of the microporous hollow fiber membrane to be treated are not deformed by the discharge heat.

本発明の方法の第二の処理段階で使用する不活性カスし
ては、ヘリウム、ネオン、7ルゴンなど′か挙げられ、
これらのガスの一種以にが使用できる。
The inert gas used in the second treatment step of the method of the invention includes helium, neon, 7-Rugone, etc.
One or more of these gases can be used.

プラズマ処理の対象とされる微多孔質中空糸膜について
は特に制限はないが、特に他の処理方法では耐久性のあ
る親木化が困難な、@えばポリエチレン、ポリプロピレ
ン、ポリエステル等の疎水性結晶性高分子を溶融防止し
て得られるプレカーサーを冷延伸および必要に応じて熱
延伸、熱セットシて得られる微多孔質中空糸繊維が好適
である。
There are no particular restrictions on the microporous hollow fiber membranes that can be subjected to plasma treatment, but especially hydrophobic crystals such as polyethylene, polypropylene, polyester, etc., which are difficult to form into durable fibers using other treatment methods. Microporous hollow fiber fibers obtained by cold-stretching a precursor obtained by preventing melting of a polypropylene polymer and, if necessary, hot-stretching and heat-setting, are suitable.

とりわけ、ポリエチレンからなる特開昭57−6611
4号に開示されているような微多孔質中空糸11りに於
いては、に記プラズマ処理によっても種々の物性の低丁
、化学的劣化も殆ど認られず好ましい処理対象中′・γ
糸膜である。このポリエチレンからなる微多孔質中空糸
膜は、微小空孔が中空系膜の内壁面から外壁面へ相可に
繋がった積層構造をイl L 、’;’、孔−(iが3
0〜90体積%で、その微小空孔か(1)繊維長方向に
配列したミクロフィブリルと該ミクロフィブリルに対し
てほぼ直角に連結した結節部により形成される短冊状微
小空孔であり、 (2)該ミクロフィブリルの平均的な大さa。と平均的
な長さんが d、 = 0.02〜0.3 p、 ム=0.5〜3.
0pであり。
In particular, JP-A-57-6611 made of polyethylene
In the case of the microporous hollow fiber 11 disclosed in No. 4, even when subjected to the plasma treatment mentioned above, there were no observed decreases in various physical properties and almost no chemical deterioration, making it one of the preferred treatment targets.
It is a thread membrane. This microporous hollow fiber membrane made of polyethylene has a laminated structure in which micropores are reciprocally connected from the inner wall surface to the outer wall surface of the hollow membrane.
0 to 90% by volume, the micropores are (1) strip-shaped micropores formed by microfibrils arranged in the fiber length direction and nodules connected almost at right angles to the microfibrils; 2) Average size a of the microfibrils. and the average length of the head is d, = 0.02~0.3 p, mu = 0.5~3.
It is 0p.

(3)該結節部の繊維長方向への平均的な長さムがム=
0.1−1.0騨 であり、 (4)短冊状微小空孔の平均的な幅&と平均的な長さ九
か aV/孔=0.3〜5.Tv/dv=3〜50の関係に
ある、 ことにより特定されるものである。更に中空糸■Qのエ
タノール中でのバブルポイントが1〜20Kg/cm2
の範囲内に入るものが好適である。
(3) The average length of the knot in the fiber length direction is
0.1-1.0, (4) Average width & average length of the strip-shaped micropores = 0.3-5. It is specified by having a relationship of Tv/dv=3 to 50. Furthermore, the bubble point of hollow fiber ■Q in ethanol is 1 to 20 kg/cm2.
It is preferable that the value falls within the range of .

このようにしてプラズマ処理された微多孔質中空糸膜は
、その外表面だけでなく、膜内の微細な細孔および内面
の全体に対し耐久性のある親水化が付榮されている。こ
のことは次のような411定により確認される。プラズ
マ処理により中空糸11りの外表面が親木化されること
は当然予測されることであるか、処理後の中空糸膜の外
表面の親木性は、保水性を測定することにより確認され
る。
In the microporous hollow fiber membrane treated with plasma in this manner, not only the outer surface but also the fine pores within the membrane and the entire inner surface are made durable and hydrophilic. This is confirmed by the following 411 constant. Is it naturally expected that the outer surface of the hollow fiber 11 becomes wood-philic due to plasma treatment?The wood-philic nature of the outer surface of the hollow fiber membrane after treatment was confirmed by measuring water retention. be done.

中空糸膜の保水性は以下の方法によって求めることがで
きる。例えば中空糸膜を内部に収納したモジュールを作
成し、このモジュールにエタノール、次いで水を通すこ
とによってモジュール内を完全に水置換し、この状態で
中空糸■りの++St面積、時間、圧力当りの透水ら1
、を求める。次いでモジュール内の水を拮液した後、一
定時間経過後に中空糸膜の一方の側から若干の水圧をか
け透水:11を求める。この時の透水量を初期の透水量
で割って百分;lへ表示するか、保水性が不良の中空糸
は初期と同等の透水Xlトが得られない。
The water retention capacity of a hollow fiber membrane can be determined by the following method. For example, a module containing a hollow fiber membrane is created, and by passing ethanol and then water through this module, the inside of the module is completely replaced with water. Tosui et al. 1
, find. Next, after draining the water in the module, after a certain period of time, a slight water pressure is applied from one side of the hollow fiber membrane to determine water permeability: 11. The amount of water permeation at this time is divided by the initial amount of water permeation and expressed in 100%, or hollow fibers with poor water retention cannot obtain water permeation Xlt equivalent to the initial amount.

また、プラズマ処理により中空糸膜の膜内の微細な細孔
および内面が親水化されていることは、処理後の中空糸
膜の透水圧を測定することにより確認される。透水圧は
、例えば中空糸膜の一方の側から水圧をかけ、水が中空
糸膜を通って一定の水H,Xで出水し始めるときの水圧
として求められる。
Furthermore, it is confirmed that the fine pores and inner surface of the hollow fiber membrane are made hydrophilic by the plasma treatment by measuring the water permeability pressure of the hollow fiber membrane after the treatment. The water permeability pressure is determined, for example, by applying water pressure from one side of the hollow fiber membrane, and as the water pressure when water starts flowing out through the hollow fiber membrane at a constant level of water H and X.

し発明の効果] このような本発明の処理方法によれば、疎水性高分子か
らなる微多孔質中空糸j漠に対して、その外表面のみな
らず、膜内の微細な細孔および内面の全体に対しも耐久
性のある親水化を簡易に4−J与することが11丁能で
あり、独特なミクロ構造の細孔を有し、優れた分離性能
をもつ疎水性高分子からなる微多孔質中空糸膜の応用分
野を、より拡大することが可能となった。
[Effects of the Invention] According to the treatment method of the present invention, not only the outer surface but also the fine pores and inner surface of the microporous hollow fibers made of hydrophobic polymers are treated. It is made of a hydrophobic polymer that has a unique microstructure of pores and has excellent separation performance. It has become possible to further expand the application fields of microporous hollow fiber membranes.

[発明の実施例] 以下、本発明を実施例にノNづき、より詳細に説明する
[Examples of the Invention] The present invention will be described in more detail below with reference to Examples.

実施例1 モ均内径が2701LII、空孔率が70%、バブルポ
イントが2.2kg/am’のポリエチレン中空糸(三
菱レイヨン株製、グレードEHF−2707)を、平行
f板の内部電極を有する第1図に示したペルジャー型の
プラズマ処理機(電極間の距離は20cm)の中に、第
1図のような状態で設置した。13.5EtMHzの高
周波放電下、出力50Wで02圧力0.01torr、
5秒間処理を行なった0次いで02ガスを排気した後。
Example 1 A polyethylene hollow fiber (manufactured by Mitsubishi Rayon Co., Ltd., grade EHF-2707) with an average inner diameter of 2701 LII, a porosity of 70%, and a bubble point of 2.2 kg/am' was used with parallel f-plate internal electrodes. The sample was placed in a Pelger-type plasma processing machine (distance between electrodes 20 cm) as shown in FIG. 1. Under high frequency discharge of 13.5EtMHz, output 50W and 02 pressure 0.01torr,
After exhausting the 0 and 02 gases, the process was carried out for 5 seconds.

Arガスで圧力0.01torr、放電出力50Wで5
秒間処理した。
5 at a pressure of 0.01 torr with Ar gas and a discharge output of 50 W.
Processed for seconds.

得られた中空糸を1週間放置した後、透水圧と保水性を
測定したところ、透水圧は3.1kg、  4時間後に
測定した保水性は99%であったあ。これに対し未処理
の中空糸EHF−2707の透水圧は5.6kg、  
4時間後の保水性は70%であった。
After the obtained hollow fibers were left for one week, water permeability and water retention were measured, and the water permeability was 3.1 kg, and the water retention measured after 4 hours was 99%. On the other hand, the permeability pressure of untreated hollow fiber EHF-2707 is 5.6 kg,
Water retention after 4 hours was 70%.

更に、1−記のプラズマ処理を行なった中空糸を6ケ月
間放置しておき、透水圧と保水性の再測定を行なったと
ころ透水圧は3.3kg/crn”、4時間後の保水性
は101%を示し、優れた耐久親木性を有することを示
した。
Furthermore, the hollow fibers subjected to the plasma treatment described in 1- were left for 6 months, and the water permeability pressure and water retention property were remeasured. showed 101%, indicating that it had excellent durable wood-parenting properties.

実施例2 実施例1で用いたのと同じ中空糸EHF−270Tを、
第2図に示す13.58MHzの高周波誘導結合の鋼管
を有するガラス製チューブの中を連続的に通過できるよ
うに製作したプラズマ処理装置中に設置した。中空糸を
チューブ内を5 crm/secの速度で連続的に通し
ながら、高周波出力100W、  NH,ガス圧力0.
007torrで処理した。放電区間はおよそ30cm
であるので、処理時間は約6 secである6次いで、
 NH3ガスを排気したのち、中空糸を逆方向に5 a
m/seeの速度で通しながら、高周波出力100W、
Arガス圧力0.007torrで処理した。処理時間
はおよそ6 secである。
Example 2 The same hollow fiber EHF-270T used in Example 1 was
The plasma processing apparatus was installed in a plasma processing apparatus manufactured so that the 13.58 MHz high frequency inductively coupled steel tube shown in FIG. 2 could be passed continuously through a glass tube. While the hollow fiber was continuously passed through the tube at a speed of 5 crm/sec, a high frequency output of 100 W, NH, and gas pressure of 0.
007 torr. The discharge section is approximately 30cm
Therefore, the processing time is about 6 seconds.6 Then,
After exhausting the NH3 gas, rotate the hollow fiber in the opposite direction for 5 a.
High frequency output 100W while passing at a speed of m/see,
Processing was performed at an Ar gas pressure of 0.007 torr. The processing time is approximately 6 seconds.

得られた中空糸の1週間放置後の透水圧と保水性は、そ
れぞれ2.8kg/crn”、102%(4時間後)で
あった。同じサンプルを6ケ月間放置した後、汚水圧と
保水性を再測定したところ、それぞれ2.7kg/cm
’と88%(4時間後)となり、優れた耐久親木性を示
した。
The water permeability and water retention of the obtained hollow fibers after being left for one week were 2.8 kg/crn'' and 102% (after 4 hours), respectively.After the same sample was left for 6 months, the sewage pressure and When we re-measured the water retention capacity, it was 2.7 kg/cm.
' and 88% (after 4 hours), indicating excellent durable parent wood properties.

参考例1 実施例1と同様の実験をポリエチレン製フィルムについ
て行ない1週間後、1ケ月後、3ケ月後、6ケ月後の水
に対する接触角を測定したどころ、それぞれ42.44
.43.43度であった。
Reference Example 1 The same experiment as in Example 1 was conducted on a polyethylene film, and the contact angle with water was measured after 1 week, 1 month, 3 months, and 6 months.
.. It was 43.43 degrees.

比較例1 実施例1と同じ中空糸及びプラズマ処理機を用いて、中
空糸を出力50W、0.圧力0.4torrで10分間
処理した。
Comparative Example 1 Using the same hollow fiber and plasma treatment machine as in Example 1, the hollow fiber was heated at an output of 50 W and 0. The treatment was performed at a pressure of 0.4 torr for 10 minutes.

この中空糸の6ケ月後の透水圧と保水性をa:11足し
たところ、透水圧は4.5kg/cm’、4時間後の保
水性は75%と不良であった。また、透水性測定中に中
空糸にピンホールガ発生していることが観察され、その
部分より水が噴出した、一方、この中スー糸の表面を電
子顕微鏡で観察したところ、多数のフィブリルが切断さ
れていることが判明した。
When the water permeability pressure and water retention property of this hollow fiber after 6 months were summed up by a:11, the water permeation pressure was 4.5 kg/cm', and the water retention property after 4 hours was 75%, which was poor. Additionally, during water permeability measurements, it was observed that pinholes had occurred in the hollow fibers, and water spewed out from the pinholes.On the other hand, when the surface of the hollow fibers was observed with an electron microscope, many fibrils were broken. It turned out that

比較例2 実施例1と同じ中空糸及びプラズマ処理器を用いて、中
空糸をまず出力150W、 O,圧力2 torrで1
0分間処理、を行ない、ついでo2ガスを排気した後A
rカスで圧力2 torr、出力150Wでto分間処
理した。
Comparative Example 2 Using the same hollow fiber and plasma treatment device as in Example 1, the hollow fiber was first heated to 1 at an output of 150 W, O, and a pressure of 2 torr.
After processing for 0 minutes and then exhausting the O2 gas,
The sample was treated with r-scum at a pressure of 2 torr and an output of 150 W for to minutes.

得られた中空糸を6ケ月間放置した後透水圧と保水性を
測定した。透水圧は4.7kg/crrr’、4時間後
の保水性は78%と不良であり、透水圧測定中にピンホ
ールの発生による水の噴出が観察された。
The obtained hollow fibers were allowed to stand for 6 months, and then their water permeability and water retention were measured. The permeability pressure was 4.7 kg/crrr', and the water retention after 4 hours was poor at 78%, and jetting of water due to pinholes was observed during the permeability measurement.

また、中空糸の表面を電子WJ微鏡で観察したところ、
多数のフィブリルが切断されていることが判明した。
In addition, when observing the surface of the hollow fiber with an electronic WJ microscope, we found that
It was found that many fibrils were cut.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は1本発明のプラズマ処理方法に用
いる処理装置の一例を示す模式図である。 1:真空容器    2二電極 3:中空糸     4:原料ガス供給管5:脱気管 
    6:高周波回路 7:捲糸ロール   8:給糸ロール 特 許 出 願 人 玉菱レイヨン株式会社第1図 第2図
FIGS. 1 and 2 are schematic diagrams showing an example of a processing apparatus used in the plasma processing method of the present invention. 1: Vacuum container 2 Two electrodes 3: Hollow fiber 4: Raw material gas supply pipe 5: Deaeration pipe
6: High frequency circuit 7: Yarn winding roll 8: Yarn feeding roll Patent applicant Tamabishi Rayon Co., Ltd. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1)疎水性高分子からなる微多孔質中空糸膜を、親水基
を形成する活性ガスのガス圧力10^−^4〜1too
rの低温プラズマ中で処理し、次いで該中空糸膜を不活
性ガスのガス圧力10^−^4〜1toorの低温プラ
ズマ中で処理する工程を有する微多孔質中空糸膜の親水
化処理方法。 2)前記二つの低温プラズマ中での処理時間が、いずれ
も0.1秒〜1分の範囲である特許請求の範囲第1項記
載の処理方法。 3)前記二つの低温プラズマ中でのガス圧力が、いずれ
も10^−^3〜10^−^1toorの範囲である特
許請求の範囲第1または2項記載の処理方法。
[Claims] 1) A microporous hollow fiber membrane made of a hydrophobic polymer is heated to a gas pressure of 10^-^4 to 1too of an active gas that forms hydrophilic groups.
A method for hydrophilizing a microporous hollow fiber membrane, comprising the steps of treating the hollow fiber membrane in a low temperature plasma of an inert gas pressure of 10^-^4 to 1 toor. 2) The processing method according to claim 1, wherein the processing times in the two low-temperature plasmas are both in the range of 0.1 seconds to 1 minute. 3) The processing method according to claim 1 or 2, wherein the gas pressures in the two low-temperature plasmas are both in the range of 10^-^3 to 10^-^1 toor.
JP20558884A 1984-10-02 1984-10-02 Treatment for making hollow yarn hydrophilic Pending JPS6186908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20558884A JPS6186908A (en) 1984-10-02 1984-10-02 Treatment for making hollow yarn hydrophilic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20558884A JPS6186908A (en) 1984-10-02 1984-10-02 Treatment for making hollow yarn hydrophilic

Publications (1)

Publication Number Publication Date
JPS6186908A true JPS6186908A (en) 1986-05-02

Family

ID=16509363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20558884A Pending JPS6186908A (en) 1984-10-02 1984-10-02 Treatment for making hollow yarn hydrophilic

Country Status (1)

Country Link
JP (1) JPS6186908A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5935845A (en) * 1989-10-31 1999-08-10 The United States Of America As Represented By Theadministrator, National Aeronautics And Space Administration Distributed pore chemistry in porous organic polymers
EP2559806A1 (en) 2011-08-17 2013-02-20 Center of Excellence Polymer Materials and Technologies (Polimat) Method for increasing the hydrophilicity of polymeric materials

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5935845A (en) * 1989-10-31 1999-08-10 The United States Of America As Represented By Theadministrator, National Aeronautics And Space Administration Distributed pore chemistry in porous organic polymers
EP2559806A1 (en) 2011-08-17 2013-02-20 Center of Excellence Polymer Materials and Technologies (Polimat) Method for increasing the hydrophilicity of polymeric materials

Similar Documents

Publication Publication Date Title
US7087269B2 (en) Multi-component composite membrane and method for preparing the same
US7963401B2 (en) Atmospheric pressure microwave plasma treated porous membranes
KR100443873B1 (en) Microporous film capable of forming pores having uniform size and shape and manufacturing method thereof
US4764320A (en) Method for preparing semipermeable membrane compositions
JPH0526528B2 (en)
Modarresi et al. Effect of low‐frequency oxygen plasma on polysulfone membranes for CO2/CH4 Separation
GB2089285A (en) Hollow fiber membrane for separating gases and process for producing the same
US4734112A (en) Liquid membrane
JPS6186908A (en) Treatment for making hollow yarn hydrophilic
US4597843A (en) Enhanced bulk porosity of polymer structures via plasma technology
Himma et al. Surface engineering of polymer membrane for air separation
JPS6283007A (en) Hydrophilic treatment of hollow yarn
Li et al. Plasma‐induced solid‐state polymerization modified poly (tetrafluoroethylene) membrane for pervaporation separation of aqueous alcohol mixtures
JPS60172309A (en) Preparation of compound film comprising hollow yarn
JPS6297611A (en) Method for making porous membrane of polyolefin hydrophilic
JPS5891868A (en) Production of acrylonitrile hollow fiber reverse osmosis membrane
JPS62286508A (en) Production of hollow yarn separation membrane