JPS62260796A - 六チタン酸カリウム繊維の製造方法 - Google Patents
六チタン酸カリウム繊維の製造方法Info
- Publication number
- JPS62260796A JPS62260796A JP10287586A JP10287586A JPS62260796A JP S62260796 A JPS62260796 A JP S62260796A JP 10287586 A JP10287586 A JP 10287586A JP 10287586 A JP10287586 A JP 10287586A JP S62260796 A JPS62260796 A JP S62260796A
- Authority
- JP
- Japan
- Prior art keywords
- fibers
- potassium
- fiber
- mass
- hexatitanate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 216
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 title claims description 18
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000011591 potassium Substances 0.000 claims abstract description 87
- 229910052700 potassium Inorganic materials 0.000 claims abstract description 87
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims abstract description 86
- 239000000203 mixture Substances 0.000 claims abstract description 38
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 37
- 238000005406 washing Methods 0.000 claims abstract description 34
- 238000010438 heat treatment Methods 0.000 claims abstract description 22
- 238000001035 drying Methods 0.000 claims abstract description 7
- 150000003112 potassium compounds Chemical class 0.000 claims abstract description 7
- 150000003609 titanium compounds Chemical class 0.000 claims abstract description 5
- 239000007788 liquid Substances 0.000 claims description 20
- 239000004408 titanium dioxide Substances 0.000 claims description 13
- 150000002500 ions Chemical class 0.000 claims description 5
- CHWRSCGUEQEHOH-UHFFFAOYSA-N potassium oxide Chemical compound [O-2].[K+].[K+] CHWRSCGUEQEHOH-UHFFFAOYSA-N 0.000 claims description 4
- 229910001950 potassium oxide Inorganic materials 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 16
- 238000002844 melting Methods 0.000 abstract description 12
- 230000008018 melting Effects 0.000 abstract description 12
- 238000007605 air drying Methods 0.000 abstract description 2
- 229910020470 K2Ti4O9 Inorganic materials 0.000 abstract 3
- 238000006243 chemical reaction Methods 0.000 abstract 2
- 238000004140 cleaning Methods 0.000 abstract 2
- -1 etc. Substances 0.000 abstract 1
- 238000000034 method Methods 0.000 description 12
- 229910001414 potassium ion Inorganic materials 0.000 description 10
- 238000010828 elution Methods 0.000 description 9
- 239000000243 solution Substances 0.000 description 8
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- 238000001816 cooling Methods 0.000 description 6
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 4
- 239000004576 sand Substances 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000007711 solidification Methods 0.000 description 3
- 230000008023 solidification Effects 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 101100481408 Danio rerio tie2 gene Proteins 0.000 description 1
- 235000008708 Morus alba Nutrition 0.000 description 1
- 240000000249 Morus alba Species 0.000 description 1
- 101100481410 Mus musculus Tek gene Proteins 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 239000010425 asbestos Substances 0.000 description 1
- 206010061592 cardiac fibrillation Diseases 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002600 fibrillogenic effect Effects 0.000 description 1
- 230000009970 fire resistant effect Effects 0.000 description 1
- 239000002783 friction material Substances 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 150000003109 potassium Chemical class 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 235000011181 potassium carbonates Nutrition 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 229910052895 riebeckite Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Inorganic Fibers (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
め要約のデータは記録されません。
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、チタン酸カリウム繊維の製造方法に関する。
六チタン酸カリウム繊維〔K2Ti6O13]や四チタ
ン酸・カリウム繊維(KzTi40.〕等のチタン酸カ
リウム繊維は耐火・耐熱性、断熱性、耐摩耗性、耐食性
、補強性等にすぐれた無機繊維であり、各種分野におい
てアスベスト代替品として有望視されている。
ン酸・カリウム繊維(KzTi40.〕等のチタン酸カ
リウム繊維は耐火・耐熱性、断熱性、耐摩耗性、耐食性
、補強性等にすぐれた無機繊維であり、各種分野におい
てアスベスト代替品として有望視されている。
この繊維の代表的な製造法として熔融法と称される方法
が知られている。その製造法は、二酸化チタン(TiO
□)と炭酸カリウム(K2CO3)とを適当なモル比で
混合した混合物を原料とし、これを加熱溶融する工程、
その加熱溶融物を一方向に凝固させて初生絹繊維として
層状構造を有する二チタン酸カリウム繊維(K2Ti2
0.)が束状に凝集した繊維塊を得る冷却固化工程、該
繊維塊を水洗することによりK+イオンを溶出させると
共に、繊維同士の凝集を解く水洗処理、該水洗処理を経
て回収される水和チタン酸カリウム繊維(Kg−X H
x T 1 zos ’ n H2O)を乾燥し、熱
処理する工程からなる。
が知られている。その製造法は、二酸化チタン(TiO
□)と炭酸カリウム(K2CO3)とを適当なモル比で
混合した混合物を原料とし、これを加熱溶融する工程、
その加熱溶融物を一方向に凝固させて初生絹繊維として
層状構造を有する二チタン酸カリウム繊維(K2Ti2
0.)が束状に凝集した繊維塊を得る冷却固化工程、該
繊維塊を水洗することによりK+イオンを溶出させると
共に、繊維同士の凝集を解く水洗処理、該水洗処理を経
て回収される水和チタン酸カリウム繊維(Kg−X H
x T 1 zos ’ n H2O)を乾燥し、熱
処理する工程からなる。
加熱溶融物の冷却固化処理により初生絹繊維として生成
するニチタン酸カリウム繊維は、Ties三角両錐体の
連鎖が積層した層状構造を有する結晶質繊維であり、ま
た解繊された繊維を乾燥・熱処理して得られる六チタン
酸カリウム繊維の結晶構造は、Tie、八面体の連鎖に
より形成されたトンネル構造を有し、四チタン酸カリウ
ム繊維の結晶構造は、Tie、八面体の稜と角を共有す
る連鎖が積層した層状構造である。
するニチタン酸カリウム繊維は、Ties三角両錐体の
連鎖が積層した層状構造を有する結晶質繊維であり、ま
た解繊された繊維を乾燥・熱処理して得られる六チタン
酸カリウム繊維の結晶構造は、Tie、八面体の連鎖に
より形成されたトンネル構造を有し、四チタン酸カリウ
ム繊維の結晶構造は、Tie、八面体の稜と角を共有す
る連鎖が積層した層状構造である。
上記水洗処理により解繊されて回収される水和チタン酸
カリウム繊維の組成は、水洗処理におけるK+イオンの
溶出量により異なるので、洗液のpHチェ1.り等によ
りその溶出量が調節される。
カリウム繊維の組成は、水洗処理におけるK+イオンの
溶出量により異なるので、洗液のpHチェ1.り等によ
りその溶出量が調節される。
−a的には、六チタン酸カリウム繊維(KzTi60+
z)の製造が目的とされ、その組成比となるようにK+
イオンの?容出量が調節される。このように水洗処理で
K+イオン調整下に解繊された繊維を洗液から回収し、
乾燥後、約800 ”Cで熱処理することによりトンネ
ル構造を有する六チタン酸カリウム繊維が得られる。
z)の製造が目的とされ、その組成比となるようにK+
イオンの?容出量が調節される。このように水洗処理で
K+イオン調整下に解繊された繊維を洗液から回収し、
乾燥後、約800 ”Cで熱処理することによりトンネ
ル構造を有する六チタン酸カリウム繊維が得られる。
しかしながら、従来のチタン酸カリウム繊維は、複数本
の繊維同士が固着した複繊維としての形態を有し、その
繊維径は約10〜30μmと大径であり、かつ不均質で
ある。それは、初生相の集束繊維塊にチタン酸カリウム
繊維)の洗液処理により得られる六チタン酸カリウム相
当組成の繊維が高融点(約1370℃)であるため、そ
の後の熱処理(処理温度:約1000°C)では完全に
六チタン酸カリウムの結晶構造であるトンネル構造に変
化することができず、その繊維同士の結合が十分に解か
れないまま残存するものと考えられる。
の繊維同士が固着した複繊維としての形態を有し、その
繊維径は約10〜30μmと大径であり、かつ不均質で
ある。それは、初生相の集束繊維塊にチタン酸カリウム
繊維)の洗液処理により得られる六チタン酸カリウム相
当組成の繊維が高融点(約1370℃)であるため、そ
の後の熱処理(処理温度:約1000°C)では完全に
六チタン酸カリウムの結晶構造であるトンネル構造に変
化することができず、その繊維同士の結合が十分に解か
れないまま残存するものと考えられる。
繊維の用途によっては、上記のように大径の複繊維形態
を有するものであっても支障のない場合もあるが、チタ
ン酸カリウム繊維の特質を十分に発揮させ、かつその用
途の拡大多様化を図るには、解繊化を十分に進め、細径
・長寸の均質な繊維として回収することが望まれる。
を有するものであっても支障のない場合もあるが、チタ
ン酸カリウム繊維の特質を十分に発揮させ、かつその用
途の拡大多様化を図るには、解繊化を十分に進め、細径
・長寸の均質な繊維として回収することが望まれる。
本発明は上記に鑑みてなされたものである。
本発明のチタン酸カリウム繊維の製造方法は、加熱によ
り二酸化チタンとなるチタン化合物と、加熱により酸化
カリウム(Kg0)となるカリウム化合物とを二酸化チ
タン(Tie2)とK z Oとのモル比(T i O
z /に20)が1.5〜2.5となるように混合した
混合物を加熱溶融し、その加熱溶融物を凝固させて初生
相結晶質繊維として生成するニチタン酸カリウム繊維(
KzT 1205)の束状集合体である繊維塊を得、つ
いでこれを洗液で処理することにより、K゛イオン溶出
させると共に解繊して四チタン酸カリウム相当組成の繊
維と六チタン酸カリウム相当組成の繊維とが混在した中
間繊維として回収し、更にこれを乾燥後、熱処理するこ
とにより四チタン酸カリウム繊維(KzTi40.〕と
六チタン酸カリウム繊維(K2TibC)++)に構造
変換することを特徴とする。
り二酸化チタンとなるチタン化合物と、加熱により酸化
カリウム(Kg0)となるカリウム化合物とを二酸化チ
タン(Tie2)とK z Oとのモル比(T i O
z /に20)が1.5〜2.5となるように混合した
混合物を加熱溶融し、その加熱溶融物を凝固させて初生
相結晶質繊維として生成するニチタン酸カリウム繊維(
KzT 1205)の束状集合体である繊維塊を得、つ
いでこれを洗液で処理することにより、K゛イオン溶出
させると共に解繊して四チタン酸カリウム相当組成の繊
維と六チタン酸カリウム相当組成の繊維とが混在した中
間繊維として回収し、更にこれを乾燥後、熱処理するこ
とにより四チタン酸カリウム繊維(KzTi40.〕と
六チタン酸カリウム繊維(K2TibC)++)に構造
変換することを特徴とする。
更に、上記により得られた四チタン酸カリウム繊維(K
zT i 40q )と六チタン酸カリウム繊維CKz
T i bo 133との混合繊維を、洗液で処理して
混合繊維中の四チタン酸カリウム繊維のK+イオンを?
容出させて六チタン酸カリウム相当組成の繊維に組成を
変換したのち、熱処理を付して構造変換させる工程を経
ることにより、上記混合繊維から、六チタン酸カリウム
繊維(単相)を得ることができる。
zT i 40q )と六チタン酸カリウム繊維CKz
T i bo 133との混合繊維を、洗液で処理して
混合繊維中の四チタン酸カリウム繊維のK+イオンを?
容出させて六チタン酸カリウム相当組成の繊維に組成を
変換したのち、熱処理を付して構造変換させる工程を経
ることにより、上記混合繊維から、六チタン酸カリウム
繊維(単相)を得ることができる。
本発明方法は、上記のように、初生相の集束繊維塊にチ
タン酸カリウム繊維)の洗液処理において、これを完全
な六チタン酸カリウム組成まで脱アルカリせず、一部を
四チタン酸カリウム組成として残存させている。この四
チタン酸カリウム組成の繊維の分解溶融温度は、約11
14°Cと、六チタン酸カリウム組成の繊維に比し低い
。そのため、その後に行われる1000°C程度での熱
処理でも、六チタン酸カリウム祖成繊維のトンネル構造
への構造変換が生じ易く、その結果、それまで残存して
いた複繊維の結合がゆるみ、略完全な単繊維として回収
することができる。
タン酸カリウム繊維)の洗液処理において、これを完全
な六チタン酸カリウム組成まで脱アルカリせず、一部を
四チタン酸カリウム組成として残存させている。この四
チタン酸カリウム組成の繊維の分解溶融温度は、約11
14°Cと、六チタン酸カリウム組成の繊維に比し低い
。そのため、その後に行われる1000°C程度での熱
処理でも、六チタン酸カリウム祖成繊維のトンネル構造
への構造変換が生じ易く、その結果、それまで残存して
いた複繊維の結合がゆるみ、略完全な単繊維として回収
することができる。
以下、本発明方法を工程順に詳しく説明する。
加熱により二酸化チタンとなるチタン化合物(以下、「
二酸化チタン源」ともいう)としては、高純度精製酸化
チタンのほか、天然ルチルサンドや天然アナターゼサン
ド等、各種のチタン化合物が用いられる。
二酸化チタン源」ともいう)としては、高純度精製酸化
チタンのほか、天然ルチルサンドや天然アナターゼサン
ド等、各種のチタン化合物が用いられる。
二酸化チタン源に配合されるカリウム化合物は代表的に
は炭酸カリウム(K2CO3)である。そのほか、加熱
溶融工程でに20となるカリウム化合物、例えば水酸化
物、硝酸塩などを使用することもできる。
は炭酸カリウム(K2CO3)である。そのほか、加熱
溶融工程でに20となるカリウム化合物、例えば水酸化
物、硝酸塩などを使用することもできる。
二酸化チタン源とカリウム化合物の混合割合を、TiO
2/に、0モル比で1.5〜2.5の範囲に限定したの
は、この範囲からはずれると、この混合物の加熱溶融物
の冷却固化工程において、初生絹繊維としての結晶質繊
維が形成されないか、またはたとえ繊維が形成されても
、繊維同士の凝集が強固であるため、その後の洗液によ
る処理において解繊化することが極めて困難となるから
である。
2/に、0モル比で1.5〜2.5の範囲に限定したの
は、この範囲からはずれると、この混合物の加熱溶融物
の冷却固化工程において、初生絹繊維としての結晶質繊
維が形成されないか、またはたとえ繊維が形成されても
、繊維同士の凝集が強固であるため、その後の洗液によ
る処理において解繊化することが極めて困難となるから
である。
より好ましいモル比は、1.8〜2,2である。
二酸化チタン源とカリウム化合物の混合物を、溶解ルツ
ボ(好ましくは白金ルツボ)に装入し、その融点以上の
温度に加熱して溶融したのち、一方向または多方向に指
向性凝固させる冷却固化処理により、初生絹繊維、即ち
ニチタン酸カリウム繊維(KzT igos 〕の集束
繊維塊を得る。この繊維は層状構造を有する板状結晶で
ある。
ボ(好ましくは白金ルツボ)に装入し、その融点以上の
温度に加熱して溶融したのち、一方向または多方向に指
向性凝固させる冷却固化処理により、初生絹繊維、即ち
ニチタン酸カリウム繊維(KzT igos 〕の集束
繊維塊を得る。この繊維は層状構造を有する板状結晶で
ある。
ついで、上記繊維塊を洗液で処理し、洗液のに″濃度測
定等によるK+イオンの溶出ff1311節下に解繊化
を行って、四チタン酸力1.+ウム(K2Ti40q)
相当組成の繊維と六チタン酸カリウム(K2Ti 60
B)相当組成の繊維の混合繊維に解繊する。この脱カリ
ウム・解繊処理の洗液として、冷水(常温)、熱水、酸
溶液(例えば、0.5N HCE水溶液)等が使用さ
れるが、通常冷水で十分である。
定等によるK+イオンの溶出ff1311節下に解繊化
を行って、四チタン酸力1.+ウム(K2Ti40q)
相当組成の繊維と六チタン酸カリウム(K2Ti 60
B)相当組成の繊維の混合繊維に解繊する。この脱カリ
ウム・解繊処理の洗液として、冷水(常温)、熱水、酸
溶液(例えば、0.5N HCE水溶液)等が使用さ
れるが、通常冷水で十分である。
冷水を洗液とし、繊維塊を、例えばその50倍(重量比
)の冷水に浸漬し、攪拌下に脱カリウム処理を行えば四
チタン酸カリウム相当組成と六チタン酸カリウム相当組
成の混合相を有する繊維に組成変換すると共に解繊され
る。この2種の組成の繊維の混合比は特に限定しないが
、おおむね、四チタン酸カリウム組成繊維/六チタン酸
カリウム組成繊維=1〜4 (モル比)とすることによ
り好結果を得ることができる。むろん、その混合比は、
洗液での処理におけるK+イオンの溶出量により調節さ
れる。その処理において、K゛イオン溶出よび解繊化を
促進するために、洗液を撹拌することが望ましい。
)の冷水に浸漬し、攪拌下に脱カリウム処理を行えば四
チタン酸カリウム相当組成と六チタン酸カリウム相当組
成の混合相を有する繊維に組成変換すると共に解繊され
る。この2種の組成の繊維の混合比は特に限定しないが
、おおむね、四チタン酸カリウム組成繊維/六チタン酸
カリウム組成繊維=1〜4 (モル比)とすることによ
り好結果を得ることができる。むろん、その混合比は、
洗液での処理におけるK+イオンの溶出量により調節さ
れる。その処理において、K゛イオン溶出よび解繊化を
促進するために、洗液を撹拌することが望ましい。
第1図(r)〜(TV)は、繊維塊を、それぞれ100
倍、75倍、50倍および25倍(容量比)の洗液(冷
水)中で、攪拌下に24時間処理し、回収した混合繊維
を乾燥後、熱処理(1000°C)した後のX線回折結
果を示したものである。図中、r6TJは六チタン酸カ
リウム繊維、r4Tコは四チタン酸カリウム繊維である
。この例においては、繊維塊の75倍以下の洗液による
処理(図〔■〕〜〔■))により、四チタン酸カリウム
繊維と六チタン酸カリウム繊維の混合繊維として解繊・
回収されている。
倍、75倍、50倍および25倍(容量比)の洗液(冷
水)中で、攪拌下に24時間処理し、回収した混合繊維
を乾燥後、熱処理(1000°C)した後のX線回折結
果を示したものである。図中、r6TJは六チタン酸カ
リウム繊維、r4Tコは四チタン酸カリウム繊維である
。この例においては、繊維塊の75倍以下の洗液による
処理(図〔■〕〜〔■))により、四チタン酸カリウム
繊維と六チタン酸カリウム繊維の混合繊維として解繊・
回収されている。
上記洗液による処理を経て回収される繊維は、組成上、
四チタン酸カリウム繊維[K2Tiイ09〕と六チタン
酸カリウム繊維(K2T i 、013〕の混合物に相
当しているが、構造的には、その先駆体である初生相二
チタン酸カリウム繊維のなごりをとどめている。この混
合繊維を乾燥(例えば風乾)したのち、適当な温度(好
ましくは、約1000’c)で焼成することにより、構
造変(桑が生じ、組成的にも構造的にも完全な四チタン
酸カリウム繊維と六チタン酸カリウム繊維となる。
四チタン酸カリウム繊維[K2Tiイ09〕と六チタン
酸カリウム繊維(K2T i 、013〕の混合物に相
当しているが、構造的には、その先駆体である初生相二
チタン酸カリウム繊維のなごりをとどめている。この混
合繊維を乾燥(例えば風乾)したのち、適当な温度(好
ましくは、約1000’c)で焼成することにより、構
造変(桑が生じ、組成的にも構造的にも完全な四チタン
酸カリウム繊維と六チタン酸カリウム繊維となる。
こうして得られた四チタン酸カリウム繊維と六チタン酸
カリウム繊維との混合繊維を、更に洗液に浸清し、洗液
のに″濃度の測定等による脱カリウムff1gII節下
に、四チタン酸カリウム繊維がらK+イオンを溶出(二
次溶出処理)することにより、該繊維は、構造的には四
チタン酸カリウムの層状構造のなごりをとどめたまま、
組成的に六チタン酸カリウム繊維に変換する。この二次
溶出処理の洗液は、水、熱水などであってもよいが、脱
カリウム促進のため酸溶液を使用するのが好ましい。
カリウム繊維との混合繊維を、更に洗液に浸清し、洗液
のに″濃度の測定等による脱カリウムff1gII節下
に、四チタン酸カリウム繊維がらK+イオンを溶出(二
次溶出処理)することにより、該繊維は、構造的には四
チタン酸カリウムの層状構造のなごりをとどめたまま、
組成的に六チタン酸カリウム繊維に変換する。この二次
溶出処理の洗液は、水、熱水などであってもよいが、脱
カリウム促進のため酸溶液を使用するのが好ましい。
酸溶液としては、例えば0.01〜0.05Nの酢酸水
溶液が好適である。また、必要に応じ、超音波振動が印
加される。
溶液が好適である。また、必要に応じ、超音波振動が印
加される。
二次溶出処理後、洗液から繊維を回収し、乾燥(例えば
、風乾)し、温度=800〜1000°C1好ましくは
900℃で熱処理(二次熱処理)することにより上記の
六チタン酸カリウム相当組成の繊維は、四チタン酸カリ
ウム繊維の層状構造から六チタン酸カリウム繊維のトン
ネル構造に構造変換する。
、風乾)し、温度=800〜1000°C1好ましくは
900℃で熱処理(二次熱処理)することにより上記の
六チタン酸カリウム相当組成の繊維は、四チタン酸カリ
ウム繊維の層状構造から六チタン酸カリウム繊維のトン
ネル構造に構造変換する。
上記四チタン酸カリウム繊維と六チタン酸カリウム繊維
の混合繊維の二次溶出処理およびその後の二次熱処理の
各工程において、六チタン酸カリウム繊維には組成およ
び構造上の変化はなく、四チタン酸カリウム繊維のみ、
組成および構造上の変化が生じて六チタン酸カリウム繊
維に変換する。
の混合繊維の二次溶出処理およびその後の二次熱処理の
各工程において、六チタン酸カリウム繊維には組成およ
び構造上の変化はなく、四チタン酸カリウム繊維のみ、
組成および構造上の変化が生じて六チタン酸カリウム繊
維に変換する。
従って、この二次溶出処理と二次焼成処理とを経ること
により、混合繊維から六チタン酸カリウム繊維の単相繊
維が得られる。
により、混合繊維から六チタン酸カリウム繊維の単相繊
維が得られる。
かくして得られた繊維は、後記実施例にも示すように、
従来の繊維に比し、繊維径が小さく、均質性にすぐれて
いる。特に、二次脱カリウム処理と二次熱処理を経て得
られる六チタン酸カリウム繊維は、繊維同士が略完全に
分離(解繊)した単繊維形態を示し、繊維径は約0.5
〜3μm、繊維長は約10〜30μmと、細径・長寸で
ある。
従来の繊維に比し、繊維径が小さく、均質性にすぐれて
いる。特に、二次脱カリウム処理と二次熱処理を経て得
られる六チタン酸カリウム繊維は、繊維同士が略完全に
分離(解繊)した単繊維形態を示し、繊維径は約0.5
〜3μm、繊維長は約10〜30μmと、細径・長寸で
ある。
本発明方法を実施例により説明する。二酸化チタン源と
しては天然ルチルサンド(オーストーラリア産、純度9
5.6%)を使用した。 一実施例1 (1)原料配合 天然ルチルサンドと炭酸カリウム(99,5%)とを(
T i Ch/KzO)モル比:2/1の割合で混合。
しては天然ルチルサンド(オーストーラリア産、純度9
5.6%)を使用した。 一実施例1 (1)原料配合 天然ルチルサンドと炭酸カリウム(99,5%)とを(
T i Ch/KzO)モル比:2/1の割合で混合。
Cn)加熱溶融処理および冷却固化処理上記原料混合物
250gを白金ルツボ(容i500mA)に入れ、11
00℃で1時間溶解したのち、その溶融物を金属製冷却
皿(直径120 mm、深さ10鰭)に流し込み、冷却
皿の底面から一方向に凝固させることにより、初生相二
チタン酸カリウム繊維(K2T 1205 )の束状集
合体である繊維塊を得た。
250gを白金ルツボ(容i500mA)に入れ、11
00℃で1時間溶解したのち、その溶融物を金属製冷却
皿(直径120 mm、深さ10鰭)に流し込み、冷却
皿の底面から一方向に凝固させることにより、初生相二
チタン酸カリウム繊維(K2T 1205 )の束状集
合体である繊維塊を得た。
(II[) K”イオン溶出・解繊処理上記繊維塊を5
0倍の冷水中に浸漬し、約24時間を要して脱カリウム
と解繊化を行ったのち、洗液から繊維を回収した。
0倍の冷水中に浸漬し、約24時間を要して脱カリウム
と解繊化を行ったのち、洗液から繊維を回収した。
〔■〕熱処理
洗液から回収した繊維を乾燥後、1000℃で4時間加
熱処理した。
熱処理した。
得られた繊維を第2図に示す。繊維長は20〜200μ
m、直径は0.5〜2μmである。
m、直径は0.5〜2μmである。
この繊維は、X線回折により、四チタン酸カリウム繊維
CKzT i 40q )と六チタン酸カリウム繊維(
K zT 1601:l)の混合繊維であり、また化学
分析による二酸化チタンとに20の比から、四チタン酸
カリウム繊維と六チタン酸カリウム繊維のモル比は1:
lであることが認められた。
CKzT i 40q )と六チタン酸カリウム繊維(
K zT 1601:l)の混合繊維であり、また化学
分析による二酸化チタンとに20の比から、四チタン酸
カリウム繊維と六チタン酸カリウム繊維のモル比は1:
lであることが認められた。
(V)二次処理
上記混合繊維50gを酢酸水溶液(0,025N)
1 l中に浸漬して超音波(45KHz)を印加し、約
60分を要して処理を終了し、ついで洗液から繊維を回
収し、110℃で乾燥後、900℃で2時間加熱処理し
た。
1 l中に浸漬して超音波(45KHz)を印加し、約
60分を要して処理を終了し、ついで洗液から繊維を回
収し、110℃で乾燥後、900℃で2時間加熱処理し
た。
第3図に得られた繊維を示す。繊維は略完全な単繊維形
態を有し、繊維長は10〜30μm、繊維径は0.5〜
2μmである。この繊維はX線回折により六チタン酸カ
リウム繊維単相であることが認められる。
態を有し、繊維長は10〜30μm、繊維径は0.5〜
2μmである。この繊維はX線回折により六チタン酸カ
リウム繊維単相であることが認められる。
実施例2
実施例1の(13〜(II)と同様にして初生相二チタ
ン酸カリウム繊維の繊維塊を得、これを30倍の冷水に
浸漬してK+イオンの溶出および解繊化を行い、解繊さ
れた繊維を乾燥後、1000℃で4熱時間処理した。
ン酸カリウム繊維の繊維塊を得、これを30倍の冷水に
浸漬してK+イオンの溶出および解繊化を行い、解繊さ
れた繊維を乾燥後、1000℃で4熱時間処理した。
得られた繊維は、実、施例1のCrV Jで得られたも
のと同様第2図に示す繊維形態を有している。
のと同様第2図に示す繊維形態を有している。
またX線回折により四チタン酸カリウム繊維と六チタン
酸カリウム繊維との混合繊維であり、化学分析値から、
両者のモル比は4:1であることが認められた。
酸カリウム繊維との混合繊維であり、化学分析値から、
両者のモル比は4:1であることが認められた。
実施例3
実施例1の〔■〕〜(I[I)と同様の工程を経て、繊
維を回収°し、乾燥後1050℃で2時間熱処理を行っ
た。得られた繊維は、実施例1 〔■〕で得られた繊維
と同様に、四チタン酸カリウム繊維と六チタン酸カリウ
ム繊維との混合繊維であり、そのモル比は1:1であり
、かつ第2図に示す繊維形態を存している。
維を回収°し、乾燥後1050℃で2時間熱処理を行っ
た。得られた繊維は、実施例1 〔■〕で得られた繊維
と同様に、四チタン酸カリウム繊維と六チタン酸カリウ
ム繊維との混合繊維であり、そのモル比は1:1であり
、かつ第2図に示す繊維形態を存している。
(比較例)
実施例1 〔■〕〜〔■〕と同じ処理を経て初生相二チ
タン酸カリウム繊維の繊維塊を得る。
タン酸カリウム繊維の繊維塊を得る。
ついで、繊維塊を100倍の冷水中に浸漬し、約24時
間を要してK+イオンの溶出および解繊化を行う。
間を要してK+イオンの溶出および解繊化を行う。
解繊した繊維を洗液から回収し、110°Cで乾燥した
のち、1000°Cで4時間熱処理する。
のち、1000°Cで4時間熱処理する。
得られた繊維を第4図に示す。x′fr!A回折により
この繊維は六チタン酸カリウム繊維単相であることが認
められた。この繊維の長さは20〜200 μmと長寸
であるが、複数本の繊維が凝集したままの複繊維を呈し
ており、その直径は10〜30μmと前記実施例で得ら
れた六チタン酸カリウム繊維に比し太い。
この繊維は六チタン酸カリウム繊維単相であることが認
められた。この繊維の長さは20〜200 μmと長寸
であるが、複数本の繊維が凝集したままの複繊維を呈し
ており、その直径は10〜30μmと前記実施例で得ら
れた六チタン酸カリウム繊維に比し太い。
本発明によれば、溶融法によって、チタン酸カリウム繊
維を、細径・長寸の繊維形態を有する均質な繊維として
得ることができる。特に、脱カリウム二次処理と二次熱
処理を経て得られる六チタン酸カリウム繊維は、略完全
な単繊維形態を呈し、極めてすぐれた均質性を有してい
る。
維を、細径・長寸の繊維形態を有する均質な繊維として
得ることができる。特に、脱カリウム二次処理と二次熱
処理を経て得られる六チタン酸カリウム繊維は、略完全
な単繊維形態を呈し、極めてすぐれた均質性を有してい
る。
本発明方法により得られるチタン酸カリウム繊維は廉価
・良質であり、また繊維形態が均質・良好であるので、
耐火材、耐熱材、断熱材、摩擦材、耐腐食材、補強材等
として好適であり、各種分野における工学的応用の拡大
・多様化の促進に大きく貢献するものである。
・良質であり、また繊維形態が均質・良好であるので、
耐火材、耐熱材、断熱材、摩擦材、耐腐食材、補強材等
として好適であり、各種分野における工学的応用の拡大
・多様化の促進に大きく貢献するものである。
第1図(1)〜CrV)は、初生相の集束繊維塊の脱カ
リウム・解繊化処理後のX線回折図、第2図、第3図は
本発明方法により得られたチタン酸カリウム繊維の繊維
形態を示す図面代用顕微鏡写真(いずれも、500倍率
)、第4図は従来法により得られたチタン酸カリウム繊
維の繊維形態を示す図面代用顕微鏡写真(100倍率)
である。 6T二六チタン酸カリウム、4T:四チタン酸カリウム
。
リウム・解繊化処理後のX線回折図、第2図、第3図は
本発明方法により得られたチタン酸カリウム繊維の繊維
形態を示す図面代用顕微鏡写真(いずれも、500倍率
)、第4図は従来法により得られたチタン酸カリウム繊
維の繊維形態を示す図面代用顕微鏡写真(100倍率)
である。 6T二六チタン酸カリウム、4T:四チタン酸カリウム
。
Claims (2)
- (1)加熱により二酸化チタンとなるチタン化合物と、
加熱により酸化カリウムとなるカリウム化合物とを、〔
二酸化チタン/酸化カリウム〕のモル比が1.5〜2.
5となるように混合した混合物を加熱溶融し、その加熱
溶融物を凝固させて二チタン酸カリウム繊維の束状集合
体である繊維塊を得、ついで該繊維塊を洗液で処理して
K^+イオンを溶出させると共に解繊することにより、
四チタン酸カリウム相当組成の繊維と六チタン酸カリウ
ム相当組成の繊維が混在する中間繊維を回収し、これを
乾燥後、熱処理することにより四チタン酸カリウム繊維
と六チタン酸カリウム繊維に構造変換させることを特徴
とするチタン酸カリウム繊維の製造方法。 - (2)四チタン酸カリウム繊維と六チタン酸カリウム繊
維の混合繊維を洗液で処理して四チタン酸カリウム繊維
のK^+イオンを溶出することにより該繊維を六チタン
酸カリウム相当組成の繊維に組成変換し、ついで熱処理
に付して六チタン酸カリウム繊維に構造変換させること
を特徴とする上記第1項に記載のチタン酸カリウム繊維
の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61102875A JPH0788278B2 (ja) | 1986-05-01 | 1986-05-01 | 六チタン酸カリウム繊維の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61102875A JPH0788278B2 (ja) | 1986-05-01 | 1986-05-01 | 六チタン酸カリウム繊維の製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62260796A true JPS62260796A (ja) | 1987-11-13 |
JPH0788278B2 JPH0788278B2 (ja) | 1995-09-27 |
Family
ID=14339068
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61102875A Expired - Lifetime JPH0788278B2 (ja) | 1986-05-01 | 1986-05-01 | 六チタン酸カリウム繊維の製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0788278B2 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01301516A (ja) * | 1987-12-25 | 1989-12-05 | Titan Kogyo Kk | トンネル構造・六チタン酸カリウム繊維,その製造方法及びそれを含む複合材料 |
JPH0457923A (ja) * | 1990-06-26 | 1992-02-25 | Kubota Corp | 六チタン酸カリウム多結晶繊維の製造方法 |
CN106986389A (zh) * | 2017-04-25 | 2017-07-28 | 山东玉皇新能源科技有限公司 | 一种利用氧化石墨生产过程废硫酸制备硫酸锰的方法 |
WO2022032749A1 (zh) * | 2020-08-14 | 2022-02-17 | 五邑大学 | 一种三维棒状钛酸钾材料的制备方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6121915A (ja) * | 1984-07-06 | 1986-01-30 | Kubota Ltd | チタン化合物繊維の製造方法 |
-
1986
- 1986-05-01 JP JP61102875A patent/JPH0788278B2/ja not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6121915A (ja) * | 1984-07-06 | 1986-01-30 | Kubota Ltd | チタン化合物繊維の製造方法 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01301516A (ja) * | 1987-12-25 | 1989-12-05 | Titan Kogyo Kk | トンネル構造・六チタン酸カリウム繊維,その製造方法及びそれを含む複合材料 |
JPH0524086B2 (ja) * | 1987-12-25 | 1993-04-06 | Titan Kogyo Kk | |
JPH0457923A (ja) * | 1990-06-26 | 1992-02-25 | Kubota Corp | 六チタン酸カリウム多結晶繊維の製造方法 |
CN106986389A (zh) * | 2017-04-25 | 2017-07-28 | 山东玉皇新能源科技有限公司 | 一种利用氧化石墨生产过程废硫酸制备硫酸锰的方法 |
WO2022032749A1 (zh) * | 2020-08-14 | 2022-02-17 | 五邑大学 | 一种三维棒状钛酸钾材料的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
JPH0788278B2 (ja) | 1995-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS62260796A (ja) | 六チタン酸カリウム繊維の製造方法 | |
JP2678810B2 (ja) | 八チタン酸カリウム多結晶繊維の製造方法 | |
JPS621293B2 (ja) | ||
JP2747916B2 (ja) | チタン酸カリウム長繊維およびこれを用いるチタニア繊維の製造方法 | |
JP3643915B2 (ja) | 新規なケイ酸カルシウムウィスカー及びその製造方法 | |
JPS6163529A (ja) | チタン化合物繊維の製造方法 | |
JP3028398B2 (ja) | チタン酸ナトリウム繊維の製造方法 | |
JPS60259627A (ja) | 六チタン酸カリウム繊維または六チタン酸カリウム複合繊維の製造法 | |
JPS60259625A (ja) | チタニア繊維の製造法 | |
JPH0244774B2 (ja) | ||
JP2816908B2 (ja) | 六チタン酸カリウム繊維の製造方法 | |
JP2946107B2 (ja) | 六チタン酸カリウム多結晶繊維の製造方法 | |
JPS63260821A (ja) | チタン酸カリウム繊維の製造方法 | |
JP2631859B2 (ja) | チタニア繊維の製造方法 | |
JPH0338239B2 (ja) | ||
JP3188061B2 (ja) | 六チタン酸ナトリウム繊維の製造方法 | |
JPH0234888B2 (ja) | Senijochitansankariumunoseizoho | |
JPH0457922A (ja) | 六チタン酸カリウム多結晶繊維の製造方法 | |
JPS6379799A (ja) | チタン酸カリウム繊維の製造方法 | |
JPS6121915A (ja) | チタン化合物繊維の製造方法 | |
JPH10212625A (ja) | チタン酸カリウム繊維の製造方法 | |
JPS6379800A (ja) | チタン酸カリウム繊維の製造方法 | |
JPS6034617A (ja) | ルチル−プリデライト−六チタン酸カリウム複合繊維の製造法 | |
JPH07330499A (ja) | 硼酸アルミニウムウィスカー粒状集合体 | |
JPH07206440A (ja) | 六チタン酸ナトリウム繊維の製造方法 |