Nothing Special   »   [go: up one dir, main page]

JPS621572B2 - - Google Patents

Info

Publication number
JPS621572B2
JPS621572B2 JP5243983A JP5243983A JPS621572B2 JP S621572 B2 JPS621572 B2 JP S621572B2 JP 5243983 A JP5243983 A JP 5243983A JP 5243983 A JP5243983 A JP 5243983A JP S621572 B2 JPS621572 B2 JP S621572B2
Authority
JP
Japan
Prior art keywords
powder
solution
particles
tin
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5243983A
Other languages
Japanese (ja)
Other versions
JPS59182229A (en
Inventor
Motohiko Yoshizumi
Kuniaki Wakabayashi
Makoto Tsunashima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP5243983A priority Critical patent/JPS59182229A/en
Publication of JPS59182229A publication Critical patent/JPS59182229A/en
Publication of JPS621572B2 publication Critical patent/JPS621572B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】 本発明は酸化スズ微粉末の製法に関する。[Detailed description of the invention] The present invention relates to a method for producing fine tin oxide powder.

酸化スズ粉末は触媒、ガスセンサー、導電性粉
体として用いられている。触媒としては、オレフ
インのアリル型酸化用触媒、たとえばプロペンか
らアクロレイン、n−ブテンからブタジエン、イ
ソペンテンからイソプレン合成の触媒として用い
られている。
Tin oxide powder is used as a catalyst, gas sensor, and conductive powder. As a catalyst, it is used as a catalyst for the allylic oxidation of olefins, for example, for the synthesis of acrolein from propene, butadiene from n-butene, and isoprene from isopentene.

ガスセンサーとしては、可燃性ガス、たとえば
都市ガス、プロパンガス、水素ガス等を吸着した
時、電気抵抗が変化することが利用されている。
導電性粉体董としては、SbをドープしたSnO2
低抵抗となることが知られているが、Sbの毒性
の問題がありSbを含まないものが望まれてい
る。ドープ剤を含まないものは抵抗は高くなる
が、帯電防止としては使用でき、色も白色に近い
ものとなるので、紙、樹脂、繊維の帯電防止とし
て使用出来る。また可視光の波長(0.4〜0.8μ
m)以下の粒子にすることにより透明性が出てく
るため、塗料中に混入し、帯電防止塗料とするこ
ともできる。この塗料を塗布した塗膜は透明帯電
防止フイルムになるばかりでなく、帯電圧を制御
するための感光機用塗膜ともなる。いずれの場合
も、粉末が微細であることが望ましい。すなわ
ち、触媒、ならびにセンサーにおいても粉末の表
面を利用することから、微細な程活性が高く、ま
た、粉末が微細になる程透明性も向上する。更に
粉末の分散性も高いことが望まれている。
Gas sensors utilize the fact that electrical resistance changes when a flammable gas such as city gas, propane gas, hydrogen gas, etc. is adsorbed.
As a conductive powder material, it is known that SnO 2 doped with Sb has a low resistance, but there is a problem with the toxicity of Sb, so a material that does not contain Sb is desired. Products that do not contain doping agents have a higher resistance, but can be used as an antistatic agent, and the color is close to white, so they can be used as an antistatic agent for paper, resin, and fibers. Also, the wavelength of visible light (0.4~0.8μ
m) Since transparency is achieved by forming the particles below, it can also be mixed into paints and used as antistatic paints. A film coated with this paint not only becomes a transparent antistatic film, but also a film for photosensitive machines to control charging voltage. In either case, it is desirable that the powder be fine. That is, since the surface of the powder is used in catalysts and sensors, the finer the powder, the higher the activity, and the finer the powder, the better the transparency. Furthermore, it is desired that the powder has high dispersibility.

酸化スズ粉末の製造法としては以下の方法が知
られている。
The following methods are known as methods for producing tin oxide powder.

(1) 金属スズを空気中で高温加熱酸化する。(1) Oxidize metal tin by heating it in air at high temperatures.

(2) スズを濃硝酸で処理して得た白色沈澱を高温
で焼成する。
(2) The white precipitate obtained by treating tin with concentrated nitric acid is calcined at high temperature.

(3) 4価のスズ塩の水溶液をアルカリで中和して
白色沈澱を得、これを高温で焼成する。
(3) Neutralize an aqueous solution of a tetravalent tin salt with an alkali to obtain a white precipitate, which is then calcined at a high temperature.

(1)、(2)の方法ではせいぜい比表面積が10m2/g
以下の粉末しか得られず、(3)の方法でも焼成時に
焼結が起り易く、比表面積としては50m2/gまで
可能であるが、分散性が悪く透明性を出す目的に
は望ましくない。
In methods (1) and (2), the specific surface area is at most 10 m 2 /g.
Only the following powders can be obtained, and even with method (3), sintering tends to occur during firing, and although a specific surface area of up to 50 m 2 /g is possible, the dispersibility is poor and it is not desirable for the purpose of achieving transparency.

本発明者等は(3)の方法を特定の条件で実施する
とき極めて微細な酸化スズ粉末が得られることを
見出した。
The present inventors have discovered that extremely fine tin oxide powder can be obtained when method (3) is carried out under specific conditions.

本発明方法では、65℃以上に保つたアルカリ水
溶液中に、塩化スズ()水溶液を加え、最終的
にPHを5以下にする。アルカリ水中に塩化スズを
加えていつた場合、初期のPHは当然14に近く、PH
が10になるまで塩化スズ水溶液を加えていつても
沈澱が折出しない。PHが10以下で急激に沈澱が析
出する。すなわちPHが10以上で溶解していた塩化
スズがPHが下がることにより、一気に水酸化スズ
として析出し、微細な生成物となる。さらに塩化
スズを加えて最終的にPHを5〜1に保つことによ
り分散性が高まることがわかつた。すなわち、そ
の後の粉末の焼成処理において、焼結することが
少なくなり、粉末の粒子を細かいまま保つておく
ことができる。この範囲外で反応を終了させると
焼成時に粉末が焼結しやすくなる。以上のことに
より、粉末の粒子は50m2/g以上の微細なもので
しかも分散性の良いものが得られることを見い出
した。これに対し、塩化スズ水溶液をアルカリで
中和していく方法であると、アルカリを添加した
時点から沈澱が生成し始め、反応が進むにしたが
い粒子が成長を起し、微細な粉末が得られない。
In the method of the present invention, a tin chloride () aqueous solution is added to an alkaline aqueous solution kept at 65° C. or higher, and the pH is finally adjusted to 5 or less. When tin chloride is added to alkaline water, the initial pH is naturally close to 14;
Even if an aqueous tin chloride solution is added until the value reaches 10, no precipitate is formed. Precipitate rapidly forms when the pH is below 10. In other words, tin chloride, which was dissolved at a pH of 10 or higher, precipitates out as tin hydroxide at once as the pH decreases, becoming a fine product. Furthermore, it was found that dispersibility was improved by adding tin chloride and ultimately maintaining the pH between 5 and 1. That is, in the subsequent firing process of the powder, sintering is reduced and the powder particles can be kept fine. If the reaction is terminated outside this range, the powder will easily sinter during firing. As a result of the above, it has been found that fine particles of 50 m 2 /g or more and good dispersibility can be obtained. On the other hand, with the method of neutralizing an aqueous tin chloride solution with an alkali, a precipitate begins to form as soon as the alkali is added, and as the reaction progresses, particles grow and a fine powder is obtained. do not have.

アルカリ水溶液としては、水酸化ナトリウム、
アンモニア、水酸化カリウム、炭酸ナトリウムを
水に溶解した溶液を使用できる。塩化スズ溶液は
4価の塩化スズを水に溶かしたもの、または塩酸
水溶液に溶かしたもの、またはアルコールに溶か
した溶液を用いることができる。
Examples of alkaline aqueous solutions include sodium hydroxide,
A solution of ammonia, potassium hydroxide, and sodium carbonate in water can be used. As the tin chloride solution, a solution in which tetravalent tin chloride is dissolved in water, in an aqueous hydrochloric acid solution, or in alcohol can be used.

アルカリ水溶液中に注入する塩化スズ溶液はそ
の濃度に特に限定はないが、好ましい濃度10〜60
%である。注入速度にも特に限定はない。沈澱析
出温度は約65℃が臨界値であることが分かつた。
これより低いと焼成時に粒子が焼結を起しやす
い。生成した沈澱を洗浄後乾燥を行ないさらに焼
成をすることにより、二酸化スズ粉末とすること
ができるが、焼成温度が350℃以下では結晶の発
達が悪く非晶質であり、700℃以上にすると焼結
が起る。このため焼成温度を350℃〜700℃とした
が、粉末の抵抗と粒度との関連上、望ましくは
400℃〜600℃である。粉末の微細性、分散性の目
安としては、比表面積または粉末をPH=10の水溶
液中で分散後、0.3μm以下の粒子が何%あるか
で示した。
The concentration of the tin chloride solution injected into the alkaline aqueous solution is not particularly limited, but the preferred concentration is 10 to 60.
%. There is also no particular limitation on the injection rate. It was found that the critical temperature for precipitation was approximately 65°C.
If it is lower than this, particles tend to sinter during firing. Tin dioxide powder can be obtained by washing and drying the generated precipitate and further calcination, but if the calcination temperature is below 350°C, the crystals will not develop well and it will be amorphous, and if the temperature is above 700°C, it will become amorphous. A conclusion occurs. For this reason, the firing temperature was set at 350°C to 700°C, but in relation to the resistance and particle size of the powder, it is preferable to
The temperature is between 400℃ and 600℃. The fineness and dispersibility of the powder are measured by the specific surface area or the percentage of particles of 0.3 μm or less after dispersing the powder in an aqueous solution with a pH of 10.

実施例 1 水10に水酸化ナトリウム335gを加え70℃に
加熱した。これに、塩化第二スズの60%水溶液
500gに塩酸と水の1:1の混合溶液を610ml加え
たものを定量ポンプで滴下させ反応を行ない最終
PHを2とした。出来た沈澱を捕集し水で洗浄後乾
燥し、500℃で焼成した。得られた粉末をアトマ
イザーで粉砕後柴田化学器機工業(株)のSA−1000
型表面積計で比表面積を測定したところ75.9m2
gであつた。またこの粉末5gに水酸化ナトリウ
ムの7g/溶液40ml加えPH=10とし、直径10mm
のアルミナボール50箇を入れた100mlのボールミ
ルで分散処理した後、遠心沈降法で0.3μm以上
の粒子を沈澱分離し0.3μm以下の粒子量を測定
した。その結果0.3μm以下の粒子の割合は61.3
%であつた。粉末を100Kg/cm2加圧して比抵抗を
測定した結果8×105Ω・cmであつた。
Example 1 335g of sodium hydroxide was added to 10ml of water and heated to 70°C. Add to this a 60% aqueous solution of stannic chloride.
Add 610 ml of a 1:1 mixed solution of hydrochloric acid and water to 500 g and drop it using a metering pump to carry out the reaction.
The pH was set to 2. The resulting precipitate was collected, washed with water, dried, and calcined at 500°C. After pulverizing the obtained powder with an atomizer, use SA-1000 manufactured by Shibata Chemical Equipment Co., Ltd.
When the specific surface area was measured using a mold surface area meter, it was 75.9 m 2 /
It was hot at g. Additionally, 7 g of sodium hydroxide/40 ml of solution was added to 5 g of this powder to make the pH = 10, and the diameter was 10 mm.
After performing a dispersion treatment in a 100 ml ball mill containing 50 alumina balls, particles of 0.3 μm or more were separated by sedimentation using a centrifugal sedimentation method, and the amount of particles of 0.3 μm or less was measured. As a result, the proportion of particles smaller than 0.3 μm was 61.3
It was %. The specific resistance of the powder was measured under a pressure of 100 kg/cm 2 and found to be 8×10 5 Ω·cm.

比較例 1 水10に水酸化ナトリウム335gを加え80℃に
加熱した。これに塩化第二スズの60%水溶液500
gに塩酸と水の1:1の混合溶液を600ml加えた
ものを前記水酸化ナトリウム液に加えて反応を行
ない、最終PHを6とした。沈澱を捕集し洗浄後乾
燥し、500℃で焼成し、実施例1と同様の測定を
した。その結果比表面積は44m2/gであり0.3μ
以下の粒子の含有率は30%であつた。
Comparative Example 1 335g of sodium hydroxide was added to 10ml of water and heated to 80°C. Add to this a 60% aqueous solution of stannic chloride 500
600 ml of a 1:1 mixed solution of hydrochloric acid and water was added to the sodium hydroxide solution to carry out a reaction, and the final pH was set to 6. The precipitate was collected, washed, dried, and calcined at 500°C, and the same measurements as in Example 1 were carried out. As a result, the specific surface area was 44m 2 /g and 0.3μ
The content of the following particles was 30%.

実施例 2 実施例1で反応によつて得られた沈澱乾燥物を
350℃で焼成した。焼成粉末の比表面積は78m2
g、0.3μm以下は62%、比抵抗は108Ω・cm以上
であつた。
Example 2 The dried precipitate obtained by the reaction in Example 1 was
It was fired at 350℃. The specific surface area of the fired powder is 78m 2 /
g, 0.3 μm or less was 62%, and the specific resistance was 10 8 Ω·cm or more.

実施例 3 実施例1で反応によつて得られた沈澱乾燥物を
700℃で焼成した。比表面積は52m2/g、0.3μm
以下の粒子の含有率は41%、比抵抗は6×105
Ω・cmであつた。
Example 3 The dried precipitate obtained by the reaction in Example 1 was
It was fired at 700℃. Specific surface area is 52m 2 /g, 0.3μm
The content of the following particles is 41%, and the specific resistance is 6×10 5
It was Ω・cm.

実施例 4 実施例1で得た焼成粉末17gを、トルエン:メ
チルエチルケトンの4:1混合物75gにポリエス
テル樹脂8gを溶解したワニスに加え、直径10mm
のアルミナボール125箇を入れた250mlのボールミ
ルで17時間分散させ帯電防止塗料を製造した。こ
れをポリエステルフイルム上に1μmの厚さにワ
イヤーバーで塗布した。この塗膜のヘーズ値(曇
価)は17%で表面抵抗は1.5×109Ωであつた。
Example 4 17 g of the calcined powder obtained in Example 1 was added to a varnish prepared by dissolving 8 g of polyester resin in 75 g of a 4:1 mixture of toluene: methyl ethyl ketone, and a varnish with a diameter of 10 mm was added.
An antistatic paint was produced by dispersing the mixture in a 250ml ball mill containing 125 alumina balls for 17 hours. This was applied onto a polyester film to a thickness of 1 μm using a wire bar. This coating film had a haze value of 17% and a surface resistance of 1.5×10 9 Ω.

実施例 5 実施例4と同様の手法で実施例3で製造した粉
末を塗料化した。これをポリエステルフイルムに
ワイヤーバーで塗布した。厚みは1.1μmあつ
た。ヘーズ値は35%で表面抵抗は7.2×109Ωであ
つた。
Example 5 The powder produced in Example 3 was made into a paint using the same method as in Example 4. This was applied to polyester film using a wire bar. The thickness was 1.1 μm. The haze value was 35% and the surface resistance was 7.2×10 9 Ω.

比較例 2 アルカリ水溶液の加熱温度を60℃にする他は、
実施例1と同じ条件で粉末を製造した。得られた
粉末の比表面積は77m2/gであつたが、0.3μ以
下の粒子の含有量は40%であつた。
Comparative Example 2 The heating temperature of the alkaline aqueous solution was 60℃.
A powder was produced under the same conditions as in Example 1. The specific surface area of the obtained powder was 77 m 2 /g, and the content of particles of 0.3 μm or less was 40%.

比較例 3 実施例1と同じ条件で、塩化スズ溶液中にアル
カリ水溶液を加え、以下同様に操作して酸化スズ
粉末を得た。得られた粉末の比表面積は40m2/g
であり、0.3μ以下の粒子の含有率は30%であつ
た。
Comparative Example 3 Under the same conditions as in Example 1, an aqueous alkaline solution was added to the tin chloride solution, and the same procedure was repeated to obtain tin oxide powder. The specific surface area of the obtained powder is 40m 2 /g
The content of particles of 0.3μ or less was 30%.

Claims (1)

【特許請求の範囲】 1 PH10以上のアルカリ水溶液を65℃以上に保ち
ながら、この中に塩化スズ溶液を加え、最終的に
PHを5〜1にすることにより生成物を得、これを
350℃〜700℃で焼成することによる酸化スズ微粉
末の製法。 2 特許請求の範囲第1項に記載の酸化スズ微粉
末の製法であつて、塩化スズ溶液の濃度が10〜60
%である方法。
[Claims] 1. While keeping an alkaline aqueous solution with a pH of 10 or higher at 65°C or higher, a tin chloride solution is added thereto, and finally
The product is obtained by adjusting the pH to 5-1, and this is
A method for producing fine tin oxide powder by firing at 350℃ to 700℃. 2. A method for producing fine tin oxide powder according to claim 1, wherein the tin chloride solution has a concentration of 10 to 60
How to be %.
JP5243983A 1983-03-30 1983-03-30 Production of tin oxide fine powder Granted JPS59182229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5243983A JPS59182229A (en) 1983-03-30 1983-03-30 Production of tin oxide fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5243983A JPS59182229A (en) 1983-03-30 1983-03-30 Production of tin oxide fine powder

Publications (2)

Publication Number Publication Date
JPS59182229A JPS59182229A (en) 1984-10-17
JPS621572B2 true JPS621572B2 (en) 1987-01-14

Family

ID=12914768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5243983A Granted JPS59182229A (en) 1983-03-30 1983-03-30 Production of tin oxide fine powder

Country Status (1)

Country Link
JP (1) JPS59182229A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0882710A1 (en) * 1997-06-03 1998-12-09 Industrial Technology Research Institute Method for the preparation of caprolactam and preparation of catalysts for this method
US7442668B2 (en) * 2003-04-23 2008-10-28 Japan Energy Corporation Solid acid catalyst containing tin and method for preparation thereof
JP5365231B2 (en) * 2009-02-06 2013-12-11 日産自動車株式会社 Method for producing conductive oxide carrier

Also Published As

Publication number Publication date
JPS59182229A (en) 1984-10-17

Similar Documents

Publication Publication Date Title
JPH06207118A (en) White conductive titanium dioxide powder and its production
KR100444142B1 (en) ITO fine powder and method for producing the same
US6311545B1 (en) Anhydrous zinc antimonate semiconductor gas sensor and method for producing the same
JPS621574B2 (en)
JPH0323220A (en) Preparation of white electrically- conductive zinc oxide
JP3422832B2 (en) Dendritic or starfish-shaped fine titanium dioxide and method for producing the same
JPS621572B2 (en)
JP3305405B2 (en) Rod-shaped fine particle conductive titanium oxide and method for producing the same
JPS61141616A (en) Electrically conductive titanium dioxide fine powder, and production thereof
JPH10120418A (en) Production of ultrafine zinc oxide
JP2001058822A (en) Tin-doped indium oxide powder and its production
JPH0232213B2 (en) TEIDENKITEIKOSANKASUZUBIFUNMATSUNOSEIZOHO
JP2844011B2 (en) Conductive fine powder and method for producing the same
JPS621573B2 (en)
JPS6311519A (en) Production of conductive fine particle
JPH05139703A (en) Fine particle-shaped metal oxide hydrate and production thereof
JPH0114174B2 (en)
JP4078660B2 (en) Conductive titanium oxide, process for producing the same, and plastic composition containing the same
JP3250338B2 (en) Method for producing tin oxide white fine powder containing antimony oxide
JPS61286221A (en) Preparation of white electroconductive powder
JPH06234522A (en) Electrically conductive material and its production
JP2844012B2 (en) Conductive fine powder and method for producing the same
JPS58209002A (en) Method of producing white conductive powder
JPS6186421A (en) Preparation of white electroconductive powder
JPH0679964B2 (en) Process for producing antimony-tin oxide powder